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Summary: We develop a uniform test for detecting and dating the integrated or mildly explo- 

sive behaviour of a strictly stationary generalized autoregressive conditional heteroskedasticity 

(GARCH) process. Namely, we test the null hypothesis of a globally stable GARCH process 

with constant parameters against the alternative that there is an ‘abnormal’ period with changed 

parameter values. During this period, the parameter-value change may lead to an integrated or 

mildly e xplosiv e beha viour of the v olatility process. It is assumed that both the magnitude and 

the timing of the breaks are unkno wn. We de velop a double-supreme test for the existence of 

breaks, and then provide an algorithm to identify the periods of changes. Our theoretical results 

hold under mild moment assumptions on the innovations of the GARCH process. Technically, 

the existing properties for the quasi-maximum likelihood estimation in the GARCH model 

need to be reinvestigated to hold uniformly o v er all possible periods of change. The key results 

involve a uniform weak Bahadur representation for the estimated parameters, which leads to 

weak convergence of the test statistic to the supreme of a Gaussian process. Simulations in 

the Appendix show that the test has good size and power for reasonably long time series. We 

apply the test to the conventional early-warning indicators of both the financial market and a 

representative of the emerging Fintech market, i.e., the Bitcoin returns. 

Keywords: GARCH , IGARCH , change-point analysis , concentration inequalities , uniform 

test . 

JEL codes: C01 econometrics , C58 Financial Econometrics , G17 - Financial Forecasting and 

Simulation . 

1. INTRODUCTION 

Volatility is an important indicator for economic and financial stability. There is growing evidence 

of the unstable behaviour of the historical volatility of numerous micro- and macro-level data, 
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468 S. Richter, W. Wang and W. B. Wu 

such as individual asset returns, VIX (the Chicago Board Options Exchange volatility index), 

inflation, and unemployment. Bloom ( 2007 ) documents the unstable behaviour of the higher 

moments of many economic variables, such as research and development (R&D) rates related 

to the uncertainty about future productivity. It is understood that the nature of uncertainty is 

the unpredictability of any model to the future path of a time series. Therefore, it may be 

connected with a change of the parameter values in the underlying data-generating process. 

Ignoring parameter change may thus lead to biased analysis in policymaking and forecasting. 

This moti v ates us to consider a general method of testing parameter constancy for models of 

volatility. 

For modeling the volatility processes, the highly celebrated autore gressiv e conditional hetero- 

skedasticity (ARCH) model proposed by Engle ( 1982 ) is important for describing the perv asi ve 

phenomena of heteroskedasticity presented in many time series. One key generalization of ARCH 

is the GARCH model, i.e., 

X 
2 
i = ζ 2 

i σ
2 
i , 

σ 2 
i = α0 + 

r 
∑ 

j= 1 

αj X 
2 
i−j + 

s 
∑ 

k= 1 

βk σ
2 
i−k , (1.1) 

where the conditional variance σ 2 
i depends on the past observations X 

2 
i−j , but also on the historical 

conditional variance σ 2 
i−k . ζi assumed to be i.i.d. inno vations; see P aolella ( 2019 ) for more details 

of the model. 

Hillebrand ( 2005 ) points out that neglecting parameter changes in GARCH models leads to 

biased parameter fitting. Thus a change-point analysis should be conducted before reporting 

a parameter fit of a GARCH model. Among various possible changes of parameters of the 

underlying process, moving from the covariance stationarity to the infinite variance has come 

to the centre of our focus for its potential use of detecting periods of economic uncertainty. 

In addition to the case of integrated GARCH, we refer to the volatility process behaving more 

e xplosiv e after the change as a ‘mildly e xplosiv e’ one, which can be considered as an analogue of 

a mildly e xplosiv e unit-root return process. The name ‘mildly e xplosiv e’ follows Lee and Hansen 

( 1994 ), who refer to a GARCH(1,1) model with α1 + β1 > 1 as a ‘mildly e xplosiv e’ one. 

Is there empirical evidence of the existence of mildly e xplosiv e re gion of a GARCH model 

with fitted parameters? One often sees sudden, integrated, or mildly explosive behaviour in the 

second moment of the process which bounces back after a while. Figure 1 shows a rolling window 

fit of parameter values of a GARCH(1,1) model using Bitcoin data. We can see clear signs of 

time-varying parameters. In particular, there are regions of the estimated parameters falling out 

of the covariance stationary regime ( ̂  α1 + ˆ β1 ≥ 1 ). Such kind of data phenomena suggest that the 

underlying processes have time-varying parameters, calling for a rigorous quantitative treatment 

for detection of change periods and making corresponding inference. 

The aim of our paper is to develop a generalized uniform test for GARCH models that is able to 

detect exuberant behaviour periods (periods with integrated or mildly e xplosiv e parameter values) 

associated with the empirical phenomena of mild e xplosiv eness in the second moment. The test 

is constructed by looking at the supreme of Wald-type test statistics o v er all possible intervals 

with changing parameters. Numerous estimation methods for the parameters of GARCH models 

have been proposed, and their consistency and asymptotic normality have been carefully studied 

in the literature. A conventional estimation approach is the quasi-maximum likelihood estimation 

(QMLE), e.g., Bollerslev and Wooldridge ( 1992 ). Also Fan et al. ( 2014 ) study QMLE of GARCH 

© The Author(s) 2023. 
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Figure 1. A plot of estimated GARCH(1,1) parameters using the Bitcoin data o v er a rolling window of 

size 200. ˆ α1 + ˆ β1 estimate persistence parameter (dash line), ˆ α1 (solid line), ˆ β1 (dotted line), threshold of 

mild e xplosiv eness ( α1 + β1 = 1 ). 

models with heavy-tailed likelihoods. Peng and Yao ( 2003 ) propose a least absolute deviation 

estimator. Jensen and Rahbek ( 2004 ) establish consistency and asymptotic normality of the QMLE 

in the linear ARCH model. It is well known that under the assumption of the strict stationarity 

of a GARCH model, there is still a region of parameter values allowing for realizations with 

unstable volatility behaviour. The leading case is the ‘IGARCH’ process. Nelson ( 1990 ) looks at 

the behaviour of an integrated GARCH (IGARCH) process, and it is known that the unconditional 

mean of the IGARCH’s conditional variance is not finite, which implies infinite second or higher 

moments (i.e., eruptive behaviour). Lee and Hansen ( 1994 ) provide an asymptotic theory for a 

strictly stationary GARCH(1,1) Quasi maximum likelihood estimator (QMLE) estimator allowing 

for the case of IGARCH, and mildly e xplosiv e conditional variance and even nonstationarity. 

Jensen and Rahbek ( 2004 ) consider asymptotic inference for a nonstationary GARCH model. 

Despite the rich empirical literature which suggests the existence of an unstable moment 

period of a GARCH process, there is only sparse literature on determining and testing the pe- 

riod of integrated/mild explosiveness in an uniform manner. Francq and Zako ̈ıan ( 2012 ) provide 

important estimation results on nonstationary GARCH models, and they also provide a test for 

parameter constancy of a GARCH(1,1) process without assuming strict stationarity. Complemen- 

tary to their study, our focus is on the inte grated/mildly e xplosiv e parameter region and we extend 

the test to a uniform context. There is also a large and e xtensiv e literature on testing for mild 

e xplosiv eness, and dating the period of instability in the price or dividend processes of a financial 

asset using a supreme unit-root test for bubbles. See, for example, Phillips et al. ( 2011 ) for a 

left-tailed, augmented Dickey–Fuller test (ADF) for the mildly e xplosiv e behaviour in the 1990s 

Nasdaq. Hafner ( 2020 ) considers such bubble tests for cryptocurrencies. Harv e y et al. ( 2019 ) 

investigate a bubble test with a smooth time-varying volatility function. The underlying models 

focus usually on unit-root or mildly e xplosiv e autore gressiv e (AR) processes to test the change 

of the AR(1) coef ficient. Often, the v ariance of the errors stays the same or varies smoothly 

after the explosion, which means that the volatility increase is mostly driven by the increase of 

the AR parameter. In our model, we choose a different approach to model a mild explosion of 

© The Author(s) 2023. 
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470 S. Richter, W. Wang and W. B. Wu 

volatility: we describe the evolution of the data-generating process by a GARCH process, and 

therefore link the source of a change in the volatility to a change of the parameters in the volatility 

recursion. 

