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Abstract

This paper proposes a novel framework of flame region-based convolutional

neural network for autonomous flame detection. The task of flame detection

is especially challenging since flames have greater diversity in colour, texture,

and shape than regular rigid objects. To cope with these difficulties due to

the various appearances and unclear edges of flames, a proposal generation

approach is developed to effectively select candidate flame regions based on two

crucial properties of flames, i.e., their dynamics and colours. The candidate

flame regions together with a convolutional feature map are further processed

by additional layers to output detected flames. The diversity in flame colours

is well represented by approximating the distribution using a Dirichlet Process

Gaussian mixture model with variational inference. The proposed framework

is evaluated on publicly available videos and achieves an average frame-wise

accuracy higher than 88%, which outperforms the state-of-the-art methods.
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1. Introduction

1.1. Background

Fires cause great property damage and human casualties every year. The

huge losses make fire detection techniques essential for the modern society and

daily life. Compared with conventional techniques using sensors, frameworks5

applying machine learning and computer vision methods can detect fires more

accurately and efficiently by recognising flames in videos [1] . These methods

have several outstanding advantages. First, they are capable of detecting fires

accurately in large geographical areas, e.g., wildfires can be detected in videos

by trained deep neural networks [2], while the sensor-based techniques cannot10

provide reliable results in such environments. Next, the video-based frameworks

are robust to environmental changes. Third, these approaches can provide faster

and more accurate solutions than conventional techniques [3]. For example, the

optical flow estimation algorithm [4, 5] and temporal wavelet transform [6] can

achieve a high detection rate while keeping the false alarm rate low. Finally,15

the newly developed frameworks using computer vision methods can be easily

incorporated into the existing monitoring systems without high extra costs.

Similar to other tasks of computer vision [7, 8], recently developed approaches

for flame recognition in videos can be subdivided into two main groups, methods

based on conventional computer vision techniques of feature extraction, and20

frameworks using deep neural networks.

Although the vision-based flame detection techniques have been developing

fast, the accurate detection of flames is still a challenging task. Different

from most rigid objects, flames usually have unclear edges and irregular shapes

because of their non-rigid property. Various burning materials and combustion25

intensities further result in a large diversity of flame colours. Some weak flames

are even semi-transparent and can hardly be detected in a short time. The

diversity in shape and colour leads to the various appearances of flames, making

their detection more difficult than most rigid targets. Furthermore, flames may

occupy small areas in the scene if fires happen at a distant place from cameras30
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or at the beginning of combustion.

To tackle these difficulties, a framework of flame Region based CNN (R-

CNN) is proposed to autonomously detect flames in complex environments.

The contributions of this paper can be summarised as follows.

❼ The developed framework processes candidate flame regions to prevent the35

features of flames from being overwhelmed by those of the background or

other objects. It can robustly distinguish flames of various appearances

from distracting objects through fusing the crucial features described by

a probabilistic flame colour model, convolutional layers and online robust

principal component analysis (R-PCA).40

❼ To effectively select candidate regions of flames that are non-rigid and

diverse in appearances, a flame proposal generation approach is developed

and included within the proposed framework by utilizing the dynamic and

colour properties, which is different from the methods in fast R-CNN [9,

10] and faster R-CNN [11, 12]. These two characteristics are effective45

in selecting flames, especially the weak and distant ones. Specifically,

the motion of flames, even the semi-transparent ones, can be detected

accurately by an online R-PCA algorithm conducted on the R channels of

frames.

❼ ADPGMM-based flame colour model with variational inference is proposed50

to model the diverse colours of flames. The distribution of colours is

approximated by a Gaussian mixture model whose prior is set to a Dirichlet

process. As such, the number of clusters can be learned from training data

instead of being set empirically. The DPGMM based flame colour model

is trained using variational inference that can scale to a large volume of55

training data and thus achieve accurate estimation of the distribution.

The paper is organised as follows. The proposed DPGMM flame colour

model with variational inference and framework of flame R-CNN are introduced

in Section 2. Subsequently, the framework is evaluated and its performance
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is discussed in Section 3. The main results of this work are summarised in60

Section 4.

1.2. Related Work

Considerable efforts on autonomous flame detection have been carried out,

contributing to the fast development of the associate techniques. Among the

approaches using conventional machine learning and computer vision methods,65

various rules and diverse features have been proposed based on the knowledge

of flames. Since the number or dimensionality of features is not very large, few

methods for flame detection conduct feature selection before further processing [13].

Instead, fusion is commonly employed to enhance the robustness and effectiveness

of the developed methods [14, 15]. These frameworks can provide frame-wise70

decisions on the existence of flames or detect regions containing flames, based

on the designed rules or developed features together with classifiers [14, 15]. To

achieve satisfactory detection performance, most existing works rely on features

built on the crucial properties of flames, such as colour [4, 16], texture [15, 17],

and shape [18], which make flames distinguishable from common distracting75

objects (e.g., lights and pedestrians in red). All the visual attributes of flames

mentioned above vary significantly over time due to winds and the airflow

caused by heat, so features describing the dynamic characteristics also play

an important role in flame detection in videos [5, 15, 19].

