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Abstract 

Abdominal aortic aneurysm (AAA) is a focal dilation of the aorta associated with high 

mortality through rupture. Most of our understanding of the biology that drives AAA 

progression originates from surgical samples acquired in cases of elective open repair. 

These markers, which include macrophage infiltration and angiogenesis have led to 

the exploration of novel radiopharmaceuticals to study AAA in preclinical models and 

human patients. Current clinical practice to detect AAA involves ultrasound based 

screening and surveillance. Although ultrasound is cheap and without radiation risk, 

aortic diameter does not predict the heterogenous growth of AAA between patients. 

Positron Emission Tomography (PET) takes advantage of novel radiolabelled markers 

of disease to track biological changes. In human trials, the role of 2-[18F]-FDG in 

detecting aneurysm growth and outcome is still debated, whereas Na[18F]F 

(microcalcification) has been shown to predict AAA growth and clinical outcome. 

Murine studies have been used to assess the suitability of radiotracers detecting 

inflammation, angiogenesis and proliferation. However, in the absence of human data, 

the clinical suitability and applicability of these tracers remains speculative. This review 

examines how markers of AAA change over time and the ability of PET to track these 

changes and discusses the radiopharmaceuticals that could have an application in 

stratifying AAA subjects. 

 

  



Abbreviations 

2-[18F]-FDG 2-[18F]-Fluorodeoxyglucose 

3-[18F]-FLT 3-[18F]-Fluorothymidine  

AAA Abdominal Aortic Aneurysm 

AngII Angiotensin II 

AOD Occlusive Arterial Disease 

ApoE -/- Apolipoprotein E deficient background 

ARIC Atherosclerosis Risk in Communities 

BMP Bone Morphogenic Protein 

CCR2 C-C Chemokine Receptor 2 

CD31 Cluster of Differentiation 31 

CNT Concentrative nucleoside transporter 

CT Computed Tomography 

ENT Equilibrative nucleoside transporter 

EVAR Endovascular Aneurysm Repair 

FAP Fibroblast Activation Protein 

GLUT4 Glucose transporter type 4 

ILT Intraluminal thrombus 

KLF4 Kruppel-like factor 4 

mRNA Messenger ribonucleic acid 

MASS Multicentre aneurysm screening study 

MCP-1  Monocyte chemoattractant protein 1 

MI Myocardial Infarction 

MMP Matrix Metalloproteinase  

MRI Magnetic Resonance Imaging 

MSC Mesenchymal stem cell 

NAAASP NHS AAA screening program 

Na[18F]-F Sodium Fluoride 

NHS National Health Service 

OSR Open Surgical Repair 

OPG Osteoprotegerin 

PAH Peripheral arterial hypertension 

PCR Polymerase Chain Reaction 



PET Positron Emission Tomography 

PTA Percutaneous transluminal angioplasty 

RunX2 Runt related transcription factor 2 

SUV Standard Uptake Value 

TGF-B1 Transforming growth factor beta 1 

TK-1 Thymidine Kinase 1 

USS Ultrasound scan 

VEGF Vascular endothelial growth factor 

VSMC Vascular smooth muscle cell 

 

 

  



Introduction 

An abdominal aortic aneurysm (AAA) is an important vascular disorder associated with 

high mortality despite a relatively low incidence rate. Analysis of the first five years of 

the National Health Service (NHS) AAA Screening Programme (NAAASP) in the UK 

showed the prevalence of AAA in 65 year old men was 1.34%.1 By definition, an AAA 

is a focal dilation of the abdominal aorta greater than 3 cm in maximal diameter. The 

risk of rupture increases as the diameter enlarges. At a diameter above 5.5 cm, the 

risk of rupture is typically quoted to be around 2% per year.2, 3 Analysis of data acquired 

by NAAASP between 2009 and 2017 however suggests the risk of rupture is only 0.4% 

per year.4 In the UK, AAA rupture accounts for about 4,000 deaths per annum.5 Male 

gender, hypertension, smoking, age and a family history are the most important clinical 

risk factors with clear evidence of diabetes being protective against aneurysm 

formation.3, 6, 7 Aortic aneurysms can be caused by single gene defects such as FBN-1 

in Marfan’s Syndrome or large vessel vasculitis such as Takayasu’s Arteritis.8, 9 There 

is also a complex polygenic predisposition for degenerative aneurysms such as AAA 

that only now are being unveiled through Genome Wide Association Studies.10 Once 

the intervention threshold of 5.5 cm is reached, patients are considered for 

interventional treatment of the aneurysm by endovascular repair (EVAR) or open 

surgical repair (OSR).11 Based on data from the MASS trial, patients with a confirmed 

diagnosis of AAA enter an ultrasound based surveillance programme (annual scans 

which indicate that the diameter of the aneurysm is larger than 3.0-4.5 cm; or 3 monthly 

scans showing a diameter larger than 4.5-5.5 cm).12 Typical growth rates are around 