In addition, there is literature on break detection for multiple break points for nonlinear time 

series, cf. Berkes et al. ( 2004 ), Davis et al. ( 2008 ), Bardet et al. ( 2012 ), Fryzlewicz and Subba Rao 

( 2014 ), and Chen and Hong ( 2016 ). In particular, Bardet et al. ( 2012 ) derive a breakpoint detection 

procedure for general recursively defined time series via a penalized maximum likelihood method 

and pro v e its consistenc y. Their formulation is rather general, leading to the restriction that the 

considered time series have to be covariance stationary. Davis et al. ( 2008 ) propose a model with 

piece-wise stationary time series with independent segments. Fryzlewicz and Subba Rao ( 2014 ) 

inv ent a no v el method to find break points, and test for covariance stationary ARCH processes 

using CUSUM (cumulative sum) statistics. Chen and Hong ( 2016 ) impose smoothly varying 

GARCH parameters and estimate them locally o v er some window. The y pro vide a likelihood 

ratio approach to test if the global GARCH estimates significantly deviate from the local parameter 

estimates. This allows them to detect if there is a change, but it does not allow us to find specific 

breakpoints. Ho we ver, their approach is more appropriate than ours if the parameter values vary 

smoothly o v er time. The work most connected to ours is Berkes et al. ( 2004 ), where a sequential 

change-point testing in GARCH( p, q) models is discussed. They consider testing for a change of 

the whole parameter vector θ based on a CUSUM-type statistic by plugging in estimates of θ into 

the likelihood of future steps. It is not straightforward to adapt their approach to testing for linear 

hypotheses in θ , in particular testing for mild e xplosiv eness. Comparativ ely, our test allows for 

se veral multi v ariate extensions which may be interesting in change-point analysis. In sum, our 

test is different, but complementary, to the abo v e study, as we propose breakpoint detectors for 

GARCH models in the noncovariance stationary regime, and provide a solid theoretical backup 

via a uniform testing procedure for the presence of breakpoints. 

It is worth noting that, unlike a bubble test for an AR process, it is quite debatable to link a 

direct cause of the bursting behaviour to the volatility process; see Jurado et al. ( 2015 ). On the 

contrary, v olatility b ursting can also be related to time-varying risk a version, sentiment, bubbles, 

or uncertainty. Nevertheless, we are trying to establish a rigorous theoretical framework of testing 

for the mildly e xplosiv e interval using a GARCH model for the volatility process. It should be 

stressed that we focus on one aspect of the parameter; namely, changes in the parameters driving 

the volatility o v er time. We do not claim that our method can directly identify the cause of this 

behaviour. In sum, we develop a change-point test for detecting possible unstable behaviour of a 

strictly stationary GARCH ( r, s) process. The null hypothesis is a GARCH process with globally 

constant parameters, while the alternative is the existence of a period in which the parameter 

values change to another (higher) values. This increase potentially leads to a period of mildly 

e xplosiv e volatility. 

Assuming that no information on the period and the change itself is available, we develop a 

test statistic based on supremes which searches o v er all possible sub-windows of the data. We 

pro v e asymptotic consistenc y and pro vide a limit distribution of our test statistic. It is important 

that the test is not of unit-root type, since hypothesis and the alternative are still in the regime 

where the GARCH process is strictly stationary. The theoretical contributions are extending 

the existing theoretical results on GARCH QML estimators to uniform consistency statements 

o v er an arbitrary observation period. Besides, a uniform weak Bahadur representation and the 

corresponding uniform distributional limit results are shown. For the proofs, we carve out the 

essential analytical properties of the likelihood functions and use new concentration inequalities 

from Zhang and Wu ( 2017 ), leading to mild moment assumptions. Empirically, we find that our 

© The Author(s) 2023. 
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Par ameter c hange in GARCH models 471 

test is useful for the early identification of the critical periods of financial crisis for two important 

early-warning indicator of the economic condition. 

We introduce some notations we use throughout the paper. For q > 0 and vector v = 

( v 1 , . . . , v d ) 
⊤ ∈ R 

d , let | v| 1 : = 
∑ d 

i= 1 | v i | . For matrices A ∈ R 
d×d , we similarly use | A | 1 : = 

∑ d 
i,j= 1 | A i,j | . We denote by | A | 2 = max | v|= 1 | Av| 2 the spectral norm of A . We use Z n 

d → Z

and Z n 

p → Z to denote convergence in distribution and convergence in probability for random 

variables Z n , Z. For some sequences ( a n ) and ( b n ) of positive numbers, we write a n = O( b n ) or 

a n = o( b n ) if there exists a positive constant C such that a n /b n ≤ C or a n /b n → 0 , respectively. 

For two sequences of random variables ( X n ) and ( Y n ) , we write X n = o p ( Y n ) (resp. X n = O p ( Y n ) ) 

if X n /Y n → 0 in probability ( X n /Y n is bounded in probability). For some nonnegative real 

number x, let ⌊ x⌋ denote the flooring operator, i.e., the largest integer smaller than or equal to x. 

Our text is organized as follows. Section 2 provides the results of the important GARCH(1,1) 

model and the corresponding test procedure. Section 3 concerns the estimation and theoretical 

results in a general GARCH( r, s) model. In particular, Section 3.1 introduces the framework of 

the QMLE and its consistency; Section 3.2 presents the theoretical foundations of our uniform 

test; Section 3.3 discusses the estimation of the covariance matrix of the QMLE appearing in 

the test statistic; Section 3.4 extends the results to a general parameter constancy test. Section 4 

discusses the behaviour of the test in examples from practice. Section 5 concludes. The technical 

proofs and simulations are delegated to the Online Appendix. 

2. A UNIFORM MILD EXPLOSIVENESS TEST FOR GARCH(1,1) 

In this section, we introduce our model by starting with a simple testing framework for the 

GARCH(1,1) model. Then we will provide a rigorous theoretical treatment by starting with a 

more general GARCH( r, s) model in the following section. We consider first of all the baseline 

GARCH(1,1) model o v er the whole sample period with possible time-varying parameters, 

X i = ζi σi , 

σ 2 
i = α0 ( i) + α1 ( i) X 

2 
i−1 + β1 ( i) σ

2 
i−1 , i ∈ Z , (2.1) 

where ζi is an i.i.d. sequence of random variables with E ζ1 = 0 , E ζ 2 
1 = 1 , and α0 ( i) , α1 ( i) , β1 ( i) > 

0 are the underlying parameters at each time point. We collect data of this model at time points 

1 , . . . , n . 

We summarize the parameters into θ ( i) = ( α0 ( i) , α1 ( i) , β1 ( i)) 
′ . In the case that the parameters 

are constant, i.e., θ ( i) ≡ θ = ( α′ 
0 , α

′ 
1 , β

′ 
1 ) 

′ , the top Lyapunov exponent associated with this model, 

according to Bougerol and Picard ( 1992b ), is 

γ ( θ ) = E log ( α1 ζ
2 
1 + β1 ) . 

In particular, it is shown that, for example in Francq and Zako ̈ıan ( 2012 ), if γ ( θ ) < 0 , 

then the conditional volatility σi converges almost surely to σi, ∞ as i → ∞ , with σi, ∞ = 

lim n →∞ α
∗
0 { 1 + 

∑ n −1 
k= 1 log ( α∗

1 ζ
2 
t−1 + β∗

1 ) · · · log ( α∗
1 ζ

2 
t−k + β∗

1 ) } . It is worth noting that γ ( θ ) < 0 

allows (for instance) the IGARCH case, i.e., α1 + β1 = 1 . We illustrate in Figure 2 the region of 

parameters corresponding to the case that the volatility process is noncovariance stationary, but 

still strictly stationary (integrated or mildly explosive). 

The aim of this paper is to construct a test that is able to detect if there exists a period where 

the parameters of the GARCH model have changed. The theory developed in this paper is theo- 

© The Author(s) 2023. 
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472 S. Richter, W. Wang and W. B. Wu 

Figure 2. The plot of the feasible parameter region with a standard normally distributed ζ1 , where the 

down region corresponds to covariance stationarity and the blue region corresponds to the strictly 

stationary mildly e xplosiv e re gion; X axis, α1 , Y axis, β1 . 

retically supported for null hypotheses in the regime of strict stationarity (see the definition of � 

below). However, the alternative hypotheses of our test includes GARCH processes which are not 

strictly stationary. Moreo v er, due to the monotonicity of the test statistics developed in this paper, 

we conjecture that the test also works if the null hypothesis lies in the nonstationary re gime. F or- 

mally, we w ould lik e to test whether there exists a period { n 1 , . . . , n 2 } (with 1 < n 1 < n 2 < n ), 

in which the parameter values in ( 2.1 ) change their values compared with { 1 , . . . , n } . The task 

breaks into two parts: First, one has to check for the existence of a change, for which a uni- 

form test is needed. Second, one has to identify the period of the change and to estimate the 

corresponding parameters. Furthermore, we certainly would like to make inference on our esti- 

mated parameters. 

2.1. Hypotheses and the likelihood function 

In this subsection, we provide our test hypotheses, and parameter estimators. For our studies, let 

� = { θ = ( α0 , α1 , β1 ) ∈ R 
3 : γ ( θ ) < 0 , α0 , α1 , β1 > 0 } 

be the parameter space which contains all possible configurations of θ = ( α0 , α1 , β1 ) . 

