
This is a repository copy of Test case generation for agent-based models : a systematic 
literature review.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/171846/

Version: Accepted Version

Article:

Clark, A., Walkinshaw, N. and Hierons, R. orcid.org/0000-0002-4771-1446 (2021) Test 
case generation for agent-based models : a systematic literature review. Information and 
Software Technology, 135. 106567. ISSN 0950-5849 

https://doi.org/10.1016/j.infsof.2021.106567

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Test case generation for agent-based models: A

systematic literature review

Andrew Clark∗, Neil Walkinshaw, Robert M. Hierons

University of Sheffield, United Kingdom

Abstract

Context: Agent-based models play an important role in simulating complex emergent phe-
nomena and supporting critical decisions. In this context, a software fault may result in poorly
informed decisions that lead to disastrous consequences. The ability to rigorously test these
models is therefore essential.

Objective: Our objective is to summarise the state-of-the-art techniques for test case gener-
ation in agent-based models and identify future research directions.

Method: We have conducted a systematic literature review in which we pose five research
questions related to the key aspects of test case generation in agent-based models: What are
the information artifacts used to generate tests? How are these tests generated? How is a
verdict assigned to a generated test? How is the adequacy of a generated test suite measured?
What level of abstraction of an agent-based model is targeted by a generated test?

Results: Out of the 464 initial search results, we identified 24 primary publications. Based
on these primary publications, we formed a taxonomy to summarise the state-of-the-art tech-
niques for test case generation in agent-based models. Our results show that whilst the major-
ity of techniques are effective for testing functional requirements at the agent and integration
levels of abstraction, there are comparatively few techniques capable of testing society-level
behaviour. Furthermore, the majority of techniques cannot test non-functional requirements
or “soft goals”.

Conclusions: This paper reports insights into the key developments and open challenges con-
cerning test case generation in agent-based models that may be of interest to both researchers
and practitioners. In particular, we identify the need for test case generation techniques that
focus on societal and non-functional behaviour, and a more thorough evaluation using realistic
case studies that feature challenging properties associated with a typical agent-based model.

Keywords: Agent-Based Modelling, Multi-Agent Systems, Software Testing,
Test Case Generation, Systematic Literature Review

∗Corresponding author
Email addresses: agclark2@sheffield.ac.uk (Andrew Clark),

n.walkinshaw@sheffield.ac.uk (Neil Walkinshaw), r.hierons@sheffield.ac.uk (Robert
M. Hierons)

Preprint submitted to Elsevier March 4, 2021



1. Introduction

In recent years, computational models have become increasingly popular in
a variety of domains, with applications ranging from economic modelling [1]
to public health [2]. The ability to model and understand vast quantities of
data, coupled with the increased availability of data, have helped to establish
the computational model as an essential research tool. Agent-based models are
one variety of computational model that are used to simulate complex scenarios
involving many individuals, often to inform social and economic policies, includ-
ing national responses to the recent COVID-19 pandemic [3, 4, 5]. With such
critical applications, poor modelling assumptions or software faults can lead
to serious repercussions. Software testing is an essential software engineering
practice that aims to ensure the quality of software products, including the iden-
tification and removal of faults. The time and effort necessary to test software
and achieve such quality are significant, often accounting for over 50% of total
project costs [6]. In recent years, a variety of techniques have been proposed
to alleviate the cost of testing, from search-based testing [7] to fuzzing [8], that
automate or partially-automate various testing activities such as the creation of
test cases.

Of all software testing activities, perhaps the most labour-intensive and time-
consuming activity is the creation of test cases [9]. As a consequence, the topic
of test case generation has received significant attention in recent years, lead-
ing to a variety of surveys, techniques and tools supporting the automatic or
semi-automatic derivation of test suites [10]. However, for many real-world ap-
plications, it remains unclear how effective these tools and techniques are, with
areas such as scientific software requiring further empirical study to establish
their applicability [11].

Agent-based modelling is one area where the applicability of existing test
case generation techniques is unclear. Due to their often non-deterministic
nature coupled with their complex emergent behaviour, agent-based models
present significant challenges for test case generation [12, 13]. For example, in
response to the ongoing COVID-19 pandemic, the UK government has used an
agent-based model developed at Imperial College London to inform an economic
policy estimated to cost £192.3bn over the 2020-2021 financial year [3, 14]. De-
spite the importance of testing such critical software, the model contains only
basic integration tests configured to a specific set of parameters [15]. To this
end, there have been several recent calls for improved techniques for validation
and testing of predictive models [16, 17].