To decrease the computation load and mitigate the disturbance of non-flame80

objects, a motion detection phase is commonly utilized as a preprocessing step

to filter out static regions, such as the sun and steady lights. Many background

subtraction methods have been embedded into flame detection systems, including

the adaptive background subtraction [19], Gaussian mixture model (GMM)

based background subtraction [14] and motion history images [20].85

Besides motion detection, colour models of flames are also widely employed

and have been proven effective and efficient in the selection of candidate flame

pixels. Selective rules in the RGB and YCbCr colour spaces were proposed

in [21] and [16], respectively. However, the colours of flames are quite diverse
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because of the various burning materials, different intensities of combustion,90

and the presence of smoke, which makes it difficult to model the colours with

manually designed rules. Therefore, an increasing number of researchers focus

on training models with real flame pixels. In [22], the ratio of the Cb and

Cr values of flame pixels is modelled using a univariate Gaussian distribution.

Additionally, flame colours are described by a GMM with the number of mixture95

components being set empirically [19]. However, the number of clusters is not

intuitively known to researchers and the training of the model is not dynamic,

meaning that it needs to be re-trained when new data are available [23]. To

address the former problem, the distribution of flame colours is modelled by

a Dirichlet process Gaussian mixture model (DPGMM) of which the cluster100

number and other parameters can be learned from training data using Gibbs

sampling [6].

To obtain reliable results, features that describe the dynamic properties of

flames are usually extracted to further verify the existence of flames in candidate

regions. The flickering property of flames can be described by analysing the105

temporally changing patterns of flame pixels in the wavelet domain [19]. Moreover,

optical flow estimation methods also work well in describing the dynamics of

combustion regions [4, 5].

Final decisions of the existence of flames need to be made based on the

extracted features. Different classifiers are typically applied to reduce the false110

alarm rate and enhance detection performance [24]. Typical methods include

support vector machine [25], shallow neural network [5], fuzzy finite automata [26],

and AdaBoost [27]. Apart from using classifiers, some work estimates the

probabilities of flames in the scene and makes hard decisions using thresholds [22].

The approaches discussed above use pixel-wise features or low-dimensional115

features of regions. To effectively describe the texture or shapes unique to

flames, deep convolutional neural networks (CNNs) are employed on flame

detection because of their excellent performance in many tasks of computer

vision. A particular architecture of CNN called SqueezeNet [28] which has fewer

parameters than other networks is used in [29] for flame detection. To effectively120

5



detect flames, [30] used the framework of you only look once (YOLO) [31].

Additionally, candidate regions were selected using a colour model and classified

by a CNN in [32]. Since the dynamic properties of flames are crucial, a two-

stream CNN is applied to candidate flame regions in [33] to exploit the temporal

information.125

2. Methodology

Most tasks of object detection work on rigid targets, such as vehicles, pedestrians

and animals, which have limited diversity in appearance within each class.

Different from rigid objects, flames have a rich variety of shapes and colours,

which makes it challenging to generate proposals of flames in the same way as the130

frameworks of rigid object detection, e.g. using the selective search algorithm [9,

10] and region proposal network [11, 12]. Additionally, some flames, especially

weak ones, are of semi-transparent colours, which induces unclear edges and

visibility of the objects behind them. Therefore, it is more difficult to generate

proposals of flames than rigid objects. In the two-stage frameworks of object135

detection, region of interest (RoI)s of objects are selected in the first stage, based

on which the classification and bounding box regression are conducted in the

second stage. Therefore, the generation of proposals has a great influence on

the performance of flame detection frameworks. Specifically, failing to generate

proposals over regions of flames will lead to accuracy degeneration. To address140

this problem, a novel framework of flame R-CNN is proposed in this paper for the

task of flame detection, in which the proposals are generated based on features

describing the characteristics unique to flames. As mentioned in Section 1, the

colours and dynamics are two crucial properties of flames. Therefore, a flame

proposal generation approach is developed based on these two properties. The145

dynamic characteristic is described by the online R-PCA algorithm of which the

details are provided in Appendix A, while the colour property is modelled by

the proposed DPGMM based flame colour model introduced in this section.
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2.1. Proposed Flame Colour Model Based on DPGMM with Accelerated Variational

Inference150

The distribution of flame colours is modelled by a GMM of which the prior

is set to a Dirichlet process (DP) [6]. Denote the colour of a flame pixel as a

vector xi = [Ri, Gi, Bi]
T. The generative model is given by

θi ∼ DP (α0, G0), (1)

xi|θi ∼ N (xi;θi), (2)

where θi denotes the parameters of the Gaussian component related to xi.

According to the definition of the DP introduced in Appendix B.1, {xi}
N
i=1 are

generated from a mixture with an unbounded number of clusters, meaning that

K does not need to be set empirically before training the model. Combined with

the stick-breaking process introduced in Appendix B.1, the generative model

can be represented as follows

π ∼ GEM(α0), (3)

θ∗

k ∼ G0, (4)

zi ∼ π, (5)

xi ∼ N (xi;θ
∗

zi
), (6)

where the distribution of π = {π1, ..., πK} is defined in [34], and θ∗

k , {µk,Σk}

denotes the parameters of the k-th component. According to the mixture model

theory [35], an observation xi is generated by first specifying a cluster indexed by

zi which is distributed according to π. Afterwards, xi is sampled from the chosen

Gaussian component with the parameters θi = θ∗

zi
. As such, the generative155

model can be interpreted as an ‘infinite mixture model’. The estimated number

of clusters may increase as more training data are given. In reality, the cluster

number K would be finite when given a finite number of data.

