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In the adult, vascular smooth muscle cells (VSMC) are normally physiologically
quiescent, arranged circumferentially in one or more layers within blood vessel walls.
Remodelling of native VSMC to a proliferative state for vascular development, adaptation
or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream
of PDGF receptors is store-operated calcium entry (SOCE) mediated through the
plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic
reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This
SOCE was shown to play fundamental roles in the pathological remodelling of VSMC.
Exciting transgenic lineage-tracing studies have revealed that the contribution of the
phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant
than previously appreciated, and growing evidence supports the relevance of ORAI1
signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive
potential therapeutic target as it is accessible to extracellular compound inhibition. This
is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here
we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular
remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs)
and neointimal hyperplasia, and the recent developments in our understanding of the
mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the
activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition,
we discuss advances in therapeutic strategies aimed at the ORAI1 target.

Keywords: ORAI1, STIM1, calcium, vascular remodelling, store operated calcium entry, vascular smooth muscle,
pharmacology

INTRODUCTION

Cardiovascular disease (CVD) defines the conditions affecting the heart and blood vessels. CVD
is currently the leading cause of global mortality, accounting for an estimated 17 million deaths
annually (WHO, 2017). This figure is anticipated to rise as the prevalence in low and middle-
income countries increases. CVD is associated with classical risk factors, including obesity (Poirier
et al., 2006), smoking (Keto et al., 2016), family history (Dorairaj and Panniyammakal, 2012;
Jeemon et al., 2017), and diabetes (Rydén et al., 2013; Shah et al., 2015). Atherosclerotic CVD (e.g.,
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ischaemic heart disease, peripheral arterial disease,
cerebrovascular disease, renovascular disease), pulmonary
hypertension and aneurysm formation have all been associated
with pathological remodelling behaviour of the native vascular
smooth muscle cells (VSMC) within the arterial wall. Similarly,
failure of surgical revascularisation to treat atherosclerotic CVD
lesions (bypass grafting with autologous vein or prosthetic
graft) or percutaneous coronary intervention/peripheral
artery endovascular intervention (angioplasty+/−stenting) is
associated with neointimal hyperplasia (NIH) which is also a
manifestation of pathological vascular remodelling. The ability
to selectively inhibit such pathological remodelling of VSMC
is therefore considered to be a potentially fruitful therapeutic
strategy across this range of cardiovascular pathologies. In
order to achieve this, an identifiable, specific, druggable target is
required. In this review we present an update on the evidence
supporting the ORAI1 Ca2+ channel as a potential therapeutic
target and the current status of inhibitor development. The
focus is on atherosclerotic CVD and NIH as little evidence
exists regarding aneurysm disease in this context and we
recently reviewed the evidence supporting ORAI1 as a target in
pulmonary hypertension (Rode et al., 2018).

VSMC Phenotypic Switching
The VSMC is a specialised cell type which is optimised for
vascular contractility and the modulation of vascular tone via
its contractile apparatus, which depends on smooth muscle
contractile proteins such as alpha smooth muscle actin (α-SMA),
smooth muscle myosin heavy chain (SM-MHC) and smooth
muscle 22 alpha (SM22α). These “contractile” VSMCs usually
reside in the tunica media of the vessel wall and are classically
associated with diseases arising from altered vascular tone, such
as hypertension. VSMC intracellular free calcium levels and
L-type Ca2+ channel activity are hallmarks of excessive vascular
contractility and are targeted by calcium channel blocking anti-
hypertensive drugs in the clinic.

When new blood vessels form during embryogenesis, the
local VSMC sub-populations envelop the angiogenic endothelial
cells to build the vascular tree. Unlike other specialised cell
types, such as the cardiomyocyte, VSMCs are not terminally
differentiated. In cases of vascular injury, the contractile VSMCs
retain the ability to de-differentiate to an immature, plastic,
secretory, and “synthetic” state. These phenotypically modulated
VSMCs have reduced expression of contractile proteins, while
displaying high indices of proliferation, migration, synthesis
and secretion of cytokines and tropoelastins. This phenotypic
switch generates a range of de-differentiated VSMC phenotypes,
including macrophage-like, osteoblast-like and myofibroblast-
like VSMC phenotypes, as reviewed in Sorokin et al. (2020).
This heterogeneity in VSMC populations within the healthy
vessel wall was evident in the heterogeneity of the single VSMCs
transcriptional profiles defined by single cell RNA-sequencing
(Dobnikar et al., 2018).

The critical driver of this process is platelet derived growth
factor BB (PDGF-BB) signalling through the PDGF receptor beta,
PDGFRβ (Owens et al., 2004; Thomas et al., 2009). In vitro and
in vivo studies have shown that PDGF-BB negatively regulates

expression of VSMC contractile markers and promotes the
phenotypic switch toward a plastic and secretory phenotype.
Production of PDGF-BB by activated platelets, macrophages,
endothelial cells and even phenotypically modulated VSMCs
themselves has been described in atherosclerosis and post-
surgical NIH mouse models. This results in downregulation
of VSMC contractile markers, and subsequent stimulation of
VSMC proliferation and migration, reviewed in Owens et al.
(2004). There is evidence to support the concept that as
the de-differentiated VSMC lay down new elastin and re-
populate the vessel, the elastin itself drives the VSMC back
toward their contractile phenotype. This is evidenced by the
synthetic behaviour of VSMC obtained from elastin-deficient
mice and the reduced NIH observed after elastin delivery to
the vessel in porcine model of CVD (Karnik et al., 2003). It
has been argued by Owens and others that this is likely to be
an evolutionarily conserved mechanism for repairing vascular
trauma that conferred a survival advantage to early man. Major
trauma is not the main driver of vascular injury in developed
societies; rather the risk factors driving the development of CVD
cause much less severe but sustained injury to our vasculature.
Therefore, VSMC phenotypic modulation becomes sustained and
the vascular remodelling response itself becomes part of the
pathological process.

Pathological Vascular Remodelling in
Atherosclerosis and NIH
Atherosclerosis is associated with pathological intimal
thickening, neovascularisation, and lipoprotein depositions
(Virmani et al., 2000). Phenotypically-modulated VSMCs
in atherosclerosis have low expression of VSMC contractile
markers, and a heightened ability to proliferate and migrate.
Synthetic VSMCs have also been associated with increased
secretory activities and increased production of extra-cellular
matrix (ECM) components, which contribute to the intimal
thickening and atherosclerosis progression (Okada et al., 1993;
Andreeva et al., 1997). It was long assumed that the role of VSMC
was rather limited in atherosclerotic plaque formation. These
assumptions were based on conventional VSMC identification
approaches; low levels of antibody staining for “classical” VSMC
markers, such as α-SMA and SM-MHC were observed in the
atherosclerotic plaque. However, as discussed above, the classical
VSMC markers are downregulated in phenotypically-modulated
VSMC therefore potentially rendering them undetectable via
this approach. Recent transgenic lineage-tracing studies have
enabled fate tracking of VSMC even following remodelling and
loss of contractile protein expression. These elegant studies
demonstrated that more than 80% of cells within lesions are
phenotypically-modulated VSMC that lack VSMC identification
markers (Shankman et al., 2015). Compelling evidence supports
the adverse effect of VSMC remodelling to macrophage-like foam
cells in lesion pathogenesis. This was demonstrated in a study
from the Owens laboratory that utilised an SMC lineage-tracing
murine model to study the impact of SMC-specific deletion of
the pluripotency factor, Krüppel-like factor 4 (Klf4), which is
crucial for the PDGF-induced VSMC phenotypic switch, on
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atherosclerotic plaque development (Deaton et al., 2009). They
showed that loss of Klf4 in VSMC was associated with reduced
plaque formation, and improved plaque stability (Shankman
et al., 2015), highlighting the key role of VSMC remodelling in
the pathogenesis of atherosclerosis and the potential beneficial
outcome of inhibiting the extrinsic phenotypic switch to target
atherosclerosis. Critically, the same group have demonstrated
that VSMC remodelling mediated by the transcription factor
Octamer-Binding Protein 4 (Oct4) is crucial for plaque stability,
and that Oct4 conditional deletion in VSMC had adverse effects
on lesion pathogenesis as shown by the reduced VSMC content
in the protective fibrous cap, implying that VSMC phenotypic
switching could be beneficial in maintaining plaque stability,
and preventing rupture (Otsuka et al., 2015). Additionally,
VSMC apoptosis was also shown to be a key feature of plaque
vulnerability (Clarke and Bennett, 2006).

The VSMC phenotypic switch is also a key player in the
development of NIH. Post-coronary intervention patients remain
at risk of developing NIH, with even greater risk in patients
with comorbidities, including diabetes and obesity (Silber et al.,
2013). Drug-eluting stents that target VSMC proliferation have
been shown to improve the clinical outcome following bypass
surgery, percutaneous coronary angioplasty, and peripheral
revascularisation (Moses et al., 2003), yet a recent systematic
review and meta-analysis suggested increased mortality risk
5 years following femoropopliteal application of drug-coated
balloons and stents (Katsanos et al., 2018). Despite the beneficial
effects of the drug-coated stents and balloons in preventing
NIH following angioplasty, the reported possible deleterious
long-term side effects of these devices raised concerns about
their safety and emphasised the clinical need for new effective
therapeutic strategies.

Taken together, strong evidence supports the crucial role
of VSMC in the pathophysiology of atherosclerosis, and NIH.
VSMC could be directed toward either beneficial or unfavourable
remodelling during lesion development. Nevertheless, suitable
(and druggable) molecular therapeutic targets to control VSMC
phenotypic remodelling remain elusive.