2 mm per year but there is significant heterogeneity among patients and the aneurysm 

growth is not necessarily linear.13, 14  

Classical investigations of the mechanisms underpinning aneurysm formation relied 

on tissue harvested at the time of open surgery, which represents the end stage of 

aneurysm disease and does not necessarily represent events earlier in AAA 

development. Consequently, murine models are often used to understand the 

biological processes involved in aneurysm development and growth alongside human 

data. Notwithstanding, histological staining of end-stage human disease revealed 

infiltration of inflammatory cells (macrophages and T-cells), breakdown of elastic 

lamellae, apoptosis of vascular smooth muscle cells (VSMC) and increased formation 

of neo-vessels.15, 16 Murine models have shown influx of macrophages as an early 



event in AAA formation, which suggests an immune mediated destruction of the aortic 

wall.17, 18 As a result of the breakdown of the aortic wall, extensive remodelling occurs 

including the formation of intraluminal thrombus (ILT).19, 20 Although there is evidence 

of ILT being protective of AAA rupture by reducing wall stress, there are confounding 

data suggesting the presence of ILT in small aneurysms is associated with rupture at 

low wall stress.21 Biomechanical assessment, such as finite element analysis, allows 

gross estimation of the wall stress as a result of environmental changes in the vessel.22 

Aneurysm formation has also been thought of as a cellular response to 

atherosclerosis. The remodelling of the native VSMC can release metalloproteinases 

that break down the extracellular matrix.23 The atherosclerosis risk in communities 

(ARIC) study concluded that subjects with atherosclerosis have a 1.31-fold increased 

risk of clinically presenting an AAA.24 However, other studies have reported that 

atherosclerosis is not a requirement for the development of AAA.25, 26 

Currently, AAA can be detected incidentally in medical images acquired for other 

purposes via clinical examination or else through a dedicated, ultrasound-based 

screening programme. A maximal anterior-posterior (AP) diameter of 3 cm on 

ultrasound scan (USS) is diagnostic for AAA. Once diagnosed with a AAA, patients 

are enrolled into a surveillance programme (based on the MASS trial, when AAA 

diameter is between 3-4.5 cm are rescanned annually, when AAA diameter is between 

4.5-5.5 cm are rescanned at 3-month intervals; and when the aortic diameter becomes 

larger than 5.5 cm, subjects are referred for consideration of elective surgical repair).12, 

27 Screening programmes typically implement ultrasound as a diagnostic tool because 

it is an inexpensive diagnostic procedure, non-ionising, and a high throughput of 

subjects can be achieved. The RESCAN trial, however, showed that an aneurysm can 

take up to 7-13 years to reach a clinically relevant endpoint (5.5 cm).28 Although the 

authors argue that increasing the follow-up period for subjects with an aneurysm of 3 

cm would be safe, this has not been translated into clinical practice and furthermore 

the aortic size may not be the best predictor of aortic growth and outcome.28 Therefore, 

a substantial scan burden is placed on patients and more than that, individual 

differences in aortic growth patterns and rupture rate are not considered in routine 

AAA surveillance.13 This leaves a burden on health services and patients, with no other 

clinically relevant imaging or serum biomarkers predicting aneurysm growth 

implemented clinically. An imaging stratification biomarker to accurately predict the 



growth and outcome of AAA would be advantageous to personalise and rationalise 

AAA surveillance strategies and/or intervention thresholds. 

Positron Emission Tomography (PET), normally coupled with computed tomography 

(PET/CT) or less commonly magnetic resonance imaging (PET/MRI) is a very 

sensitive molecular imaging technique that can assess biological function in vivo. A 

molecular compound radiolabelled with a positron emitting radioactive probe, termed 

a radiotracer, is injected into a subject (patient or pre-clinical disease model) and has 

the affinity to accumulate in regions of disease. Each radiotracer is designed for a 

particular biological process, for example 2-[18F]-Fluorodeoxyglucose (2-[18F]-FDG) is 

a partial analogue of glucose biochemical pathways and accumulates in regions with 

high glucose metabolic activity, which are often associated with infiltration of highly 

metabolically active immune cells. Localisation of the radiotracer uptake is determined 

through coincidence detection of back to back gamma rays by photomultiplier 

detectors in the PET gantry.  