The clusters of the mixture model can be learned from the training data by

variational inference. Denote z = {zi}
N
i=1 as the set of indicator variables of the

training data, β = {βk}
K
k=1 as the set of βks drawn independently from a Beta
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distribution Beta(1, α0), and Θ = {θ∗

k}
K
k=1 as distinct components sampled

independently from the base distribution G0(θ
∗|λ). Since π is defined based on

β [37], β is approximated instead of π. Let W = {β,Θ, z} be the collection

of all the latent variables. The probability of a testing sample x′ being a flame

pixel based on its colour can be written as

p(x′|X) =

∫
p(x′|z′,W,X)p(z′|W,X)p(W|X)dz′dW (7)

=

∫
p(x′|z′,β,Θ, z,X)p(z′|β,Θ, z,X)p(W|X)dz′dW (8)

=

∫
p(x′|z′,Θ)p(z′|β)p(W|X)dz′dW (9)

=

∫
p(x′|θ∗

z′)p(z′|β)p(W|X)dz′dW, (10)

where z′ is the indicator variable of x′. The first term p(x′|θ∗

z′) in Eq. (10) can be

calculated by (6), while p(z′|β) can be calculated according to Eq. (5) and [37].160

The predictive density p(x′|X) is available if the posterior p(W|X) is known.

However, this posterior is not tractable and thus needs to be approximated

rather than being calculated analytically. The inference of the flame colour

model can be implemented by the Gibbs sampling [6], of which the high computational

complexity limits the quantity of training data in use and affects the performance165

of trained models. Therefore, the target posterior distribution will be approximated

by the variational inference algorithm.

According to the mean-field approximation, a family of factorized distributions

are proposed to approximate the target posterior [36, 37]. The distribution

within the family that minimizes the Kullback-Leibler divergence (KLD) between

itself and the exact posterior is chosen as the optimal variational approximation.

The variational distribution q(W;φ) is designed as

q(W;φ) =

K∏

k=1

[q(βk;φ
β
k) q(θ

∗

k;φ
θ∗

k )]

N∏

i=1

qzi(zi), (11)

where {qzi(zi)}
N
i=1 are categorical distributions, and φk = {φβ

k , φ
θ∗

k } with φ
β
k and

φθ∗

k denoting the parameters of the distributions q(βk) and q(θ∗

k
), respectively.

It is assumed that all the parameters φk = {φβ
k , φ

θ∗

k } are tied and equivalent
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to the prior for k > T ∗(T ∗ is a preset parameter and T ∗ ≪ K). Specifically, for

all components with k > T ∗

q(βk) = p(βk) = Beta(1, α0), (12)

q(θ∗

k) = p(θ∗

k) = G0(θ
∗

k;λ). (13)

The prior of βk is a Beta distribution as in Eq.(12), while q(βk;φ
β
k) (for

k ≤ T ∗) is also assumed to be a Beta distribution as

q(βk;φ
β
k) = Beta(φβ

k,1, φ
β
k,2), (14)

where φ
β
k = {φβ

k,1, φ
β
k,2} are the variational parameters of q(βk;φ

β
k). The prior

of θ∗ is set to a normal inverse Wishart distribution, which is a conjugate prior

of the likelihood function in (6), i.e.

p(θ∗

k|λ) = N

(
µk;µ0,

1

κ0

Σk

)
· W−1(Σk;Σ0, ν0), (15)

where λ = {µ0, κ0,Σ0, ν0} andW−1(·) denotes the inverse Wishart distribution.

Similarly, q(θ∗

k) is assumed to be distributed according to a normal inverse

Wishart distribution as

q(θ∗

k;φ
θ∗

k ) = N

(
µk;µk,0,

1

κk

Σk

)
· W−1(Σk;Σk,0, νk), (16)

where φθ∗

k = {µk,0, κk,Σk,0, νk} are the parameters of q(θ∗

k).170

The probability qzi(zi = k) can be calculated by

qzi(zi = k) =
exp(Ei,k)∑
∞

j=1 exp(Ei,j)
, (17)

where Ei,k is defined by

Ei,k = Eqβ [log p(zi = k|β)] + Eqθ∗
k

[log p(xi|θ
∗

k)]. (18)

9



Other variational parameters are updated as follows

φ
β
k,1 = 1 +

N∑

i=1

qzi(zi = k), (19)

φ
β
k,2 = α0 +

N∑

i=1

∞∑

j=k+1

qzi(zi = j), (20)

κk = κ0 +
N∑

i=1

qzi(zi = k), (21)

νk = ν0 +

N∑

i=1

qzi(zi = k), (22)

µk,0 =
κ0µ0 +

∑N

i=1 qzi(zi = k)xi

κ0 +
∑N

i=1 qzi(zi = k)
, (23)

Σk,0 = Σ0 + κ0µ0µ
T

0 − κkµk,0µ
T

k,0 +

N∑

i=1

qzi(zi = k)xix
T

i . (24)

The variational parameters {φβ
k , φ

θ∗

k }T
∗

k=1 and distributions {qzi(zi)}
N
i=1 are updated

iteratively by evaluating Eqs. (19) to (24) and Eq. (17) until the free energy F

is minimized [37].

