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As research and understanding of the cardiotoxic side-effects of anticancer therapy

expands further and the affected patient population grows, notably the long-term

survivors of childhood cancers, it is important to consider the full range of myocardial cell

types affected. While the direct impacts of these toxins on cardiac myocytes constitute

the most immediate damage, over the longer term, the myocardial ability to repair, or

adapt to this damage becomes an ever greater component of the disease phenotype.

One aspect is the potential for endogenous myocardial repair and renewal and how this

may be limited by cardiotoxins depleting the cells that contribute to these processes.

Clear evidence exists of new cardiomyocyte formation in adult humanmyocardium, along

with the identification in the myocardium of endogenous stem/progenitor cell populations

with pro-regenerative properties. Any effects of cardiotoxins on either of these processes

will worsen long-term prognosis. While the role of cardiac stem/progenitor cells in

cardiomyocyte renewal appears at best limited (although with stronger evidence of

this process in response to diffuse cardiomyocyte loss), there are strong indications

of a pro-regenerative function through the support of injured cell survival. A number

of recent studies have identified detrimental impacts of anticancer therapies on

cardiac stem/progenitor cells, with negative effects seen from both long-established

chemotherapy agents such as, doxorubicin and from newer, less overtly cardiotoxic

agents such as tyrosine kinase inhibitors. Damaging impacts are seen both directly, on

cell numbers and viability, but also on these cells’ ability to maintain the myocardium

through generation of pro-survival secretome and differentiated cells. We here present

a review of the identified impacts of cardiotoxins on cardiac stem and progenitor cells,

considered in the context of the likely role played by these cells in the maintenance of

myocardial tissue homeostasis.
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INTRODUCTION

Managing anticancer therapy side-effects has been an important component of oncotherapy
care since it was first developed, with cardiotoxicity as one of the principal side-effects. As
anticancer therapy regimens become more effective and patient long-term survival increases,
avoidance of cardiotoxicity, and its long-term management have accordingly become of ever-
greater importance. Two developments in healthcare continue to drive this: one positive, the
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other negative. The first is improving cancer patient survival: a
review of 40 years of cancer care in England and Wales found
that patients had 50% survival 1 year after diagnosis in 1971,
which rose to 50% survival (predicted) at 10 years after diagnosis
in 2011 (1). The second is that cardiovascular disease remains
highly prevalent in the wider population, disease to which cancer
survivors are no less susceptible. In fact, as the pathophysiology of
cardiotoxicity due to many anticancer drugs involves myocardial
ischaemia or coronary artery damage (2), along with recognition
that cardiotoxicity may manifest in cancer survivors only in the
long term (3), the risk is likely notably higher.

Doxorubicin (DOX) and other anthracyclines are long
established in anticancer therapy, used for several cancers of
childhood (4), but are also well-recognised as cardiotoxic, and
DOX has more recently been identified as a cause of cardiotoxic
damage manifesting in the long term [for review, see Ref.
(3)]. More recent anticancer therapy classes such as tyrosine
kinase inhibitors (TKIs) are more precisely targeted, acting to
impair tumour cell proliferation (5), migration (6), and tumour
angiogenesis (7) via focused actions on tyrosine kinases (acting
on a few kinases to a broad range, depending on the individual
TKI). However, emerging data indicate cardiotoxic side-effects
for these drugs, underlining the importance of considering these
in patient management, with comparable cardiotoxicity data
emerging for the epidermal growth factor receptor-2 inhibitor
trastuzumab (8).

Microvascular injury is an early sign of several cardiac disease
processes, and the study of its involvement in cardiotoxicity
has grown to generate more complete understanding of the
underlying pathophysiology, beyond only mechanisms of injury
to cardiomyocytes. Application of DOX to human cardiac
microvascular vessel specimens ex vivo causes significant
reduction in flow-mediated dilation responses in both adult and
paediatric vessels, although less extensively in paediatric samples,
in addition to loss of acetylcholine-induced vessel constriction
responses (9). Microvascular damage is also caused by TKIs, with
microvascular dysfunction induced by one TKI with clinically
identified cardiotoxicity (10).

Although optimising patient care outcomes is the primary
concern, healthcare economic considerations are only realistic,
particularly as healthcare demands are ever growing and thus
economic resources available are ever more hard pressed to meet
them. For all of these reasons, optimising understanding of the
pathophysiology of cardiotoxicity and identifying means to avert
or minimise its impact is of ever-greater importance.