PET/CT is an attractive option for assessing the growth potential of aneurysms as a 

supplementary technique to ultrasound, but due to the relatively high procedural cost 

and the involved radiation dose to a subject is not so widespread. Due to the 

availability of a wide range of radiotracers, uptake of an appropriate PET probe may 

be correlated to patient progression and clinical outcome. The same strategy could be 

used to rationalise ultrasound screening frequency, personalisation of the intervention 

threshold or subject response to novel medical treatment. Markers of inflammation, 

calcification, angiogenesis, proliferation and chemokine receptors have been studied 

previously in AAA (Figure 1). The radiotracers studied and the biological model used 

are summarised in Table 1. However, only 2-[18F]-FDG (inflammation, metabolic 

activity) and Na[18F]F(microcalcification) have been evaluated in AAA patients to date 

with Na[18F]F uptake showing promising results in the prediction of patient endpoint 

and aneurysm growth.29 This review looks at the current progress of PET/CT in tracing 

biological remodelling of AAA and the potential tracers that could longitudinally track 

aneurysm growth. The future goal would be to implement PET/CT into a clinical setting 

and complement ultrasound measurements from screening programs to offer tailored 

pathways for AAA patients also referred to as precision medicine. 

Macrophages and Metabolism 



2-[18F]-FDG is the most common and widely used radiotracer available to clinical 

PET/CT centres and is an obvious candidate in assessing the molecular pathway of 

many diseases. 2-[18F]-FDG is a partial analogue of glucose which is transported into 

cells through the GLUT4 transporter. Differently to glucose, after phosphorylation by 

hexokinase, 2-[18F]-FDG remains trapped within the cell. Each 2-[18F]-FDG molecule 

decays producing two gamma rays that can be detected using PET. To mitigate any 

dietary effects of glucose, subjects fast for 6 hours before a scan. Cardiac 2-[18F]-FDG 

imaging is challenging due to the accumulation of radiotracer in healthy myocardium. 

Employment of a low carbohydrate meal followed by twelve hour fast in subjects can 

mitigate these effects.30 The success of implementing 2-[18F]-FDG in glucose imaging 

is well documented clinically in oncology and neurology with some emerging possible 

applications in cardiovascular disease.31-33 For example, 2-[18F]-FDG has been used 

to detect areas of inflammation in atherosclerosis.34 In a group of subjects with carotid 

stenosis, 2-[18F]-FDG uptake correlated with macrophage infiltration suggesting that it 

can underline inflammation in atherosclerotic plaques. In addition, 2-[18F]-FDG uptake 

has been shown to be 93% specific and 76% sensitive in detecting large vessel 

vasculitis.35 It should be noted that in AAA, 2-[18F]-FDG has been used as a presumed 

marker of inflammation but is not specific to this purpose and could equally represent 

high uptake due to metabolic activity in other remodelling cells of the aortic wall such 

as the VSMCs.36 

Macrophages are phagocytic cells that can differentiate to perform a variety of 

functions, including inflammation and the release of metalloproteinases.37, 38 

Inflammatory macrophages downregulate inflammatory mediators and upregulate 

anti-inflammatory mediators in responses to inflammation. Macrophages are activated 

by metabolic pathways. Naïve and immunomodulatory macrophages, termed M0 and 

M2, are activated by oxidative phosphorylation metabolic pathways. M1, or 

proinflammatory macrophages, are activated by the glycolysis pathway. Macrophages 

are thought to drive aneurysm formation through an increase in the release of matrix 

metalloproteinases (MMPs), promoting elastin destruction, and a heightened 

response to inflammatory markers.19 

Substantially increased presence of macrophages in human and animal AAA studies 

have been widely published.39, 40 However, the origin of the location of macrophages 

in AAA is debatable. The density of M2 cells in the aortic wall is higher than M1.
41 In 



contrast, M1 cells are located in the adventitia whilst the density of cells in the ILT 

corresponds to M2 cells. Flow cytometry analysis of the adventitial layer of AAA human 

tissue demonstrated an upregulation of M2 markers and M2 cells compared to control 

aortic tissue with a decrease in M1 macrophages.42 A possible discrepancy between 

the results could be due to the analysis of tissue originating from different stages of 

the aneurysm development. 

A single study has shown that a PET positive scan for 2-[18F]-FDG uptake in AAA 

subjects corresponded with increased macrophage infiltration from histological 

analysis.43 There is, however, confounding evidence in the literature suggesting that 

uptake does not necessarily correlate with increased macrophage activity. None to 

low 2-[18F]-FDG uptake in PET/CT and ex vivo autoradiography suggests little 

macrophage infiltration.44 In contrast, histological analysis of AAA samples has shown 

upregulation of macrophage markers and inflammatory markers in none to low 

2-[18F]-FDG uptake studies.45 Similarly, low 2-[18F]-FDG uptake correlated with an 

increase in macrophage infiltration in another study.46 It is not clear at what stage of 

aneurysm progression patients were scanned at, or when a biopsy was taken; 

however, evidence from the literature shows a possible lack of understanding of the 

exact biological processes involved with 2-[18F]-FDG uptake in AAA. There is ongoing 