Store-Operated Calcium Entry (SOCE)
Calcium (Ca2+) is a universal second messenger and signalling
ion that is crucial for a wide range of cellular processes
with a temporal range from milliseconds (e.g., contraction)
to hours/days (e.g., gene transcription). The concentration
of global as well as compartmentalised Ca2+ within the
cell regulates Ca2+-dependent regulatory pathways that define
VSMC function and phenotype, cytoskeletal remodelling and
cell proliferation (Beech, 2007). Cytosolic Ca2+ influx occurs
through plasmalemmal Ca2+ channels, including voltage-gated
and receptor-operated Ca2+ channels, that allow modulated
extracellular Ca2+ influx into the cell. Additionally, Ca2+

fluxes out of and into the major intracellular Ca2+ store,
the endoplasmic reticulum (ER), are controlled by ryanodine
receptors (RyR) and inositol trisphosphate receptors (IP3R) on
the ER membrane. PDGF-BB, which drives VSMC phenotypic
switch, triggers a global rise in intracellular Ca2+ through
the binding of PDGF-BB to its receptor, PDGFRβ, initiating

phosphorylation of the PDGF receptor tyrosine kinase residues,
leading to activation of number of signalling pathways implicated
in proliferative vascular diseases, including phospholipase C
(PLC) and phosphatidylinositol 3-kinase (PI3K). The activated
PLC enzymes generate IP3, which in turn promotes the activation
of IP3R and the release of Ca2+ waves from the ER to the cytosol.

The phenomenon of extracellular Ca2+ influx following
intracellular Ca2+ release was first observed by Putney in 1977
(Putney, 1977) and formalised into the theory of capacitative
Ca2+ entry in 1986 (Putney, 1986). The proposed hypothesis
was then verified by the observed increase in Ca2+ influx in
parotid acinar cells following stimulation of store depletion
using the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)
pump inhibitor, thapsigargin (Takemura et al., 1989). Afterward,
via whole-cell patch-clamp analysis in mast cells, Ca2+ current
following store depletion was recorded and characterised as
Ca2+-selective inwardly rectifying current, which was termed
calcium-release-activated-calcium current (ICRAC) (Hoth and
Penner, 1992). Today the process of extracellular Ca2+ influx
upon depletion of the intracellular stores is most commonly
described as store-operated Ca2+ entry or SOCE and throughout
this review we will use this term.

Despite the physiological phenomenon of SOCE being well
established, the molecular machinery encoding SOCE remained
elusive for many years. In 2005, STIM1 was identified as the
ER membrane Ca2+ store sensor and a key component of
SOCE (Liou et al., 2005; Roos et al., 2005). It has since been
demonstrated that a small pool of STIM1 also exists in the
plasma membrane (Li et al., 2015). Identification of patients
who presented with severe combined immune deficiency (SCID)
due to impairment of SOCE in T cells was a key discovery
that provided a chance to pinpoint genes encoding calcium-
release-activated-calcium current (CRAC) channels (Feske et al.,
2005). ORAI1, which is also known as calcium release-activated
calcium modulator 1 (CRACM1) and transmembrane protein
142A (TMEM142A) was identified in 2006 by Feske et al.
(2006) through a genome-wide screen of linkage in SCID
patients that identified a missense mutation in ORAI1, which
resulted in impaired ICRAC in T cells, as well as a genome-
wide RNA interference screen in Drosophila melanogaster which
provided support that ORAI1 is the key component of CRAC
channels (Figure 1). In addition, genome-wide RNA-interference
screens have identified ORAI1 as a key component of SOCE
in D. melanogaster S2 cells, and confirmed the requirement of
ORAI1 for generation of ICRAC (Zhang et al., 2006). Ectopic
co-expression of ORAI1 and STIM1 was able to augment
SOCE in human embryonic kidney cells (HEK293) and Jurkat
T cells, implying their independent role in generating ICRAC
(Peinelt et al., 2006). Furthermore, Prakriya et al. (2006) revealed
that ORAI1 is the de facto pore-forming subunit of CRAC
channels, demonstrating that ORAI1 is located at the cell
surface, and that mutations within ORAI1 alter the properties of
the CRAC current.

It was long thought that SOCE was mediated by members
of the transient receptor potential (TRP) channel superfamily,
mainly canonical TRP (TRPC) channels, most commonly,
TRPC1. Attenuation of SOCE upon TRPC1 knockdown in
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FIGURE 1 | Timeline of the main milestones in the discovery of SOCE. In 1986, Putney proposed the hypothesis of SOCE. This hypothesis was then verified and the
components of SOCE, which are STIM1 the Ca2+ store sensor and ORAI1 the de facto pore-forming subunit of CRAC channel, were identified. Since this discovery,
the involvement of ORAI1 in various vital cellular processes and its contribution to diverse diseases have been recognised.

human submandibular gland (HSG) cells (Liu et al., 2003), and
in salivary gland acinar cells isolated from TRPC1 knockout
mice (Liu et al., 2007), as well as the augmentation of Ca2+

influx following thapsigargin-mediated store-depletion in cells
expressing TRPC1 (Zhu et al., 1996; Liu et al., 2003) provided
support for this view. Induced expression of mutant TRPC1 that
either encodes truncated protein or harbours mutations at the
negatively charged residues in the pore-forming region resulted
in remarkable reduction of SOCE, implying that TRPC1 could be
a molecular component of CRAC channels (Liu et al., 2003).

The discovery of ORAI1 as the de facto CRAC channel
created debate regarding TRPC1 as a direct component of CRAC
channels or indirect modulator of SOCE. ORAI1 was shown
to associate with TRPC1, with enhanced interaction upon store
depletion, suggesting the involvement of ORAI1/TRPC1 channel
in SOCE (Jardin et al., 2008). Induced interaction between ORAI1
and TRPC1 was observed in murine pulmonary arterial smooth
muscle cells with elevated SOCE in response to acute hypoxia
(Ng et al., 2012). Ávila-Medina et al. (2016) showed via an in situ
proximity ligation assay that the three channels, ORAI1, TRPC1
and voltage-gated Ca2+ channel (CaV1.2) are localised in close
proximity in VSMC, suggesting possible functional interactions
to modulate Ca2+ signalling. Electrostatic interaction between
TRPC1 and STIM1 was reported to be essential for TRPC1
channel gating (Zeng et al., 2008). Moreover, inhibition of
the interaction between ORAI1 and STIM1, using an antibody
directed against the C-terminal region of ORAI1, impaired
STIM1 and TRPC1 association and altered TRPC1 function from
a store-operated channel into a store-independent (receptor-
operated) channel in human platelet cells (Jardin et al., 2008).

Arguing against the role of TRPC1 as a CRAC channel, the
activity of TRPC1 was reported to be independent of the ER
Ca2+ sensor STIM1, as shown by the lack of effect of STIM1
silencing or overexpression on the channel’s activity in HEK293
cells (Wayne et al., 2009). Nonetheless, an alternative model of
communication with intracellular stores was suggested by an
enhanced TRPC1 interaction with the IP3 receptor upon store

depletion in human platelets, implying that the role of TRPC1
could include coupling to the IP3 receptor in the ER (Rosado
et al., 2002). This model was again challenged by the observation
that TRPC1 is localised on the intracellular membranes in
platelets rather than the plasma membrane (Hassock et al., 2002).
It was also reported that TRPC1-induced expression failed to
enhance SOCE (Sinkins et al., 1998; Strübing et al., 2001), and
VSMC isolated from TRPC1 knockout mice showed no change
in SOCE relative to wild type (Dietrich et al., 2007). Despite the
evidence supporting the involvement of TRPC1 in SOCE, there
is still considerable controversy surrounding the contradictory
results of the involvement of TRPC1 in SOCE.

STIM1
Live cell imaging and electrophysiology studies have shown that
following pharmacological store depletion, STIM1 undergoes
oligomerisation, aggregation and translocation to the ER-plasma
membrane junctions to activate ORAI1 channels (Wu et al.,
2006; Liou et al., 2007; Luik et al., 2008; McKeown et al.,
2012). This distribution, however, was not observed in PDGF-
mediated ORAI1 activation in VSMC, revealing an alternative
non-clustering mechanism of ORAI1 activation that is likely
to be more relevant to the physiological setting (McKeown
et al., 2012). STIM1 is an ER membrane protein consisting of
multiple structural domains, with the N-terminus located in ER
lumen encompassing canonical EF-hand, hidden EF-hand, and
sterile alpha motif (SAM) domains. The Ca2+ sensing ability
of STIM1 is mediated by the low Ca2+ binding affinity of the
canonical EF-hand intra-ER domain. Ca2+ depletion and release
from the EF-hand domain result in exposure of its hydrophobic
residues, EF-SAM monomer transformation into an oligomer,
elongation of the C-terminal cytosolic domain, and exposure
of its CRAC activation domain (CAD) (Huang et al., 2006;
Stathopulos et al., 2006; Covington et al., 2010; Yang et al.,
2012b). The ORAI1 channel is subsequently activated by direct
interaction with CAD, generating ICRAC (Spassova et al., 2006;
Park et al., 2009; Figure 2). STIM1 regulation of Ca2+ signalling is
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FIGURE 2 | Schematic representation of ORAI1-mediated SOCE in VSMC. Calcium release from ER via inositol 1,4,5-triphosphate (IP3) receptor results in store
depletion, which induces STIM1 oligomerisation to activate ORAI1 channels. ORAI1-mediated SOCE is associated with activation of nuclear factor of activated T-cell
(NFAT), which promotes VSMC proliferation and migration. Ca2+ influx via ORAI1 also induces mitochondrial Ca2+ uptake via mitochondrial calcium uniporter (MCU).

not limited to modulating ORAI1 activity. Other Ca2+ channels
revealed to be regulated by STIM1 include TRPC1 (Zeng et al.,
2008), and the voltage-gated Ca2+ channel, CaV1.2 (Wang et al.,
2010). Interestingly, while STIM1 activates ORAI1 channels,
its interaction with CaV1.2 attenuates the channel’s activity
(Wang et al., 2010), supporting a bimodal function of STIM1 in
regulating Ca2+ signalling by activating SOCE on one hand and
inhibiting voltage-gated Ca2+ channels on the other.

