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Abstract  7 

A numerical model replicating the stick-slip contact of two elastically similar materials is 8 

presented in this paper. Based on the Coulomb’s law described in the partial-slip theory of 9 

Ciavarella, the model adopts a complementary condition that facilitates the design of a novel 10 

algorithm to separate the stick and slip regions. Via the comparison between simulation results 11 

and analytical solutions, the developed model is validated and applied to study the role played 12 

by the roughness of realistic surfaces in the separation of stick and slip regions. It is found that 13 

a higher root mean square (RMS) gradient leads to smaller contacting area under constant load 14 

while the root mean square (RMS) roughness has insignificant influence if the RMS gradient 15 

is kept constant, which is in line with current literature. Under the effects of the RMS gradient, 16 

the relationship between varying skewness or kurtosis and contacting regions is irregular. 17 

Furthermore, stick regions are found to respond identically to those varying roughness factors. 18 

However, the ratio of stick regions to the total contacting region is revealed to be unaffected 19 

by the surface roughness parameters when a tangential load is applied on the contacting 20 

surfaces following a linear behaviour. 21 

Keywords: Partial slip, Surface roughness, Contact mechanics, Boundary element method  22 

1. Introduction 23 

The problem of the combined normal and tangential loading has always been an area of interest 24 

for determining the frictional behaviour of materials in contact. In this condition, stick and slip 25 

zones may coexist presenting a ‘partial slip’ contact interface. The partial slip phenomenon can 26 

be commonly found in engineering practices such as fretting. The relative movement of 27 

oscillations under alternating dynamic loads is small in amplitude compared to the size of the 28 

contact area under these conditions which eventually leads to surface failure [1, 2]. In addition 29 

to fretting wear, stick-slip analysis plays an essential role when it comes to the study of rubber 30 

friction [3, 4], powder tribology [5-7] and polymer tribology [8]. Pioneering contact analysis 31 

on the stick-slip behaviour was conducted by Cattaneo [9] and Mindlin [10], who 32 

independently proposed the partial slip solution for a generally elliptical or circular contact 33 
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problem. Based on the Cattaneo-Mindlin solution, Johnson [11] developed the closed-form 34 

solution for the sliding (partial or gross) contact between two identical materials under 35 

tangential loading.  36 

Given that the analytical solutions based on proposed assumptions are always subjected to 37 

various limitations including the simplified contact geometries and ideal loading history 38 

(usually constant), a numerical model presents itself as a suitable alternative in this dilemma. 39 

Based on finite element method (FEM) together with the domain decomposition method and 40 

boundary element method (BEM), Kosior et al. [12, 13] developed the numerical model 41 

studying the frictional elastic contact following Coulomb’s law to investigate the effects of 42 

friction on the contact parameters including contact radius and normal pressure. The contact 43 

between an elastic-plastic sphere and a rigid plane in the gross slip or full stick state under the 44 

combined normal and tangential loading was simulated by Brizmer et al. [14, 15] using FEM. 45 

Notably, a large simulation domain is always required in the finite element analysis to 46 

approximate the half-space along with proper addressing of boundary conditions. This causes 47 

an enormous computational burden when analysing the contact of real rough surfaces where 48 

fine spatial discretisation is needed. 49 

On the other hand, BEM is a more efficient method as only the boundary of the bodies needs 50 

to be discretised to characterize the surfaces. Using BEM and the conjugate gradient method 51 

(CGM), Polonsky and Keer [16] proposed a single-loop iterative CGM algorithm to solve the 52 

contact problems of rough surfaces, which served as a good reference tool for many numerical 53 

models developed in the last decade [17]. Pohrt and Li [18] proposed a displacement-controlled 54 

algorithm using CGM and BEM to solve the tangential contact problem. They converted the 55 

contact problem to an algebraic matrix equation relating the surface traction and displacement. 56 

This method identified the nodes within the non-contact region as well as stick and slip regions. 57 

Deformation for the stick nodes was always the prescribed tangential rigid body translation and 58 

shear stress for the slip nodes was always the critical value determined from the Coulomb’s 59 

friction law. However, the normal and tangential contact problems are decoupled in their 60 

model, which makes it only valid for incompressible materials where Poisson’s ratio is 0.5. A 61 

fully coupled model was developed by Chen and Wang using the semi-analytical method 62 

(SAM) [19], in which the algorithm is in a similar form to that of the frictionless normal contact 63 

model developed by Polonsky and Keer [16]. In their algorithm, the estimation of the tangential 64 

rigid body translation relies on analytical equations. However, the static force equilibrium was 65 

not enforced in their case and instead, they adjusted the rigid body translation according to the 66 

difference between the computed tangential force and the prescribed one. Their model was later 67 

extended to investigate the partial slip of an elastic layered half-space [20].  68 

Inspired by the fretting model developed by Spinu and Amarandei [21, 22], a stick-slip contact 69 

model, with the same form of algorithm for both the independent normal and tangential 70 
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components, is advanced in this paper by considering the similarity between the normal contact 71 

and tangential contact problems for two elastically identical materials. With the 72 

implementation of discrete convolution, fast Fourier transform (DC-FFT), the normal contact 73 

model is developed on the basis of the CGM algorithm for contacting elastic rough surfaces by 74 

Keer and Polonsky [16]. Although the literature is continuously evolving in modelling of the stick 75 

and slip of rough surface, the criterion to separate the stick and slip regions is still ambiguous. In 76 

this paper, the Coulomb’s law described in the stick-slip contact theory proposed by Ciavarella 77 

[23-25], which requires the shear traction in the stick region to always be less than the Coulomb 78 

friction, is followed to generate the complementary condition that separates the stick and slip 79 

regions for the individual tangential contact model. It should be noted that the same condition 80 

was also implemented in the partial slip contact modelling by Kosior [12, 13], Gallego [1, 26], 81 

Botto [27], Dong [28] and Bazrafshan [29]. Since a computational node exhibiting the shear 82 

stress equal to the local Coulomb friction can only happen in slip region according to the above-83 

mentioned theory, a novel adjustment method is introduced in our algorithm of the tangential 84 

contact problem to ensure that the shear stress in the stick region is less than the critical value. 85 

Furthermore, the capability of the model to study the influence of important features of surface 86 

roughness including root mean square roughness (RMS roughness), root mean square gradient 87 

(RMS gradient), skewness and kurtosis on the stick and slip area ratios has been investigated 88 

in this paper. 89 

2. Theory and Algorithm Description 90 

Based on the explicit mathematical relation between the strain and stress for the contacting 91 

bodies, the BEM is implemented to develop the fully deterministic stick-slip contact model.  92 

2.1 Problem Formulation 93 

To start with numerical formulation, the quadratic programming approach [30] is applied to 94 

find the contact pressure and surface deformation via minimising the total complementary 95 

energy using the variational principle. For a normal contact problem of two elastic surfaces, 96 

the total complementary energy 𝑉∗ is expressed as: 97 𝑉∗ = 𝑈𝐸∗ − ∫ 𝑝(𝑢𝑧0∗ + 𝑢𝑧1∗ )𝑑Ω = 𝑈𝐸∗ − ∫ 𝑝Ω 𝑢𝑧∗̅̅ ̅𝑑ΩΩ , Equation 1 

where 𝑈𝐸∗  is the internal complementary energy of the stressed elastic solids,  98 Ω is the assumed contacting area where the contact pressure acts, 𝑝 is the contact pressure, 𝑢𝑧0∗  99 

and 𝑢𝑧1∗  are the prescribed displacement of the two contacting solids respectively and 𝑢𝑧∗̅̅ ̅ is the 100 

total prescribed displacement of the two contacting solids inside the assumed contact domain. 101 

Therefore, the term ‘∫ pΩ 𝑢𝑧∗̅̅ ̅𝑑Ω’ is the work done by the normal force. 102 
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For ideal linear elastic materials, the internal complementary energy 𝑈𝐸∗ is numerically equal 103 

to the elastic strain energy due to the linear relation between the stress and strain as indicated 104 

in Figure 1, which is expressed as: 105 𝑈𝐸∗ = 𝑈𝐸 = 12 ∫ 𝑝𝛺  (𝑢𝑧0 + 𝑢𝑧1) 𝑑𝛺 = 12 ∫ 𝑝𝛺  𝑢𝑧̅̅ ̅𝑑𝛺  Equation 2 

where  𝑢𝑧̅̅ ̅ is the composite surface displacement inside the contact zone and equals total contact 106 

deformation of two contacting solids (denoted as 𝑢𝑧0 and 𝑢𝑧1 correspondingly). 107 