Let θ ( i) = ( α0 ( i) , α1 ( i) , β1 ( i)) 
′ denote the true parameter in the baseline model, which equals 

θ∗ = ( α∗
0 , α

∗
1 , β

∗
1 ) ∈ � at the beginning, and possibly has a period of significant change in 

{⌊ nτ ∗
1 ⌋ + 1 , . . . , ⌊ nτ ∗

2 ⌋} (where τ ∗
1 , τ

∗
2 ∈ [0 , 1] , τ ∗

1 < τ ∗
2 ) with magnitude 
 

∗ > 0 and direction 

© The Author(s) 2023. 
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Par ameter c hange in GARCH models 473 

H ∈ R 
3 . Namely, 

θ ( i) = 

⎧ 

⎨ 

⎩ 

θ∗, i ≤ ⌊ nτ ∗
1 ⌋ , 

θ∗ + H 
 
∗, ⌊ nτ ∗

1 ⌋ + 1 ≤ i ≤ ⌊ nτ ∗
2 ⌋ , 

< θ∗ + H 
 
∗, i > ⌊ nτ ∗

2 ⌋ . 
(2.2) 

It is worth noting that we do not expect that the parameter values after the e xplosiv e period 

return to the original ones. We only assume that they drop back to a lower value after this period, 

i.e., θ ( i) < θ∗ + H 
 
∗ for i > ⌊ nτ ∗

2 ⌋ . We will give a formal proof of the consistency of our test 

if θ∗ + H 
 
∗ ∈ � . Recall that � is the parameter region of strict stationary. It should be noted 

that the space of allowed parameter configurations can be relaxed even further by sacrificing the 

estimation accuracy of the constant term α∗
0 ( i) (cf. Francq and Zako ̈ıan ( 2012 )). 

An interesting question is to test whether the process is stable, i.e., α1 ( i) + β1 ( i) < 1 for all 

time points i = 1 , . . . , n versus the hypothesis that there exists a period of begin integrated 

or mild e xplosiv e, in which α1 ( i) + β1 ( i) ≥ 1 for some i. α1 ( i) + β1 ( i) is referred to as the 

persistence parameter in our setting. Graphically, this corresponds to the question of whether or 

not there exists regions where the process leaves the variance-stationary regime (i.e., the variance 

explodes). 

It is therefore natural to formulate the hypotheses in the following way: Let H = (0 , 1 , 1) ′ . We 

want to test if θ ( i) changes in direction of α∗
1 + β∗

1 , that is, with some fixed value of c : = H θ∗, 

c : = α∗
1 + β∗

1 < 1 , we want to test 

H 
pre 
0 : 
 

∗ < 0 v.s. H 
pre 
1 : 
 

∗ ≥ 0 . (2.3) 

To transfer the setting to the one of change-point tests, we modify ( 2.3 ) as follows: 

H 0 : 
 
∗ = 0 v.s. H 1 : 
 

∗ > 0 . (2.4) 

Since the statistical behaviour of X i is continuous with respect to 
 
∗, a test procedure for ( 2.4 ) 

will automatically yield a reasonable test for ( 2.3 ). We will discuss the connection between ( 2.3 ) 

and ( 2.4 ) in Remark 3.5. 

Our method is a way to test the parameter constancy for GARCH processes. For example, in 

practice, a useful choice for c may be obtained from c = ˆ α1 + ˆ β1 , where ˆ α1 , ˆ β1 are obtained from 

fitting a global model with all observations. We illustrate this with VIX in our empirical study 

(cf. Section 4 ). To construct a test, we first derive estimators for the parameters. For a fixed period 

⌊ nτ1 ⌋ + 1 , . . . , ⌊ nτ2 ⌋ , we can use a standard QMLE approach. It is not hard to see from ( 2.1 ) 

that, in the case of the constant parameters θ ( i) ≡ θ , 

σ 2 
i = α0 / (1 − β1 ) + α1 

∞ 
∑ 

k= 1 

βk 
1 X 

2 
i−1 −k a.s. 

The truncated version that can be calculated from a sample is 

σ 2 c 
i = α0 / (1 − β1 ) + α1 

i−2 
∑ 

k= 1 

βk 
1 X 

2 
i−1 −k . 

The quasi-likelihood approach is to use the ne gativ e log likelihood function 

L 
c 
n,τ1 ,τ2 

( θ ) : = 
1 

n 

⌊ nτ2 ⌋ 
∑ 

i=⌊ nτ1 ⌋+ 1 

ℓ ( X 
2 
i , Y 

c 
i , θ ) , 
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474 S. Richter, W. Wang and W. B. Wu 

where Y 
c 
i : = ( X 

2 
i−1 , . . . , X 

2 
1 , 0 , 0 , ... ) and 

ℓ ( X 
2 
i , Y 

c 
i , θ ) : = 

1 

2 

( X 
2 
i 

σ 2 c 
i 

+ log σ 2 c 
i 

)

. (2.5) 

The estimated parameter with observations during any given period ⌊ nτ1 ⌋ + 1 , . . . , ⌊ nτ2 ⌋ is 

defined as 

ˆ θn,τ1 ,τ2 = argmin θ∈ � L 
c 
n,τ1 ,τ2 

( θ ) . (2.6) 

REMARK 2.1. It is worth noting that L 
c 
n,τ1 ,τ2 

( θ ) also includes observations X i from earlier time 

points i ≤ ⌊ nτ1 ⌋ through σ 2 c 
i . One might wonder if the accuracy of the likelihood is affected by 

using observations before the change point ⌊ nτ1 ⌋ . The impact of the terms X i with i ≤ ⌊ nτ1 ⌋ 
decays geometrically, and we see in Proposition 3.1 that it is theoretically negligible even under 

the alternativ e. Moreo v er, it should be noted that any other initialization of σ 2 c 
i (for instance with 

X i = 1 for i ≤ ⌊ nτ1 ⌋ ) may be even more inaccurate in a finite sample perspective. 

2.2. Test statistics and an algorithm 

In this subsection the descriptions of the test statistics and the algorithm is provided. Under the 

null H 0 and further regularity conditions (cf. Section 3 ), ˆ θn,τ1 ,τ2 is asymptotically normal with 

covariance matrix 

� = V ( θ∗) −1 I ( θ∗) V ( θ∗) −1 , (2.7) 

where Y i = ( X j : −∞ < j ≤ i − 1) contains the whole past and 

V ( θ ) : = E [ ∇ 
2 
θ ℓ ( X 

2 
i , Y i , θ )] , I ( θ ) : = E [ ∇ θℓ ( X 

2 
i , Y i , θ ) · ∇ θℓ ( X 

2 
i , Y i , θ ) ′ ] . 

Estimation of � is done based on the observations 1 , . . . , ⌊ nτ1 ⌋ as follows: ˆ θn, 0 ,τ1 is the estimator 

of θ∗ in the stationary regime (using the notation ( 2.6 )), and 

�̄ n,τ1 : = V̄ n,τ1 ( ̂
 θn, 0 ,τ1 ) 

−1 ̄I n,τ1 ( ̂
 θn, 0 ,τ1 ) ̄V n,τ1 ( ̂

 θn, 0 ,τ1 ) 
−1 , (2.8) 

where 

V̄ n,τ1 ( θ ) : = 
1 

τ1 

∇ 
2 
θ L 

c 
n, 0 ,τ1 

( θ ) , Ī n,τ1 ( θ ) : = 
1 

nτ1 

⌊ nτ1 ⌋ 
∑ 

i= 1 

∇ θℓ ( X 
2 
i , Y 

c 
i , θ ) ∇ θℓ ( X 

2 
i , Y 

c 
i , θ ) ′ . 

F or giv en τ1 < τ2 , the test statistic associated with our hypothesis H 0 of interest is 

ˆ B n ( τ1 , τ2 ) : = 

√ 

n ( τ2 − τ1 ) ( H 
′ �̄ n,τ1 H ) −1 / 2 { H 

′ ̂  θn,τ1 ,τ2 − H 
′ θ∗} , (2.9) 

where ˆ α1 ,n,τ1 ,τ2 , 
ˆ β1 ,n,τ1 ,τ2 are the second and third components of ̂  θn,τ1 ,τ2 , and �̄ n,τ1 ,τ2 is an estimator 

of � using observations outside of {⌊ nτ1 ⌋ , . . . , ⌊ nτ2 ⌋} . For instance, we can set �̄ n,τ1 ,τ2 to be the 

standard covariance matrix estimator obtained by replacing V , I with their empirical counterparts 

with observations outside {⌊ nτ1 ⌋ , . . . , ⌊ nτ2 ⌋} . 
The feasible search set for e xplosiv e periods is defined to be 

R κ,κ ′ : = { ( τ1 , τ2 ) ∈ [0 , 1] 2 : κ ′ ≤ τ1 < τ2 , τ2 − τ1 ≥ κ} (2.10) 

(with some κ, κ ′ > 0 , for instance κ = κ ′ = 0 . 1 ), ensuring proper estimation of the variance- 

covariance matrix of the estimated parameters � due to τ1 ≥ κ ′ and a change detection based 

on enough samples due to τ2 − τ1 ≥ κ. The uniformity test is thus taken on the set R κ,κ ′ to be 

© The Author(s) 2023. 
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Par ameter c hange in GARCH models 475 

Figure 3. The plot of the windows where the supreme is calculated. 

any combination of τ1 , τ2 with κ < | τ1 − τ2 | ≤ 1 − κ ′ . The supreme of ˆ B n ( τ1 , τ2 ) with respect to 

R κ,κ ′ converges asymptotically to the supreme of a Gaussian process, namely 

{

B ( τ2 ) −B ( τ1 ) 

( τ2 −τ1 ) 1 −1 / 2 

}

, where 

B( ·) is a 1-dimensional Brownian motion. We show this formally in Theorem 3.3 in Section 3.2 . 