Clearly, there is a need for tools and techniques that make software testing an
accessible practice for both researchers and practitioners regardless of their dis-
cipline. In this review we aim to identify the current state-of-the-art techniques
and future research directions for test case generation in agent-based modelling,
paying particular attention to their potential real-world applications. In order
to achieve a fair and comprehensive survey of the existing test case genera-
tion literature in the agent-based modelling field, this paper reports the results
of a systematic literature review in accordance to the guidelines proposed by

2



Kitchenham and Charters [18].
The remainder of this work is organised as follows: in Section 2, we provide

an overview of agent-based models and test case generation. In Section 3, we
present the research methodology including the research questions and review
procedure. In Section 4, the results of the systematic literature review are
presented, followed by a discussion of some particularly interesting observations
in Section 5. In Section 6 we conclude the review and present potential future
directions for research.

2. Background

In this section, we introduce the context and core concepts that concern this
review, namely test case generation and agent-based models. An informal defi-
nition of test case generation will be provided and then revisited in the context
of an agent-based model. In addition, the challenges associated with testing
an agent-based model and their impact on the test case generation process are
highlighted.

2.1. Agent-based models

An agent-based model is a system of autonomous processes characterised by
sets of individual and collective goals which, upon execution, typically result in
complex emergent behaviour. Whilst there is no universal definition of an agent,
there are several criteria introduced by Crooks et al. [19] that are generally
agreed upon as defining features of an agent:

1. Autonomy: agents are self-governing individuals that make decisions and
act without centralised influence.

2. Heterogeneity: agents are diverse individuals that are distinguished by
differences in their characteristics (e.g. age, gender, height).

3. Active: agents percept and affect their environment, including other agents,
to achieve their goals.

Many different forms of agent-based model and similar paradigms exist, from
the beliefs, desires and intentions framework [20] (BDI agents) to cellular au-
tomata [21], however, in practice the concepts tend to overlap. In this review
we consider an agent-based model to be an umbrella term that captures all of
the above criteria.1

Agent-based models lend themselves to modelling theory-driven phenomena
[22] such as the impact of social policies [23] or the spread of infectious dis-
ease [24], where the underpinning mechanisms are well-understood, but their
larger-scale implications are not. A recent example of a significant agent-based

1For reasons of practicality a line is drawn at physical and cyber-physical systems as these
topics fall into the field of robotics, though one could argue that they also fall into the agent-
based category.

3



model is the COVID-19 pandemic model developed at Imperial College Lon-
don; a complex simulation that has been used to inform the United Kingdom’s
response to the COVID-19 pandemic [3]. However, COVID-19 models have
received criticism [25, 17] highlighting a lack of transparency, reproducibility,
and an urgent need for more rigorous validation. To this end, software testing
techniques may be applied to generate test cases that exercise the system under
different conditions to reveal software faults and validate the model.

2.2. Test case generation

Informally, test case generation is the activity in which test cases are created
either manually, semi-automatically or automatically to expose faulty behaviour
in a software system. In general, an approach to testing relies on four key com-
ponents: an information artifact, a generation mechanism, test data adequacy
criteria and a test oracle. Here we define these components alongside fundamen-
tal testing concepts that will be mentioned throughout the paper and present
an overview of the test case generation process used to frame and motivate our
research questions.

• Test - The act of exercising software with test cases with the goal of
discovering faults or demonstrating correctness [26].

• Test case - A set of inputs, preconditions and expected outcomes associ-
ated with a particular program behaviour [26].

• Test suite - A collection of test cases [27].

• Test execution - An execution of the system-under-test constrained to
the conditions specified by a given test case.

• Information artifact - A source of information from which test cases
may be derived. An information artifact can take the form of a formal
specification, a design document or source code, and provides information
about the functionality or goals of the system that are necessary to produce
meaningful test cases.

• Generation mechanism - An algorithm or strategy used to produce a
test case from an information artifact. A generation mechanism is central
to the creation of test cases, such as the application of mutation operators
to seed test cases or the use of user-defined input generation rules.

• Test data adequacy criterion - A measure of test case quality with
respect to a testing goal such as coverage [28]. A test data adequacy
criterion is often used to guide test case generation towards achieving the
defined goal.