 108 

Figure 1 Relation between 𝑼𝑬∗  and 𝑼𝑬 for contact between linear elastic materials without 109 

plastic deformation 110 

To express 𝑈𝐸∗  with Equation 2 in Equation 1, the complementary potential energy for the 111 

normal contact problem is then given by: 112 𝑉∗ = 12 ∫ 𝑝𝛺  𝑢𝑧̅̅ ̅ 𝑑𝛺 − ∫ p𝛺 𝑢𝑧∗̅̅ ̅𝑑𝛺, Equation 3 

Similarly, the total complementary energy can be minimized for coupled normal and tangential 113 

contact problems in the case of linear elastic materials and is expressed as follows: 114 𝑉∗ = 12 ∫ ∫  𝑡�̅�𝑑𝑥𝑑𝑦 − ∫ ∫ 𝑡𝑢∗̅̅ ̅𝑑𝑥𝑑𝑦 , Equation 4 

where 𝑡 is the complete surface stress vector, 𝑢∗̅̅ ̅ is the prescribed displacement and �̅� is the 115 

complete surface deformation vector determined by the following equations: 116 𝑡 = 𝑞𝑥𝑒𝑥 + 𝑞𝑦𝑒𝑦 + 𝑝𝑒𝑧 , Equation 5 �̅� = 𝑢𝑥𝑒𝑥 + 𝑢𝑦𝑒𝑦 + 𝑢𝑧𝑒𝑧 , Equation 6 

where 𝑞𝑥, 𝑞𝑦 and 𝑝 are the traction force, 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are the surface deformation and 𝑒𝑥, 𝑒𝑦 117 

and 𝑒𝑧 are the Cartesian unit basis vectors in 𝑥, 𝑦 and 𝑧 directions respectively.  118 

After discretisation, the fully coupled relationship between the contact deformation and loading 119 

can be expressed in the following matrix form: 120 
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[𝑢𝑥𝑢𝑦𝑢𝑧] = [𝐶𝑥𝑥 𝐶𝑥𝑦 𝐶𝑥𝑧𝐶𝑦𝑥 𝐶𝑦𝑦 𝐶𝑦𝑧𝐶𝑧𝑥 𝐶𝑧𝑦 𝐶𝑧𝑧 ] [𝑞𝑥𝑞𝑦𝑝 ], Equation 7 

where 𝐶𝑖𝑗 is the influence matrix of the deflection in 𝑖 direction due to the load applied in 𝑗 121 

direction (𝑖 = 𝑥, 𝑦, 𝑧;  𝑗 = 𝑥, 𝑦, 𝑧). The closed-form solutions of these influence coefficient 122 

matrices are provided by Ghanbarzadeh [31] and shown in Appendix A.  123 

To simplify the stick-slip contact model, the following assumptions are made: 124 

• Only the contact between two elastic surfaces with identical material properties is 125 

accounted for within the model. Thus, the composite shear modulus becomes zero and 126 

the Equation 7 relating the surface deformation to the traction force reduces to: 127 

[𝑢𝑥𝑢𝑦𝑢𝑧] = [𝐶𝑥𝑥 𝐶𝑥𝑦 0𝐶𝑦𝑥 𝐶𝑦𝑦 00 0 𝐶𝑧𝑧] [𝑞𝑥𝑞𝑦𝑝 ], Equation 8 

The solution of the normal contact problem is then decoupled from that of the tangential contact 128 

problem. However, the normal contact pressure is still required in advance to execute the 129 

algorithm of the tangential contact model as the Coulomb’s law is followed within it to 130 

determine the critical shear traction (local Coulomb friction). 131 

• Only the tangential force in the x-direction is considered within the model. The effect 132 

this has on the deformation in the y-direction is neglected considering the relatively large 133 

difference in the order of magnitude between the two relevant influence coefficient 134 

matrices (𝐶𝑥𝑥 and 𝐶𝑦𝑥) shown in Appendix B. Neglecting of the effects of stress in one 135 

specific direction on the deflections in two other directions is a common practice for 136 

many researchers when it comes to the preliminary modelling of tangential contact 137 

problems [18, 19]. Therefore, Equation 8 is further simplified to  138 [𝑢𝑥0𝑢𝑧] = [𝐶𝑥𝑥 0 00 0 00 0 𝐶𝑧𝑧] [𝑞𝑥0𝑝 ], Equation 9 

To minimise the complementary potential energy, the contact problem is to find the contact 139 

stresses and contact deformations correlated by Equation 9 which meet a series of restriction 140 

conditions. It is noteworthy that after transforming continuous functions into piecewise 141 

constant functions that are uniform within the elementary cell of the equally spaced rectangular 142 

established in the contact interface, control points for the set grid are necessary. These points 143 

are the centroids of the elements in the developed model as shown in Figure 2. Therefore, the 144 

shear traction and deformation of each element becomes the focus of the model.  145 
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 146 

Figure 2 Discretised elements: ‘×’ is the centroid of each element, and 𝟐𝒂 and 𝟐𝒃 are the 147 

side lengths of each element in x and y directions respectively 148 

For a discretised normal contact problem, the following contact equations and inequalities 149 

should be satisfied to find those pressure and deformation: 150 

1. Static force equilibrium: The sum of the pressure distribution at the contact interface 151 

should be equal to the applied force (𝑊): 152 𝑊 = 𝛥 ∑ 𝑝(𝑖, 𝑗)(𝑖,𝑗)∈𝐼𝑐 , 
Equation 10 

        where 𝛥 is the area of the element in the established mesh and equals 4𝑎𝑏 indicated in 153 

Figure 2, 𝐼𝑐 is the contact domain and i and j denote the indices of the mesh element (𝑖,𝑗) with 154 1≤𝑖≤𝑁1  and 1≤𝑗≤𝑁2  (𝑁1  and 𝑁2  are total numbers of elements along x and y directions 155 

respectively). 156 

2. Geometrical condition of deformation: The deformation of the surface in the normal 157 

direction should meet this geometrical condition:  158 ℎ(𝑖, 𝑗) = ℎ𝑖(𝑖, 𝑗) + 𝑢(𝑖, 𝑗) − 𝛿, (𝑖, 𝑗) ∈ 𝐼𝑝; Equation 11 

            where 𝐼𝑝  denotes the simulation domain and ℎ𝑖 , h, and 𝛿  are the gap between 159 

undeformed surfaces, the gap between deformed surfaces and the normal rigid body 160 

displacement respectively as shown in Figure 3.  161 

3. Complementary conditions should be satisfied over the contacting surfaces: 162 𝑝(𝑖, 𝑗) > 0 & ℎ(𝑖, 𝑗) = 0, (𝑖, 𝑗) ∈ 𝐼𝑐; 𝑝(𝑖, 𝑗) = 0 & ℎ(𝑖, 𝑗) > 0, (𝑖, 𝑗) ∈ 𝐼𝑝 − 𝐼𝑐 . Equation 12 

            where 𝐼𝑝 − 𝐼𝑐 denotes the non-contact domain. 163 

As illustrated in Figure 3, the gap ℎ for Point 1 in the range of contact radius (𝑎0) is 0 under 164 

the effect of the normal load. As Point 2 outside the contact radius is implying a vanishing 165 

contact pressure, there is a positive surface gap labelled as ℎ2. Thus, the product of the contact 166 
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pressure and surface gap is always zero over the contacting surfaces no matter which position 167 

of the interface is being referred to. 168 

The complementary conditions shown in Equation 12 imply that the adhesion effect (𝑝 < 0) is 169 

not considered in this normal contact problem and the contacting surfaces are impenetrable. 170 

Inclusion of adhesion in such scenario will be complex since the introduction of non-171 

conservative forces makes it difficult to obtain closed-form solutions based on energy 172 

approaches. However, the inclusion of the surface adhesion may become feasible by directly 173 

using the Lennard-Jones potential at the separated computational nodes. Based on a non-174 

adhesive normal contact algorithm, a deterministic and well-validated normal contact model 175 

with adhesion was recently developed by Ghanbarzadeh [32] via the implementation of 176 

Lennard-Jones potential fields with the incorporation of a new surface integration method. This 177 

problem needs very careful consideration of energy terms as reported by Ciavarella [33, 34]. It 178 

is out of the scope of the current paper and will be the subject of future work.  179 