Empirically, we cannot exhaust all the values ( τ1 , τ2 ) ∈ R κ,κ ′ . For the ease of implementation 

and deri v ation, we define our feasible search set to be κ, κ ′ : = { ( τ1 , τ2 ) ∈ [0 , 1] 2 : τ1 < τ2 , 1 −
κ ′ ≥ τ2 − τ1 ≥ κ} , where κ, κ ′ are the bound on the distance between (0,1). We therefore need to 

restrict the calculation of the supreme to a set of grid points as an approximation of our supreme 

test statistics. We summarize the test procedure for a given acceptance rate δ ∈ (0 , 1) (typically, 

δ = 0 . 9 or δ = 0 . 95 ) in the following context. 

Algorithm 1 

Step 0 Choose some L > 0 (the number of grid points associated with detection accuracy). 

The corresponding grid points are G = 

{

j 

L 
: j = 0 , . . . , L 

}

on the time line. 

Step 1 Let H denote the direction in which a change of parameters should be checked, cf. 

( 2.2 ). Fix some baseline value H 
′ θ∗. 

Step 2 Choose values for κ, κ ′ ∈ (0 , 1) . We suggest setting κ = 0 . 1 , κ ′ = 0 . 1 . 

Step 3 F or each giv en interval ( τ1 , τ2 ) ∈ R κ,κ ′ ∩ G 
2 , determine the associated QLME ˆ θn,τ1 ,τ2 

defined in ( 2.6 ) and calculate �̄ n,τ1 ,τ2 as in ( 2.8 ). Then determine ˆ B n ( τ1 , τ2 ) via ( 2.9 ). 

Figure 3 shows how one calculates the supreme test statistic o v er dif ferent windo ws 

associated with the grid points. 

Step 4 For the critical value of this test, we can approximate the quantile of the test statistic via 

simulation of the limiting Gaussian process under the null hypothesis H 0 : for large N

(e.g. N = 10 , 000 ), generate for each k ∈ { 1 , . . . , N} i.i.d. ε 
[ k] 
i ∼ N (0 , 1) , i = 1 , . . . , n 

and calculate 

ˆ μn,k : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 

1 
√ 

n ( τ2 − τ1 ) 

⌊ nτ2 ⌋ 
∑ 

i=⌊ nτ1 ⌋+ 1 

ε 
[ k] 
i . 
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476 S. Richter, W. Wang and W. B. Wu 

We define ˆ q W,δ : = ˆ μn, [ ⌊ N ·δ⌋ ] , where ˆ μn, [1] , . . . , ˆ μn, [ N] are the order statistics of 

ˆ μn, 1 , . . . , ˆ μn,N . 

Step 5 We can now make a test decision based on the critical values from the previous steps. 

If 

ˆ B n : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
ˆ B n ( τ1 , τ2 ) > ˆ q W,δ, (2.11) 

there is a significant shock in the parameter values. In this case, one can estimate the 

true shock period as [ τ ∗
1 , τ

∗
2 ] by 

( ̂  τ1 ,n , ̂  τ2 ,n ) ∈ argmax ( τ1 ,τ2 ) ∈ R κ,κ′ ∩ R κ,κ′ 
ˆ B n ( τ1 , τ2 ) . 

If instead ( 2.11 ) does not hold, we conclude that there is no evidence for a period of 

parameter change. 

Step 6 In case of the significance of our uniform test in Step 5, we re-estimate the parameter 
ˆ θn, ̂ τ1 , ̂ τ2 , and produce the confidence interval based on Theorem 3.3. 

We name this the GARCH Supreme Richter-Wang-Wu (GSRWW) test. The procedure depends 

on some tuning parameters. We have experimented with various choices and make our suggestions 

as follows. 

REMARK 2.2 (CHOICES OF TUNING PARAMETERS L, κ, κ ′ ). 

( i ) We suggest making L as large as possible so that the calculation on the machine is 

still done within an acceptable time. In principle, L = n is optimal, but may lead to an 

infeasible duration of computation in practice. Lower choices of L will decrease detection 

accuracy of the break points τ ∗
1 , τ

∗
2 , and may decrease the power of the test since short 

change periods (with small τ ∗
2 − τ ∗

1 ) with small impacts 
 
∗ may naturally be o v erseen. 

( ii ) The theoretical results hold for all fixed choices of κ, κ ′ . The consistency results we 

derive rely on the fact that τ2 − τ1 ≥ κ is bounded from below so that L 
c 
n,τ1 ,τ2 

( θ ) contains 

a number of observations, which is formally proportional to n . Similarly, τ1 ≥ κ ′ is needed 

to ensure that the estimate �̄ n,τ1 of the true covariance matrix � is uniformly consistent. 

We conjecture that the restriction τ2 − τ1 ≥ κ may be discarded when using a much more 

sophisticated theoretical discussion. The main difficulty might be of technical nature; 

namely, one has to derive the result under minimal moment assumptions on the GARCH 

process. Therefore, in practice, κ should not be regarded as a tuning parameter, but can 

be chosen as small as possible 
(

i.e., κ = 
1 
L 

)

. 

( iii ) In practice, the choice of κ ′ is a trade-off between a good estimation of � in the test 

statistics and finding a break point near the boundary. One cannot expect from a test 

to detect a change if it had not seen enough ‘normal’ data before. Therefore, choosing 

κ ′ = 0 . 1 seems quite reasonable to us, but in principle, smaller values may be chosen. 

As it follows from our discussion, the grid accuracy L should be investigated in more detail. We 

will consider this empirically in the simulation section, i.e., Appendix A in the Online Appendix. 

© The Author(s) 2023. 
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Par ameter c hange in GARCH models 477 

2.3. Generalizations 

In this section, we discuss several directions of generalizations of our test statistics. 

(a) Testing for other directions of parameter changes. It shall be noted that H does not have 

to be fixed as H = (0 , 1 , 1) ′ . Instead one can choose any direction of parameter change by 

choosing the corresponding H ∈ R 
3 . For instance, it is possible to check separately for a 

change of α∗
0 or α∗

1 by choosing H = (1 , 0 , 0) ′ or H = (0 , 1 , 0) ′ , respectively. 

(b) Testing for more than one direction. Based on our weak convergence result Theorem 3.3 

below, it is easily possible to elaborate tests which simultaneously check for more than one 

parameter change. To this end, we simply choose a full rank matrix H ∈ R 
3 ×p , where p ∈ N 

corresponds to the number of different directions one wants to test, e.g., a simultaneous 

change in α0 and α1 would lead to H = 

⎛ 

⎝ 

1 0 

0 1 

0 0 

⎞ 

⎠ . In this case, one simply has to modify the 

definition of ˆ B n in ( 2.11 ) to 

ˆ B 
s i mult 
n : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
max 

{

ˆ B n ( τ1 , τ2 ) j : j = 1 , . . . , p 

}

. 

Correspondingly, the critical value ˆ q s i mult 
W, 1 −δ is defined based on i.i.d. ε 

[ k] 
i ∼ N (0 , I p×p ) , 

i = 1 , . . . , n and 

ˆ μn,k : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
max 

{ 1 
√ 

n ( τ2 − τ1 ) 

⌊ nτ2 ⌋ 
∑ 

i=⌊ nτ1 ⌋+ 1 

ε 
[ k] 
i,j : j = 1 , . . . , p 

} 

. 

We can also adopt other types of test statistics. For example, for a two-sided test, one may 

consider the Euclidean norm | · | 2 instead of taking max {· : j = 1 , . . . , p} . 
(c) Detection of multiple change inter v als. Our method can be directly modified to detect 

multiple change points. The basic idea is taken from Jeng et al. ( 2013 ). Let T : = { 1 , . . . , n } 
denote the active training set. Let m = 0 denote the counter of changes, and τ

(0) 
1 ,n = τ

(0) 
2 ,n = 0 . 

We shall repeat the following steps until T is empty: 

(1) Perform Step 0–Step 6 from Algorithm 1 as Subsection 2.2 based on the training set 

X i , i ∈ T (in particular, with n = | T | ). 
(2) If no change was detected, stop. Otherwise, increase m by 1 and put ( ̂  τ

( m ) 
1 ,n , ̂  τ

( m ) 
2 ,n ) ⊂

(0 , 1) as the interval of change (with respect to the original observation interval (0,1) 

corresponding to (0,1)). 

(3) Delete the region with explosive behaviour from the training set; that is, update 

T = T \{⌊ n ̂  τ
( m ) 
1 ,n ⌋ + 1 , ⌊ n ̂  τ

( m ) 
2 ,n ⌋} . 

If T is not empty, go back to Step 1. If T is empty, return the 
{(

ˆ τ
( k) 
1 ,n , ̂  τ

( k) 
2 ,n 

)

: k = 

1 , . . . , m 

}

. 