• Test oracle - A procedure that determines whether a given test execution
of the system-under-test is correct or not [29]. A test oracle may be
specified, derived, implicit, or human.

4



In light of these definitions, test case generation may be described as the
process by which a test suite is generated from an information artifact using a
generation mechanism, often guided by a test data adequacy criterion. Following
the generation of a test case, its execution on the system-under-test should be
judged by a test oracle to determine whether it passes or fails. However, it is
important to note that these features are not essential for test case generation,
but are necessary to consider as part of the larger testing process. A generalised
overview of the testing process is presented in Figure 1 below.

Figure 1: An overview of the testing process.

2.3. Testing agent-based models

Software testing is a significant challenge in the context of agent-based mod-
els. This is partly due to the challenging features of an agent-based model [30],
but may also be attributed to the domain in which agent-based models are typ-
ically developed, such as epidemiology and social sciences, where there are few
formally trained software engineers with testing experience [11]. Additionally,
with multiple levels of abstraction, an agent-based model requires the consid-
eration of several different testing objectives. Nguyen et al. propose five levels
of abstraction to consider when testing agent-based models [31], these are as
follows:

1. Unit: Testing of individual units that make up an agent, including code,
goals and plans.

2. Agent: Testing the integration of the different units of an agent, amounting
to their ability to act as an individual.

5



3. Integration: Testing the interaction of agents, the interaction of agents
with their environment, and communication protocol and semantics.

4. Society: Testing the multi-agent system as a collective, including the
macroscopic and emergent behaviour of the overall system.

5. Acceptance: Testing the multi-agent system in the real execution environ-
ment to verify whether the implementation meets stakeholder goals.

Agent-based models have unique properties that pose significant challenges
for software testing. These challenges affect all levels of abstraction, including
individual agents, interacting agents, and the resulting society of agents.

Agents are autonomous; they can proactively plan and adapt their behaviour
to achieve specific goals [32]. With control over their state [33], agents may
derive new plans of their own accord to tackle problems in previously unknown
ways [34]. However, autonomous behaviour also exacerbates the test oracle
problem [29]: how can we determine whether newly introduced behaviour is
correct or incorrect, given that it is absent in the specification?

Agents can interact with many other agents and their environment concur-
rently, leading to a potentially intractable number of different interactions and
scenarios [35]. As a consequence, integration-level testing suffers from the prob-
lem of controllability [36]. Due to the large number of autonomous interactions,
it is difficult to instantiate test cases that will consistently lead to the desired
output. Therefore, it is particularly difficult to control and test social behaviour
in an agent-based system.

On a macroscopic scale, autonomy and agent interaction lead to complex pat-
terns of social behaviour, known as emergent behaviour. Emergent behaviour
is difficult to test as it may require significant time to develop, is not always
guaranteed to occur, and cannot be predicted from the characteristics of the in-
volved agents alone [37]. Additionally, a tester must first address the challenges
that hinder the lower levels of testing to achieve society level testing.

Testing an agent-based model generally involves executing the model un-
der a particular set of conditions for the agents and their environment. To
ascertain whether the model is correct, the resulting outcome is then compared
to the expected outcome, which may be captured in either a formal or infor-
mal specification. However, due to the wide variety of different agent-based
modelling paradigms, frameworks, and tools, the testing process will vary. For
example, a technique developed for testing the conformance of messages sent
between message-passing agents may not be compatible with a model involving
proximity-based interactions.

In the context of an agent-based model, test case generation involves the cre-
ation of valid and invalid input data that trigger a particular sequence of events
[38]. Test case generation may be manual, or may be automated in various
ways to support the testing process outlined in Section 2.2. A comprehensive
technique may also cover other aspects of the testing process, such as an agent-
specific test adequacy criterion to guide test case generation towards achieving
a testing goal. A test oracle may also be provided to assign verdicts to test
cases.

6



2.4. Related work

To the best of the authors’ knowledge, there are no existing systematic
literature reviews on the topic of test case generation for agent-based models.
However, there are several systematic reviews of related topics.