With the trained colour model, each pixel in testing videos is assigned a

probability that describes how likely it is part of flames based on its colour.175

Flame-coloured pixels will obtain high probabilities, while other regions are

likely to have low probabilities. Given an appropriately chosen threshold, multiple

candidate pixels can be obtained for further processing.

2.2. Framework of Flame R-CNN

The diagram of the framework is illustrated in Figure 1. It can be seen that180

the framework of flame R-CNN takes each frame of videos as input, and outputs

the regions containing flames. A frame-wise decision can be made according

to those detected regions of flames. The input frame is processed by several

convolutional layers (as well as rectified linear unit (ReLU) layers and max

pooling layers) to produce a convolutional feature map. Simultaneously, flame185

proposals are generated by the proposal generation approach based on the colour

and dynamic properties of flames. The generated proposals are subsequently
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Figure 1: Diagram of the framework of flame R-CNN.

projected to the corresponding locations on the convolutional feature map.

Using an RoI pooling layer, the features inside each generated flame proposal

over the feature map are transferred into a small map of a fixed size, which can190

be further processed by fully connected layers and a softmax classification layer.

The framework outputs the proposals that are classified as flames.

2.2.1. Flame Proposal Generation

The proposed flame proposal generation approach produces proposals using

the dynamic and colour properties of flames, which are effective in selecting195

candidate flame regions and distinguishing flames from the background and

distracting objects. On one hand, the motion of probable flame regions can

be detected by the online R-PCA algorithm introduced in Appendix A. On

the other hand, flame-coloured pixels are selected by the DPGMM based colour

model proposed in Section 2.1. The pixels selected by both the colour model and200

R-PCA are candidate pixels of flames which will contribute to the generation

of proposals. As some weak flames are nearly transparent and the background

behind them is visible, the intensities of these flame pixels do not change as

significantly as most flames do. In such situations, the dynamic flame regions
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are difficult to be detected because their intensity values are influenced by the205

static background behind flames. To solve this problem, the proposed framework

performs the online R-PCA algorithm on the R channels of frames instead of

the grey-scale images, since the red colour is dominant in flame regions and

obvious changes can be observed in the intensities of R channels even if flames

are semi-transparent.210

Flame proposals are generated using grid boxes, as shown in Figure 1. The

boxes, in which the ratios of candidate flame pixels are higher than a threshold

τf , are treated as flame proposals. It is noteworthy that the boxes can be

multi-scaled, but have to be of a fixed aspect ratio to ensure that the geometric

layouts of the features within different generated proposals will be changed in215

the same manner by the RoI layer. Specifically, each flame proposal is projected

onto the convolutional feature map to produce a small feature map, which will

be reshaped by the RoI layer. Consequently, the geometrical layouts of the

features will be changed in significantly different ways if proposals have diverse

aspect ratios. This will influence the similarities between reshaped feature220

maps and thus degrade the performance of the framework. It also explains

another reason why the flame proposals are not generated by the selective search

approach [10] or region proposal network [11]. The proposals generated in these

ways are diverse in aspect ratios due to the various appearances of flames.

Additionally, the grid boxes can be set at a fine level and generate multi-scale225

proposals to improve the detection of flames occupying small regions in the

scene. Furthermore, the proposed approach can select candidate flame pixels

only using the colour model, which enables it to work with both videos and

images.

2.2.2. Loss Function of the Framework of Flame R-CNN230

As mentioned above, the flame proposals are generated based on grid boxes.

They are not designed to bound each flame region with a bounding box, which

is a common setting in rigid object detection. Instead, the proposed framework

aims to cover as many flame regions as possible. Therefore, it is unnecessary to
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perform the regression of boxes and accordingly only the classification loss needs

to be considered. It is different from the existing methods for object detection,

such as fast R-CNN [38] and YOLO [31]. For each proposal of flames, the loss

function of the proposed framework is given by

L(pc, c
∗) = − log pc(c

∗), (25)

where c ∈ {0, 1} indicates the classes of proposals, pc is the probability distribution

output by the softmax layer, and c∗ is the ground truth class label of the

proposal. Specifically, c = 0 and c = 1 correspond to the background and

flames, respectively.

2.2.3. Training of Flame R-CNN235

The ground truth RoIs of flames are given in the format of grid boxes instead

of the tightest bounding boxes. The boxes are superimposed on the training

images. In the diagram, the boxes are non-overlapping for visualisation purpose,

but they overlap in actuality. For each box, it is labelled as ’flame’ if the ratio of

ground truth flame pixels is higher than 30%. The positive training proposals240

(containing flames) are those that have intersection over union (IoU) overlap

with any ground truth box of flames of at least 50%, while the ones of which

the maximum IoU overlap with ground truth boxes is within the range [0.05, 0.2)

are treated as negative training proposals (non-flame).