ORAI1 Channel
The human ORAI1 gene is 16.128 Kb in length, located at
chromosome 12q24.31 (GRCh38/hg38), and is translated into
two protein isoforms: ORAI1α (around 33 KDa) and ORAI1β

(around 23 KDa) due to different translation initiation sites
(Fukushima et al., 2012). Both ORAI1α and ORAI1β assemble
to generate functional CRAC channels, and have similar sub-
cellular localisation. Nonetheless, ORAI1β has higher mobility
in the plasma membrane as it lacks arginine-rich residues that
promote ORAI1α interaction with the phosphatidylinositol-4,5-
bisphosphate (PIP2) of plasma membrane (Calloway et al., 2011).
The ORAI1 protein structure comprises four transmembrane
(TM) domains, extracellular TM1-TM2 loop, intracellular TM2-
TM3 loop, extracellular TM3-TM4 loop, and cytoplasmic N-
and C-termini (Figure 3). ORAI1 was shown to undergo
post-translational modifications, including glycosylation of the
asparagine 233 residue located at the extracellular loop-2
(Gwack et al., 2007), and phosphorylation of serine residues at
positions 27 and 30 (Kawasaki et al., 2010). ORAI1 assembles
to form either homomeric or heteromeric channels. Three
members of the ORAI family have been identified, with ORAI2
and ORAI3 encoded by separate genes, ORAI2 and ORAI3,
respectively. ORAI channels can assemble as hetero-pentameric
channels comprising three ORAI1 and two ORAI3 subunits to

generate arachidonate-regulated Ca2+ (ARC) channel, which is
activated independent of store depletion. ARC channels show
receptor-mediated activation by intracellular arachidonic acid.
Interestingly, only ORAI1α and not ORAI1β participates in the
formation of ARC channels (Desai et al., 2015).

ORAI1 monomers are arranged to generate a central
ion conduction pore, involving the TM1 domain from each
monomer, to generate a circle of TM1 domains. These amino
acid residues, surrounding the ion conductance pore, determine
the biophysical features of the channel. The glutamic acid
residues at position 106 form an outer ring thought to act
as a selectivity filter (McNally et al., 2009). Crystal structure
determination of the D. melanogaster Orai1 revealed assembly
as an unusual and unexpected hexameric complex (Hou et al.,
2012). However, the data on functional stoichiometry of human
ORAI1 (hORAI1) is contradictory. High resolution scanning
transmission electron microscopy (STEM) imaging of hORAI1
proteins indicated that they were mainly found as monomers
and dimers, with a small fraction found as hexamers (Peckys
et al., 2016). Early electrophysiological analysis of hexameric
and tetrameric concatemer of hORAI1 suggested that the
biophysical properties of the tetrameric concatemer match that
of the native CRAC currents, whereas the hexameric concatemer
lacked key fingerprint features of CRAC currents (Thompson
and Shuttleworth, 2013). More recent electrophysiology studies,
however, reported that hexameric hORAI1 concatemer exhibited
the key biophysical features of CRAC channels, including
Ca2+ selectivity, generating unitary current and rapid Ca2+

dependent channel inactivation (Yen et al., 2016). Similarly,
recent analysis of Ca2+ currents mediated by dimeric, trimeric,
tetrameric, pentameric, and hexameric concatemers of hORAI1
showed inwardly rectifying store-operated Ca2+ current in
all oligomeric concatemers similar to that of native CRAC
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FIGURE 3 | Protein domain structure of human ORAI1 and the reported ORAI1 mutations. (A) Human ORAI1 protein comprises four transmembrane (TM) domains,
two extracellular loops between TM1-TM2, and between TM3-TM4, one intracellular loop between TM2-TM3, arginine rich domain, proline-rich domain,
arginine-lysine rich domain, amino terminus (N), and carboxy terminus (C) containing CRAC activation domain (CAD) binding domains (purple lines). (B) The blue
lines represent gain-of-function (GOF) single nucleotide polymorphisms (SNPs) reported in tubular aggregate myopathy (TAM) patients with elevated CRAC channel
activity. The red lines represent ORAI1 loss-of-function (LOF) mutations reported in patients with immunodeficiency, severe combined immune deficiency (SCID), and
ectodermal dysplasia anhydrosis (EDA).

channels (Cai et al., 2016). This study also found that the hORAI1
tetrameric concatemer only contributed with the N-terminal
dimer of the construct to generate the channel; unlike the
hORAI1 hexamer, in which all subunits contributed to formation
of the channel, suggesting that hORAI1 exists in a hexameric
configuration (Cai et al., 2016). This is in accord with the atomic
force microscopy imaging study that suggested that hORAI1
assembles as a hexamer (Balasuriya et al., 2014). Although several
lines of evidence support the idea that hORAI1 channels exist as
hexamers, debate remains.

Recent studies have shed the light on the contribution of
the different ORAI homologs in the pattern of Ca2+ signals
and revealed their involvement in Ca2+ oscillatory responses
(Yoast et al., 2020; Zhang et al., 2020). These oscillations
in cytosolic Ca2+ concentration, with varying spatiotemporal
features, are fundamental cellular signals that are efficiently
decoded to activate specific gene transcription and certain cellular
responses. The pattern of Ca2+ response in cells that lacked

either one, two, or the three ORAI homologs was studied and
it was shown that ORAI2 and ORAI3 play an essential role in
maintaining agonist-induced Ca2+ oscillatory responses, while
ORAI1 mainly mediates plateaus. These findings suggest that
ORAI2 and ORAI3 heteromerisation with ORAI1 plays a role in
mediating the channel response to low agonist concentrations,
and modulating CRAC channel-mediated gene transcription
processes (Yoast et al., 2020).

ORAI1 in Pathological Vascular Smooth
Muscle Cell Remodelling
Contractile VSMC exhibit almost no proliferation and low
expression of ORAI1 and STIM1 proteins. Increased expression
of these proteins was shown to be associated with VSMC de-
differentiation and remodelling (i.e., the synthetic phenotype,
Figure 4). In proliferating cultures of human saphenous vein
VSMC (hVSMC), ORAI1 is abundantly expressed and is crucial

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 April 2021 | Volume 9 | Article 653812

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-653812 March 29, 2021 Time: 16:1 # 7

Shawer et al. ORAI1 Channels in Vascular Remodelling

FIGURE 4 | Diagrammatic illustration of VSMC phenotypic remodelling. (A) VSMC with fully differentiated contractile phenotype features spindle-like elongated
morphology, with low proliferation and migratory abilities, and typically shows low ORAI1 and STIM1 expression levels. Fully differentiated cells express VSMC
markers including alpha smooth muscle actin (αSMA), and gamma smooth muscle actin (γSMA). (B) Upon phenotypic remodelling VSMC with synthetic phenotype
acquires enlarged hypertrophic morphology with high proliferation and migratory abilities. Synthetic VSMCs show high ORAI1 and STIM1 expression levels and low
expression of αSMA and γSMA VSMC markers.

for SOCE. Where siRNA-induced ORAI1 silencing suppressed
SOCE, and this reduction of SOCE was rescued by transfecting
cells with ORAI1 cDNA, verifying the role of ORAI1 in SOCE in
hVSMC (Li et al., 2011b). Inhibition of SOCE either by siRNA-
mediated ORAI1 silencing or pharmacologically using the potent
and selective CRAC channel blocker Synta66 (S66) reduced
hVSMC migration, with slight reduction of cell proliferation
and no effect on cell viability (Li et al., 2011b). Similarly,
in human aortic VSMC cultures, impairment of ICRAC via
siRNA-mediated ORAI1 silencing significantly hampered cell
proliferation (Baryshnikov et al., 2009). Although the secretory
behaviour of VSMC plays a crucial role in pathologic ECM
remodelling, little is known about the role of ORAI1 in ECM
production and secretion in VSMCs.

Whilst ORAI1 is upregulated in synthetic and proliferative
VSMC, the L-type voltage gated CaV1.2 channel was
downregulated, which is a trend thought to contribute
to the loss of the VSMC contractile function in synthetic
phenotype (Gollasch et al., 1998; Ihara et al., 2002). CaV1.2
channel blockers in VSMC promote STIM1-induced ORAI1
activation through promoting STIM1 re-localisation to the
ER-PM junctions, in CaV1.2 and store-depletion independent
fashion, leading to induced VSMC remodelling (Johnson
et al., 2020). These findings not only support the implication
of ORAI1/STIM1 signalling in VSMC remodelling but also
imply the risk of potential aggravation of vascular remodelling
by the CaV1.2 channel blockers, which are routinely used
anti-hypertensive medications.