The collection of multiple selected intervals is then given by 

{(

ˆ τ
( k) 
1 ,n , ̂  τ

( k) 
2 ,n 

)

: k = 

1 , . . . , m 

}

. 
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478 S. Richter, W. Wang and W. B. Wu 

(d) Generalization to GARCH( r, s) models. The theoretical results are developed for 

general GARCH( r, s) models. The test procedure can be used for GARCH( r, s) models 

presented in ( 1.1 ) and according parameter vector θ∗ = ( α∗
0 , . . . , α

∗
r , β

∗
1 , . . . , β

∗
s ) 

′ . The 

only change in the testing procedure is the adaptation of the likelihood function in 

( 2.5 ) to the one for GARCH( r, s) models given in ( 3.2 ) below. 

(e) A general parameter constancy test. When one would just like to test for the con- 

stancy of H 
′ θ∗ without setting a specific baseline value c = H 

′ θ∗, we can modify our 

test statistics ˆ B n as follows: 

We define 

ˆ B 
cp 
n ( τ1 , τ2 ) : = 

√ 

n ( τ2 − τ1 ) 
τ1 

τ2 

( H 
′ �̄ n,τ1 H ) −1 / 2 

{

H 
′ ̂  θn,τ1 ,τ2 − H 

′ ̂  θn, 0 ,τ1 

}

, 

and 

ˆ B 
cp 
n : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 
ˆ B 

cp 
n ( τ1 , τ2 ) . 

Based on Theorem 3.4, the critical value ˆ q 
cp 
W,δ needs to be redefined based on the 

distribution of ˆ μ
cp 
n,k as follows: 

Let ε 
[ k] 
i ∼ N (0 , 1) , i = 1 , . . . , n and 

ˆ μ
cp 
n,k : = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ ∩ G 2 

1 
√ 

nτ2 

{ √ 
τ1 

τ2 − τ1 

⌊ nτ2 ⌋ 
∑ 

i=⌊ nτ1 ⌋+ 1 

ε 
[ k] 
i −

√ 
τ2 − τ1 

τ1 

⌊ nτ1 ⌋ 
∑ 

i= 1 

ε 
[ k] 
i 

} 

. 

The theoretical properties of the statistics are briefly discussed in Subsection 3.4 . 

3. THEORETICAL RESULTS FOR GENERAL GARCH( r, s) MODEL 

In this section we derive the theoretical properties of the GSRWW test and provide the necessary 

definition of the estimators in the general GARCH( r, s) model. We also formulate the GSRWW 

test and provide the necessary theoretical results in a general GARCH( r, s) model. For r, s ∈ N , 

θ ( i) = ( α0 ( i) , α1 ( i) , . . . , αr ( i) , β1 ( i) , . . . , βs ( i)) 
′ , we consider the GARCH( r, s) model ( 1.1 ) 

X 
2 
i = ζ 2 

i σ
2 
i , 

σ 2 
i = α0 ( i) + 

r 
∑ 

j= 1 

αj ( i) X 
2 
i−j + 

s 
∑ 

k= 1 

βk ( i) σ
2 
i−k . 

Here, ζi are i.i.d. innovations with E ζ1 = 0 and E ζ 2 
1 = 1 . 

Recall our change point setting in ( 2.2 ), which is now defined with some fixed direction 

H ∈ R 
r+ s+ 1 (instead of H ∈ R 

3 for GARCH(1,1)). Recall the hypotheses as in ( 2.4 ). We 

first analyse the model under the null hypothesis of constant parameters, i.e., θ ( i) ≡ θ∗ = 

( α∗
0 , α

∗
1 , . . . , α

∗
r , β

∗
1 , . . . , β

∗
s ) 

′ . Following Francq and Zako ̈ıan ( 2004 ), we now present the set 

of assumptions to ensure the existence of a unique stationary solution to our model in ( 1.1 ). 

Define f ( θ ) = ( α1 , . . . , αr , β1 , . . . , βs ) 
′ and let e j = (0 , . . . , 0 , 1 , 0 , . . . , 0) ′ ∈ R 

r+ s be the unit 

column vector with the j th element being 1, 1 ≤ j ≤ r + s. Define the ( r + s) × ( r + s) -matrix 

as 

A i ( θ ) = ( f ( θ ) ζ 2 
i , e 1 , . . . , e r−1 , f ( θ ) , e r+ 1 , . . . , e r+ s−1 ) 

′ . 

© The Author(s) 2023. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
c
tj/a

rtic
le

/2
6
/3

/4
6
7
/7

0
2
2
3
1
4
 b

y
 g

u
e
s
t o

n
 2

2
 S

e
p
te

m
b
e
r 2

0
2
3



Par ameter c hange in GARCH models 479 

Recall that | A | 2 is the spectral norm of a quadratic matrix A . Define the top Lyapunov exponent 

of A i ( θ ) as 

γ ( θ ) : = lim 
i→∞ 

1 

i 
log | A i ( θ ) A i−1 ( θ ) . . . A 1 ( θ ) | 2 . 

This exists if E | ζ0 | a < ∞ for some a > 0 (cf. Francq and Zako ̈ıan, 2004 ). 

ASSUMPTION 3.1. Suppose that 

(A1) ζ 2 
0 has a nondegenerate distribution with E ζ 2 

0 = 1 . 

(A2) Let αmin > 0 , and 

˜ � = 

{

θ ∈ R 
r+ s+ 1 
≥0 : α0 ≥ αmin , γ ( θ ) < 0 a.s. , 

s 
∑ 

j= 1 

βj < 1 

}

. (3.1) 

Let � ⊂ ˜ � be compact. Assume that θ∗ ∈ int( � ) . 

(A3) Let A θ ( z) : = 
∑ r 

i= 1 αi z 
i , B θ ( z) : = 1 −

∑ s 
j= 1 βj z 

j . If s > 0 , A θ∗ ( z) and B θ∗ ( z) have no 

common root, A θ∗ (1) �= 0 and α∗
r + β∗

s �= 0 . 

Condition (A2), i.e., γ ( θ∗) < 0 , guarantees the strict stationarity of the GARCH process. Note 

that this includes parameter values corresponding to IGARCH or mildly e xplosiv e GARCH 

with 
∑ 

j α
∗
j + 

∑ 

k β
∗
k > 1 . From Francq and Zako ̈ıan ( 2004 ) and Proposition B.1 in the online 

Appendix B, we see that Assumption 3.1 implies existence of a solution of ( 1.1 ) which has 

geometric decay of dependence. 

3.1. QMLE in GARC H ( r, s ) and its consistency under null and alternative 

In this subsection, we describe the QMLE, and formulate a theorem that yields its uniform 

consistency under the null and the alternative. Since we are providing the theory for GARCH( r, s) 

models, we now have to define the corresponding more general likelihood function involved in 

the estimation procedure. For estimation of θ∗ ∈ � , we consider the following QML approach. 

We denote by Y 
c 
i : = ( X 

2 
i−1 , X 

2 
i−2 , . . . , X 

2 
1 , 0 , 0 , ... ) the observed data until time i − 1 . For 0 ≤

τ1 < τ2 ≤ 1 , 

L 
c 
n,τ1 ,τ2 

( θ ) : = 
1 

n 

⌊ nτ2 ⌋ 
∑ 

i=⌊ nτ1 ⌋+ 1 

ℓ ( X 
2 
i , Y 

c 
i , θ ) , 

where 

ℓ ( x , y , θ ) : = 
1 

2 

( x 

σ 2 ( y , θ ) 
+ log σ 2 ( y , θ ) 

)

(3.2) 

and σ 2 ( y, θ ) follows the recursion 

σ 2 ( y, θ ) = α0 + 

r 
∑ 

j= 1 

αj y j + 

s 
∑ 

k= 1 

βk σ
2 (( y k+ 1 , y k+ 2 , ... ) , θ ) . (3.3) 

The analytic definition of the recursion of σ 2 ( y, θ ) is formulated in a forw ard w ay (using 

y 1 , y 2 , ... instead of y −1 , y −2 ,...) because we plug in y = Y 
c 
i , which is formulated in a backward 

© The Author(s) 2023. 
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480 S. Richter, W. Wang and W. B. Wu 

way, leading to the usual quasi-likelihood approach for GARCH models. Note that σ 2 ( Y 
c 
i , θ ) 

in ( 3.3 ) terminates after a finite number of steps due to zeros in Y 
c 
i . Morevoer, instead of using 

the truncated version Y 
c 
i = ( X 

2 
i−1 , X 

2 
i−2 , . . . , X 

2 
1 , 0 , . . . , 0) which corresponds to assuming that 

all initial values X 
2 
0 = X 

2 
−1 = ... = 0 , one can also use different initial values like X 

2 
0 = X 

2 
−1 = 

... = α0 or X 
2 
0 = X 

2 
−1 = ... = X 

2 
1 as inv estigated in Francq and Zako ̈ıan ( 2004 ). F or a discussion 

of different initial values, consider Bougerol and Picard ( 1992a ) (in the case of strict stationarity). 