CARDIAC STEM CELLS AND THEIR ROLE
IN TISSUE HOMEOSTASIS

From their discovery in 2003 (11), cardiac stem cells (CSCs), also
known as cardiac progenitor cells (CPCs), attracted significant
research investment and extensive discussion. The natural first
course of investigation was assessing CSCs as a potential source
of cardiomyocytes, with multiple papers focused on determining
this potential (12–15). Although this knowledge expansion
was commendably rapid, the advancement to clinical trials of

CSC regenerative potential (16, 17) suffered from this rapidity.
Major questions arose over the assumptions about CSCs’ mode
of regeneration in already-started trials (with retraction of
underlying laboratory data undermining one trial). These issues
caused cessation of some trials and re-appraisal of likely repair
mechanisms in others (18, 19).

The fundamental problem was substantially varied rates of
cardiomyogenesis across studies, particularly in the myocardial
infarction (MI) setting (20), bringing into question the practical
utility of CSCs as a source of new myocardium. As this
uncertainty developed, more studies focused on CSCs as
generators of protective paracrine effects (21, 22), to be exploited
as a cardiac disease therapy (23, 24). This mechanism was later
held to be a likely cause of many of the benefits seen in clinical
trials (19, 22). Notably, however, in the specific context of diffuse
injury (as opposed to post-MI), evidence of cardiomyocyte
repair and regeneration was more robust (15, 25), although still
contested. One notable diffuse cardiac injury model was DOX
treatment in vivo: this significantly upregulated cardiomyogenic
lineage markers in CSCs and increased new cardiomyocyte
formation in situ, derived from cells bearing the CSC marker
c-kit (26).

One factor contributing to variant findings was dissimilarity
in genetic lineage tracing approaches. A study directly
comparing transgenic and knock-in-based c-kit-tracing
models found significantly reduced c-kit expression in knock-in
models (thus a limitation of much evidence contesting CSC
cardiomyogenesis) but also that c-kit expression was found in
already-formed cardiomyocytes and increased post-injury (thus,
a limitation to using c-kit to trace de novo cardiomyocytes)
(27). For an overview of c-kit genetic tracking to quantify
CSC cardiomyogenesis, see Ref. (28). Other studies avoided
complications by using a dual-recombination model of c-kit
tracing (avoiding Cre-related limitations) (29) or a series of
CRISPR/Cas9-based tracking models (30): these studies saw
respectively little and no identifiable cardiomyocyte formation
from non-myocytes post-MI.

Investigation of CSCs coincided with novel research into
cardiomyogenesis irrespective of source, demonstrating new
cardiomyocyte formation in adult humanmyocardium, although
at a low rate of ∼1% per annum, reduced to ∼0.5% with age
(31), compared with ∼15% per annum, and ∼4% per annum in
endothelial and mesenchymal cells, respectively, in the human
heart (32). This low rate of cardiomyogenesis is consistent
with the essentially absent contractile myocardial repair seen in
patients post-MI and with progressive ischaemic heart failure,
but directly contrasts with claims of high cardiomyogenesis rates
in some CSC publications, some of which were later withdrawn
(33). Thus, the current overall consensus is that while CSCs
may have cardiomyogenic potential in certain contexts, it is very
limited and not exploitable clinically, particularly post-MI (34).

While these complex, often-controversial events unfolded
over CSC cardiomyogenic potential, relatively little attention
was paid to CSC generation of both endothelial cells and
vascular smooth muscle cells. These capabilities have been
consistently recognised, from their first identification and
repeatedly thereafter by multiple independent research groups
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(11, 13–15, 20, 29, 30, 35–37). This lesser interest was natural
given the well-established ability of vascular cell populations to
expand in situ, in stark contrast to cardiomyocytes. However,
CSC vascular regenerative potential has been shown consistently,
including in studies arguing against CSC cardiomyogenesis
(20, 29, 37), so is a research avenue separate from the
aforementioned controversy.