PDGF pro-migratory signalling, an essential component in
VSMC phenotypic switching (Yamasaki et al., 2001), was shown
to activate ORAI1 channels in hVSMC without inducing ORAI1

redistribution in the plasma membrane (McKeown et al., 2012).
In agreement with these findings, Ogawa et al. (2012) showed that
PDGF induces pulmonary arterial VSMC proliferation through
activation of SOCE. Silencing of either Orai1 or Stim1 in cultured
rat aortic VSMC disrupted PDGF-induced Ca2+ entry and
reduced cell migration, verifying that PDGF mediates its effect in
VSMC through the ORAI1/STIM1 signalling pathway (Bisaillon
et al., 2010). On the other hand, pharmacological potentiation
of ORAI1 channel activity using the ORAI1 enhancer (IA65)
was shown to promote the PDGF-induced VSMC migration
(Azimi et al., 2020). The pro-migratory and proliferative effect
of ORAI1 is thought to be mediated through activation of the
transcription factor, nuclear factor for activated T cells (NFAT),
which potentially promotes the expression of pro-proliferative
factors (e.g., IL6, cyclin A, and cyclin D1), as observed from the
reduced NFAT nuclear translocation following silencing of Orai1
or Stim1 in VSMC (Aubart et al., 2009; Zhang et al., 2011b).
Orai1 silencing in primary VSMC isolated from rabbit aorta
resulted in reduced DNA synthesis and cell proliferation (Yang
et al., 2012a). In cultured rat synthetic VSMC, knockout of either
Orai1 or Stim1 reduced cellular proliferative and migratory ability
(Potier et al., 2009). Similar results were reported with siRNA-
induced silencing of Stim1 in cultured rat VSMC, resulting in
reduced cell proliferation and migration. This effect of Stim1
silencing on VSMC proliferation and migration was reversed
by re-expression of Stim1 (Guo et al., 2009), demonstrating
its vital role in regulating VSMC proliferation. These data
highlight the role of ORAI1/STIM1 and SOCE in regulating
VSMC switch to a proliferative and migratory phenotype, a
process that plays a key role in the aetiology of various
vascular pathologies.
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In addition to the activation of ORAI1 by PDGF signalling,
Urotensin-II-induced VSMC proliferation was mediated
through activating SOCE and promoting ORAI1/STIM1 and
ORAI1/TRPC interactions (Rodríguez-Moyano et al., 2013).
Similar findings were observed by in vitro treatment of human
coronary VSMC with angiotensin-II, which stimulated VSMC
remodelling to proliferative phenotype, and resulted into ORAI1
upregulation leading to augmented SOCE (Liu et al., 2020).
Additionally, the angiotensin-II-stimulated human coronary
VSMC (Liu et al., 2020) and rat aortic VSMC (Guo et al., 2011)
proliferation was hampered by either ORAI1 or STIM1 silencing.
Sphingosine-1-phosphate (S1P) is another signalling molecule
that was shown to induce STIM1 rearrangement, resulting in
subsequent activation of ORAI1-mediated SOCE in VSMC. This
S1P-triggered activation of SOCE was shown to be higher in
synthetic VSMC relative to those with the contractile phenotype,
supporting the crucial role ORAI1-mediated SOCE in promoting
phenotypic remodelling (Hopson et al., 2011).

The phenotypic modulation of VSMC could lead to their
differentiation to an osteoblast-like cells, which is characterised
by the expression of osteogenic markers and secretion of
calcified matrix, a process known as vascular calcification. This
osteogenic differentiation of VSMC is a key player in vascular
calcification that can lead to vascular stiffness and atherosclerotic
plaque rapture (Durham et al., 2018). ORAI1 has been reported
to play a role in this osteogenic reprogramming of human
aortic VSMC and vascular calcification. For example, in vitro
induction of the osteogenic signalling in human aortic VSMC
by β-glycerophosphate exposure, as a phosphate donor, or by
high extracellular glucose treatment resulted in an upregulation
of ORAI1 and STIM1 levels, and this effect on vascular osteogenic
signalling was suppressed by ORAI1 silencing or pharmacological
inhibition (Ma et al., 2019, 2020; Zhu et al., 2020).

Evidence Implicating ORAI1 in
Pathological Vascular Remodelling in
Atherosclerosis and NIH
Mutations in the ORAI1 gene have been reported in a range of
diseases (Figure 3 and Tables 1, 2), including: tubular aggregate
myopathy (TAM), SCID, congenital miosis, ectodermal dysplasia
anhidrosis (EDA), and Stormorken-like syndrome (Böhm et al.,
2017; Garibaldi et al., 2017). The clinical manifestation of
ORAI1 deficiency is mainly immunodeficiency, global muscular
hypotonia, and defects in dental enamel calcification (Table 1;
Feske et al., 2006; McCarl et al., 2009; Badran et al., 2016; Lian
et al., 2018). Of interest to the present study however, neo-
vascularisation of the cornea was observed in a patient with
compound heterozygous missense mutations 308C>A (A103E)
and 581T > C (L194P) in the ORAI1 gene (McCarl et al., 2009).
There is also a growing body of evidence linking upregulation
of ORAI1 in a wide range of important human diseases from
cancer to heart failure. The implication of ORAI1 in human
cardiovascular abnormalities was highlighted by the reported
association of ORAI1 mutations with Kawasaki disease (KD)
susceptibility, which is the leading cause of cardiovascular
complications during childhood. These studies have identified

rare missense variants in KD patients (Onouchi et al., 2016;
Thiha et al., 2019). The reported variants in KD patients,
interestingly, include a variant that cause p.Gly98Asp mutation
within the TM1 domain that generates the ion conduction
pore, which is a mutation known to lead to a constitutive
ORAI1 channel activation (Zhang et al., 2011a). These findings
signify the potential involvement of ORAI1-mediated signalling
in cardiovascular pathologies.

ORAI1 in the Pathological VSMC Remodelling in NIH
and Re-Stenosis
The key role of ORAI1/STIM1 signalling in promoting migration
and proliferation of cultured VSMC was supported by in vivo
studies, where STIM1 (Aubart et al., 2009; Guo et al., 2009)
and ORAI1 (Bisaillon et al., 2010) levels were elevated in
injured rat carotid arteries following balloon angioplasty,
relative to uninjured arteries. Similar elevation of ORAI1 and
STIM1 was observed in the intimal hyperplastic lesion in
mouse carotid arteries following carotid ligation (Zhang et al.,
2011b), and an increased expression of ORAI1 and STIM1
in neointimal VSMC was associated with elevated expression
of proliferation markers (Zhang et al., 2011b). Formation of
NIH following balloon angioplasty and the expression level of
proliferation markers were significantly reduced by either Stim1
knockdown (Aubart et al., 2009; Guo et al., 2009) or Orai1
knockdown (Zhang et al., 2011b) induced by viral delivery
of siRNA or short-hairpin RNA (shRNA) in rats, respectively,
supporting the in vivo role of ORAI1 and STIM1 in the
pathogenesis of NIH.

It was also shown that angiotensin-II, which is a driver of
VSMC remodelling, promotes ORAI1 and STIM1 expression
in rat carotid arteries after balloon angioplasty, and that
silencing of either Orai1 or Stim1 reduced the angiotensin-II-
promoted NIH formation in injured rat carotids (Guo et al.,
2011). In support, Mancarella et al. (2013) studied the role
of STIM1 in SMC function via targeted deletion of Stim1
specifically in murine smooth muscle tissues using Cre-Lox
technology. This murine model was carrying the cre-recombinase
transgene under the control of the SM22α smooth muscle-
specific promoter that enabled the deletion of Stim1 in the
different smooth muscle tissues. This lack of Stim1 in smooth
muscle tissues resulted in abnormal development and impaired
contractile response in intestinal and vascular smooth muscles.
Development of NIH following carotid artery ligation was
shown to be significantly reduced in mice with Stim1 SMC-
specific conditional deletion relative to controls (Mancarella
et al., 2013). This study emphasises the role of STIM1 in the
formation of NIH. Nonetheless, the reported involvement of
STIM1 in NIH does not necessarily indicate similar contribution
of ORAI1, due to the multiple pathways and channels involving
STIM1 activation.

ORAI1 has been shown to directly interact with various
proteins implicated in NIH formation, including members
of TRPC family. TRPC1, TRPC3, TRPC4, and TRPC6 were
shown to have a role in modulating VSMC proliferation and
formation of NIH (Kumar et al., 2006; Jia et al., 2017).
Nonetheless, little is known about the potential involvement

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 April 2021 | Volume 9 | Article 653812

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-653812 March 29, 2021 Time: 16:1 # 9

Shawer et al. ORAI1 Channels in Vascular Remodelling

TABLE 1 | Human ORAI1 (NM_032790.3) mutations and the associated disorders.

ORAI1 function Mutation Position of mutation Effect on ICRAC Disease phenotype References

Gain-of-function Heterozygous missense
mutation 290C>G (S97C)

TM1 Constitutive activation of
ICRAC

TAM, congenital miosis Garibaldi et al.,
2017

Heterozygous missense
mutations 292G>A (G98S)

TM1 STIM1-independent
constitutive activation of
ICRAC

TAM, myalgia, occasional
mild hypocalcemia,
frequent episodes of
bleeding from mouth, nose,
and bowel

Böhm et al., 2017

Heterozygous missense
mutations 319G>A
(V107M)

TM1 STIM1-independent
Constitutive activation of
ICRAC

TAM, myalgia Böhm et al., 2017

Heterozygous missense
mutations 551C>T
(T184M)

TM3 Constitutive activation of
ICRAC

Mild general weakness,
myalgia, hypereosinophilia,
pectus excavatum, arched
palate, asymptomatic
hyperCKemia

Böhm et al., 2017

Heterozygous missense
mutation 292G>A (G98S)

TM1 Constitutive activation of
ICRAC

TAM, slowly progressive
diffuse muscle weakness,
hypocalcemia

Endo et al., 2014

Heterozygous missense
mutation 412C>T (L138F)

TM2 Constitutive activation of
ICRAC

TAM, slowly progressive
diffuse muscle weakness

Endo et al., 2014

Heterozygous missense
mutation 734C>T (P245L)

TM4 Prolonged ICRAC activation
and reduced inactivation
relative to WT

TAM, stormorken-like
syndrome of congenital
miosis

Nesin et al., 2014

Loss-of-Function Homozygous missense
mutation 271C>T (R91W)

TM1 Defects in SOCE and ICRAC Hereditary SCID, EDA,
congenital non-progressive
myopathy

Feske et al., 2006

Homozygous non-sense
mutation resulting from
frameshift insertion
(258_259insA)

Premature termination
(A88SfsX25) at the end of
TM1

Defects in SOCE and ICRAC SCID due to proliferation
defects in T-cells, global
muscular hypotonia,
defects in dental enamel
calcification