 180 

 181 

Figure 3 Displacement condition of deformation in the normal direction: 𝒉 and 𝒉𝒊 are the 182 

gap between the deformed surface and the initial surface gap respectively, 𝒖 is the elastic 183 

deformation, 𝜹 is the rigid body indentation, 𝒂𝟎 is the contact radius, 𝑾 is the applied 184 

normal load, and the superscripts 1 and 2 denote the points 1 and 2 being referred 185 

respectively. 186 

Regarding the constraint conditions for the tangential contact problem, the following equations 187 

and inequalities must be satisfied: 188 

1. Static force equilibrium equation: 189 Δ ∑ 𝑞(𝑖, 𝑗) = 𝐹𝑥 ,(𝑖,𝑗)∈𝐼𝑐  
Equation 13 

            where 𝐹𝑥 is the applied tangential force. 190 

2. Geometrical condition of deformation: 191 
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 𝑠(𝑖, 𝑗) = 𝑢𝑥(𝑖, 𝑗) − 𝛿𝑥 ,      (𝑖, 𝑗) ∈ 𝐼𝑐 Equation 14 

            where 𝑠 is the slip distance and 𝛿𝑥  is the right body displacement in the horizontal 192 

direction. 193 

3. Complementary conditions should be satisfied over the contacting surfaces: 194 |𝑞(𝑖, 𝑗)| < 𝜇𝑝(𝑖, 𝑗),  𝑠(𝑖, 𝑗) = 0,   (𝑖, 𝑗) ∈ 𝐼𝑠; |𝑞(𝑖, 𝑗)| = 𝜇𝑝(𝑖, 𝑗),  |𝑠(𝑖, 𝑗)| > 0,  𝑞(𝑖, 𝑗) ∙ 𝑠(𝑖, 𝑗) < 0,   (𝑖, 𝑗) ∈ 𝐼𝑐 − 𝐼𝑠; Equation 15 

           where 𝜇 is the coefficient of friction, 𝐼𝑠 denotes the stick domain and 𝐼𝑐 − 𝐼𝑠  denotes the 195 

slip domain. 196 

As shown in Figure 4, there is no slip for the interaction region in stick state such as the Point 197 𝑂. When it comes to the slip region (Point 𝐴1 and 𝐴2), the direction of the slip (𝑠𝑥1 and 𝑠𝑥2) is 198 

always opposite to that of the applied load (𝐹𝑥1 and 𝐹𝑥2) as labelled.  199 

 200 

Figure 4 Displacement condition of deformation in the tangential direction: 𝑭𝒙  is the 201 

tangential force applied to the contacting body, 𝜹𝒙 is the rigid body displacement in the 202 

horizontal direction, 𝒖𝒙 is the elastic deformation in the horizontal direction of the body, 203 𝒔𝒙 is the slip distance of body, and the subscripts 1 and 2 denote the contacting bodies 1 204 

and 2 being referred respectively. 205 

Although the Coulomb’s friction law is universally applied in frictional contact modelling, 206 

there are different complementary conditions applied in the partial slip modelling which result 207 

in the presence of different algorithms as listed in Table 1. For example, some of the recent 208 

literature [19-21, 35] in Table 1 used the following criteria expressed by: 209 |𝑞(𝑖, 𝑗)| ≤ 𝜇𝑝(𝑖, 𝑗),  𝑠(𝑖, 𝑗) = 0,   (𝑖, 𝑗) ∈ 𝐼𝑠; |𝑞(𝑖, 𝑗)| = 𝜇𝑝(𝑖, 𝑗),  |𝑠(𝑖, 𝑗)| > 0,  𝑞(𝑖, 𝑗) ∙ 𝑠(𝑖, 𝑗) < 0,   (𝑖, 𝑗) ∈ 𝐼𝑐 − 𝐼𝑠; Equation 16 

In such case, the shear stress of the node in stick could be equal to the local critical value 210 

‘𝜇𝑝(𝑖, 𝑗)’ when the node exhibits a vanishing slip distance according to the Equation 16.  In 211 

this paper, we have used Equation 15 as the complementary conditions. The reason why the 212 
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equal sign is discarded in the current developed model is related to the design of the relevant 213 

algorithm for the tangential contact problem: 214 

• For the node presenting the shear stress of ‘𝜇𝑝(𝑖, 𝑗)’, it could be either in stick or slip 215 

following the Equation 16, which depends on the corresponding nodal slip distance; 216 

• However, the slip distance in the CGM algorithm is mathematically the residual of the 217 

linear system deriving from Equation 14, where the estimation of the rigid body 218 

indentation in tangential direction 𝛿𝑥 needs to be conducted in advance and it requires 219 

the identification of the stick regions; 220 

• The complementary condition (Equation 16) leads to conflict in the algorithm since the 221 

estimation of 𝛿𝑥  requires the information of the system residual, where the latter is 222 

determined from the former. 223 

This potential conflict derived from Equation 16 would be iterated in the description of the 224 

algorithm for the tangential contact model. To avoid the problem mentioned above, Chen 225 

and Wang [19] estimated 𝛿𝑥  with the analytical formula (Equation 30). Besides, they 226 

adjusted the rigid body translation with the difference between the computed tangential load 227 

and the prescribed load. 228 

Author Roughness Method Coulomb’s friction law 

Guyot et al. [13] No FEM+BEM Equation 15 

Chen and Wang [19] No SAM Equation 16 

Gallego et al. [1] No  SAM Equation 15 

Wang et al. [20] No SAM Equation 16 

Spinu and Amarandei [21] No SAM Equation 16 

Botto et al. [27] No FEM Equation 15 

Dong et al. [28] Yes SAM Equation 15 

Bazrafshan et al. [29] Yes BEM Equation 15 

Alakhramsing et al. [35] Yes FEM+BEM Equation 16 

Table 1 List of some of work on the partial slip modelling based on Coulomb’s law 229 

2.2 Algorithm Description 230 

One of the main difficulties in solving contact problems is that neither the contact area nor the 231 

pressure distribution is known in advance. As a result, an iterative approach or the so-called 232 

trial-and-error method is frequently applied, which starts with an assumption of a contact 233 

region and the computation of the pressure distribution and surface displacement based on the 234 

initial guess. If all the constraint conditions (Equation 10-Equation 12 for normal contact 235 

problems, Equation 13-Equation 15 for tangential contact problems) are verified by the 236 
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obtained solution, contact problems are solved. Otherwise, the contact region must be adjusted, 237 

and the new pressure distribution and surface displacement need to be computed again with the 238 

new guess. Hence, a suitable iterative scheme is essential to achieve high computational 239 

efficiency as well as accuracy. Among the potential relaxation methods, CGM was 240 

implemented in the following algorithms considering it has been widely applied to the 241 

numerical modelling of contact problems owing to its superliner rate of convergence and 242 

ensured convergence for quadratic optimization problems [17].  243 

Apart from the iteration, the most time-consuming part during the numerical simulation of 244 

contact problems is the calculation of surface deformation (Equation 9), which always needs 245 

to be executed repeatedly in the iterative approach mentioned above. To explain it 246 

mathematically, for the contact problem discretised with a total number of 𝑁 nodes, it takes 247 𝑁2 multiplication operations to obtain the surface deformation in each iteration of the contact 248 

model using direct summation (DS) method. Furthermore, several iterations are often necessary 249 

for a converged solution. Therefore, the DS method becomes extremely inefficient when 250 

considering about rough surface contact as a dense grid with a fairly large number of 𝑁 is 251 

required to characterize the surface roughness. According to a comparative study of numerical 252 

methods to the surface deformation calculation conducted by Wang et al. [36], DC-FFT was 253 

found to be the most efficient tool while providing a comparable numerical accuracy among 254 

the investigated methods including the DS method, DC-FFT and Multi-Level-Multi-255 

Integration (MLMI) method, where the MLMI is another well-established technique applied in 256 

the contact solver by Keer and Polonsky [16] and the main alternative to DC-FFT advanced by 257 

Lubrecht [37]. Considering that DC-FFT can be easily implemented from the perspective of 258 

computer programming, it was applied in this model to release the computation burden when 259 

it comes to surface deformation calculation and relevant convolution processing.  260 

The algorithms of developed models with the implementation of CGM and DC-FFT can be 261 

separated into two sections including the normal contact algorithm and the tangential contact 262 

algorithm. To simplify the description, only the tangential part is shown below as the algorithm 263 

for the normal contact is developed referring to the classical model of Polonsky and Keer [16]. 264 

The CGM algorithm for the tangential contact model is integrated with the one for normal 265 

contact model and they have a similar form shown in the flow chart in Figure 5. The highlighted 266 

sections in the flow chart are the ones that need to be modified based on the algorithm for 267 

normal elastic contact model [16]. Especially, those in blue colour are the novel parts of the 268 

developed algorithm. The detailed steps of these modified sections are described as follows: 269 