Let σ 2 
t = α0 / 

(

1 −
∑ s 

k= 1 βk 

)

+ 
∑ r 

j= 1 αj X 
2 
t−j + 

∑ r 
j= 1 αj 

∑ ∞ 
k= 1 

∑ s 
j 1 = 1 

∑ s 
j 2 = 1 · · ·

∑ s 
j k = 1 βj 1 βj 2 

· · · βj k X 
2 
t−i−j 1 −···−j k 

. With the defined likelihood function, for 0 ≤ τ1 < τ2 ≤ 1 , an estimator 

ˆ θn,τ1 ,τ2 of θ in the observation interval i = ⌊ nτ1 ⌋ + 1 , . . . , ⌊ nτ2 ⌋ is obtained as in ( 2.6 ) via 

ˆ θn,τ1 ,τ2 : = argmin θ∈ � L 
c 
n,τ1 ,τ2 

( θ ) . (3.4) 

With these definitions, we obtain the following uniform consistency under the null hypothesis 

of no parameter change. 

THEOREM 3.1 (UNIFORM CONSISTENCY OF ˆ θn,τ1 ,τ2 under the null H 0 ) . Let Assumption 3.1 

and H 0 hold. Then for each κ > 0 , 

sup 

0 ≤τ1 <τ2 ≤1 , | τ1 −τ2 |≥κ

| ̂  θn,τ1 ,τ2 − θ∗| 1 
p → 0 . 

Additionally, we have the following result under the alternative. 

PROPOSITION 3.1 (CONVERGENCE OF THE STATISTICS UNDER THE ALTERNATIVE H1) Let 

Assumption 3.1 and H 1 hold, where θ∗ + H 
 
∗ ∈ int ( � ) . Then, 

| ̂  θn,τ ∗
1 ,τ

∗
2 

− ( θ∗ + H 
 
∗) | 1 

p → 0 . 

Note that this result is important and remarkable in the following sense: Even though the 

whole past of the process is used in the calculation of L 
c 
n,τ1 ,τ2 

( θ ) (in particular realizations with 

i ≤ ⌊ nτ ∗
1 ⌋ , which follow a model with parameters θ∗ instead of θ∗ + H 
 

∗), ˆ θn,τ ∗
1 ,τ

∗
2 

converges to 

the value θ∗ + H 
 
∗ in the alternative. The reason is that the past values only have a small impact 

on the whole likelihood due to the geometric decay of the coefficients in ℓ, cf. Lemma B.3 in 

Online Appendix B. 

3.2. Limiting distribution of the test statistics 

Given the consistency of our QMLE in a GARCH( r, s) model, we provide a distribution theorem 

for ˆ θn,τ1 ,τ2 that allows us to obtain critical values for the uniform test defined in Section 2 and 

more general tests. Recall the change point setting ( 2.2 ) with H ∈ R 
r+ s+ 1 . We analyse the limiting 

distribution of the test statistics given in ( 2.11 ) and ( 2.9 ) under the null @ H 0 of no parameter 

change. Recall 

ˆ B n = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

ˆ B n ( τ1 , τ2 ) , 

where 

ˆ B n ( τ1 , τ2 ) = 

√ 

n ( τ2 − τ1 ) ( H 
′ �̄ n,τ1 H ) −1 / 2 { H 

′ ̂  θn,τ1 ,τ2 − H 
′ θ∗} . 

First, we approximate the difference ˆ θn,τ1 ,τ2 − θ∗ by a simple linear form uniformly in τ1 , τ2 . The 

following type of theoretical result is also known as a weak Bahadur representation of ˆ θn,τ1 ,τ2 . 

© The Author(s) 2023. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
c
tj/a

rtic
le

/2
6
/3

/4
6
7
/7

0
2
2
3
1
4
 b

y
 g

u
e
s
t o

n
 2

2
 S

e
p
te

m
b
e
r 2

0
2
3



Par ameter c hange in GARCH models 481 

For κ ∈ (0 , 1) , we define 

R κ : = { ( τ1 , τ2 ) ∈ [0 , 1] 2 : τ1 < τ2 , | τ1 − τ2 | ≥ κ} . 

THEOREM 3.2 (WEAK BAHADUR REPRESENTATION). Let Assumption 3.1 and H 0 hold. 

Assume that for some a > 0 , E | ζ0 | 4 + a < ∞ . Then for each κ > 0 , 

sup 

( τ1 ,τ2 ) ∈ R κ

∣

∣{ ̂  θn,τ1 ,τ2 − θ∗} + (( τ2 − τ1 ) V ( θ∗)) −1 · ∇ θL n,τ1 ,τ2 ( θ
∗) 

∣

∣ = O p ( log ( n ) 3 n 
−1 ) , 

where L n,τ1 ,τ2 ( θ ) : = 
1 
n 

∑ ⌊ nτ2 ⌋ 
i=⌊ nτ1 ⌋+ 1 ℓ ( X 

2 
i , Y i , θ ) . 

This linearization result allows to transfer the properties of the sum ∇ θL n,τ1 ,τ2 to the difference 
ˆ θn,τ1 ,τ2 − θ∗; especially we obtain a limit distribution of ˆ θn,τ1 ,τ2 uniformly in ( τ1 , τ2 ) ∈ R κ under 

H 0 by using Gaussian approximation results from Wu and Zhou ( 2011 ). The functional limit 

distribution then naturally implies the pointwise convergence results from Francq and Zako ̈ıan 

( 2004 ) and it is much stronger, as it can be used as a starting point to apply theorems from 

empirical process theory (such as the continuous mapping theorem). Let ℓ ∞ ( T ) denote the space 

of bounded functions f : T → R , (cf. V an der V aart, 1998 , Section 18, Example 18.5). As a 

direct consequence of the uniform Bahadur representation, we can derive the distribution of the 

difference of the estimator and the true value θ∗ under the null. 

THEOREM 3.3 (ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTICS) Suppose that As- 

sumption 3.1 and H 0 holds. Suppose that there exists a ′ > 0 such that E | ζ0 | 4 + a ′ < ∞ . Fix κ > 0 

and suppose that H 0 is true. Then on ℓ ∞ ( R κ ) r+ s+ 1 , 

√ 

n ( τ2 − τ1 ) 
{

ˆ θn,τ1 ,τ2 − θ∗} d → � 
1 / 2 

{

B( τ2 ) − B( τ1 ) √ 
τ2 − τ1 

}

, 

where B( ·) is a standard ( r + s + 1) -dimensional Brownian motion, and 

� = V ( θ∗) −1 I ( θ∗) V ( θ∗) −1 

is from ( 2.7 ). where μ4 : = E ζ 4 
0 . 

As a direct corollary, we obtain with the continuous mapping theorem the limit distribution of 
ˆ B n with a known covariance matrix �. To obtain the critical values of our test, we need to derive 

quantiles for the test statistics ˆ B n , which can be inferred by its limit distribution. 

COROLLARY 3.1. Suppose that Assumption 3.1 and H 0 holds. Suppose that there exists a ′ > 0 

such that E | ζ0 | 4 + a ′ < ∞ . Fix κ > 0 . Let H ∈ R 
r+ s+ 1 . Let � H : = H 

′ �H . Then, 

sup 

( τ1 ,τ2 ) ∈ R κ

√ 

n ( τ2 − τ1 ) � 
−1 / 2 
H 

{

H 
′ ̂  θn,τ1 ,τ2 − H 

′ θ∗}

d → sup 

( τ1 ,τ2 ) ∈ R κ

{

B( τ2 ) − B( τ1 ) √ 
τ2 − τ1 

}

, 

where B( ·) is a standard 1-dimensional Brownian motion. 

REMARK 3.1. Note that this result could easily be generalized to H ∈ R 
( r+ s+ 1) ×d , which allows 

us to detect more than one deviation from a ‘stable’ state, as remarked in Section 2.3 . 

If a process behaves mildly explosive in the second moment and has constant parameters in all 

time periods, our theoretical results are still valid. The reason is that this case belongs to the null 

hypothesis, as we only restrict θ∗ to lie in the parameter region of strict stationarity. 

© The Author(s) 2023. 
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482 S. Richter, W. Wang and W. B. Wu 

REMARK 3.2. It is worth noting that, different from Francq and Zako ̈ıan ( 2004 ), we have a 

slightly stronger moment assumption, i.e., E | ζ0 | 4 + a ′ < ∞ . The reason is that proving a uniform 

convergence as in (3.1) typically needs a high-level Bahadur-type approximation result which 

incorporates uniform approximation of the lik elihood tow ards its expectation. To do so, we use 

concentration inequalities from Zhang and Wu ( 2017 ), and Gaussian approximation results from 

Wu and Zhou ( 2011 ), which need the summands to have a little more than two moments. Here, the 

likelihood of having more than two moments corresponds to ζ0 having more than four moments. 

Since � H is unknown in practice, we next discuss an analogue of Corollary 3.1 where � H is 

replaced by a consistent estimator. 