With the study of CSCs in cardiomyocyte regeneration
shifting focus to secretome-based mechanisms, it is worth
reviewing the evidence and considering how such paracrine
actions may aid cardiac cells beyond cardiomyocytes, in view
of evidence about the proportions of cardiac cells that are
endothelial (38) and cardiac fibroblast roles in cardiac tissue
maintenance (39). The possibility that CSC cell transplant
benefits weremediated by paracrine actions was raised quite early
in the progress of CSC study (40), with simultaneous articles soon
after presenting data and reviewing the understanding to date of
paracrine actions of mesenchymal stem cells (MSCs) (41) and
CSCs (42), the latter identifying IGF-1 and HGF signalling in
CSCs. Increased expression of IGF-1 by CSCs was then shown to
increase cardiomyocyte survival in vitro (21) and in vivo (23, 43).

Increased Notch pathway signalling in a GM mouse model
increased CPC expression of TBG-β1 and VEGF, with associated
increased myocardial capillary density (44), consistent with the
pro-angiogenic actions of those growth factors. Examination of
Sca1-positive CSCs found the expression of EGF, TGF-β1, IGF-1,
IGF-2, MCP-1, HGF, and IL-6 (45), illustrating that comparable
growth factors are expressed in CSCs isolated using different
surface markers [the aforementioned studies used c-kit (42, 44)].
This is emphasised byHGF, IGF, andVEGF expression in another
class of CSCs, the cardiosphere-derived cells (named for their
method of isolation), a type trialled clinically (46).

In summary, while CSC cardiomyogenesis is currently not
considered a feasible route for translation, the supportive
functions of CSCs—aiding cardiomyocyte survival and
microvascular expansion—remain of interest, particularly
in diffuse non-infarction cardiac pathologies. Against this
background, we consider potential CSC roles in myocardial
effects of cancer therapy-related cardiotoxicity.

EFFECTS ON CARDIAC STEM CELLS
OF CARDIOTOXIC THERAPIES

With the background of CSC translational potential changing
dramatically, the more the niche field of examining CSC roles
in the pathogenesis of cardiotoxicity underwent related changes
in focus. Initial work presupposed any cardiotoxin impacts to
directly impact on cardiomyogenesis potential, whereas later
work analysed impacts in view of a broader range of roles.
Cardiotoxins examined to date are anthracyclines, trastuzumab,
and TKIs, with no studies found examining others in CSCs
(Figure 1).

The first two studies were published near-simultaneously in
2009–2010 (35, 47), both focusing on DOX effects. The first
identified that DOX reduced CSC viability and proliferation both
in vitro and in vivo, but also identified increased markers of

CSC differentiation (to both cardiomyocyte and vascular cell
lineages) in vitro (47). Injection of exogenous CSCs directly
into the myocardium reduced DOX-induced myocardial injury,
in terms of myocardial fibrosis and wall thickness loss, with
associated improved cardiac functional parameters, although
the mechanisms were undetermined, so the role(s) of in situ
CSCs in cardiotoxicity pathogenesis remained uncertain (47).
The second study used a model of DOX application in early
life, then assessed long-term effects on myocardial homeostasis,
to identify damage seen in the long term, perhaps the most
likely way that CSCs are involved in cardiotoxicity pathogenesis
(35). Notable effects were reduced capillary density and VEGF
levels, increased vulnerability to MI in adulthood (infarct sizes
in standard MI models were larger post-DOX), and reduced
CPC numbers, either infiltrating infarct borders or in uninjured
post-DOX hearts (35). A finding contrasting with the prior
study (47) was that DOX reduced differentiation, particularly to
endothelial cells (35). These findings suggest a role for CSCs in
microvasculature formation, a possible way for CSC damage to
manifest as long-term cardiotoxicity.

It is notable that DOX cardiotoxicity can develop over a range
of time periods, acute (within 2 weeks of treatment completion),
early-onset chronic (within 1 year), and late-onset chronic (years
or decades later) (48). Loss of CSCs is unlikely to contribute
to acute effects, excepting loss of CSC paracrine support for
injured cells, but their contribution to angiogenesis could be
linked to early- or late-onset chronic effects, respectively. The
different rates of cardiotoxicity development in paediatric and
adult patients are also notable (49), with cardiomyocyte apoptosis
a feasible target for CSC-based protection and CSC protection
against this already demonstrated (21).

Another study of DOX in CSCs (albeit those with a
phenotype overlapping with MSCs) identified DOX upregulated
the stromal cell-derived factor-1/CXC chemokine receptor-4
(SDF1/CXCR4) signal pathway, protecting cells against DOX
damage and increasing their migration (50). The SDF1/CXCR4
pathway is upregulated in MI (51) or diffuse myocardial injury
(15) and is known to upregulate migration of stem/progenitor
cells to injured myocardium (52). Furthermore, blockade of
this signalling in CSCs severely reduces their integration into
the injured myocardium (15). The pathway also plays a key
role in angiogenesis development, via a range of different
stem/progenitor cells, including endothelial progenitors and
MSCs [for review, see (53)].