1. The initialization of the shear stress is based on the input tangential load in x direction: 270 𝑞(𝑖, 𝑗) = 𝐹𝑥Δ ∙ 𝐼𝑐 , Equation 17 
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Where 𝐼𝑐 here denotes the number of nodes in the contacting region determined from 271 

the normal contact algorithm. 272 

2. The tangential surface deformation is calculated from Equation 9 with DC-FFT and the 273 

estimation of the rigid body approach is calculated by: 274 𝛿𝑥 = 1𝑁𝑠 ∑ (𝑢𝑥(𝑖, 𝑗)),(𝑖,𝑗)∈𝐼𝑠  
Equation 18 

where 𝑁𝑠 is the number of nodes in the stick region. 275 

3. The residual of the linear system and the square Euclidean norm for the set of cells in 276 

the stick domain for the tangential contact problem is calculated as follows: 277 𝑟𝑥(𝑖, 𝑗) = 𝑢𝑥(𝑖, 𝑗) − 𝛿𝑥, (𝑖, 𝑗) ∈ 𝐼𝑐, Equation 19 𝑅𝑥 =  ∑ (𝑟𝑥(𝑖, 𝑗))2,(𝑖,𝑗)∈𝐼𝑠  
Equation 20 

where mathematically the residual 𝑟𝑥  is the slip distance of the node in the contact 278 

region 𝑠 . The slip distance of the node in the stick region vanishes following the 279 

complementary condition. Therefore, the square Euclidean norm 𝑅𝑥  should be 280 

approximated to zero when the algorithm converges.  281 

It is noteworthy that the reason why the equal sign in the complementary condition is 282 

discarded is mainly related to the definition of the residual of the linear system. If the 283 

complementary condition in the literature (Equation 16) [19-21, 35] is applied here, the 284 

former estimation of the tangential rigid body approach is challenging to achieve as in 285 

the step 2 the identification of stick nodes is required where the information about slip 286 

distance of the node is necessary. However, it is also the residual of the linear system 287 

being calculated based on the estimated rigid body approach. That is why the designed 288 

algorithm is stated to be conflicting and can be hardly executed when the equal sign is 289 

included.  290 

4. Regarding the adjustment for 𝐼𝑠  and 𝐼𝑐 − 𝐼𝑠  based on the complementary conditions, 291 

the following operations are conducted: 292 

On one hand, the contact model allows no shear stress over the critical value  ′𝜇𝑝′. 293 

Consequently,  the shear stress of the node in slip state exceeding the value is decreased 294 

to 𝜇𝑝. On the other hand, if the node in the slip region exhibits a shear stress with the 295 

magnitude of 𝜇𝑝 but the product of the slip distance and the shear stress is positive, it 296 

is moved from the slip region to stick region by recalculating the nodal stress with the 297 

negative term ‘−𝑠𝑡𝑝 ∙ 𝑟𝑥(𝑖, 𝑗)’. This ensures that the stress in a stick region is always 298 

less than the critical value. 299 

As a result, the shear stress of each cell meeting the conditions above should be adjusted 300 

as follows: 301 
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For 𝐼𝑙 = {(𝑖, 𝑗) ∈ (𝐼𝑐 − 𝐼𝑠): 𝑞(𝑖, 𝑗) >  𝜇𝑝}, 𝑞(𝑖, 𝑗) =  𝜇𝑝, (𝑖, 𝑗) ∈ 𝐼𝑙 Equation 21 

For 𝐼𝑘 = {(𝑖, 𝑗) ∈ (𝐼𝑐 − 𝐼𝑠): 𝑞(𝑖, 𝑗) = 𝜇𝑝, 𝑞(𝑖, 𝑗) ∙ 𝑟𝑥(𝑖, 𝑗) > 0}, 𝑞(𝑖, 𝑗) = 𝑞(𝑖, 𝑗) − 𝑠𝑡𝑝 ∙ 𝑟𝑥(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐼𝑘  
Equation 22 

The stick domain 𝐼𝑠 should then be modified as follows: 302 𝐼𝑠 = 𝐼𝑠 ∪ 𝐼𝑘  Equation 23 

When any element in the slip region is moved to stick region, a new search of the 303 

descent direction for the node must be conducted from the beginning. This operation 304 

can be achieved by the adjustment of an auxiliary variable 𝜃 in the equation of the 305 

descent direction calculation as follows: 306 𝑑(𝑖, 𝑗) = 𝑟𝑥(𝑖, 𝑗) − 𝑑(𝑖, 𝑗) ∙ 𝜃 ∙ ( 𝑅𝑥𝑅𝑜𝑙𝑑), Equation 24 

where 𝑑  is the search direction and 𝑅𝑜𝑙𝑑  is the square Euclidean norm in the last 307 

iteration. 308 

If 𝐼𝑘  is empty, 𝜃 is set to one. Otherwise, it is set to zero. 309 

5. Given that not only the shear stress of nodes in stick domain but also those in slip 310 

domain is included in the parameter 𝑞 and the stress of nodes in slip region needs to 311 

remain constant (𝜇𝑝) without any modification, a new method is designed to enforce 312 

the static force equilibrium: 313 𝑞(𝑖, 𝑗) = 𝑞(𝑖, 𝑗) + 𝑓𝑎𝑐, (𝑖, 𝑗) ∈ 𝐼𝑠, Equation 25 

where 𝑓𝑎𝑐 is the adjusting factor determined by the following equation: 314 

𝑓𝑎𝑐 = 𝐹𝑥Δ − ∑ 𝑞(𝑖, 𝑗)(𝑖,𝑗)∈𝐼𝑐𝑁𝑠 . Equation 26 

A displacement-controlled algorithm is also developed for the stick-slip elastic contact model 315 

based on the one designed for the normal elastic contact model. The computational complexity 316 

of the two algorithms (load-controlled and displacement-controlled) of the tangential contact 317 

model is  𝑂(𝑁1𝑁2 log(𝑁1𝑁2)), which is the same with the individual normal contact model as 318 

no additional factor is accounted for in this case. However, they would take more time to 319 

converge compared to the algorithm for the normal elastic contact model due to the additional 320 

integration. 321 
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 322 

Figure 5 Flow chart of the load-controlled algorithm for the stick-slip elastic contact 323 

model 324 

3. Model Validations and Results 325 

The developed model was validated by comparing the simulation results with the analytical 326 

solutions. After the validation, the fully deterministic model developed here was used to study 327 

the influence of surface roughness parameters on the stick-slip separation. 328 

3.1 Results and Validation of the Stick-Slip Contact Model 329 

The contact of two elastic bodies made of carbon steel and discretised by 512 × 512 elements 330 

with the relevant parameters shown in Table 2 under the normal load of 100 N  and the 331 

tangential load of 20 N was simulated. 332 

Parameter Value Description 𝑅 3500 Radius of the sphere (𝜇𝑚) 𝐸1,𝐸2 213 Elastic modulus of two bodies (GPa) 𝜇𝑓  0.5 Coefficient of friction 𝑣1,𝑣2 0.29 Poisson’s ratio of two bodies 𝑊𝑥  20 Input tangential load 𝑊 100 Input normal load 

Table 2 Parameters used in the numerical simulation 333 

The shear stress distribution is shown in Figure 6 (a) with the stick and slip regions labelled. A 334 

three-dimensional (3D) plot of the shear stress distribution is also presented in Figure 6 (b). It 335 
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can be found that the contacting region is separated into a central region and a surrounding slip 336 

annulus in the case of the simplified single-asperity contact.   337 

a. 

 

b. 

 

Figure 6 Simulation result under the specified input: (a) 2-D distribution of shear stress, 338 

(b) 3-D distribution of shear stress 339 

The evolution of the circular stick region to slip region among the contacting area under the 340 

increasing tangential load was modelled as well. The non-linear response of the ratio of the 341 

stick region to the contacting region with respect to the monotonically increasing load is shown 342 

in Figure 7. The following analytical solution exhibiting a good agreement with the numerical 343 

one shown in Figure 7 was reported by Johnson [11] based on Cattaneo’s theory [9]: 344 𝑐𝑎0 = (1 − 𝐹𝑥𝜇𝑓𝑊)13
 Equation 27 

𝐴𝑠𝑡𝑖𝑐𝑘𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝜋𝑐2𝜋𝑎02 = (1 − 𝐹𝑥𝜇𝑓𝑊)23
 Equation 28 

where 𝐴𝑠𝑡𝑖𝑐𝑘  denotes the stick area, 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡  denotes the contacting area, 𝑐 denotes the stick 345 

radius and 𝑎0 denotes the contact radius that can be determined from the equation [11] as 346 

follows: 347 

𝑎0 = (3𝑊𝑅4𝐸∗ )13, Equation 29 

where 𝐸∗ is the composite elastic modulus of the two contacting surfaces. 348 

As observed from Figure 8 (a)-(e), the central stick region keeps shrinking with the rising 349 

tangential load while the slip annulus responds oppositely. 350 

The computed tangential rigid body translation from the developed model was compared with 351 

the one derived from the analytical formulas [11] as follows: 352 
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𝛿𝑥 = 𝛿0 [1 − (1 − 𝐹𝑥𝜇𝑓𝑊)2/3] ,   

𝛿0 = 3𝜇𝑓𝑊 [(2 − 𝑣1)(1 + 𝑣1)𝐸1 + (2 − 𝑣2)(1 + 𝑣2)𝐸2 ]8𝑎0 , Equation 30 

where 𝛿0 is the tangential rigid body translation when the contacting is at gross sliding (𝐹𝑥 =353 𝜇𝑓𝑊). 354 

 355 

Figure 7 Evolution of ratio of the stick region to the contacting area 356 

The comparison of the increasing tangential rigid body translation under varying tangential 357 

loads deriving from the current model and the analytical formula is shown in Figure 8 (f), where 358 

a good agreement is found. 359 

a.  