3. Experimental Results and Discussion245

3.1. Benchmarking Database and Performance Evaluation Methods

The proposed framework of flame R-CNN is trained on 729 images from the

datasets [17, 21], and tested on 16 videos of 3968 frames from [15, 26]. A brief

description of testing videos is presented in Table 1. The proposed framework is

trained on images instead of videos because the frames from the same video are250

similar and may induce the problem of over-fitting. Training the network with

images which are different from the testing videos can avoid this problem, and

13



Table 1: Information of the testing videos for experiments

Video Burning Objects Distractors
Positive

Frames

Negative

Frames

Lighting

Condition

Smoke

Condition
Location

VC1 Hay A walking person 26 0 Bright Thick Outdoor

VC2 Hay A working man 93 0 Bright Thick Outdoor

VC3 Unknown Moving people 48 0 Bright Thick Outdoor

VC4 Hay Moving people 41 0 Bright Thick Outdoor

VC5 Trees None 214 0 Bright Thin Outdoor

VC6 Trees None 176 0 Dark Thin Outdoor

VC7 a Branches A walking man 687 5 Bright Medium Outdoor

VC8 b Assembly line Moving workers 572 69 Bright Thin Indoor

VC9 Grass None 386 0 Bright Medium Outdoor

VC10 Papers A moving light 395 0 Bright Thin Indoor

VC11 Trees None 186 0 Bright Thick Outdoor

VC12 None Flashing carlights 0 139 Dark None Outdoor

VC13 None Flashing carlights and walking people 0 144 Dark None Outdoor

VC14 None A walking person in red clothes 0 155 Bright None Indoor

VC15 None Crashing cars 0 378 Bright None Indoor

VC16 None Walking people 0 254 Bright None Indoor

aFrame 531, 532, 533, 658, 660 are negative, other frames contain flames in them
bThe first 69 frames are negative and others are positive.
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prove the robustness of the proposed framework. The framework of flame R-

CNN is fine-tuned with ground truth flame proposals using Resnet50 [39] as the

backbone, which is pre-trained on the database for the ImageNet Large-Scale255

Visual Recognition Challenge [40].

The DPGMM based colour model in the framework of flame R-CNN is

trained on 100 images randomly selected from [21]. The proposed framework

is evaluated by the frame-wise true positive rate (TPR) and true negative

rate (TNR), and is compared with two state-of-the-art approaches using the260

SqueezeNet [29] and faster R-CNN [11]. The size of boxes is set to 16× 16 with

a stride of 4. The threshold τf for the ratio of candidate flame pixels is set to 0.3

in the flame proposal generation approach. The threshold for the logarithmic

probability of flame colours is set to −1.2. The threshold is set to a relatively low

value to enhance the performance of proposal generation, which will influence265

the final detection results. In the flame proposal generation approach, a low

threshold of flame colour probabilities usually leads to more proposals than a

high threshold. The situation that proposals are not generated in video frames

containing flames will lead to missed detection. In contrast, a proposal with no

flame in it will be further refined by additional layers within the framework of270

flame R-CNN and can still produce a reliable result. Additionally, the flame

R-CNN is trained by the adaptive moment estimation (Adam) algorithm [41],

of which the initial learning rate is set to 0.0001.

3.2. Detection Performance Evaluation and Discussion

The intermediate and final detection results of some testing videos are illustrated275

in this section. From them, it can be seen that the framework of flame R-CNN

achieves accurate detection of flame regions. The effectiveness of the proposed

flame proposal generation approach can be proven by the results in Figure 2 and

Figure 3. The online R-PCA algorithm works effectively in detecting moving

foreground objects while ignores the noise in the background. Simultaneously,280

the flame colour model successfully detects the pixels of flame colours. Thanks

to the combination of these two methods, the framework can detect probable

15



(a) Original frame (b) Moving regions detected by Online R-

PCA

(c) Flame-coloured pixels (d) Candidate flame pixels

(e) Generated flame proposals (f) Detected flame regions

Figure 2: Detection results of the framework of flame R-CNN tested on Video VC7, in which

a man walking around burning branches.
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(a) Flame proposals in Video VC11 (b) Detected flame regions in Video VC11

(c) Flame proposals in Video VC12 (d) Detected flame regions in Video VC12

(e) Flame proposals in Video VC14 (f) Detected flame regions in Video VC14

Figure 3: Generated flame proposals and detected flame regions by the framework of flame

R-CNN tested on Video VC11, VC12, and VC14.
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regions of flames based on the dynamic and colour properties. The detected

candidate flame pixels include the majority (if not all) of flame pixels and a

small number of non-flame ones, and thus help to generate proposals which are285

likely to contain flames in them. For example, the online R-PCA algorithm

detects motion caused not only by flames but also by heated airflow and a

walking man in Figure 2, but most non-flame regions are discarded by the

colour model, which helps to reduce the number of proposals without flames, as

shown in Figure 2(e).290

The proposals of flames will be further verified by additional layers of the

framework for reliable detection. From the results shown in Figures 3(c), 3(d)

and 3(e), 3(f), it can be seen that the regions of flashing car lights and the

walking person in red clothes are successfully classified as negative by the

framework, although they are similar to flames in appearance. Additionally,295

the proposed framework also works well in detecting flame regions, which can

be observed from the results shown in Figure 2 and Figure 3(b). The video

in Figure 2 is among the most challenging videos for flame detection, since

the semi-transparent colours of the flame regions make the background behind

flames visible, resulting in difficulties in motion detection. Besides, the texture300

of the bushes behind flames plays a dominant role when the flames are weak,

which mixes the features of the bushes and flames and confuses the trained

network. Despite these difficulties, the proposed framework achieves accurate

detection of flames in most frames of this video. The non-flame proposals at the

left top corner are discarded while the flame regions in the centre are detected305

successfully.