Bakar and Selamat [39] conducted a systematic literature review and map-
ping on the topic of agent systems verification, focusing on techniques for
checking agent properties and fault detection during the stages of the agent-
based development process. In comparison to our own literature review, Bakar
and Selamat’s review has a wider scope as it investigates testing techniques for
agent systems in general, mapping the different properties and faults that exist-
ing techniques may detect, whereas our review focuses on test case generation
specifically and explores this process in greater detail. Despite having a different
scope, many of the results from Bakar and Selmat’s review support our own ob-
servations. For example, Bakar and Selmat’s mapping of the types of properties
tested by existing techniques reveal that functional requirements can be tested
using many techniques, whilst non-functional requirements cannot. This aligns
with our own observation that techniques for generating functional test cases
are well-established, whilst there are fewer techniques that target non-functional
requirements.

Blanes et al. [40] present a systematic review of requirements engineering
in the development of multi-agent systems. Whilst this work does not focus
on testing or test case generation for agent-based models, it covers different
aspects of requirements engineering including specification and validation that
have some relevance to our own review. In this work, ontologies are recognised
as a technique to deal with requirements, supporting the use of ontologies as
a formal information artifact in our taxonomy. Blanes et al. also indentified
that roughly a quarter of the literature they reviewed provided some form of
automated validation, highlighting the need for new automatic approaches to
test agent-based models.

Arora and Bhatia [41] conduct a systematic review of agent-based test case
generation for regression testing. Whilst this approach is relevant to test case
generation, it reviews agent-based approaches to test case generation, whereas
our literature review is concerned with test case generation approaches for agent-
based models. That is, this review investigates the use of agents for testing
rather than how agents can be tested. Although this review does not have any
significant relevance to our own, it is necessary to highlight the difference as,
based on the title alone, it would appear to be similar.

Existing reviews have covered verification in agent systems, requirements
engineering for multi-agent systems, and the use of agents to generate test cases
for regression testing. However, these reviews do not consider the components
supporting test case generation, such as specification languages or test oracles,
in-depth. Our review addresses this gap by reviewing the artifacts used to form
tests cases, generation mechanisms, test oracles, test adequacy metrics, and
levels of testing abstraction achieved. To that end, our review covers not only
the state-of-the-art test case generation techniques for agent-based models but
also the individual components on which these techniques depend.

7



3. Research methodology

In recent years agent-based technology has increased in popularity across a
variety of domains ranging from epidemiology [42] to economics [43]. Mean-
while, significant advances in software testing have revolutionised the way we
test complex systems, such as the emergence of fuzzing techniques to enhance the
automatic discovery of security vulnerabilities [44]. Despite significant progress
in both agent-based modelling and software testing, the need for better valida-
tion of agent-based models has been highlighted recently [45, 16, 17].

This paper reviews existing state-of-the-art test case generation techniques
for agent-based models. In this section, we outline the research methodology
used to conduct the review, including the review protocol and our research
questions.

3.1. Research questions

We pose five research questions that focus on the individual aspects of the
testing process outlined in Section 2.2. To help answer each question, a taxon-
omy grouping similar techniques will be introduced in Section 4, facilitating a
collective discussion of the key similarities and differences amongst the state-of-
the-art.

3.1.1. RQ1: What artifacts are used to drive test case generation for agent-based

models?

An approach to test case generation requires knowledge of the system-under-
test if it is to produce meaningful inputs, identify errors or measure the adequacy
of the generated test cases. This knowledge is provided by some information
artifact (defined in Section 2.2). In this research question, we identify the in-
formation artifacts specific to agent-based models that have been used to drive
test case generation.

3.1.2. RQ2: What mechanisms are used to generate tests?

An approach to test case generation requires some form of generation mech-
anism (defined in Section 2.2) that can utilise the knowledge contained in an
information artifact to create test cases. Given that there are different types
of agent-based models, each with potentially different purposes, it follows that
there are also many different forms of generation mechanisms. Additionally,
due to the lack of software testing experience amongst scientific developers [11],
commonplace approaches to test case generation that rely on knowledge of spe-
cific technology or languages, such as unit testing in JUnit, may be unsuitable
for testing agent-based models. In this research question, we look at the existing
approaches used to generate test cases for agent-based models.

3.1.3. RQ3: How are verdicts assigned to generated test cases?

Given the often exploratory nature of agent-based models [46], the expected
outcome of an execution may be unknown and it may be difficult to assign
a verdict to a test case. This is known as the test oracle problem [29]. In

8



evaluating an approach to test case generation it is essential to consider the
test oracle, as a test case without a verdict provides no information about the
validity or quality of the system-under-test. This issue has been discussed in
detail by Staats et al. [47]. In the context of agent-based models, it is unclear
how oracles are used to assign verdicts to test cases. In this research question,
we investigate this issue.