research in the preferential uptake of 2-[18F]-FDG in M1 or M2 macrophages to identify 

the main differentiated macrophage involved using vascular PET/CT imaging.47, 48 

Confounding evidence in AAA studies could be a result of non-specific uptake of 

2-[18F]-FDG into other cell types that are metabolically active in the aortic wall, such 

as remodelling VSMC, endothelial cells or fibroblasts. The signal could also be due to 

relative hypoxic stimulation of macrophages, increasing glucose uptake and 

perturbing the measured signal.36 

Independent of the lack of understanding of the underlying biological signature 

associated with the 2-[18F]-FDG signal, there has been some interest in determining 

its potential in predicting AAA growth. However, the evidence in the ability to 

accurately detect and track AAA growth with 2-[18F]-FDG is at best contradictory.43, 49-

51 Although one small in vivo study showed 2-[18F]-FDG uptake could discriminate 

between symptomatic and asymptomatic AAA subjects,52 heterogeneous 2-[18F]-FDG 

uptake has been seen across multiple studies. Low maximum standardised uptake 

value (SUVmax) at baseline linked to subjects with greatest aneurysm growth over a 



nine month period.53 Both positive and negative correlations between measured 

2-[18F]-FDG uptake and measured aneurysm diameter have been reported. Although 

variable uptake has been reported, uptake of 2-[18F]-FDG has been suggested to 

correlate with aneurysm wall remodelling and calculated wall stress from finite element 

simulation of CT data.43, 51, 54, 55 In contrast, there is evidence that 2-[18F]-FDG could 

be a useful tool in detecting complications after EVAR and aortic arch graft in Marfan 

Syndrome.56-58 The results could be confounded for a variety of reasons such as the 

stage of AAA evaluated (e.g. asymptomatic, symptomatic, end stage), small number 

of subjects recruited and only a small percentage of subjects with detectable AAA. In 

addition, only end stage AAA subjects have been studied and the data may suggest 

that 2-[18F]-FDG cannot predict growth during this period of disease progression. 

Based on the evidence from clinical studies, the implication of 2-[18F]-FDG as a 

stratification biomarker of growth may not be useful but further studies in early stage 

AAA subjects could be beneficial in verifying the role of 2-[18F]-FDG PET in AAA 

subjects. Studies moving beyond SUVmax might be advantageous in this context. 

Calcification 

A common histological feature of AAA is calcification of the medial layer. Formation of 

calcified plaques follows a similar process to plaques formed in atherosclerosis. In 

atherosclerosis, repeated damage to the vessel wall and influx of macrophages 

promotes secretion of osteogenic factors.59 This leads to the formation of 

microcalcification, also defined as calcium hydroxyapatite, a characteristic feature of 

active vascular remodelling. The presence of microcalcification leads to arterial 

stiffening and increases the risk of plaque rupture.60, 61 This in turn increases the stress 

on the aortic wall, reducing the stability of aneurysms. Consequently, the presence of 

macrocalcification indicates the stable form of arterial calcification. Although the 

long-term effect of calcification on patient prognosis is not fully understood, calcium 

scoring from stand-alone CT scans of AAA subjects showed a correlation with 

mortality and could predict future cardiac events.62 Osteogenic remodelling in AAA 

might be a product of macrophage infiltration and/or VSMC differentiation driving 

arterial wall remodelling and healing response.61 

The studies into the biological process underlying the formation of calcified plaques in 

AAA are still in their infancy. However, the biological process in atherosclerosis 



suggests upregulation of bone morphogenetic proteins (BMP) and activation of the 

SMAD pathway.63 BMP, in particular BMP-2 and BMP-4, drive osteogenic 

differentiation in VSMC. The SMAD pathway controls the release of osteogenic 

transcription factors (RunX-related transcription factor 2 – RunX2) which in turn 

release osteogenic proteins, such as osteoprotegrin (OPG), that regulate calcium 

deposits. Western blot analysis of AAA biopsies demonstrated an upregulation of 

OPG.61 In addition, the measured concentration of OPG in AAA tissue appeared to be 

three times higher when compared to biopsies from occlusive arterial disease (AOD). 