 

b.  
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c. 

 

d. 

 

e.  

 

f. 

 

Figure 8 Results with increasing tangential loads: (a)-(e) simulated separation of stick 360 

and slip regions with increasing tangential load, (f) comparison of the growing tangential 361 

rigid body displacement with increasing tangential load deriving the developed model 362 

and the analytical method 363 

To further validate the stick-slip model, the comparison in terms of shear stress distribution 𝑞𝑥 364 

was conducted as well. The analytical formula is shown as follows [11]: 365 

𝑞𝑥 =  𝜇𝑓𝑝0 [√1 − ( 𝑥𝑎0)2 − 𝐻(𝑐 − 𝑥) ∙ 𝑐𝑎0 √1 − (𝑥𝑐)2
 ],  Equation 31 

Additionally, to compare the results of the shear traction derived from the current model with 366 

the one derived from the simplified stick-slip elastic model developed by Chen and Wang [19], 367 

the 𝜇𝑓  was changed to 0.2 and the result is presented in Figure 9. The analytical and the 368 

numerical solutions shown in Figure 9 exhibit a great match and the similarity between Figure 369 

9 and the plot by Chen and Wang (Fig. 4a) in [19] indicates a good agreement between the two 370 

models. 371 
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 372 

Figure 9 Comparison in terms of shear stress distribution between the numerical and 373 

analytical solutions 374 

3.2 Simulation Results of Multi-asperity Contacts 375 

Estimation of the real area of contact plays a central role in the tribological study in terms of 376 

adhesion, friction, lubrication and wear. Although simulation results of the contact between 377 

surfaces with simple geometries presented above are validated against the relevant analytical 378 

solutions, surfaces are always rough and irregular in practical applications. Their stochastic 379 

nature determines the area and geometry of the contacting region and subsequently affects the 380 

stiffness, electrical and thermal conductivity of the interface, friction and wear. Therefore, this 381 

surface study was extended from the single-asperity contact to multi-asperity contact, which 382 

approximates realistic rough surfaces.  383 

3.2.1 Normal Contact of Rough Spheres 384 

The contact between an elastic rough sphere and a smooth plane was first considered. Pastewka 385 

and Robbins [38] proposed an analytical solution that relates the variation of the real contact 386 

area to the normal load for this type of contact problem. Their parameter-free equations were 387 

later investigated by Muser [39] and were reported to have good accuracy in terms of the 388 

prediction of the real contact area (with less than 10% error).  An adjusted formula was then 389 

developed for the relative contact area 𝐴𝑟  by Muser [39] via abandoning the mean-field 390 

approximation and is given as follows: 391 𝐴𝑟 = 𝐴𝑟𝑒𝐴𝐻 = (1 − 12𝑘2�̃�2) erf(𝑘�̃�) + exp (−𝑘2�̃�2)√𝜋𝑘�̃� , Equation 32 

where 𝐴𝑟𝑒 denotes the real contact area, 𝐴𝐻 denotes the Hertzian contact area (π𝑎02), 𝑘 392 

denotes a constant which turns out close to two for typical engineering surfaces and �̃� denotes 393 

the physical representation of the average contact pressure and is determined by the following 394 

equation: 395 
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 �̃� = 3𝑊4√𝜋𝐸∗�̅�𝑎02, Equation 33 

where �̅� is the root mean square gradient of the rough surface that is often denoted as Sdq. 396 

Assume 
𝑑𝑧(𝑥)𝑑𝑥  is the slope at a specified location on the surface, then the root mean square slope 397 

of a rough surface is given by: 398 

�̅� = √1𝐿 ∫ ( 𝑑𝑑𝑥 𝑧(𝑥))2 𝑑𝑥𝐿
0  , Equation 34 

where 𝐿 is the sampling length. 399 

To numerically generate the surface of the rough sphere, the smooth sphere and the micro rough 400 

surface are superimposed as shown in Figure 10. It is noted that many surfaces of interest in 401 

practice often have a self-affine fractal feature, for which each asperity has a smaller asperity 402 

on top of it at all scales. Therefore, the statistical properties of the self-affine fractal surfaces 403 

remain with a scale transformation [40, 41].  404 

a. 

 

b. 

 

c. 

 

Figure 10 Generation of a rough sphere: (a) micro rough surface, (b) smooth sphere and 405 

(c) the final produced rough sphere by the combination of (a) and (b) 406 

The micro rough surfaces with the self-affine properties in this study are generated through the 407 

power spectral density (PSD), which has the following power-law relation [42]: 408 𝐶(𝑞) ~ 𝑞−2(1+𝐻) Equation 35 

where 𝐻 here is the Hurst exponent related to the fractal dimension 𝐷𝑓 (𝐻 = 3 − 𝐷𝑓). 409 

Since the surface cannot be self-affine over all length scale in reality, the above relation only 410 

holds in a limited wavevector region (q0 < 𝑞 < 𝑞1) resulting in a form shown in Figure 11, 411 

where 𝑞0  and 𝑞1  are the short-distance roll-off wavevector and the long-distance cut-off 412 

wavevector respectively and depend on the relevant system. The fractal dimension is 413 

determined by the slope of the log 𝐶 − log 𝑞 plot for the section where 𝑞 > 𝑞0. Besides, the 414 

smallest possible wavevector 𝑞𝐿  depends on the lateral size 𝐿  of the surface under 415 

consideration (𝑞𝐿 = 2π/𝐿) [40, 42].  416 
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 417 

Figure 11 The PSD of a rough surface which is self-affine for 𝐪𝟎 < 𝒒 < 𝒒𝟏 418 

By using random numbers for the Fourier transform of the height profiles (ℎ̃(𝑞)), the height 419 

spectrum (the second moment of ℎ̃(𝑞) on average) can be defined as [42, 43]: 420 

𝐶(𝑞) ≡ 〈|ℎ̃(𝑞)|2〉 = 𝐶(𝑞0) × { 1                             q𝐿 < 𝑞 ≤ 𝑞0   (𝑞 𝑞0⁄ )−2(1+𝐻)            q0 < 𝑞 ≤ 𝑞1           0                                  else                Equation 36 

The operator 〈… 〉  in Equation 36 denotes the average over different random-surface 421 

realization. It should be noted that all the surfaces generated following this method have a mean 422 

of zero in terms of the height profile (ℎ̃(𝑞)).   423 

By defining related parameters including the root mean square roughness 𝑅𝑞 , the Hurst 424 

exponent 𝐻, the length of topography in x direction 𝐿 (assuming the length of topography in y 425 

direction is the same with that in x direction), number of nodes in x and y direction 426 

and the roll-off wavevector 𝑞0, the artificial randomly rough surfaces could be generated.  427 

As Equation 32 and Equation 33 suggest, the variation of the contact area with the normal load 428 

is affected by the RMS gradient of rough surfaces. Therefore, three extra rough surfaces with 429 

the same �̅� (0.7518) but different 𝑅𝑞 values were generated as shown in Figure 12 to validate 430 

this relation. The relevant input contact parameters are given in Table 3.  431 

a. 

 

b. 

 

c. 