3.3. Estimation of � and statistical properties with the estimated �. 

In this subsection we show that the proposed estimator �̄ n,τ1 of � in ( 2.8 ) is a uniformly consistent 

estimator for �. In addition, we show that the limit distribution of the test statistics remains 

the same with the plugged v ariance-cov ariance estimator. It is well known that the following 

alternative representation holds (cf. Proposition B.2 in online Appendix B): 

� = V ( θ∗) −1 I ( θ∗) V ( θ∗) −1 (3.5) 

= 
μ4 − 1 

2 
· V ( θ∗) −1 . 

Ho we ver, here we restrict ourselves to the estimation of � via the representation of ( 3.5 ) to a v oid 

estimating μ4 separately. To coincide with a typical change-point test and to obtain a high power, 

�̄ n,τ1 in ( 2.8 ) was defined only with observations from the null hypothesis i = 1 , . . . , ⌊ nτ1 ⌋ . We 

have the following result. 

PROPOSITION 3.2 (UNIFORM CONSISTENCY OF THE COVARIANCE ESTIMATOR) 

Suppose that Assumption 3.1 and H 0 holds. Suppose that there exists a ′ > 0 such that 

E | ζ0 | 4 + a ′ < ∞ . Fix κ ′ > 0 . Then: 

(i) sup τ1 ≥κ ′ | ̄V n,τ1 ( ̂
 θn, 0 ,τ1 ) − V ( θ∗) | 1 

p → 0 . 

(ii) If additionally E | ζ0 | 8 + a ′ < ∞ , sup τ1 ≥κ ′ | ̄I n ( ̂  θn, 0 ,τ1 ) − I ( θ∗) | p → 0 , and 

sup 

τ1 ≥κ ′ 

∣

∣�̄ n,τ1 − � 

∣

∣

2 

p → 0 . 

As a corollary of Theorem 3.3 and Proposition 3.2, we now obtain the limit distribution of ˆ B n 

with Slutsky’s lemma. Recall R κ,κ ′ from ( 2.10 ). 

COROLLARY 3.2. Suppose that Assumption 3.1 and H 0 holds. Suppose that there exists a ′ > 0 

such that E | ζ0 | 8 + a ′ < ∞ . Let H ∈ R 
r+ s+ 1 . Then, 

ˆ B n = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

√ 

n ( τ2 − τ1 ) ( H 
′ �̄ n,τ1 H ) −1 / 2 

{

H 
′ ̂  θn,τ1 ,τ2 − H 

′ θ∗}

d → sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

{

B( τ2 ) − B( τ1 ) √ 
τ2 − τ1 

}

= : W, 

where B( ·) is a standard 1-dimensional Brownian motion. 

© The Author(s) 2023. 
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REMARK 3.3 (MODIFICATION OF THE TEST AND THE HYPOTHESES). 

(i) Let q W,δ denote the (1 − δ) quantile of W . Then 1 { ̂ B n >q W,δ} is also a level δ test for the 

extended hypotheses 

H 0 : 
 
∗ ≤ 0 vs. H 1 : 
 

∗ > 0 . (3.6) 

The reason being that 
 
∗ < 0 in connection with the uniform consistency of Theorem 3.1 

only produces smaller values of the test statistics ˆ B n . 

(ii) F or an y fix ed θ∗ ∈ int ( � ) , the power function β( 
 
∗) : = P 
 ∗( ̂  B n > q W,δ) is continuous 

around 
 
∗ = 0 since the process X i from ( 1.1 ) depends continuously on 
 

∗ through θ∗( i) . 

Therefore, 1 { ̂ B n >q W,δ} is also a level δ test for 

H 0 : 
 
∗ < 0 vs. H 1 : 
 

∗ ≥ 0 . (3.7) 

Intuitively, one can argue that ( 3.7 ) is nearly the same as testing 

H 0 : 
 
∗ ≤ ǫ

with some arbitrarily small ǫ > 0 , which again is nearly the same as testing ( 3.6 ). 

If the significance of ˆ B n is detected, τ ∗
1 , τ

∗
2 can be estimated by the choice 

( ̂  τ1 ,n , ̂  τ2 ,n ) ∈ argmax ( τ1 ,τ2 ) ∈ R κ,κ′ 
ˆ B n ( τ1 , τ2 ) . 

This result shows that the test provided in Algorithm 1 in Section 2 is a test with asymptotic 

size δ. Based on the consistency result from Proposition 3.1, we obtain that the test based on 

Algorithm 1 also has asymptotic power 1, which is shown in the following corollary. 

COROLLARY 3.3. Let Assumption 3.1 and H 1 hold, where θ∗ + H 
 
∗ ∈ int ( � ) and ( τ ∗

1 , τ
∗
2 ) ∈ 

R κ,κ ′ . Then, 

ˆ B n 

p → ∞ . 

REMARK 3.4. We conjecture that this result can be extended even to nonstationary alternatives 

where θ∗ + H 
 
∗ �∈ � as long as H 

′ (1 , 0 , . . . , 0) = 0 . The reason for this restriction is that 

Francq and Zako ̈ıan ( 2012 ) disco v ered that one cannot expect ˆ α0 to be consistently estimated in 

the nonstationary regime. 

3.4. Theor etical r esults for a gener al par ameter constancy test 

Finally, we provide theoretical results for the generalization case of (d) from Section 2.3 . Namely, 

recall that 

ˆ B 
cp 
n = sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

ˆ B 
cp 
n ( τ1 , τ2 ) , 

where 

ˆ B 
cp 
n ( τ1 , τ2 ) = 

√ 

n ( τ2 − τ1 ) 
τ1 

τ2 

( H 
′ �̄ n,τ1 H ) −1 / 2 

{

H 
′ ̂  θn,τ1 ,τ2 − H 

′ ̂  θn, 0 ,τ1 

}

. 

© The Author(s) 2023. 
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484 S. Richter, W. Wang and W. B. Wu 

In opposite to ˆ B n , we do not focus on testing a particular c. The normalization with τ1 , τ2 in 

ˆ B 
cp 
n ( τ1 , τ2 ) is chosen such that its limit distribution for fixed τ1 , τ2 has an N (0 , 1) distribution. In 

the following, the theorem ensures the asymptotic performance of the generalized test statistics 

under the null and alternative hypotheses. 

THEOREM 3.4. Suppose that Assumption 3.1 holds. Suppose that there exists a ′ > 0 such that 

E | ζ0 | 8 + a ′ < ∞ . Let H ∈ R 
r+ s+ 1 . Then under H 0 , 

ˆ B 
cp 
n 

d → sup 

( τ1 ,τ2 ) ∈ R κ,κ′ 

1 
√ 

τ2 

{ √ 
τ1 

τ2 − τ1 

{

B( τ2 ) − B( τ1 ) 
}

−
√ 

τ2 − τ1 

τ1 

B( τ1 ) 
} 

, 

where B( ·) is a standard 1-dimensional Brownian motion. If instead H 1 holds with θ∗ + H 
 
∗ ∈ 

int ( � ) and ( τ ∗
1 , τ

∗
2 ) ∈ R κ,κ ′ , then 

ˆ B 
cp 
n 

p → ∞ . 

4. REAL DATA APPLICATION 

In this section, we apply our test to real data. We first consider two commonly used financial risk 

indicators. One is the VIX, and the other is the Treasury-EuroDollar (TED) rate spread. The VIX 

is a weighted combination of prices for a range of options on the S&P 500 index, which reflects 

the market expectation of the volatility level. The TED spread is the difference between the 3- 

Month London Interbank Offered Rate (LIBOR) based on US dollars and the 3-Month Treasury 

Bill, which typically measures the liquidity among the inter-bank money market. The VIX is 

available from Yahoo Finance ( 2019 ), and the TED spread (Federal Reserve Economic Data, 

2019 ) is downloaded from the following address: https://fr ed.stlouisfed.or g/series/TEDRATE . 

We adopt a daily frequency for the TED (the VIX) for the time span 01/07/2004–09/05/2018 

(05/01/2004–05/09/2018). 

The VIX is often regarded as a measure of the market fear of stock investors, which is related 

to the cost of purchasing insurance against market downturns. We usually see that the VIX will 

be high in a bearish market and low in a bullish market. The TED spread represents the credit risk 

in the general economy. It signals how banks are willing to lend to each other, which is related to 

the liquidity of the markets. A high level of TED spread is a sign of low liquidity and high risk 

of default on inter-bank loans. 

Both the VIX and the TED spread are often considered early-warning indicators of market 

stress. Namely, when market uncertainty is high, a temporary shock to the financial system leads 

to increased default or otherwise adverse effect to the global financial market; see, for example, 

as described in Gonz ́alez-Hermosillo and Hesse ( 2011 ). Abrupt changes of the parameter values 

of the underlying processes are likely to be associated with this type of sudden changes of market 

conditions. The goal of our analysis is to disco v er the existence of periods of unstable behaviour 

of the underlying volatility process. This can be helpful to decide if a go v ernment should perform 

an intervention based on the estimated underlying parameter values. Figure 4 shows a plot of 

the following adjusted series: the TED spread Y i , the log returns L i : = log 

(

Y i 
Y i−1 

)

, and absolute 

log returns of the TED spread. From the plot, we observe that the returns fluctuate around the 

zero. During the years 2008–2009, there is a period of high volatility. We divide the data into a 

sequence of consecutive windows of 1,000 days each. The log returns L i are stationary in all the 

windows (suggested by the ADF test) and serial correlation is taken out by fitting an ARMA( p, q) 

© The Author(s) 2023. 
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Figure 4. The plot of TED spread in percentage (upper panel), the log difference of TED spread (middle 

panel) and the absolute value of TED spread (lower panel). The dates of change are marked with grey 

lines. (Starting line: dark grey, ending line: light grey.). 