McCarl et al., 2009

Compound heterozygous
for two missense mutations
308C>A (A103E) and
581T>C (L194P)

TM1 and TM3
pore-domains

Defects in SOCE and ICRAC SCID, global muscular
hypotonia, defects in dental
enamel calcification,
chronic pulmonary disease
due to respiratory muscle
insufficiency, eczema,
neo-vascularisation of
cornea, EDA

McCarl et al., 2009

Homozygous for missense
mutation 581T>C (L194P)

TM3 Defects in SOCE and ICRAC Immunodeficiency, anemia,
thrombocytopenia,
congenital muscular
hypotonia, anhidrosis

Lian et al., 2018

Homozygous missense
mutation 808C>T (R270X)
resulting in pre-mature stop
codon

C-terminally truncation Defects in SOCE and ICRAC Immunodeficiency due to
proliferation defects in
T-cells

Badran et al., 2016

Homozygous missense
mutation, resulting from
frameshift insertion
493_494insC (H165Pfs)

C-terminally truncation Reduced but not abolished
ICRAC

Immunodeficiency, with
normal T-cell numbers and
proliferation

Chou et al., 2015

Homozygous missense
mutation 292G>C (G98R)

TM1 Defects in SOCE and ICRAC Immunodeficiency,
autoimmune haemolytic
anemia, thrombocytopenia,
anhidrosis, congenital
muscular hypotonia

Lian et al., 2018

Homozygous for single
nucleotide deletion resulting
in frameshift mutation
(del541C)

Premature termination
(V181SfsX8) within TM3

Defects in SOCE and ICRAC Immunodeficiency, reduced
T-cell proliferation, muscular
hypotonia, EDA

Lian et al., 2018

ICRAC, calcium-release-activated-calcium current; SOCE, store-operated calcium entry; TM, transmembrane; TAM, tubular aggregate myopathy; SCID, severe combined
immune deficiency; EDA, ectodermal dysplasia anhidrosis.
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TABLE 2 | ORAI1 mutations and resulting phenotype in animal models.

Mutation Position of mutation Model
organism

Disease phenotype References

Global Orai1 knockout in
C57BL/6 background

Exon-1 deletion Mice Perinatal lethality Gwack et al., 2008

Global amorphic mutation ORAI1R93W /R93W in TM1
pore-domain

Mice Perinatal lethality Bergmeier et al., 2009; Maus
et al., 2017

Global Orai1 knockout in mixed
ICR background

Exon-1 deletion Mice Small size, eyelid irritation, and
sporadic hair loss; and impaired
B-cell proliferation and
decreased cytokine production

Gwack et al., 2008

Small size, reduced and
irregular enamel deposition,
deficient multinucleated
osteoclasts, decreased bone
mineral resorption and bone
volume, impaired osteoblast
differentiation

Robinson et al., 2012

Global Orai1−/− via gene trap
technology

Deletion of exon-2 and -3 Mice Small size, defects in integrin
activation, degranulation,
decreased cytokine production,
and defects in the in vivo
allergic response, no defects in
T cell proliferation and
differentiation

Vig et al., 2008

Chimeric mice expressing
amorphic mutant ORAI1 protein
only in blood cells

ORAI1R93W /R93W in TM1
pore-domain

Mice Defects in platelet integrin
activation, degranulation, and
surface phosphatidylserine
exposure

Bergmeier et al., 2009

Global Orai1 knockout in mixed
ICR background

Deletion of exon-2 and -3 Mice Osteopenia, decreased bone
mineral density and bone
volume, despite normal
osteoblast differentiation

Hwang et al., 2012

Global Orai1 deficiency by
injection of Orai1 morpholinos

Targeting splice donor site of
exon1 or translational start site

Zebrafish Muscle weakness, severe heart
failure, bradycardia, despite
normal cardiomyocyte
differentiation

Volkers et al., 2012

Brain- specific Orai1 deletion Deletion of exon-2 and -3 Mice Diminished proliferation of adult
neural progenitor cell

Somasundaram et al., 2014

T cell- specific Orai1 deletion Orai1 deletion Mouse model
of EAE

Inhibition of pro-inflammatory
cytokines production, and
reduced EAE severity

Kaufmann et al., 2016

Global Orai1 knockout
Orai1−/− in mixed ICR
background

Orai1 deletion Mice Sterile males, severe defects in
spermatogenesis, and in
elongating spermatid
development

Davis et al., 2016

Ectodermal tissues -specific
Orai1 deletion

Deletion of exon-2 and -3 Mice Impairment of sweat secretion,
despite of normal development
of sweat glands.

Concepcion et al., 2016

T cell- specific Orai1/Orai2
double deficient mice

Orai2 null, Orai1 T cell-specific
knockout

Mice Impaired T-cell dependent
immune response

Vaeth et al., 2017

Pancreatic acinar cell- specific,
tamoxifen-inducible Orai1
deletion

Deletion of exon-2 and -3 Mice Lack of antimicrobial secretions
from pancreatic acinar cells,
resulting in intestinal bacterial
outgrowth with dysbiosis and
increased mortality

Ahuja et al., 2017

TM, transmembrane; EAE, experimental autoimmune encephalomyelitis.

of ORAI1/TRPC complexes in promoting VSMC proliferation.
HOMER1 is a scaffolding protein that has been shown to be able
to interact with ORAI1 and a number of TRPC channels. ORAI1
interaction with HOMER1 was shown to be enhanced in VSMC

following balloon-injury of carotid arteries, relative to uninjured
arteries (Jia et al., 2017). Interestingly, Homer1 silencing in
rat aortic proliferative VSMC resulted in reduction of SOCE,
VSMC proliferation, and migration, implying the involvement of
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ORAI1/HOMER1 interaction in modulating VSMC phenotypic
remodelling (Jia et al., 2017).

ORAI1 in the Pathological VSMC Remodelling in
Atherosclerosis
ORAI1 expression was reported to be elevated in atherosclerotic
lesions of Apolipoprotein-E null (ApoE−/−) mice on a high-
cholesterol diet. In vivo silencing of Orai1 using viral delivery
of siRNA against Orai1 or pharmacological inhibition of
ORAI1, using an inhibitor with poor specificity, reduced
atherosclerotic plaque formation in ApoE−/− mice fed high-
cholesterol diet (Liang et al., 2016). ORAI1-mediated SOCE
was shown to be essential for the formation of foam cells,
which are macrophages loaded with low-density lipoproteins,
a critical step in atherogenesis. Orai1-knockdown macrophages
exhibited remarkable reduction in their ability to bind and uptake
lipoproteins, which subsequently reduced foam cell formation,
and atherosclerotic plaque formation (Liang et al., 2016).

Inflammation and cytokine secretion are also major
components of the development of atherosclerosis and NIH.
Inflammation in atherosclerotic lesions is mediated by pro-
inflammatory T helper 1 (Th1) cells that secrete inflammatory
cytokines, including interferon-γ (IFN-γ) (Frostegard et al.,
1999), which in turn induces macrophage activation and
promotes intimal thickening through the promotion of growth
factor-induced mitogenesis in VSMC (Ferns et al., 1991; Yokota
et al., 1992; Tellides et al., 2000). Knockdown of leukotriene-C4
synthase, which produces the pro-inflammatory mediator
leukotriene-C4, and activates ORAI1/ORAI3 channels in VSMC,
suppressed neointimal formation in balloon-injured rat carotid
artery (Zhang et al., 2015). Furthermore, the emerging role
of ORAI1 in lipid metabolism suggests potential involvement
of ORAI1 in lipid deposition in atherosclerotic plaque. Maus
et al. (2017) revealed that the absence of SOCE due to ORAI1
or STIM1/STIM2 disruption resulted in increased deposition
of lipid droplets in murine liver, skeletal muscle, and heart
muscle. Additionally, TAM patients with ORAI1 loss-of-function
p.Gly98Arg mutation showed deposition of lipid droplets in
skeletal muscles, and increased lipid content in patient fibroblasts
relative to healthy donors, due to impaired lipolysis (Maus et al.,
2017). SOCE was shown to modulate the expression of key
enzymes involved in the mitochondrial fatty acid oxidation,
and regulate the expression of neutral lipases and a number of
transcription regulators that modulate lipolysis (Maus et al.,
2017). This is in accord with the previously reported reduction of
SOCE associated with lipid accumulation in rat liver cells (Wilson
et al., 2015). The involvement of ORAI1 in lipid metabolism
foreshadows its potential role in pathogenic mechanisms
underlying atherosclerosis, including lipid deposition and
formation of the fatty streak.

The ORAI1/ORAI3 ARC store-independent channel was
reported to be activated in VSMC after thrombin-mediated
induced phenotypic remodelling (González-Cobos et al., 2013).
Platelet activation contributes to the initiation and progression of
atherosclerosis (Methia et al., 2001; Pratico et al., 2001; Massberg
et al., 2002) and platelet adhesion to vascular endothelium was
observed before the development of atherosclerotic lesions in

ApoE−/− mice (Massberg et al., 2002). Defective SOCE in
both Orai1−/− or Stim1−/− mice resulted in impaired platelet
activation and thrombus formation (Varga-Szabo et al., 2008;
Braun et al., 2009). Similarly, introduction of a SNP in the EF-
hand of murine STIM1 impaired its activation in response to
ER Ca2+ deletion and resulted in macrothrombocytopenia and
impaired platelet activation (Grosse et al., 2007). Furthermore,
gain-of-function mutations in STIM1 were observed in patients
with York Platelet syndrome (Markello et al., 2015) and
thrombocytopenia (Nesin et al., 2014). Impaired platelet function
was also observed in patients with ORAI1 mutations (Table 1;
Nagy et al., 2018). The involvement of ORAI1-mediated SOCE
in normal platelet function implies the potential involvement
of ORAI1 abnormalities in platelet activation and adhesion in
atherosclerosis.