 

Figure 12 Generated micro rough surface with the same �̅� but different 𝑹𝒒 values 432 

Parameter Value Description 
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 𝑅 3500 Radius of the smooth sphere (𝜇𝑚) E1 18.75 Elastic modulus of the sphere (MPa) 𝑣1 𝑊 𝐿 

0.5 

0.00015-0.15 

512 

Poisson’s ratio of the rough sphere 

Range of applied normal load (N) 

Length of the surface in x and y direction (𝜇𝑚) 

Table 3 Input parameters in the contact between the rough sphere and the smooth plane 433 

The relation between the relative contact area 𝐴𝑟  and the reduced contact pressure 𝑃  was 434 

frequently reported by many tribologists [44, 45], where 𝐴𝑟 is determined from the ratio of the 435 

real contact area to the Hertzian contact area and 𝑃 is determined from the following equation: 436 𝑃 = 𝑊/𝐴𝐻𝐸∗ �̅� , Equation 37 

where the term ‘𝑊/𝐴𝐻’ is known as the macroscopic pressure.  437 

In order to show the influence of the micro-roughness added to the smooth sphere, the 438 

comparison between the Hertzian contact region and the real contact region for the rough 439 

sphere (with extra rough surface 1) under the increasing reduced pressure 𝑃 is presented in 440 

Figure 13. It can be observed that there exists contacting spots outside the perimeter of the 441 

Hertzian contacting area. The reason for it is that usually only the tip of the smooth sphere 442 

comes into contact while the added roughness allows other zones out of the Hertzian area to 443 

interact with the opposite plane. 444 

a. 

 

b. 
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c.  

 

d. 

 

Figure 13 Comparison between the Hertzian contact area (area bounded by the solid 445 

black line) and the real contact area (grey dots) for the contact of the rough sphere 446 

(integration of the smooth sphere and the extra rough surface 1) against a smooth plane 447 

under increasing reduced pressure 448 

The variation of the relative contact area 𝐴𝑟 with the reduced pressure P is shown in Figure 14 449 

for those three different rough surfaces with identical RMS gradient. The numerical solutions 450 

of the three rough sphere contacts were compared against Muser’s solution derived from 451 

Equation 32 and Equation 33 [39] and a good agreement can be found. This shows that our 452 

numerical prediction is close to the solution proposed by Muser for the real contact area in 453 

rough surface contact and suggests that RMS roughness has minimal effect in this case. 454 

 455 

Figure 14 log-log plot of the variation of 𝐴𝑟 with 𝑃 456 

3.2.2 Influence of Roughness Parameters 457 

The surface topography affects the real area of contact, which consists of both the stick and 458 

slip regions in the partial slip contact problem. To investigate the effects of the surface 459 

roughness on the separation of the stick and slip regions, the roughness parameters need to be 460 
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investigated systematically. Since the RMS roughness is one of the commonly quoted measures 461 

of surface roughness and there are numerous studies and theories reflecting on the effect of the 462 

RMS roughness on the area of contact [46, 47], adhesion [32, 48], friction [29, 49, 50] and 463 

wear [51], it was first taken into account in this paper. Besides, the role of the RMS gradient �̅� 464 

was analysed considering its importance in determining the real contact area according to the 465 

previous studies and the analytical solutions proposed by Pastewka and Robbins [38] and 466 

Muser [39]. To increase the range of investigated surface roughness parameters, the skewness 467 𝑅𝑠𝑘  and kurtosis 𝑅𝑘𝑢 of rough surfaces were considered as well, where the former provides a 468 

measure of surface asymmetry and can be determined from Equation 38 while the latter offers 469 

a measure of sharpness of profile peak and can be calculated from Equation 39. 470 𝑅𝑠𝑘 = 1𝑅𝑞3 1𝐿 ∫ 𝑧(𝑥)3𝑑𝑥𝐿
0   Equation 38 𝑅𝑘𝑢 = 1𝑅𝑞4 1𝐿 ∫ 𝑧(𝑥)4𝑑𝑥𝐿
0   Equation 39 

 471 �̅� = 1.3658 𝑹𝒒= 0.1 𝛍𝐦 

(a) 

 

(g) 

 
(b) 

 

(h) 

 
(c) (i) 
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(d) 

 

(j) 

 
(e) 

 

(k) 

 
(f) (l) 
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Figure 15 Generated nominally flat rough surface: (a)-(f) rough surfaces with different 472 𝑹𝒒 value but the same �̅� (1.3658) and (g)-(l) rough surfaces with different �̅� values but 473 

the same 𝑹𝒒 (0.1 𝛍𝐦) 474 

Starting with the study of effects of RMS roughness, six nominally flat rough surfaces with 475 

different 𝑅𝑞  values but same �̅� as shown in Figure 15 (a)-(f) were generated. The relevant 476 

material properties and input load are shown in Table 4. The ratios of the stick and contact 477 

regions to the whole simulation domain for these contact problems under the specified inputs 478 

are shown in Figure 16 (a), where the nodes in stick or contact state are found to fluctuate 479 

around a corresponding certain value with increasing RMS roughness. Likewise, the ratio of 480 

the nodes in stick to the nodes in contact under the input RMS roughness fluctuates around 0.5 481 

according to Figure 16 (b). Compared with that in the former case of smooth sphere contact 482 

(dash line), the proportion of the contacting region in stick decreases slightly within the range 483 

of 𝑅𝑞 as shown in Figure 16 (b). 484 

Parameter Value Description 𝐿 𝐸 𝑣 𝜇𝑓  𝑊 𝐹𝑥 

100 

18.75 

0.5 

0.2 

0.0003 

0.5𝜇𝑓𝑊 

Length of surface in x and y direction (𝜇𝑚) 

Elastic modulus of the rough surface (MPa) 

Poisson’s ratio 

Coefficient of friction 

Applied normal load (N) 

Applied tangential load (N) 

Table 4 Specified material properties and input load 485 

a. b.  
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Figure 16 Simulation results under the specified 𝑹𝒒: (a) ratios of nodes in contact and stick 486 

regions to the whole simulation domain and (b) ratio of nodes in stick to nodes in contact 487 

To investigate the influence of RMS gradient, six rough surfaces with different �̅� values but 488 

the same 𝑅𝑞 were generated as shown in Figure 15 (g)-(l). The same material properties and 489 

input load given in Table 4 were used for these rough contact problems. The ratios of the stick 490 

and contact regions to the whole simulation domain were both found to decrease significantly 491 

with increasing RMS gradient as shown in Figure 17 (a). The relationship between the 492 

logarithm of RMS gradient and the logarithm of the two ratios under the constant load is found 493 

to be quadratic as indicated in Figure 17 (a), where the trend lines using quadratic fit perfectly 494 

match the plotted data according to the theory of least-square regression (𝑅2 = 1). Notably, 495 

the decline of the contacting region with higher RMS gradient under the certain load agrees 496 

with that conclusion of the study conducted by McGhee et al. with similar surface roughness 497 

features [52]. Concerning the ratio of the nodes in stick to the nodes in contact, it fluctuates 498 

around 0.5 as shown in Figure 17 (b) and the proportion is lower than the one in the smooth 499 

sphere contact (dash line), which has similar trend as predicted by the former test with varying 500 

RMS roughness. 501 

The skewness (𝑅𝑠𝑘) and kurtosis (𝑅𝑘𝑢) of the generated surfaces shown in Figure 15 were 502 

calculated to study their effects on the separation of stick and slip regions in the contact area. 503 

As shown in Figure 18 (a) and Figure 19 (a), the relationship between the ratio of the stick or 504 

contacting regions to the whole computational domain and the skewness (𝑅𝑠𝑘) or kurtosis (𝑅𝑘𝑢) 505 

seems to be not following any trend as expected. Besides, the ratio of the stick area to the 506 

contacting area tends to remain around 0.5 regardless of the change of these two parameters 507 

shown in Figure 18 (b) and Figure 19 (b). 508 
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a.  

 

b. 

 

Figure 17 Simulation results under the specified �̅�: (a) ratios of nodes in contact and stick 509 
regions to the whole simulation domain and (b) ratio of nodes in stick to nodes in contact 510 

a. 

 

b.  

 

Figure 18 Simulation results with varying 𝑹𝒔𝒌: (a) ratios of nodes in contact and stick regions 511 
to the whole simulation domain and (b) ratio of nodes in stick to nodes in contact 512 

a. 