These combined findings show acute CSC responses to DOX-
induced cardiotoxicity, with migration to injured tissue and
differentiation (thus, contributing to angiogenesis in damaged
tissue), but raises the question on why longer-term depletion
of CPCs was seen by Huang et al. (35). There are two possible
explanations for this: the first is ongoing mobilisation of the
stem cell pool leads to eventual depletion, a phenomenon seen
in stem cells that can be induced to generate a prematurely
aged phenotype (54). The other explanation is attritional CSC
loss from direct DOX toxicity: depleted CSC populations can
maintain an acute response, but suffer a critical impairment
of their ability to support myocardial homeostasis in the long-
term. While SDF application attenuated DOX-induced acute
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FIGURE 1 | Summary of cardiotoxin effects on cardiac stem cell (CSC) abilities. Impacts of the most examined cardiotoxin doxorubicin (DOX, red), tyrosine kinase

inhibitors (TKIs, blue), and trastuzumab (orange) on CSC abilities to support myocardium via secretome support of angiogenesis or cell survival (most critically

cardiomyocyte survival), or via their differentiation into endothelial cells (ECs) or vascular smooth muscle cells (VSMCs).

cardiotoxicity (50), whether this impacted on CSC ability to
protect against long-term cardiotoxic effects was not studied.

Examination of the mechanisms of acute DOX toxicity in
CPCs identified calcium-linked autophagy signalling as playing
an important role (55). This is a DOX toxicity mechanism
common to CPCs and cardiomyocytes (55, 56), with the
underlying generation of mitochondrial oxidative stress also
common to DOX toxicity in both cells (49, 56). Rapamycin
application reduced cytosolic calcium accumulation in CPCs,
along with indications of reduced mTOR signalling (55). Looking
at the complexities of developing cardioprotective treatments
that also avoid any interference with the—essential—anti-cancer
activity of DOX, this overlap in cell death mechanisms is
fortuitous, as treatment (perhaps via mTOR manipulation) that
provides acute protective benefits to cardiomyocytes could also
provide long-term benefits via CSC protection.

Further evidence of the value of targeting oxidative stress to
prevent DOX toxicity in CSCs was shown by the protection of
CSCs in vitro by encapsulation in a superoxide dismutase-loaded
alginate, which averted DOX-induced metabolic alterations
and apoptosis (57). A study into the cardioprotective effects
of bergamot citrus extract (with known antioxidant effects)
against DOX-induced cardiotoxicity in adult rats examined
CSCs isolated after in vivo treatment: DOX caused significant
intranuclear accumulation of reactive oxygen species and
reduced CSC numbers in situ (58). Bergamot antioxidant
treatment significantly attenuated these effects on CSCs,
while also reducing DOX-induced cardiomyocyte apoptosis
and prevented the cardiac functional damage of DOX (58).
Collectively, these findings support the value of antioxidant
treatment of acute DOX-induced cardiotoxicity as a protection
for CSCs that will also benefit cardiomyocytes.

Although the initial focus for investigation of cardiotoxins
in CSCs was DOX, some recent work examined cardiotoxic
impacts of other anticancer therapies, particularly TKIs.
Treatment of adult rats with imatinib mesylate, unlike DOX,

did not cause fibrosis, or loss of cardiomyocyte tissue volume,
although cardiomyocyte apoptosis was increased and densities
of myocardial capillaries and arterioles were reduced (59).
Imatinib reduced CPC numbers in situ, and was shown ex
vivo to reduce both CPC viability and proliferation, along with
repressing CPC ability to differentiate (59). The ability of CPCs to
protect cardiomyocytes from apoptosis (21) could give valuable
protection to cardiomyocytes from imatinib-induced injury
(59). In the longer term, with TKI cardiotoxicity significantly
damaging cardiac microvasculature, the CPC contribution to
repair and regeneration of these vessel networks is of great value,
and its loss would worsen disease prognosis.