Pharmacological Modulation of SOCE
The link between SOCE and vascular remodelling rendered
CRAC channels as promising therapeutic targets. Newly
identified inhibitors of SOCE have increased understanding
of the physiological roles of SOCE and emerged as attractive
candidates with the potential to enable pharmacological
modulation of CRAC channels. Nonetheless, many of these
agents have indefinite mechanism of action and those with
the specificity to distinguish between different Ca2+ channels
remains elusive (Table 3).

Lanthanides (Gd3+ and La3+) are widely studied potent
inhibitors of CRAC channels, which block SOCE at the
nanomolar concentration range. At a concentration of 5 µM,
Gd3+ was reported to block SOCE in rat synthetic VSMC and
in the A7R5 VSMC line (Potier et al., 2009). Sensitivity to
inhibition by lanthanides is a key feature of CRAC currents
that differentiate CRAC channels from other Ca2+ channels.
Gd3+ is equipotent toward the three ORAI homologs, ORAI1,
ORAI2, and ORAI3 (Zhang et al., 2020). Despite the high potency
of lanthanides, their efficiency as CRAC channel inhibitors
is limited by their high plasma protein binding affinity, low
solubility in presence of other multivalent ions, and their limited
specificity as CRAC channel inhibitors at higher concentration
(Figure 5). At concentrations more than 1 µM, lanthanides
inhibit activity of voltage-gated calcium ion channels (Reichling
and MacDermott, 1991), and TRPC channels (Halaszovich et al.,
2000; Trebak et al., 2002). It is thought that lanthanides exhibit
their activity as CRAC channel blockers through binding to
acidic residues on the extracellular loop of ORAI1, rather
than competing for the Ca2+ binding sites within the ion
conduction pore of the channel. In support of this theory,
the ability of Gd3+ to inhibit CRAC channel activity was
significantly reduced in cells expressing mutant ORAI1 gene
carrying charge-neutralising mutations of aspartate (D) residues
within the TM1-TM2 extracellular loop of ORAI1 (Yeromin
et al., 2006). Similarly, McNally et al. (2009) showed that
mutations of acidic residues in the human ORAI1 gene at
either of Q108, D110, D112, or D114 of the TM1-TM2 loop
reduced the potency of La3+ inhibition. However, mutation
at position 106, which serves as the ion selectivity filter and
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TABLE 3 | Features of ORAI1 channel pharmacological inhibitors.

Compound Reported potential mode of
action

Other targets Effective concentrations

Lanthanides (Gd3+ and La3+) Direct binding to the
extracellular loop of ORAI1
channel

CaV1.2 and TRP channels Effective at low nanomolar
concentration
5 µM Gd3+ blocked SOCE in rat
synthetic VSMC and in A7R5
VSMC line

2-APB Maintain STIM1 at its resting
state
Direct inhibition to ORAI1

ORAI2, ORAI3, IP3 receptor,
SERCA pumps, and members of
the TRP channel superfamily

IC50 of 10 µM in Jurkat T cells,
4.8 µM in IP3R-knockout DT-40,
2.9 µM in CHO cells, and 6.5 µM
in HeLa cells

Carboxyamidotriazole (CAI) Indirect inhibition, mitochondrial
membrane depolarisation

Inhibits non-voltage gated
calcium influx

IC50 of around 0.5 µM in HEK293
cells

The 7-azaindole series,
compound (14 d)

Unclear Unknown IC50 of 150 ± 22 nM in Jurkat T
cells

The indazole-3-carboxamide
series, compound (12 d)

Unclear Unknown IC50 of 0.67 µM in RBL-2H3 cells

pyrtriazole series, compound
(39)

Unclear Selective for SOCE over CaVs,
TRPV1 and TRPM8

IC50 of 4.4 µM in HEK293 cells

DPB162-AE Reduction of STIM1 clustering
upon store depletion
Inhibit STIM1/ORAI1 functional
coupling

Induce Ca2+ leak from the ER IC50 of 27 nM in DT-40 cells, 190
nM in CHO cells, and 620 nM in
HeLa cells

SKF-96365 Unclear TRPC, CaV1.2, voltage-gated
Na+ channels, ATP sensitive K+

channels, and ER Ca2+ pumps

IC50 of 12 µM in Jurkat T cells

Synta66 Potentially binds to the
extracellular loop 1 and 3
regions of ORAI1

No off-targets have yet been
identified

IC50 of 3 µM in RBL cells, 1 µM
in Jurkat T cell and 26 nM in
VSMC

CM4620 Unclear No off-targets have yet been
identified

IC50 of ∼0.1 µM in Orai1/STIM1
overexpressing HEK293

YM-58483 Unclear Inhibits TRPC3, and TRPC5
activity
Enhances the activity of TRPM4
channels

IC50 of 10–100 nM in Jurkat T
cells

GSK7975A Altering channel pore geometry ORAI3, L-type Ca2+, and TRPV6
channels

IC50 of 4 µM in HEK293 cells

AnCOA4 Interaction with the C-terminus
of ORAI1
Inhibition STIM1/ORAI1
interaction

Unknown 20 µM AnCoA4 resulted in 80%
SOCE inhibition in HEK293 cells

RO2959 Unclear 5-hydroxytryptamine receptor 2B
(5-HT2B) and the peripheral
benzodiazepine (BZD) receptors

IC50 of 400 nM in RBL cells, 25
nM in CHO cells, and 260 nM in
CD4+ T cells

JPIII Unclear No off-targets have yet been
identified

IC50 of 299 nM in HEK293 cells

IC50, Half-maximal inhibitory concentration; DT-40, Chicken lymphoblast cell line; CHO, Chinese hamster ovary cells, RBL, Rat chemically induced basophils; TRP, transient
receptor potential.

is located within TM1 domain that generates the central ion
conduction pore, did not affect the ability of La3+ to inhibit
the channel activity. These observations suggest that lanthanides
bind to residues at the extracellular TM1-TM2 loop, rather than
binding deeper in the ion conduction pore of ORAI1 channels
(McNally et al., 2009).

Imidazole antimycotic drugs including SKF-96365 (Figure 5),
econazole and miconazole were shown to inhibit ICRAC in
a wide range of cell types. SKF-96365 was first identified in
Ca2+ signalling studies as an inhibitor of receptor-mediated
Ca2+ influx, with inhibitory effect in the micromolar range

in platelets, neutrophils and endothelial cells (Merritt et al.,
1990; Franzius et al., 1994). It was also shown to inhibit SOCE
in Jurkat T cells (Chung et al., 1994). In a mouse model of
atherosclerosis, in vivo administration of SKF-96365 remarkably
reduced atherosclerotic plaque development (Liang et al., 2016).
Nonetheless, the observed effect is not necessary attributed to
SOCE inhibition. A wide spectrum of ion channels were reported
to be targeted by SKF-96365, including receptor- and store-
operated TRPC channels, voltage gated Ca2+ channels (Merritt
et al., 1990; Singh et al., 2010), voltage gated sodium channels
(Chen et al., 2015), and ATP sensitive potassium channels (KATP)
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FIGURE 5 | Chemical structures of ORAI1 channel pharmacological inhibitors. Illustration of the chemical structures of ORAI1 channel inhibitors and a list of their
previously reported off-targets. The ORAI1 inhibitors were grouped by their reported specificity against ORAI1. 2-APB, 2-Aminoethyldiphenyl Borate; TRP, transient
receptor potential; 5-HT2B, 5-hydroxytryptamine receptor 2B; BZD, benzodiazepine receptors; DHODH, dihydro-orotate dehydrogenase.

(Tanahashi et al., 2016). Furthermore, earlier studies reported
that SKF-96365 not only acts as an ion influx inhibitor,
micromolar concentrations of SKF-96365 also inhibited ER
Ca2+ pumps in human endothelial cells (Iouzalen et al., 1996),
and activated reverse operation of Na+/Ca2+ exchanger (NCX)
resulting in Ca2+ uptake and sustained intracellular Ca2+

elevation in cancer cells (Song et al., 2014). SKF-96365 has
served as a powerful tool to characterise mechanisms of Ca2+

entry, however, the multiple targets of SKF-96365 could hinder
its use as ICRAC inhibitor and limit its translation toward
potential therapies. Analogues of SKF-96365 were reported to
have higher potency in inhibiting SOCE in B lymphocyte cells;
however, further studies are still needed to assess their specificity
(Dago et al., 2018).

Carboxyamidotriazole (CAI) (Figure 5) was identified
as a Ca2+ influx inhibitor, showing antiproliferative and

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 April 2021 | Volume 9 | Article 653812

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-653812 March 29, 2021 Time: 16:1 # 14

Shawer et al. ORAI1 Channels in Vascular Remodelling

antimetastatic effects in multiple cancer cell lines and in vivo
xenograft models (Kohn and Liotta, 1990; Hupe et al., 1991;
Kohn et al., 1992; Wasilenko et al., 1996; Wu et al., 1997).
Its anticancer activity has been linked to inhibition of SOCE,
but investigations have been complicated by it being a general
inhibitor of non-voltage gated calcium influx (Enfissi et al., 2004).
Whilst most research on CAI has focused on its anticancer effects,
it has also shown promise in other fields. Through a reduction
in pro-inflammatory cytokines, CAI has shown benefits in a
rat model of rheumatoid arthritis (Zhu et al., 2015) and a
mouse model of inflammatory bowel disease (Guo et al., 2012),
although the exact molecular mechanism was not known. There
is also much evidence for CAI as an anti-angiogenic agent in
cancer (Luzzi et al., 1998; Bauer et al., 2000; Faehling et al.,
2002) and retinal neovascularisation (Afzal et al., 2010), although
it does not appear to have been investigated for pathological
vascular remodelling.