 

b.  
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Figure 19 Simulation results with varying 𝑹𝒌𝒖: (a) ratios of nodes in contact and stick regions 513 
to the whole simulation domain and (b) ratio of nodes in stick to nodes in contact 514 

To explain the effect of the RMS roughness on the separation of the stick and slip regions, the 515 

simulation results of the rough surfaces 1 and 5 with RMS roughness of 1μm and 0.2μm 516 

respectively were compared and results are presented in Figure 20 and Figure 21 517 

correspondingly. It was observed clearly that the contacting patches become smaller and more 518 

widely distributed with decreasing 𝑅𝑞 from the amplified figures. This results from the fact 519 

that only the highest asperities have the capacity to interact with the opposite plane for the 520 

rough surface contact under small loads, which could be corresponded to the relevant rough 521 

surface profile. To achieve the same RMS gradient value for the two surfaces, the short cut-off 522 

wavevector of the rough surface 5 was adjusted to a high value bringing about the surface 523 

profile with small-size and wide-distributed asperities. Although it leads to more contacting 524 

asperities, the size of each asperity becomes smaller. As a result, the size of the total contacting 525 

region remains almost constant due to the balancing of these effects. Therefore, it can be drawn 526 

that what affects the contacting/stick region is the synergy of the short cut-off wavevector and 527 

the RMS roughness rather than RMS roughness itself, which was also highlighted in some 528 

recent theoretical work by Ciavarella et al. [48] and Violano et al. [53]. 529 

 530 

 531 

Figure 20 Simulation results of the rough surface 1 with 𝑹𝒒 of 𝟏𝛍𝐦 532 
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 533 

Figure 21 Simulation results of the rough surface 5 with 𝑹𝒒 of 𝟎. 𝟐𝛍𝐦 534 

Regarding the role played by the RMS gradient, the surface asperities were found to become 535 

smaller and were distributed more intensively when the gradient increases through the 536 

comparison between the simulation results of rough surfaces 7 and 10 shown in Figure 22 and 537 

Figure 23 respectively. With the increased RMS gradient, it was found that there tend to be 538 

more individual contact spots for surface 10 as shown in Figure 23 compared to the relatively 539 

large contact islands for the surface 7 with smaller RMS gradient shown in Figure 22. However, 540 

the height of asperities in rough surface 10 was observed to become higher according to the 541 

colour bars of the two rough surface profiles, which causes a decline in the number of asperities 542 

coming into contact. Under the significant effects of the RMS gradient, there is no clear relation 543 

between the contact/stick regions and the skewness/kurtosis of the rough surface shown in 544 

Figure 18 (a) and Figure 19 (b) since the RMS gradient of these rough surfaces with increasing 545 

skewness/kurtosis changes in an irregular way. 546 

Regardless of the response of the contacting and the stick regions to the variation of the four 547 

investigated surface roughness parameters, the ratio of the stick region to contacting region 548 

fluctuates around 0.5. Besides, the distribution of the stick and slip areas within the contact 549 

zone was found to always follow this similar pattern that for each contact spot, the slip region 550 

exists around the stick region as observed from the amplified figures shown in Figure 20-Figure 551 

23. Inspired by the same value shared by the ratio of stick region to contact region and the ratio 552 

of the input tangential force to the friction force (𝜇𝑓𝑊), it is deduced that the input tangential 553 

load plays a dominant role in terms of the varying ratio of the stick region to contacting region 554 

for rough surface contacts irrespective of the surface roughness. To validate this opinion, the 555 

following study about the evolution of contacting region in stick with increasing tangential load 556 

was conducted. 557 
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 558 

Figure 22 Simulation results of the rough surface 7 with �̅� of 0.1366  559 

 560 

Figure 23 Simulation results of the rough surface 10 with �̅� of 1.0671 561 

3.2.3 Evolution of Stick Regions of Rough Surfaces 562 

The contact between the rough surface 1 shown in Figure 15 (a) against a smooth plane under 563 

the specified material properties shown in Table 4 was first simulated while the input normal 564 

load was adjusted to 0.0025N . To study the effects of increasing tangential load on the 565 

separation of stick and slip regions for the contacting rough surfaces, the tangential load was 566 

specified to vary from 0 to 1.0𝜇𝑓𝑊 with a constant interval of 0.1𝜇𝑓𝑊. The separation of the 567 

stick and slip region under the tangential force of 0.2𝜇𝑓𝑊 is shown in Figure 24 (b), where the 568 
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contact regions consisting of the stick and slip regions increase due to the higher normal load 569 

compared with Figure 20. The slip regions appear at the border of the stick regions as expected 570 

and are shown in the amplified Figure 24 (d) of the selected asperities, which is consistent with 571 

findings in the case of the single-asperity tangential contact and multi-asperity studies discussed in 572 

subsections 3.1 and 3.2.2. This common phenomenon suggests that the stick-slip contact problem 573 

between a rough surface against a plane can be treated as that for numerous individual asperities 574 

against a rigid plane. As a result, for each asperity in the contact state, there is a separation between 575 

the stick region and slip region, where the latter is always around the periphery of the former. 576 

a. 

 

b. 

 

c. 

 

d. 

 
e. f. 
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h. 

 

Figure 24: (a) Generate rough surface 1, (b) Simulation result under the tangential force of 577 𝟎. 𝟐𝝁𝒇𝑾 and (c)-(h) Separations of the stick and slip regions for the amplified sections 578 

under the increasing tangential loads 579 

When the input tangential load increases, the separation of the stick and slip regions within the 580 

contacting area changes. The transition of the stick region to the slip region with increasing 581 

tangential load for the selected asperities was observed in those amplified figures (Figure 24 582 

(c)-(h)). The evolution of the ratio of the nodes in stick to the nodes in contact with increasing 583 

tangential load is shown in Figure 25, where the stick region was found to decrease with 584 

increasing tangential load for this specified range. The decline was found to be linear according 585 

to the trend line using linear fitting (
NOS𝑁𝑂𝑐 = 1 − 𝐹𝑥𝜇𝑓𝑊).  For the purpose of robustness, the rough 586 

surface 3, 7 and 9 were also investigated to check if they have the same response where the 587 

input normal loads for these studies were modified to 0.0015N , 0.0003N  and 0.0002N 588 

respectively to obtain different contacting areas. A good agreement between the simulation 589 

results of the four conducted cases could be observed from Figure 26. Besides, the ratio of the 590 

stick region to contacting region for the rough surface contacts was found to be always lower 591 

than the one for the smooth sphere contact as the relationship between the ratio and the applied 592 

tangential load changes from non-linear (smooth) to linear (rough) as shown in Figure 26. This 593 
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explains the former finding of the decreased ratio of the stick regions to contact regions for the 594 

rough surface contact compared to the smooth sphere contact in the subsection 3.2.2. 595 

It is noteworthy that the linearity between the ratio of the stick region to the contacting region 596 

and the tangential force for multi-asperity contacts was also found and validated by Paggi et 597 

al. [54] through their analytical analysis based on the Greenwood and Williamson model and 598 

the numerical simulation developed by Pohrt and Li [18]. Instead of the four investigated 599 

roughness parameters in the paper, the Hurst exponent of the rough surface was varied in their 600 

study. However, there was no physical interpretation presented about this transition (from non-601 

linear to linear) for the relationship between the ratio of the stick region to contacting region 602 

and the tangential load.  603 

 604 

Figure 25 Evolution of the ratio of nodes in stick to nodes in contact with increasing 605 

tangential load 606 

 607 

 608 
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Figure 26 Evolution of the ratio of nodes in stick to nodes in contact with increasing 609 

tangential load for different rough surfaces under different normal loads 610 

It must be noted that although the developed stick-slip model that follows the local Coulomb’s 611 

friction law to determine the critical shear stress could provide valid simulation results, there 612 

exist several drawbacks of the principle. According to Chen and Wang [49], the tangential 613 

traction exceeding the shear strength of the material is unrealistic in practical problem. Besides, 614 

the constant coefficient of friction in the applied Coulomb’s law fails to explain the variation 615 

trend of 𝜇𝑓  with the normal load and the surface roughness such as the Euler’s interlocking 616 

asperity theory stating that the friction increases with the gradient of the surface asperity. As 617 

Chen and Wang suggested [49], the local shear stress deriving from the Tabor equation could 618 

be used as the alternative cut-off limit of the shear traction and this step would be taken in the 619 

future.  620 

In addition, the validation of the developed model is all based on the well-established analytical 621 

solutions. The single-asperity contact was validated by the Hertzian-type (sphere-contact) 622 

stick-slip solutions. As to its reliability for multi-asperity contact problems, only the normal 623 

contact component of the model was validated by Muser’s solution to rough sphere contact 624 

problems for lack of any analytical solutions and available experimental data for this type of 625 

partial slip contact problems. Although theoretically there should be no restrictions on the 626 

shape or configuration of contacting bodies, the validation work needs to be extended to 627 

consider different contact configuration such as cylinder contact and include several 628 

experimental work in the future to verify the capability of the model strictly. 629 

Another future work is to further the developed stick-slip model from purely elastic contact to 630 

viscoelastic contact considering that viscoelastic materials have been extensively used in many 631 

engineering fields. When it comes to viscoelastic contact problems, the adhesive force plays a 632 

non-trivial role owing to the low contact compliance and soft feature of viscoelastic materials. 633 