Polymerase Chain Reaction (PCR) analysis of vascular mesenchymal stem cells 

(MSC) isolated from AAA tissue showed upregulation of OPG and BMP-2.60 An 

increase in the expression of BMP-2 was observed when culturing MSC in osteogenic 

medium. Alternatively, the expression of OPG was lower in AAA studies compared to 

controls in a human tissue histology study.64 Generation of a RunX2 knockout 

(RunX2-/-) murine line with an ApoE-/- background demonstrated a lower prevalence of 

AAA induction using the AngII model. Calcification was 55.6% lower in RunX2-/- 

compared to RunX2+/+ mice.65 

As demonstrated by the recent SoFIA3 trial, uptake of Na[18F]F in AAA subjects was 

shown to be a predictor of patient prognosis and growth.29 Ex vivo analysis of AAA 

tissue demonstrated Na[18F]F uptake was a marker of microcalcification, distinct from 

CT-defined macrocalcification and tissue disruption. Microcalcification uptake of 

Na[18F]F was also confirmed in an AngII murine model of AAA.65 Binding of Na[18F]F 

to microcalcification occurs through the reversible binding between hydroxyl ions in 

the calcium hydroxyapatite structure and fluoride ions. Preferential binding to 

microcalcification structures was found in ex vivo atherosclerosis tissue and attributed 

to microcalcification having a higher surface area compared to macrocalcification.66 In 

addition, a human study of atherosclerotic plaque subjects, which CT scan indicated 

highly dense calcification, showed no Na[18F]F uptake, suggesting that Na[18F]F 

uptake may reflect microcalcification.67 The SoFIA3 trial determined that baseline 

Na[18F]F activity was a predictor of aneurysm expansion and Na[18F]F uptake 

predicted the clinical endpoints in 30.6% of the cohort. Importantly, both uptake in 

relation to aneurysm expansion and clinical endpoint (AAA repair or rupture) were 

independent of other AAA risk factors including smoking and hypertension. The results 

of the trial were encouraging as they showed accurate prediction of clinical endpoint 



and AAA expansion when compared to ultrasound findings. Furthermore, the potential 

clinical utility of Na[18F]F has been shown in other vascular diseases: Subjects with 

known peripheral arterial disease (PAD) were scanned by Na[18F]F PET/CT prior to 

percutaneous transluminal angioplasty (PTA) intervention.68 High baseline Na[18F]F 

uptake in the femoral artery accurately predicted subjects at risk of restenosis after 

PTA. Positive uptake of Na[18F]F in aortic stenosis subjects correlated with valve 

severity.69 Coronary arterial disease subjects, with increased Na[18F]F coronary 

activity, were at risk of fatal or nonfatal myocardial infarction (MI).70 Prediction of MI 

using Na[18F]F coronary activity performed better than classical calcium scoring and 

was independent of age and risk factors. 

Although the SoFIA3 trial was conducted in end stage aneurysm subjects, the study 

hinted that research into the assessment of Na[18F]F as a biomarker for AAA would be 

beneficial. However, the biological process driving calcification in AAA, the role of 

calcification in patient outcomes and prognosis as well as the mechanism of Na[18F]F 

uptake in AAA need to be better understood. In addition, care must be taken when 

interpreting SUV measured in the aorta due to the anatomical position with respect to 

the spine, which has substantially higher Na[18F]F uptake. Reconstruction methods 

have been developed to mask the signal from the bone, marking an important advance 

in quantitative methods in cardiovascular PET.71 

Proliferation 

VSMCs is the most abundant cell type found in the medial layer of the aorta. In 

response to vascular injury, including as part of AAA formation, VSMC display 

remarkable plasticity and can phenotypically switch from a mature contractile to a 

proliferative and synthetic state. The Kruppel-like factor 4 is an important driver of this 

process.72, 73 Limited studies have investigated the overarching mechanism in which 

proliferation occurs in AAA. Overexpression of microRNA-21, through a lentiviral 

construct, increased proliferation of VSMC in PPE and AngII induced AAA in murine 

models.74 Targeting mircoRNA-21 therapeutically attenuated AAA progression. 

3-[18F]Fluorothymidine (3-[18F]-FLT) uptake, a marker of proliferative cells, is 

increased in ApoE-/- mice, infused with AngII specifically during the active growth 

phase of the model.75 3-[18F]-FLT, a radiolabelled analogue of pyrimidine 

deoxynucleotide thymidine, is taken into cells by the pyrimidine salvage pathway and 



trapped by thymidine kinase 1 (TK1) phosphorylation.76 Uptake peaked at day 14 post 

AngII infusion, with SUVmax reducing at day 28. The role of proliferative cells in human 

AAA progression is unknown. Confirmatory evidence in human aortic tissue samples 

have shown varying levels of Ki-67 and TGF-β1.77 In vitro analysis of human AAA 

VSMC from end stage disease compared to control VSMC were 40% less proliferative 

over a 7-day experiment with evidence of replicative senescence.78 In contrast, in 

murine studies, an increased number of Ki-67-positive cells were located in the aortic 

wall and correlated with aortic size.75 In addition, upregulation of the proliferative 

substrate TK-1, and transporter proteins ENT-1, ENT-2, CNT-1 and CNT-3 was found 

in Ang-II induced aneurysms.75 Differing observations in human and murine samples 

could be due to differences in disease stages. Thorough investigation is required to 

assess the role of proliferation in AAA remodelling and how it correlates with the 