The average frame-wise TPR and TNR of the proposed framework tested

on the videos in Table 1 are shown in Table 2 together with the performance of

the SqueezeNet and faster R-CNN. In the flame proposal generation approach,

proposals can also be generated only based on the estimated probabilities of310

flame colours. Specifically, candidate pixels of flames are detected only by

the colour model, based on which flame proposals are generated (a simplified

version of flame R-CNN). The results of the proposed framework (both full and
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Table 2: Average flame detection performance of the SqueezeNet, faster R-CNN and Flame

R-CNN

Method TPR TNR Accuracy F-score

SqueezeNet 0.3913 0.9913 0.5643 0.5611

faster R-CNN, 3 anchors 0.7040 0.3007 0.5877 0.7085

faster R-CNN, 4 anchors 0.8499 0.7299 0.8153 0.8675

faster R-CNN, 5 anchors 0.4851 0.7823 0.5708 0.6167

Simplified flame R-CNN, th = 0.5 0.9217 0.7719 0.8785 0.9153

Simplified flame R-CNN, th = 2.5 0.9929 0.6154 0.8841 0.9242

Simplified flame R-CNN, th = 3.5 0.9005 0.8024 0.8722 0.9094

Flame R-CNN, th = -1.5 0.8523 0.8392 0.8485 0.8890

Flame R-CNN, th = -1.2 0.9093 0.8103 0.8808 0.9157

Flame R-CNN, th = 0.5 0.8796 0.8400 0.8682 0.9048

simplified) using different thresholds for flame colour probabilities are provided

in Table 2. The faster R-CNN is trained and tested with different number of315

anchors, i.e. 3, 4 and 5 anchors. A k-means clustering algorithm is conducted

with an IoU based distance metric to choose sizes of the anchor boxes from the

training images.

The results illustrate that the framework of flame R-CNN achieves higher

TPRs than the comparing frameworks. It is because the SqueezeNet based320

method conducts classification using all the features of input frames, resulting

in the situation that the features of flames occupying small regions in the scene

are overwhelmed by the features of the background or other salient objects.

In contrast, the frameworks of faster R-CNN and flame R-CNN both detect

probable regions of flames and provide results only based on the features within325

those regions, which enhances the accuracy of detection. However, the sizes

of anchors in the framework of faster R-CNN have a large influence on the

performance of flame detection. Specifically, the anchor boxes that match the

shapes and sizes of flames will lead to good performance, while the flames whose
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shapes are very different from the anchors can hardly be detected. Since the330

flames are non-rigid and diverse in shapes, it is difficult to set appropriate sizes

for anchors. The framework based on flame R-CNN does not have this problem

since it generates the proposals based on grid boxes, and the colour and dynamic

properties of flames.

On the contrary, the method using SqueezeNet achieves better TNRs than335

the proposed framework. As the TPR and TNR are usually competing, it is not

surprising the SqueezeNet has fewer false positive errors than the frameworks

of faster R-CNN and flame R-CNN. However, higher TNRs are achieved by

the proposed framework than faster R-CNN on most negative testing videos,

showing the effectiveness of the flame proposal generation approach. Considering340

the great losses due to fires every year, the false negative errors of flame detection

cause larger damage than the false positive ones and thus should be avoided at

all expense. In a nutshell, the flame R-CNN achieves better performance than

the methods based on SqueezeNet and faster R-CNN in reducing the losses

caused by fires.345

3.3. Threshold of the Flame Colour Probability of Flame R-CNN

In the flame proposal generation approach, the threshold for the flame

colour probability will influence the performance of detection. In this section,

the proposed framework is trained and tested using different thresholds to

explore their influence on the accuracy and processing time of detection. From350

4(a), it can be seen that the TPR of the framework fluctuates between 0.8

and 0.95 when the threshold increases from −2.5 to 0.5, and has a significant

drop with a threshold of 2.5. In contrast, the TNR rises when the threshold

increases from−2.5 to−1.5, and oscillates over the threshold range of [−1.5, 0.5].

An upward trend in the TNR can be seen with a threshold larger than 1.5.355

According to the flame proposal generation approach, a large threshold of colour

probability will lead to fewer candidate flame pixels, and thus results in a smaller

number of flame proposals compared with a small threshold. However, the

relationship between the threshold and TPR/ TNR is not monotonic. When
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(a) Overall TPRs and TNRs of the flame

R-CNN with different thresholds for the

estimated colour probability.
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(b) Average processing time of one frame of

the flame R-CNN with different thresholds

for the estimated colour probability.

Figure 4: Detection performance and computational complexity of the framework of flame

R-CNN with different thresholds for the colour probability.

the threshold is too large and discards many flame pixels, it will result in a360

small number of proposals of flames and lead to false negative errors, which

explains the sharp decrease in the TPR when the threshold increases to 2.5.

In contrast, a small threshold does not decrease the TNR significantly, since

the convolutional features within flame proposals are processed and classified

accurately by additional layers. Different from the performance, the computational365

cost of the framework decreases monotonically with the threshold for flame

colour probabilities, which can be seen from 4(b). It is because a large threshold

leads to a small number of proposals that will decrease the computational cost

of the framework.