Only a very little published research has focused on
cardiotoxin impacts on another myocardial cell type,
cardiac microvascular pericytes, which also have valuable
pro-regenerative pro-angiogenic and paracrine actions (60). One
such study examined the effects of the TKI sunitinib, finding
that the drug caused cardiac microvascular dysfunction and
reduced blood flow, with a loss of pericytes that increased with
sunitinib treatment progress (10). Another study reaffirmed the
toxicity of sunitinib to pericytes, linking it to the mitochondrial
deacetylase sirtuin-3 (61). The more recent introduction (since
2000) of TKIs means that the long-term sequelae of their use
are not yet fully apparent (particularly in childhood cancers,
for which their use was commenced more recently), although
comprehensive assessment should consider the myocardial
roles of both pericytes and CSCs, along with the impacts of
cardiotoxins on both cell types.

We can turn the tables by moving from cardiotoxins
damaging CSCs to considering stem cell paracrine abilities
as potential anti-cardiotoxin treatments. One study identified
protection by stem cell secretome (human amniotic fluid stem
cell secretome) of mouse cardiomyocytes in vitro against DOX-
induced toxicity (62). Further study of this protection found that
one effect increased CPC proliferation, with associated increased
angiogenesis: no CPC differentiation was seen, although the
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authors suggested their data supported a local paracrine role
for CPCs, but this was not definitively shown (63). This group
advanced their work by examining the protection given by
human CPC secretome (specifically secreted exosomes) against
DOX and trastuzumab: intravenous injection of exosomes
reduced damage from DOX and trastuzumab therapy to cardiac
function (fibrosis and impaired cardiac functional parameters),
also lowering reactive oxygen species in isolated cardiomyocytes
treated with DOX and trastuzumab (64). Although trastuzumab
did not impact on human cardiosphere-derived cell survival
or proliferation, it impaired their ability to form microvascular
networks or to commence cardiomyogenic differentiation in
vitro (65). Furthermore, when cells were applied in vivo post-
MI, trastuzumab co-application reduced their angiogenesis and
associated cardiac functional improvement (65).

CSC secretome-based treatments, potentiating angiogenesis
and attenuating cardiomyocyte apoptosis, would complement
current anti-cardiotoxicity treatments, focused around the use
of ACE inhibitors and beta-blockers to control workload in a
weakened heart (66). No examination of ACE-inhibitor or beta-
blocker effects on CSCs could be identified, the closest being
beta-blockade improving the regenerative action of MSCs post-
MI (67).

FUTURE DIRECTIONS AND CONCLUSION

Understanding of cardiotoxicity continues to advance, with
human cardiomyocytes derived from induced pluripotent stem
cells showing great promise [for review, see Ref. (68)]. A striking
finding was of cardiac DOX sensitivity at the individual-patient
level being reproduced in these cells (69). These developments
are very encouraging and rightly reflect a focus on the primacy
of cardiomyocytes in cardiotoxicity development. It is, however,
important that this progress is complemented by studies
considering the other cell types that comprise myocardial tissue
and contribute to its maintenance, particularly as cardiomyocyte
loss or recovery is partly dependent on these cells.

With ongoing work examining impacts of both older and
more novel anticancer therapies on myocardial microvascular
cells and tissue (9, 70), indicating that these impacts play key roles
in cardiotoxicity development, along with research examining
TKI effects on cardiac fibroblasts (71), this essential broader
understanding is being built, but much more remains be done.

An important point to stress, the need for this emphasis
hopefully illustrated by the brief recap of the CSC-
cardiomyogenesis controversy, is what the role played by
CSCs in myocardial homeostasis post-cardiotoxicity would
likely be. While cardiotoxins destroying or damaging
CSCs would indeed diminish the previously assumed
function of CSCs as a source of cardiomyogenesis, their
support of damaged cardiomyocytes or contribution to new
microvasculature formation would be similarly diminished.
Therefore, with their recognised potential in these latter areas,
determining cardiotoxin impacts on CSCs is a valuable aspect
of understanding the long-term pathophysiology of post-cancer
treatment cardiotoxicity.

Future developments with the most promise are those
harnessing the CSC potential as generators of paracrine
protective therapy, either as exogenously generated products
applied to injured hearts or as in situ mediators. With the in
situ CSC population sparse (11, 36) and its function declining
with age (72), the former route shows more potential as a
vector to aid cell survival, microvascular repair or network
expansion, with all of these offering clear potential benefits in
the drive towards ameliorating the long-term damage wrought
by cardiotoxins.
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