outcome of the disease in patients.79 

Angiogenesis 

The appearance of newly formed vessels in histological examination of tissue samples 

from human AAA subjects has led to the suggestion that angiogenesis plays an 

important role in the vascular remodelling associated with aneurysms.80-82 

Angiogenesis is defined as the formation of vessels from the previously existing 

vasculature. Breakdown of the extracellular matrix and expression of proteinases is 

required to facilitate the migration of endothelial cells.82 Regions of extracellular matrix 

breakdown have been associated with increased vessel distribution along with an 

increase in vascular endothelial growth factor (VEGF) and CD31 expression.83, 84 This 

is accompanied by the overexpression of the integrin heterodimer αvβ3.80 

Histological staining of human aortic tissue samples has shown an increase of 

vascularisation in AAA samples compared to controls, with increased vascularisation 

predominately seen in the media and adventitia.81, 82 Formation of new vessels is 

accompanied by the overexpression of αv on mRNA and protein levels as well as 

VEGF and VE-cadherin protein.80 High levels of vascularisation, αv and VEGF were 

found at the rupture edge compared to the anterior sac of AAA human samples. The 

role of angiogenesis in longitudinal tracking of aneurysm progression has not been 

thoroughly studied. Other hallmarks of angiogenesis have been investigated in human 

AAA surgical samples including upregulation of CD105 (endoglin). CD105 expression 



was located in vessels of the inflammatory region of AAA and the inner luminal region 

of ILT.85, 86 

Development of novel PET/CT radiopharmaceuticals have focused on targeting the 

integrin heterodimer αvβ3 and CD105. RGD binding radiopharmaceuticals, namely 

[18F]-FPPRGD2 and [18F]-Fluciclatide for targeting αvβ3 have displayed specific uptake 

in the aneurysmal region. In the AngII murine model, significant uptake of 

[18F]-FPPRGD2 was seen compared to control models (%ID/g 2.05 vs 0.63).87 Ex vivo 

autoradiography confirmed uptake of [18F]-FPPRGD2 and correlated with CD31 

expression. In an ex vivo autoradiography radiopharmaceutical comparison study, 

[18F]-Fluciclatide displayed specific uptake in human aneurysm tissue when compared 

to other non-specific AAA ligand tracers.88  

Targeting CD105 through the development of a novel antibody Fab 

radiopharmaceutical showed increased uptake in mice with calcium 

phosphate-induced aneurysms at day 5 and 12 compared to controls (%ID/g 8.8 vs. 

6.86 vs. 3.58, respectively).89 [64Cu]Cu-NOTA-TRC105-Fab demonstrated specific 

binding in CD105 blocking experiments and ex vivo autoradiography. A correlation of 

[64Cu]Cu-NOTA-TRC105-Fab with CD105 was also confirmed in immunofluorescent 

staining of murine tissue. Translating [64Cu] labelled radiopharmaceuticals clinically is 

challenging due to the radionuclide properties of [64Cu] (half-life of 12.7 hours) and the 

radiation exposure to patients. 

The specificity of both RGD and CD105 tracers in murine models has shown potential 

in the detection of AAA progression. Further preclinical studies would build our 

understanding of the role of angiogenesis in longitudinal progression of AAA before 

consideration of human trials using angiogenesis-targeted radiopharmaceuticals. 

Chemokine Receptors 

Monocyte and leukocyte recruitment to sites of aneurysm induction rely on 

chemokines activating their receptors.90, 91 Chemokine receptors, in particular CCR2, 

are located on endothelial cells, smooth muscle cells and leukocytes. Activation of the 

CCR2 pathway by MCP-1 has shown recruitment of monocytes, migration of 

endothelial cells, angiogenesis and proliferation of VSMC. Synthesis of the novel 

CCR2-specific radiotracer [64Cu]Cu-DOTA-ECL1i showed detection of AAA in rats 

with PPE-induced aneurysms at day 7, with uptake reported to be double that of sham 



models.92 In addition, high uptake correlated with risk of rupture. Ex vivo histology and 

autoradiography demonstrated high expression of CCR2 and binding of the radiotracer 

in human samples. Radiotracer binding occurs between ECL1i and extracellular loop 

1 on CCR2.93 Clinical translation of [64Cu] could be problematic due to the 12.1-hour 

half-life and radiation dose given to a subject. An alternative positron emitting Cu 

radionuclide with a shorter half-life, such as [62Cu] (9 minutes) or [60Cu] (23 minutes) 

could overcome this hurdle, though these come with their own limitations. A [68Ga] 

labelled version of DOTA-ECL1i has been shown to detect CCR2 expressing 

macrophages in murine heart.94 There is little known about the role of CCR2 in human 

AAA progression. 