The experiments of the simplified flame R-CNN are also carried out with370

different thresholds, of which the TPRs/TNRs and processing time are shown

in Figure 5. The TPR and TNR of the simplified flame R-CNN vary with the

threshold in a similar way to the full flame R-CNN. Additionally, the average

processing time of one frame declines with the threshold as well, similar to

the framework of full flame R-CNN. However, its average processing time is375

much longer than that of the full flame R-CNN. Although the online R-PCA

algorithm for motion detection increases the computational cost, the simplified
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Figure 5: Detection performance and computational complexity of the framework of simplified

flame R-CNN with different thresholds for the colour probability.

flame R-CNN has a larger number of proposals to process, and thus needs

longer time for each frame compared with the framework of full flame R-CNN

given the same threshold. Furthermore, the changes of the threshold also cause380

larger fluctuations in the performance of the simplified flame R-CNN than the

full one, which can be explained by the way of generating flame proposals. In

the simplified framework, the threshold for colour probability influences the

number of candidate flame pixels as well as proposals directly, while the impact

is relieved by the online R-PCA algorithm in the full flame R-CNN.385

The computational complexity of the detection process is investigated by

analysing the complexity of each module within the proposed framework as

follows. In the online R-PCA, frames in a video are reshaped into column

vectors which later form a matrix to be processed. The dimension of each

column (equalling to the number of pixels in one frame) is denoted by d, while390

r is the intrinsic dimensionality of the subspace underlying the formed matrix.

The computational complexity of the online R-PCA algorithm is O(d ·r2) where

usually d >> r. For the DPGMM based flame colour model, the inversion and

determinant of the covariance matrices of the trained model can be calculated in
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advance to reduce the computational burden. Therefore, the time complexity395

of calculating the probabilities of pixels being flames is O(d · K), where K

is the estimated number of clusters. The complexity of convolutional layers

is O(
∑

l al−1 · al · f
2
l · b2l ) with l being the index of convolutional layers and

al−1, al, fl, bl denoting the number of input channels, number of filters, spatial

size of the filters, and spatial size of the output feature map of the l-th layer,400

respectively. The time complexity of fully connected layers is O(np · hW · hH ·
∑

t gt) where np, t, hW , hH and gt represent the number of flame proposals, index

of fully connected layers, width and height of the output of RoI pooling layers

and the output dimension of the t-th fully connected layer.

3.4. Ablation Study405

To validate the effectiveness of each module of the proposed framework,

ablation experiments are conducted in this subsection as follows. The results

are summarized in Table 3.

1. The proposed flame proposal generation approach is replaced by the selective

search method [38]. As such, the framework reduces to the widely used410

fast R-CNN method [38].

2. Instead of utilising the colour model and R-PCA, flame proposals are

generated only using grid boxes. Specifically, all grid boxes are projected

to the convolutional feature map and processed by the following layers.

The resulting framework is denoted as ’grid R-CNN’ in the table.415

3. Detection is conducted without deep neural networks, but only based on

selected candidate flame pixels by the colour model and R-PCA algorithm.

Grid boxes of the same size and steps as the full flame R-CNN are used to

generate flame proposals, but the threshold of candidate flame pixel ratio

is set to 0.7 instead of 0.3 for better performance. A frame is classified420

as positive once a candidate flame proposal is detected. It is denoted as

’Colour+Dynamics’ in Table 3.

4. We also evaluate the full framework proposed in this paper with all the

modules described in Section 2.
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Table 3: Average flame detection performance of ablation experiments

Fast R-CNN Grid R-CNN Colour+Dynamics Full flame R-CNN

TPR 0.3863 0.9968 0.9359 0.9093

TNR 0.5035 0.1128 0.3601 0.8103

Accuracy 0.4201 0.7419 0.7699 0.8808

F-score 0.4867 0.8461 0.8527 0.9157

The results in Table 3 illustrate that the proposed framework of flame R-CNN425

captures the crucial features of flames and thus achieves the best detection

performance. The introduced flame proposal approach significantly enhances

the accuracy while achieving better balance between TPR and TNR, which can

be seen from the results compared with the fast R-CNN. The colour and dynamic

properties of flames together with the convolutional features work effectively in430

both detecting flames and discarding non-flame objects, contributing to the

enhanced overall accuracy.

4. Conclusion

In this paper, a framework of flame R-CNN was proposed for autonomous

flame detection using video sequences. A flame proposal generation approach435

was developed to generate flame proposals based on the colour and dynamic

properties. The proposals and a feature map produced by several convolutional

layers are subsequently processed by additional layers to produce flame regions

and frame-wise results can be obtained accordingly. Since flames have unclear

edges and a rich diversity in the appearance, the flame proposal generation440

approach works effectively in selecting probable regions of flames by utilizing the

crucial properties, which contributes to high TPRs of the developed framework.

It has achieved frame-wise accuracy of 88.41% and F-score of 92.42%.
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Appendix A. Online R-PCA for Motion Detection in Videos

The R-PCA algorithms decompose a data matrix into two parts, a low-445

rank matrix and a sparse matrix. Then frames in a video can be reshaped

into columns and combined to form a matrix which is processed by the R-PCA

algorithms. The low-rank component naturally corresponds to the stationary

background in a video, while the sparse matrix contains the information of

moving objects. Therefore, an algorithm of online R-PCA is embedded into the450

proposed framework of flame R-CNN to detect moving regions that are likely

to be flames.