2-Aminoethyldiphenyl Borate (2-APB) is one of the
most thoroughly studied SOCE inhibitors (Figure 5). It was
initially thought to have inhibitory effect on Ca2+ signalling
through being a membrane permeable IP3 receptor-antagonist
(Maruyama et al., 1997; Missiaen et al., 2001), and was also
reported to be associated with store-operated Ca2+ channel
inhibition; nonetheless, this inhibition was interpreted as a
potential consequence of IP3 receptor inhibition (Ma et al.,
2000). Then, Gregory et al. (2001) showed via whole-cell patch-
clamp analysis of rat hepatoma cells that 2-APB inhibited inward
Ca2+ current induced by IP3, implying that 2-APB could be
acting as a blocker of SOCE. This finding was further supported
by the ability of 2-APB to block SOCE in IP3 receptor-knockout
cells, and the observed more potent inhibition when applied
extracellularly relative to intracellularly (Bakowski et al., 2001;
Ma et al., 2001; Prakriya and Lewis, 2001). It was reported
that this inhibitory effect is mediated via enhancing STIM1
intramolecular interactions, which subsequently maintain
STIM1 at its resting state, as well as a potential direct inhibition
of ORAI1 as shown by the observed 2-APB inhibition of SOCE
in a STIM-independent constitutively active ORAI1 mutant
(Wei et al., 2016). Interestingly, 2-APB was shown to exhibit a
bimodal effect on SOCE, in which low concentrations (1–5 µM)
promote SOCE, while higher ones (more than 10 µM) have a
strong inhibitory effect (Prakriya and Lewis, 2001). Besides the
inhibition of ORAI1, 2-APB at 50 µM concentration showed
weak inhibitory effect of ORAI2, and significantly potentiated
the activity of ORAI3 channels in a store-independent manner
(Lis et al., 2007; Peinelt et al., 2008). 2-APB was also shown
to inhibit SERCA pumps (Bilmen et al., 2002; Peppiatt et al.,
2003) and to modulate the activity of members of the TRP
channel superfamily, including members of TRPM subfamily,
TRPM6, TRPM7 (Li et al., 2006) and TRPM8 (Hu et al., 2004),
TRPV subfamily, TRPV1, TRPV2, and TRPV3 (Hu et al.,
2004) and members of TRPC subfamily, TRPC3 (Trebak et al.,
2002) and TRPC6 (Hu et al., 2004). Its multiple targets and
limited specificity promoted the need to develop analogues
of 2-APB with improved selectivity and potency. Zhou et al.
(2007), assessed the potency of 166 2-APB analogues and
two analogues (DPB025 and DPB083) were identified to have

higher specificity to SOCE inhibition relative to that of 2-APB.
Additionally, analogues including DPB161-AE, DPB163, and
DPB162-AE that are around 100-fold more potent than 2-APB
itself were identified (Zhou et al., 2007; Goto et al., 2010). It
was, however, shown that the effect of DPB162-AE on Ca2+

signalling is not limited to inhibition of CRAC channels, but
also induced Ca2+ leak from the ER resulting in Ca2+ store
depletion without inhibiting SERCA pumps (Bittremieux
et al., 2017). The mechanisms underlying the diverse effects of
2-APB and its analogues on SOCE remain poorly understood
and more studies are still need to clarify their mechanism
of action. Due to its wide range of protein targets, various
clinically relevant biological effects have been observed and
recently reviewed, including immunomodulatory, anti-cancer,
neuroprotective, and in the GI system (Rosalez et al., 2020).
Of relevance to CVD, 2-APB has been studied and shown
benefits in models of atherosclerosis (Ewart et al., 2017; Simo-
Cheyou et al., 2017), hypertension (Bencze et al., 2015), and
vascular calcification (Lee et al., 2020), although these effects
have mostly been attributed to its effects on TRP channels or
the IP3 receptor.

YM-58483, also known as bis(trifluoromethyl)pyrazole-2
(BTP2 or Pyr2) (Figure 5), is a pyrazole derivative that was
identified as an ICRAC blocker with an IC50 of 10–100 nM
in Jurkat T cells (Ishikawa et al., 2003; Zitt et al., 2004).
YM-58483-mediated ICRAC inhibition resulted in reduced T
cell activation, and proliferation, as well as reduced cytokine
production. It exhibits higher specificity in inhibiting CRAC
channels over voltage gated Ca2+ channels, without off-target
effects observed on ER Ca2+ pumps or potassium channels.
Despite its remarkable potency, its inhibitory effect on ICRAC is
limited by the long incubation time that is needed to achieve
this high potency, with around 75% inhibition of ICRAC achieved
within 2 h of incubation with Jurkat T cells (Zitt et al., 2004).
The inhibitory effect of YM-58483 was only observed when
applied extracellularly implying that it probably interacts with the
extracellular side of CRAC channels (Zitt et al., 2004). In contrast,
others suggested that YM-58483 inhibits ICRAC through binding
to an actin reorganisation protein, Drebrin, and thus disrupting
actin cytoskeleton (Mercer et al., 2010). Besides inhibiting CRAC
channels, YM-58483 was shown to promote the activity of
TRPM4 channels at low nanomolar concentrations (Takezawa
et al., 2006) and inhibit the activity of number of TRPC channels,
including TRPC3, and TRPC5 (He et al., 2005). It has mostly
been studied for its effects in inflammatory disease, including
asthma and rheumatoid arthritis (Yoshino et al., 2007; Miyoshi
et al., 2018; Sogkas et al., 2018), as well as pain and neurology (Qi
et al., 2016; Orem et al., 2020). Of relevance to vascular pathology,
YM-58483 and SKF-96365 have been used to characterise SOCE
in models of diabetic vasculopathy, in which SOCE is reduced
compared to non-diabetic VSMCs (Schach et al., 2020).

GSK7975A, GSK5503A, and GSK5498A are pyrazole
derivatives developed by GlaxoSmithKline for inflammatory
and immune disorders. GSK5498A was reported to inhibit
ICRAC at IC50 of around 1 µM in HEK293 co-expressing
STIM1 and ORAI1 (Ashmole et al., 2012). GSK7975A
was shown to be effective in models of acute pancreatitis
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(Gerasimenko et al., 2013; Voronina et al., 2015). GSK7975A
and GSK5503A were shown to have similar inhibitory effects
on ICRAC. Similar to the earlier pyrazole derivative YM-58483,
GSK7975A, and GSK5503A showed slow onset of ICRAC
inhibition. GSK7975A inhibits both ORAI1 and ORAI3 at
similar IC50 of around 4 µM in HEK293 cells expressing STIM1,
as well as ORAI1 or ORAI3 (Derler et al., 2013). It was also
reported that GSK7975A largely inhibits both ORAI1 and
ORAI2, with less inhibitory effect against ORAI3 (Zhang et al.,
2020). Its inhibitory effect was suggested to be mediated through
direct interaction with ORAI1 channel, without affecting STIM1
oligomerisation or ORAI1-STIM1 interactions (Derler et al.,
2013). This inhibitory effect was significantly reduced in cells
expressing pore mutant ORAI1, relative to those expressing
wildtype ORAI1, suggesting mechanism of inhibition via altering
the pore geometry of ORAI1 channels (Derler et al., 2013).
GSK7975A showed partial inhibition of the activity of L-type
Ca2+ channels, and blocked TRPV6 channel activity. Failure
to differentiate between ORAI1 and ORAI3 channels, as well
as inhibition of L-type Ca2+, and TRPV6 channels, limit its
specificity as an ORAI1 channel blocker.

Synta66 (S66) (Figure 5) is an ICRAC inhibitor showing an
inhibitory effect in the micromolar concentration range. A lack
of off-target effects on the inwardly rectifying K+ current or
Ca2+ pumps suggested selectivity against ICRAC (Ng et al.,
2008). Its remarkable selectivity was then revealed by radioligand
binding assays and functional assays which showed that S66
did not affect the activity of wide spectrum of receptors, and
ion channels, including voltage-gated Ca2+ channels, and Na+
channels (Di Sabatino et al., 2009). In support, Li et al. (2011b)
showed that S66 did not affect STIM1 aggregation, or the
activity of TRPC5 channels, TRPC1/5 channels, or even the store
operated non-selective cationic current. S66 showed remarkable
inhibition of ORAI1 activity, whereas it showed only minimal
activation of ORAI2 and inhibition of ORAI3 in HEK293 cells
that lacked the three native ORAI homologs and expressed a
specific individual ORAI homolog along with STIM1 (Zhang
et al., 2020). Computational docking simulations have shown
that S66 potentially binds to the extracellular loop 1 and 3
regions of ORAI1, which are regions at close proximity to the
selectivity filter. The inhibitory effect of S66 was also shown
to be weakened in cells expressing ORAI1 mutations affecting
the channel selectivity. This was demonstrated by the impaired
S66-mediated SOCE inhibition by the ORAI1 mutation (E106D)
within the region that encodes for the glutamate residues that
form the channel selectivity filter. Similar impairment of the
S66 inhibitory effect was observed with other ORAI1 mutations
that result into non-selective currents, like the mutant ORAI1
that carries mutations within its extracellular loop1 or loop 3
regions (Waldherr et al., 2020). S66 is a potent inhibitor of
SOCE in VSMCs isolated from human saphenous veins with an
IC50 of around 26 nM and resulted in significant reduction of
VSMC migration (Li et al., 2011b). It has also been found to
inhibit endothelial cell migration and tube formation in vitro and
angiogenesis in vivo (Li et al., 2011a). Interestingly, S66 showed
remarkably higher potency in inhibiting ICRAC in VSMC than its
reported potency in the RBL cells (Ng et al., 2008), Jurkat T cell

(Di Sabatino et al., 2009), and in leucocytes (Li et al., 2011b). The
high potency of S66 in VSMC relative to other cell types raises the
promise to selectively modulate CRAC channels in VSMC, and
to enable targeting vascular remodelling. Nonetheless, the lack of
information regarding the mechanisms underlying S66-induced
ICRAC inhibition and its poor aqueous solubility render it far from
being translated into therapies.