Multivariate gene regression analysis of blood taken from end stage aneurysm 

subjects showed a significant increase in CCR2-V654I VI gene polymorphism 

compared to matched controls.95 Studies in murine models have eluded to the role 

CCR2 could play in aneurysm formation. Deletion of CCR2 in ApoE-/- and wild type 

mice attenuated AngII and CaCl2 aneurysm formation respectively in the abdominal 

aorta and aortic root.90, 91, 96 The measured aneurysm diameter was comparable 

between surgical models and sham. Ex vivo histology demonstrated a preserved 

elastin structure and reduced levels of MMPs.91 CCR2 has also been a target for 

attenuating aneurysm formation using drug therapy techniques such as siRNA 

constructs and Everolimus.97, 98 Further understanding into the role of CCR2 with the 

progression of AAA is necessary to determine whether a CCR2 biomarker is useful 

clinically. 

Outlook 

PET/CT is a molecular imaging tool that can probe molecular pathways. Due to the 

very large range of radiotracers developed, a variety of different biological pathways 

can be investigated. The current method of monitoring AAA subjects has recently 

come under scrutiny and a revaluation of how AAA are treated has been proposed.99 

Data from UK NAAASP demonstrated that the observed risk of rupture for AAA 

between 5.0 and 5.4 cm (i.e. pre-intervention threshold) is only 0.4% per year.4 As a 

result, AAA subjects could be undergoing unnecessary interventional surgery. 

Patients are placed under a significant burden of ultrasound surveillance which is likely 

more frequent than necessary based on the RESCAN trial.28 The choice of a relevant 

PET/CT radiotracer that could stratify AAA subjects and help deliver a personalised 



medicine approach to this patient population in terms of ultrasound surveillance 

frequency and intervention threshold would be advantageous. Currently, markers of 

metabolism, calcification, angiogenesis, proliferation and chemokine receptors have 

been studied and reported in murine and human studies. 

Our knowledge on the biological mechanisms that drive aneurysm formation have 

been concluded from human surgical samples collected post-surgery and using 

antibodies raised against cell identification markers to understand the biology. This 

approach has limitations. Recently, elegant transgenic murine studies using lineage 

tracing to track VSMC in atherosclerosis showed early disease formation was a result 

of VSMC plasticity promoting proliferation and expressing inflammatory markers far 

more than the expected inflammatory infiltration.100 Evidence of a similar role for 

VSMC in driving aneurysm formation has been reported alongside evidence of these 

cells developing into an osteogenic state.61, 72 Further investigations linking novel PET 

radiotracers to fundamental biology in the pre-clinical sphere alongside patient 

outcomes in the clinical setting are required to move the field forward and translate 

these early findings into clinical practice.  

Initial investigations of the role PET/CT could play in modelling AAA growth 

implemented 2-[18F]-FDG to indirectly study inflammation. Although the evidence 

shown from a variety of human studies is inconclusive with quantification via SUVmax, 

a more extensive range of metrics including new artificial intelligence methods may 

reveal new possibilities for 2-[18F]-FDG PET/CT in this context and there has been 

some evidence to suggest 2-[18F]-FDG could predict patients at risk of developing 

endoleaks after EVAR. Tracing inflammation in AAA subjects could involve 

repurposing a current inflammatory radiotracer used in other cardiac diseases. There 

have been encouraging studies in using PET/CT to detect inflammation in 

atherosclerosis subjects. [68Ga]Ga-Pentixafor, a marker of CXC-motif chemokine 

receptor 4, correlated uptake with cardiovascular risk factors (e.g hypertension), with 

higher uptake reflective of an increase in risk factors.101 Uptake of the [68Ga] 

radiolabelled nanobody, MMR, increased with disease progression and macrophage 

infiltration in a preclinical model.102 [68Ga]Ga-DOTATATE has been shown to detect 

regions of inflammation in atherosclerosis in humans.103 Alternatively, the classical 

method of PET/CT image analysis using SUV may be unsuitable for evaluating 

2-[18F]-FDG uptake in AAA. Radiomic analysis of 2-[18F]-FDG data could provide a 



stable metric that demonstrates the outcome for subjects with positive uptake.104 In 

addition, use of deep learning techniques could be employed on 2-[18F]-FDG full body 

scans from other disease areas (e.g. oncology with presentation of AAA) to study other 

features of aneurysm growth.105  

The SoFIA3 trial showed early promise of the role of Na[18F]F in end stage aneurysm 

subjects. Na[18F]F uptake could predict patient outcome and hinted at a correlation 

with aortic expansion.29 This is the first known trial in humans that has shown detection 

of biological remodelling in AAA that predicts patient outcome and could offer a 

personalised medicine approach. Further investigations using Na[18F]F would be a 

logical next step, for example, in small AAA to predict the rate of growth to clinical 

endpoint (rupture or repair), in aortic dissection in AAA repair and in the preclinical 