Denote the matrix of reshaped frames as M = {mi}
n
i=1 with mi ∈ R

d

denoting the i-th vectorized frame in a video, where d is the dimension of each

column and n is the number of frames. The matrix M can be decomposed as

M = Y + S, (A.1)

where Y = {yi}
n
i=1, yi ∈ R

d and S = {si}
n
i=1, si ∈ R

d represent the low-rank

and sparse matrices, respectively. Principal component pursuit (PCP) [42], as

one of the most widely used R-PCA algorithms, recovers the low-rank matrix

Y from M by solving a minimization problem given by

min
Y,S

1

2
‖M−Y − S‖2F + λ̃1‖Y‖∗ + λ̃2‖S‖1, (A.2)

where λ̃1, λ̃2 are balancing parameters, and ‖ · ‖2F , ‖ · ‖∗, and ‖ · ‖1 denote the

Frobenius norm, nuclear norm and ℓ1-norm of a matrix, respectively. However,

the PCP method works in a batch manner and needs to access all samples455

in each iteration, which requires large storage for data and results in delay in

processing.

To address the aforementioned drawback, Feng and Xu proposed an alternative

method by employing an equivalent form of the nuclear norm [42], and rewrote

the problem in (A.2) as

min
L,R,S

1

2
‖M− LRT − S‖2F +

λ̃1

2
(‖L‖2F + ‖R‖2F ) + λ̃2‖S‖1, (A.3)
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where the low rank matrix is factorized into two parts L ∈ R
d×r and R ∈ R

n×r

with r denoting the upper bound of the rank of Y. The matrix L can be treated

as bases of the low dimensional subspace and R are the coefficients of samples460

projected to the bases. It can be proven that the local minima of (A.3) are the

global minima of (A.2) [42]. Therefore, solving the problem in (A.3) will provide

estimations of the low dimensional subspace and sparse component equivalent

to those obtained by solving (A.2). The algorithm of online R-PCA processes

each new sample once it is obtained without accessing the observations after it.465

It finds the coefficients r ∈ R
r as well as the sparse component s ∈ R

d of the

new sample, and updates the subspace bases L alternatively using a stochastic

optimization algorithm.

Appendix B. Definitions of Dirichlet Process and Details of Accelerated

Variational Inference470

Appendix B.1. Dirichlet Process and Stick-breaking Process

Given a measurable space and a probability measure G0 on the space [43],

a DP is defined as a distribution of a probability measure G over the space,

satisfying the condition that for any finite measurable partition (A1, ..., AK) of

the space, (G(A1), ..., G(AK)) is distributed according to a Dirichlet distribution

with parameters of (α0G0(A1), ..., α0G0(AK)), i.e.

(G(A1), ..., G(AK)) ∼ Dir(α0G0(A1), ..., α0G0(AK)), (B.1)

where α0 is a positive real number and Dir(·) denotes the Dirichlet distribution.

The model is denoted as G ∼ DP (α0, G0) with a concentration parameter α0

and a base distribution G0(· ;λ), where λ is a hyperparameter of G0.

The stick-breaking process provides a way to construct a DP [44], defined
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by

βk ∼ Beta(1, α0), (B.2)

θ∗

k ∼ G0, (B.3)

πk = βk

k−1∏

l=1

(1− βl) = βk

(
1−

k−1∑

l=1

πl

)
, (B.4)

G =
∞∑

k=1

πkδθ∗

k
, (B.5)

where both {βk}
∞

k=1 and {θ∗

k}
∞

k=1 are independent and identically distributed475

(i.i.d.) random variables, δθ∗

k
represents the Dirac measure centred at θ∗

k, and

Beta(·) denotes the Beta distribution. The distribution over π = {πk}
∞

k=1 can

also be expressed as π ∼ GEM(α0), which comes from the initials of Griffiths,

Engen and McCloskey [34].

Appendix B.2. Accelerated Variational Inference480

Minimising the KLD is equivalent to minimising the free energy defined by

F = Eq[log q(W;φ)]− Eq[log p(W,X)] with respect to (w.r.t.) W [37]. Taking

the variational distribution in Eq. (11) into the definition of free energy, we have

F=

T∗∑

k=1

{
Eqβk

[
log

q(βk;φ
β
k)

p(βk|α0)

]
+Eqθ∗

k

[
log

q(θ∗

k;φ
θ∗

k )

p(θ∗

k|λ)

]}
+

N∑

i=1

Eqzi

[
log

qzi(zi)

p(zi|β)p(xi|θ
∗

zi
)

]
.

The free energy F is a function of T ∗ sets of parameters {φβ
k , φ

θ∗

k }T
∗

k=1 and N

distributions {qzi(zi)}
N
i=1. The first two terms are truncated at level T ∗ because

no parameters need to be optimized beyond T ∗. However, the variational

distribution still provides qzi(zi) with infinite support as it allows components

beyond T ∗ to have non-zero probabilities. Based on the settings in Eqs. (12)485

and (13), the free energy is nested w.r.t. T ∗, which guarantees the existence of

optimal parameters when changing T ∗. Therefore, the value of T ∗ is adaptive

during optimization and can be initialised to one.

The variational inference can be accelerated using a KD-tree [45]. A KD-

tree is a binary tree, where the data stored in each child node are a subset of490

its parent node. The accelerated variational Dirichlet process constrains that
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all the data in a node share the same assignment of clusters. The variational

parameters are updated in a similar way as in Eqs. (19)-(24), with the value of

each data point changed to the average of all the data of a node.
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