Therefore, the effects of adhesion must be taken into consideration during the viscoelastic 634 

contact modelling. A viscoelastic normal contact model has been already developed by 635 

following the elastic-viscoelastic correspondence principle and validated by relevant analytical 636 

solutions. Its extension to a viscoelastic partial slip problem is the subject of current ongoing 637 

work.  638 

 639 

4. Conclusion 640 

In this work, a numerical model without any dependence on analytical contact formulas was 641 

developed to simulate the stick-slip contact of two elastically similar surfaces. By following 642 

the Coulomb’s law described in the stick-slip theory of Ciavarella, a new algorithm to 643 

accommodate the complementary condition was developed to identify the stick and slip regions 644 
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within the contacting area. Although only results of the load-controlled algorithm are presented 645 

in the paper, it is quite convenient to achieve the displacement-controlled ones for rough 646 

surface contact problems. Owing to the application of well-estimated computational techniques 647 

including DC-FFT and CGM, this model can provide valid solutions to the stick-slip contact 648 

problems in a short time (normally 40 seconds for smooth sphere contact problems and 140 649 

seconds for rough surface contact problems with 512×512 nodes using a desktop PC).  650 

Regarding the study of rough surfaces based on the developed partial slip model, the following 651 

conclusions are drawn: 652 

• The contacting region and the stick region are unaffected by the RMS roughness of 653 

rough surfaces under certain loads (normal and tangential) while the RMS gradient is 654 

kept constant. This can be achieved by altering the short cut-off wavevector and RMS 655 

roughness simultaneously; 656 

• Unlike the role of the RMS roughness, the RMS gradient evidently affects the contact 657 

region and stick region such that a higher RMS gradient leads to the decline of the 658 

contact area and the stick regions under constant load; an equation is proposed to 659 

identify the region of stick and the region of total contact with respect to RMS slope.  660 

• Under the significant effects of the RMS gradient, the relationship between the 661 

skewness or kurtosis and the contacting/stick region is irregular; 662 

• The ratio of the stick area to the total contacting area depends on the applied tangential 663 

load and is insensitive to the four roughness parameters (RMS roughness, RMS slope, 664 

skewness and kurtosis). Instead of the non-linear trend in the smooth Hertzian-type 665 

partial slip contact, the relationship between the ratio of the stick to contacting regions 666 

and the tangential load becomes linear when it comes to rough surface contacts. This is 667 

an important finding since identifying the ratio of stick and slip is important in 668 

determining friction and wear in many engineering applications. 669 
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Appendix A  673 

The influence coefficient matrix was obtained via the full solution of the Boussinesq. The 674 

discretized form of solutions was achieved through integrating over the small rectangular mesh 675 

area of 2𝑎 × 2𝑏 as follows:  676 𝐶𝑧𝑧 = 1−𝜈2𝜋𝐺 {(𝑥 + 𝑎)𝐼𝑛[(𝑦+𝑏)+√(𝑦+𝑏)2+(𝑥+𝑎)2(𝑦−𝑏)+√(𝑦−𝑏)2+(𝑥+𝑎)2] + (𝑦 + 𝑏)𝐼𝑛[(𝑥+𝑏)+√(𝑦+𝑏)2+(𝑥+𝑎)2(𝑥−𝑎)+√(𝑦+𝑏)2+(𝑥−𝑎)2] + (𝑥 −677 𝑎)𝐼𝑛[(𝑦−𝑏)+√(𝑦−𝑏)2+(𝑥−𝑎)2𝑦+𝑏)+√(𝑦+𝑏)2+(𝑥−𝑎)2 ] + (𝑦 − 𝑏)𝐼𝑛[(𝑥−𝑎)+√(𝑦−𝑏)2+(𝑥−𝑎)2(𝑥+𝑎)+√(𝑦−𝑏)2+(𝑥+𝑎)2]}; 678 
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 𝐶𝑦𝑦 = 12𝜋𝐺 {(𝑥 + 𝑎)𝐼𝑛[(𝑦+𝑏)+√(𝑦+𝑏)2+(𝑥+𝑎)2(𝑦−𝑏)+√(𝑦−𝑏)2+(𝑥+𝑎)2] +  (1 − 𝜈)(𝑦 + 𝑏)𝐼𝑛[(𝑥+𝑏)+√(𝑦+𝑏)2+(𝑥+𝑎)2(𝑥−𝑎)+√(𝑦+𝑏)2+(𝑥−𝑎)2] + (𝑥 −679 𝑎)𝐼𝑛[(𝑦−𝑏)+√(𝑦−𝑏)2+(𝑥−𝑎)2𝑦+𝑏)+√(𝑦+𝑏)2+(𝑥−𝑎)2 ] + (1 − 𝜈)(𝑦 − 𝑏)𝐼𝑛[(𝑥−𝑎)+√(𝑦−𝑏)2+(𝑥−𝑎)2(𝑥+𝑎)+√(𝑦−𝑏)2+(𝑥+𝑎)2]}; 680 𝐶𝑥𝑥 = 12𝜋𝐺 {(1 − 𝜈)(𝑥 + 𝑎)𝐼𝑛[(𝑦+𝑏)+√(𝑦+𝑏)2+(𝑥+𝑎)2(𝑦−𝑏)+√(𝑦−𝑏)2+(𝑥+𝑎)2] +  (𝑦 + 𝑏)𝐼𝑛[(𝑥+𝑏)+√(𝑦+𝑏)2+(𝑥+𝑎)2(𝑥−𝑎)+√(𝑦+𝑏)2+(𝑥−𝑎)2] + (1 −681 𝜈)(𝑥 − 𝑎)𝐼𝑛[(𝑦−𝑏)+√(𝑦−𝑏)2+(𝑥−𝑎)2𝑦+𝑏)+√(𝑦+𝑏)2+(𝑥−𝑎)2 ] + (𝑦 − 𝑏)𝐼𝑛[(𝑥−𝑎)+√(𝑦−𝑏)2+(𝑥−𝑎)2(𝑥+𝑎)+√(𝑦−𝑏)2+(𝑥+𝑎)2]}; 682 𝐶𝑧𝑥 = 1−2𝜈4𝜋𝐺 {(𝑦 + 𝑏)𝐼𝑛[√(𝑦+𝑏)2+(𝑥+𝑎)2√(𝑦+𝑏)2+(𝑥−𝑎)2] + (𝑦 − 𝑏)𝐼𝑛[√(𝑦−𝑏)2+(𝑥−𝑎)2√(𝑦−𝑏)2+(𝑥+𝑎)2] + (𝑥 + 𝑎)[tan−1 𝑦+𝑏𝑥+𝑎 −683 tan−1 𝑦−𝑏𝑥+𝑎] + (𝑥 − 𝑎)[tan−1 𝑦−𝑏𝑥−𝑎 − tan−1 𝑦+𝑏𝑥−𝑎]; 684 𝐶𝑥𝑧 = −𝐶𝑧𝑥;  685 𝐶𝑧𝑦 = 1−2𝜈4𝜋𝐺 {(𝑥 + 𝑎)𝐼𝑛[√(𝑦+𝑏)2+(𝑥+𝑎)2√(𝑦−𝑏)2+(𝑥+𝑎)2] + (𝑥 − 𝑎)𝐼𝑛[√(𝑦−𝑏)2+(𝑥−𝑎)2√(𝑦+𝑏)2+(𝑥−𝑎)2] + (𝑦 + 𝑏)[tan−1 𝑥+𝑎𝑦+𝑏 −686 tan−1 𝑥−𝑎𝑦+𝑏] + (𝑦 − 𝑏)[tan−1 𝑥−𝑎𝑦−𝑏 − tan−1 𝑥+𝑎𝑦−𝑏]; 687 𝐶𝑦𝑧 = −𝐶𝑧𝑦 ; 688 𝐶𝑥𝑦 = ν2𝜋𝐺 [√(𝑦 − 𝑏)2 + (𝑥 + 𝑎)2 − √(𝑦 − 𝑏)2 + (𝑥 − 𝑎)2 + √(𝑦 + 𝑏)2 + (𝑥 − 𝑎)2 −689 √(𝑦 + 𝑏)2 + (𝑥 + 𝑎)2] ; 690 Cyx = Cxy. 691 

Appendix B 692 

The material properties including the elastic modulus and Poisson’s ratio given in Table 2 were 693 

used to determine the influence matrix 𝐶𝑥𝑥 and 𝐶𝑦𝑥. The relatively large difference in the order 694 

of magnitude between these two is shown in Figure 27. 695 

a. 

 

b. 

 

Figure 27 Comparison of the influence matrices: (a) 𝑪𝒙𝒙 and (b) 𝑪𝒚𝒙 696 

 697 
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