setting to better understand how the PET/CT signal links to biological events that link 

to aneurysm progression. Murine studies tracing proliferation in the AngII-induced AAA 

murine model using 3-[18F]-FLT and detection of angiogenic sprouts using 

[18F]-FPPRGD2 have shown early promise.75, 87 A single human study in 

atherosclerosis demonstrated [18F]-Fluciclatide was able to discriminate regions of 

myocardial infarction between diseased and healthy subjects.106 These tracers could 

be candidates to evaluate in humans to determine their role in AAA growth and 

outcome. Markers of proliferation and angiogenesis are of interest as they offer the 

opportunity for therapeutic intervention. In addition, preclinical investigation of other 

novel tracers, such as [68Ga]Ga-FAPI, are important. [68Ga]Ga-FAPI detects the 

overexpression of fibroblast activation protein (FAP) and has been shown in 

atherosclerosis.107-109 Investigation of these tracers for AAA stratification would be 

interesting. Caution must also be taken in evaluating the biological mechanism in 

relation to aortic expansion and rupture because radiotracer uptake may not 

necessarily relate to aortic size.49, 87, 92 Future work might show, hypothetically, small 

aneurysms are driven by proliferation of VSMC and large aneurysms may be unstable 

due to calcification. It could therefore be seen that more than one radiotracer may be 

appropriate for PET/CT in order to characterise the stage of the AAA subjects. The 

future of AAA PET/CT imaging may involve the clinical implementation of these types 

of molecular markers.  

The use of PET/CT has shown the applicability of a wide range of biological probes to 

detect an aneurysm in a subject or model. Further investigation is needed to determine 



if the use of PET/CT would be clinically useful for the management of AAA subjects 

and modelling AAA growth and patient outcome. PET/CT may provide key information 

in future pharmaceutical and surgical interventions. 
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Highlights 

 Current clinical imaging strategies in monitoring AAA growth and rupture could 

benefit from an additional imaging stratification biomarker to provide 

personalised care for subjects. 

 Radiotracers have been developed and repurposed to image biological 

remodelling process occurring in AAA, including inflammation, 

microcalcification, angiogenesis, proliferation and chemokine receptors. 

 SoFIA3 trial showed the most promising advances in the implementation of 

PET/CT as a stratification biomarker. Uptake of Na[18F]F, a marker of 

microcalcification, determined patient outcome (rupture) and modelled 

aneurysm growth independent of classical risk factors. 

Figures 

Figure 1: Summary of PET radiopharmaceuticals imaging biological remodelling 

in AAA. (A) macrophage infiltration occurs as part of the inflammatory response due 

to breakdown of the extracellular matrix in the aortic wall. 2-[18F]-FDG, a marker of 

glucose metabolism, has been used as a non-specific marker of inflammation in 

human studies. (B) Endothelial cells, smooth muscle cells and lymphocytes express 

chemokine receptors, in particular CCR2, in response to injury to recruit monocytes. 

Binding to Extracellular Loop 1 (ECL1) domain on CCR2 through 

[64Cu]Cu-DOTA-ECL1i allows visualisation of CCR2 expression. (C) Upregulation of 

proliferative transporter protein and thymidine kinase 1 (TK-1) has been demonstrated 

in AngII AAA murine model, allowing influx of 3-[18F]-FLT, indicating a proliferative 

response in aortic dilation. (D) Extracellular matrix destruction, as a result of elastin 

loss, promotes vascular remodelling as an attempted healing response. This could 

promote osteogenic differentiation of vascular smooth muscle cells, resulting in the 

formation of microcalcification. Na[18F]F detects active remodelling process through 

exchange of [18F]- with OH- ions in microcalcification structure. (E) Angiogenic markers 

have been detected in ex vivo AAA samples, suggesting angiogenesis occurs in 

vascular remodelling associated with AAA. Overexpression of integrin heterodimer 

αvβ3 provides a target for RGD containing radiotracers (e.g. [18F]-Fluciclatide and [18F]-

FPPRGD2). In addition, expression of CD105 in ILT and inflammatory region of AAA 

is targeted by radiolabelled antibody [64Cu]Cu-NOTA-TRC105-Fab. 



Table 1: Summary of AAA PET/CT studies 

Biological 

Remodelling 

Radiotracer Model References 

Inflammation 2-[18F]-FDG Human 43-46, 49-55 

Calcification Na[18F]F Human 

Murine 

29, 65 

Proliferation 3-[18F]-FLT Murine 75 

Angiogenesis [18F]-Fluciclatide 

[18F]-FPPRGD2 

[64Cu]Cu-NOTA-TRC-105-Fab 

Human (ex 

vivo) 

Murine 

87-89 

Chemokine 

Receptor 

[64Cu]Cu-DOTA-ECL1i Human (ex 

vivo) 

Murine 

92 

 