RO2959 was developed by Roche as a CRAC channel blocker
that is effective in the nanomolar concentration range. It
showed higher selectivity for ORAI1 inhibition over ORAI2 and
ORAI3. It was screened against a range of ion channels, but
showed no off-target effects on voltage-gated Ca2+ channels,
Na+, K+ channels, members of TRPC or TRPM channels,
indicating specificity in inhibiting ORAI1 channels. It was also
screened against cell receptors and transporters and two receptors
were considered to be inhibited by RO2959, which are the 5-
hydroxytryptamine receptor 2B (5-HT2B) and the peripheral
benzodiazepine (BZD) receptors, showing 87 and 89% inhibition,
respectively, at 3 µM concentration of RO2959 (Chen et al.,
2013). RO2959-mediated ICRAC inhibition in human CD4+ T
cells resulted in reduction of cell proliferation and cytokine
production, signifying the role of ICRAC in T cell function (Chen
et al., 2013). Nevertheless, the mechanism of action of RO2959
remains elusive.

AnCoA4 was discovered by a commercial small molecule
microarray of 12,000 compounds (Sadaghiani et al., 2014). Rather
than screening against whole cells, this technique uses minimal
functional domains, which are purified isolated domains of
ORAI1 and STIM1 known to be vital for SOCE. This is to
allow only small molecules that directly bind to ORAI1 or
STIM1 to be identified as hits, avoiding those that indirectly
affect SOCE. AnCoA4, at 20 µM concentration, showed 80%
inhibition of SOCE in HEK293 cells co-expressing STIM1
and ORAI1. A binding site for AnCoA4 on the C-terminus
of ORAI1 was proposed, using a fluorescence aggregation
assay, surface plasmon resonance and the FRED docking
algorithm. AnCoA4 was also found to inhibit the ORAI1/STIM1
interaction, on the C-terminus, and to compete with STIM1
for ORAI1 binding, supporting the binding region prediction
(Sadaghiani et al., 2014).

The 7-azaindole series of SOCE inhibitors was developed
based on the structures of YM-58483 and Synta-66, a series of
7-azaindole SOCE inhibitors were developed for inflammatory
respiratory diseases. Lead compound (14 d) inhibited SOCE
with an IC50 of 150 ± 22 nM in Jurkat T cells, and its
administration in a rat model of allergic respiratory inflammation
was associated with a dose-dependent inhibition of eosinophils,
showing promise as a therapeutic strategy (Esteve et al., 2015).

The indazole-3-carboxamide series was also developed as
anti-inflammatory compounds, and shows moderate SOCE
inhibition, with lead compound (12 d) showing dose-dependent
inhibition of mast cell activation and pro-inflammatory cytokine
release in the range of 0.28–1.60 µM IC50 in RBL-2H3 cells (Bai
et al., 2017). In this series, the “reverse” amide bond isomers
were found to have significantly reduced activity, with most only
inhibiting at >100 µM. This effect has not been reported in any
other ORAI1 inhibitors, and most of those containing amide
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bonds are in reverse to 12 d (YM-58483, Synta-66, RO2959,
GSK series, CalciMedica series). Compound (12 d) has also been
developed into an indole derivative, MCS-01, which inhibits
Ca2+ influx at 1.6 µM and is being developed as a topical
mast cell stabilising treatment to improve diabetic wound healing
(Tellechea et al., 2020).

Leflunomide and teriflunomide were identified as weakly
potent ORAI1 inhibitors alongside several other FDA-approved
drugs (Rahman and Rahman, 2017). Leflunomide is used
clinically as a dihydro-orotate dehydrogenase inhibitor to treat
rheumatoid and psoriatic arthritis; teriflunomide was later
approved for the treatment of multiple sclerosis (Fragoso and
Brooks, 2015). These were identified in a virtual ligand-based
screen for 3D shape and electrostatics using the structures
of Synta66, AnCoA4, YM-58483 and its analogue Pyr6 as
bait. Leflunomide and its active metabolite teriflunomide were
identified as being able to inhibit SOCE at clinically relevant
concentrations, with IC50 of around 10 µM for leflunomide and
21 µM for teriflunomide.

CM4620 is a small-molecule ORAI1 inhibitor developed by
CalciMedica, which has shown potent inhibition of ORAI1
activity with IC50 of 119 nM and a less potent effect against
ORAI2 channels with an IC50 of 895 nM (CalciMedica, 2016).
CM4620 was showed to be effective in reducing the severity
of acute pancreatitis in pre-clinical models (Waldron et al.,
2019), and reached clinical trials for acute pancreatitis and
is currently being tested in Phase II clinical trials for use in
patients with severe COVID-19 pneumonia (Miller et al., 2020).
These ongoing clinical trials emphasise the efficacy, safety, and
tolerability of ORAI1 inhibitors in patients and highlights the
promising potential of using ORAI1 inhibition as new therapies.
An older compound, CM3457, has shown inhibition of various
interleukins and other immune functions in different cell lines
(Ramos et al., 2012). It was also shown to be selective over a
small panel of potassium, sodium and calcium channels, mostly
those involved in cardiac function, and is effective in rat models
of arthritis and asthma (Ramos et al., 2012).

The pyrtriazole series has been developed as an anti-
inflammatory SOCE inhibitors based on the structures of the
Pyr family of compounds. Lead Pyrtriazole compound (39)
showed an IC50 of 4.4 µM for SOCE inhibition in HEK293
cells and was reported to be selective for SOCE over voltage
gated Ca2+ channels, TRPV1 and TRPM8, although an analogue
was found to activate TRPV1. Pyrtriazole 39 was taken into a
mouse model of acute pancreatitis and found to reduce oedema,
inflammation and apoptosis, all hallmarks of pancreatitis. This
series also contains two compounds which were unexpectedly
found to be SOCE activators, activating the channel at 198–236%
entry and 142–197% entry at 10 µM in three different cell lines
(Riva et al., 2018).

Rhizen Pharmaceuticals have developed inhibitors of SOCE
for the treatment of cancers, two of which have reached clinical
trials. RP3128 is orally active and effective in a guinea pig model
of asthma (Vakkalanka et al., 2013; Sutovska et al., 2016), and was
taken into a Phase I dose escalation safety study (Barde et al.,
2020). Another compound, RP4010, has been investigated for
esophageal squamous cell cancer and is potent and effective in

several cancer cell lines and in xenograft mouse models (Cui et al.,
2018). It required around 2 h to demonstrate maximal inhibition
of SOCE, and so may have an indirect effect on the channel rather
than directly blocking ORAI1 (Cui et al., 2018). It was entered
into Phase I safety studies for the treatment of relapsed non-
Hodgkin’s lymphoma, but the trial has been terminated, because
of pharmacokinetic (PK) and safety reasons (US National Library
of Medicine, 2017).

JPIII (4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]
aniline) is a novel analogue of S66 that we have recently
identified as a potent ORAI1 inhibitor with sufficiently improved
pharmacokinetics compared to S66 (Bartoli et al., 2020). JPIII
showed potent inhibitory effects of SOCE at the nanomolar
range, with IC50 of 399 nM in HEK293 cells. Besides its
potency, JPIII also showed remarkable selectivity against
ORAI1, and did not affect the activity of ORAI3, TRPC5,
TRPC6, TRPC4, TRPC5, TRPM2, or hERG channels. It also
showed high efficacy, without any obvious side-effects when
administered in vivo in murine models (Bartoli et al., 2020).
The high potency at the target, the selectivity, the improved
pharmacokinetics compared to S66, which is limited by its
poor aqueous solubility, as well as the in vivo safety and
efficacy in pre-clinical models highlight the great potential
of JPIII to be used as an in vivo tool to study the effects of
ORAI1 inhibition on VSMC biology. It is, however, limited
by lack of information about the mechanism by which it
inhibits ORAI1 activity.

These ORAI1 channel inhibitors are valuable tools to study
the role of SOCE in health and disease, and paves the way for
the development of therapeutic ORAI1 inhibitors that target
pathologic remodelling. The reported implications of ORAI1-
mediated signalling in VSMC phenotypic switching and in
vascular pathologies highlight the therapeutic promise of ORAI1-
targeted approaches. This is further supported by the role
of ORAI1 in immune cell function, inflammation, and lipid
homeostasis, which are key components in the development
of atherosclerosis and NIH. A number of pharmacological
inhibitors have now reached clinical trials for severe plaque
psoriasis, acute pancreatitis, asthma and coronavirus disease 2019
(COVID-19)-associated severe pneumonia (Stauderman, 2018;
Miller et al., 2020), which highlights the therapeutic potential of
the ORAI1 channel inhibitors and the tolerability of the ORAI1
inhibitors in patients. Activators of ORAI1 activity, as shown in
the recently developed enhancer of ORAI1 activity, IA65 (Azimi
et al., 2020), could also be useful tools to help further define the
role of ORAI1 in pathophysiology.

Understanding the nature of ORAI1 involvement in health
and diseases holds promise to allow fine-tuning of VSMC
phenotypic remodelling to its normal physiological levels.
The nature of ORAI1 involvement in vascular development,
angiogenesis, vascular physiology and vascular diseases is still
unclear. This could be attributed to lack of information regarding
ORAI1 dysregulation in adults, because of the early mortality
associated with ORAI1 mutations, as well as the perinatal lethality
of ORAI1 deletion in animal models. Further studies are still
needed to elucidate the role of ORAI1 in vascular development,
physiology and diseases, as well as the in vivo consequences that
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could be associated with ORAI1 inhibition or over-activation
in VSMC. The rapidly increasing knowledge of the implications
of ORAI1 signalling in vascular remodelling holds promise
to generate novel therapeutic tools for atherosclerosis and to
prevent NIH following endovascular intervention.
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