Table 1. The detected significant break periods for the TED spread, the corresponding persistence 

parameter ( ̂  α1 + ˆ β1 ) and the test statistics; ( *** ) means significant at both 0.95,0.90. Parameter estimation 

for ˆ α1 , ˆ β1 in brackets. The null hypothesis is α1 + β1 = 0 . 95 . 

ˆ τ1 ˆ τ2 In Out Test statistics 

1 2007-05-09 2008-02-29 1.02 (0.14, 0.88) 0.95 (0.08, 0.87) 4 .22( *** ) 

2 2008-07-25 2009-05-20 1.08 (0.44, 0.64) 0.95 (0.05, 0.90) 19 .74( *** ) 

3 2013-01-24 2013-11-14 1.05 (0.28, 0.77) 0.95 (0.04, 0.91) 7 .41( *** ) 

4 2017-02-16 2017-12-07 1.00 (0.05, 0.95) 0.95 (0.04, 0.91) 3 .32( *** ) 

process of the form 

L i = 

p 
∑ 

j= 1 

αj L i−j + 

q 
∑ 

k= 1 

βk ε i−k + ε i 

in advance and the following analysis is done on the estimated residuals after the QMLE fitting, 

ˆ X i : = ˆ ε i . 

From the histogram and Q-Q plot of the time series in Figure 5 , we observe a strong evidence 

of leptokurtic behaviour. We follow the suggestions as in Section 2 for the choices of tuning 

parameters, and grid size L is chosen to be L = 100 throughout this section. Figure 6 shows the 

moving window fitting results. In Table 1 we present the detected periods of the mildly explosive 

beha viour. We ha ve adopted our tested with extension to a multiple change-point algorithm as 

discussed in Section 2.3 (c). Therefore, multiple significant periods of change can be detected. 

The GSRWW test identifies the major financial crises such as the US subprime mortgage crisis 

© The Author(s) 2023. 
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486 S. Richter, W. Wang and W. B. Wu 

Figure 5. Q-Q plot and the histogram for the daily TED spread. 

Figure 6. A plot of estimated GARCH(1,1) parameters using the TED data o v er a rolling window of size 

200. ˆ α1 + ˆ β1 estimate persistence parameter (blue dash line), ˆ α1 (solid line), ˆ β1 (dotted line), threshold 

( α1 + β1 = 0 . 95 ). 

as early as May 2007, and lasts until February 2008. Furthermore, the test can detect some short- 

lived instability early; such as, in October 2013 the TED spread dropped due to the worries of a 

potential default on the US debt. 

The corresponding time series of the VIX is plotted in Figure 7 . We observe that the index 

value increases sharply during the subprime crisis. A similar leptokurtic behaviour of the series 

can be found in Figure 8 . Figure 9 presents the moving window parameter fitting results. We 

cannot detect any significant intervals against the null hypothesis of H 0 : α1 + β1 = 1 . Instead 

we fit a global model first using the whole sample and test against the fitted value of the global 

© The Author(s) 2023. 
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Figure 7. The plot of VIX (upper panel), the log difference of VIX (middle panel), and the absolute value 

of VIX (lower panel). The dates of change are marked with grey lines. (Starting line: dark grey, ending 

line: light grey.). 

Figure 8. Q-Q plot and the histogram for the daily VIX index. 

model, i.e., α1 + β1 = c : = 0 . 95 . We have detected five intervals of change points, as listed in 

Table 2 . In particular, the period end in October 2006 signifies the early warning of the subprime 

mortgage crisis. The period starting on 2011 − 05 − 24 corresponds to the Euro debt crisis. In 

sum, our test can pick up the critical periods of financial crises early for both the VIX and the 

© The Author(s) 2023. 
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Figure 9. A plot of estimated GARCH(1,1) parameters using the VIX data o v er a rolling window of size 

200. ˆ α1 + ˆ β1 estimate persistence parameter (dash line), ˆ α1 (solid line), ˆ β1 (dotted line), threshold 

( α1 + β1 = 0 . 95 ). 

Table 2. The detected significant break periods for the VIX. The corresponding persistence parameter 

( ̂  α1 + ˆ β1 ) and the test statistics. The null hypothesis is α1 + β1 = 0 . 95 ; ( *** ) means significant at both 

0.95,0.90. Parameter estimation for ˆ α1 , ˆ β1 are in brackets. 

ˆ τ1 ˆ τ2 In Out Test statistics 

1 2004-01-05 2006-10-13 1.01 (0.11, 0.89) 0.95 (0.05, 0.90) 10 .94( *** ) 

2 2010-10-05 2011-03-28 1.33 (0.82, 0.52) 0.95 (0.11, 0.84 ) 14 .11( *** ) 

3 2008-08-13 2010-08-09 1.00 (0.12, 0.88) 0.95 (0.05, 0.90) 7 .72( *** ) 

4 2011-05-24 2011-11-11 1.04 (0.23, 0.81) 0.95 (0.08, 0.87) 4 .20( *** ) 

5 2011-12-12 2015-01-21 1.01 (0.15, 0.86) 0.95 (0.05,0.90) 10 .37( *** ) 

TED spread. Besides, it can also successfully signify small periods of turbulence in the volatility 

processes of the the early-warning indicators. 

Next, we test our methodology on the recent emerging Fintech markets. We gather the 

Bitcoin price series from 19 July 2010 to 05 No v ember 2018 at a daily frequency. The data 

(CoinMarketCap, 2019 ) source is ht tps://coinmarket cap.com/currencies/bit coin/historical-data/. 

We show the returns and the absolute returns for the Bitcoin price series in Figure 10 . We can see 

that there are several high-volatility periods. The volatility level is higher before 2013 followed 

by a stable period. Recently, the market volatility increased. The Q-Q plots and histograms in 

Figure 11 indicate the heavy-tailedness of the underlying distribution. We present the test results 

with consecuti ve windo ws of 1,000 days in Table 3 . Again the log returns are stationary in all 

the windows (by results of ADF tests) and serial correlation is taken out by fitting an ARMA 

process in advance. We apply our test to the obtained residuals, which indicates the presence of 

multiple market ‘euphoria’ episodes in the series. The GSSWW identifies the most significant 

high-volatility period, including the period co v ering the June 2016 crash, the crashes during 

summer 2017, and the fear of market regulation in October 2017. We have chosen Bitcoin as 

© The Author(s) 2023. 
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Figure 10. The plot of Bitcoin price (upper panel), the log difference of Bitcoin (middle panel) and the 

absolute returns (lower panel). The dates of change are marked with grey lines. (Starting line: dark grey, 

ending line: light grey.). 

Figure 11. Q-Q plot and the histogram for the Bitcoin returns. 

an important additional study, as the Fintech markets are known to behave independently with 

respect to the conventional financial market. Bitcoin is not controlled by an y go v ernment, and 

speculators can use our test results for abnormal regimes of Bitcoin as indicators of the market 

sentiment. 

© The Author(s) 2023. 
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Table 3. The detected significant break periods for the Bitcoin log returns, the corresponding persistence 

parameter ( ̂  α1 + ˆ β1 ), and the test statistics. ( *** ) means significant at both 0.95,0.90. Parameter estimation 

for ˆ α1 , ˆ β1 in brackets. Testing the corresponding persistence parameter ( α1 + β1 = 1 ). 

ˆ τ1 ˆ τ2 In Out Test statistics 

1 2010-08-28 2010-12-07 1.33 (0.84, 0.49) 1.00 (0.37, 0.63) 3 .92( *** ) 

2 2011-04-17 2012-10-13 1.49 (1.02, 0.47) 1.00 (0.28, 0.72) 18 .44( *** ) 

3 2013-07-13 2013-12-02 1.71 (1.46, 0.25) 0.97 (0.19, 0.78) 16 .11( *** ) 

4 2016-04-01 2017-09-24 1.42 (1.01, 0.41) 0.96 (0.10, 0.86) 23 .45( *** ) 

5. CONCLUSION 

In this paper, we propose a uniform test for a mildly e xplosiv e GARCH process with double- 

supreme statistics. Theoretical results about the uniform parameter consistency and asymptotic 

distribution of the test statistics are provided. Our test is easy to implement, and can help to 

ef fecti vely identify mildly explosive periods with good sizes and power. The quality of the test 

is discussed via a simulation study in the Online Appendix. We applied our procedure to real 

data time series as the TED spread, the VIX, and the Bitcoin price series, and tracked their 

corresponding volatile periods. Further work may extend the algorithm to online procedures, 

allowing for real time detection of breaks. 
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