3.1.4. RQ4: How is the adequacy of a generated test suite measured?

Test data adequacy is a measure of how good a test suite is with respect
to some testing goal, such as coverage (see Section 2.2). The definition of a
test data adequacy criterion is essential to the fault detection capabilities of a
generated test suite [28], as it can be used to drive test case generation towards
areas of the system-under-test that are yet to be tested. It follows from our
previous research questions that different test case generation techniques will
involve different information artifacts and mechanisms, and therefore are likely
to have different testing goals too. In this research question, we aim to identify
the test data adequacy criterion used to judge the extent to which such goals
have been met.

3.1.5. RQ5: What level of abstraction do the generated test cases target?

Due to the complex, multi-layered nature of agent-based models, Nguyen
et al. propose five levels of abstraction in terms of which agent-based models
should be tested: unit, agent, integration, society and acceptance as described
in Section 2.3. Previous work has identified a lack of testing approaches for
agent-based models that target the society and acceptance levels of testing [31].
However, this is yet to be investigated for the activity of test case generation. In
this research question, we aim to investigate the different levels of abstraction
that generated test suites are capable of testing.

3.2. Review protocol

To conduct this systematic literature review, we followed the guidelines pre-
sented by Kitchenham et al. [18] and Petersen et al. [48]. This involved the
following steps:

• Selecting data sources from which the primary publications were collected.

• Constructing a search string to capture all relevant publications.

• Defining inclusion and exclusion criteria to systematically determine the
relevance of publications.

• Designing a quality assessment questionnaire to assess the quality of the
relevant publications with respect to the goals of the review.

To conduct the search procedure, we initially considered the title and ab-
stract of all papers retrieved using the search string, removing only those that

9



were irrelevant according to the screening criteria. In the next phase we con-
sidered the full-text of the remaining papers, and where there was any doubt
over the relevance of a study, each researcher would independently review and
discuss the paper until a consensus could be met. After identifying the primary
publications, forward snowballing was conducted on the primary publications
by searching their references to identify any literature missed by the search that
may satisfy the screening criteria. The search procedure was then repeated
for the snowballed papers. To reduce any potential bias, the components of
the protocol have been independently reviewed by each author and a valida-
tion procedure has been conducted where necessary. An overview of the search
procedure is given in Figure 2.

Figure 2: Overview of the search procedure.

In the following sections, we will explain each stage of the review protocol
in greater detail.

3.3. Data sources

Following the guidelines presented by Petersen et al. [48], we selected five
reputable digital libraries as our data sources, including both scientific and in-
dexed databases. The data sources were selected based on their coverage of
high-impact agent-based test case generation papers, in addition to the search
functionality offered. To validate the choice of data sources, each author iden-
tified a number of papers that were relevant to the goals of the review, and we
ensured that each paper was available from at least one of the data sources.
The selected data sources alongside the number of studies retrieved from each
are shown in Table 1.

3.4. Search string

We defined a targeted search string to retrieve the relevant studies from each
data source. To form the search string, we adapted the PICO criteria suggested
by Kitchenham et al. [18]. PICO is an acronym designed to help produce a
more effective search string by breaking up the focus of the search into the
categories: Population, Intervention, Comparison and Outcome.

Population concerns the target group of the publication, such as a certain
demographic, industry or users of a particular tool. For this survey, we identified
the population as publications that involve a form of agent-based model.

10



Digital Library URL Studies Retrieved

ScienceDirect https://www.sciencedirect.com/ 77
IEEE https://ieeexplore.ieee.org/ 58
Scopus https://www.scopus.com/ 42
ACM https://dl.acm.org/ 91
SpringerLink https://link.springer.com/ 196

Total 464

Table 1: Literature retrieved from each data source.

("agent-based" OR "multi-agent") AND

("system" OR "model" OR "simulation") AND

("test generation" OR "test case generation" OR "test input generation" OR

"parameter selection") AND "test"

Listing 1: Search string for retrieving relevant studies

Intervention covers the technique, technology or software used to solve a
particular problem in the context of the selected population. We identified the
intervention as a test case generation technique, given that we are investigating
test case generation for agent-based models.

Comparison concerns an alternative intervention that is to be compared with
the identified intervention. Given that this review is exploratory in nature, we
decided that it would not be appropriate to include the comparison category in
the search. For instance, if we included “search-based” and “random testing”

as terms for comparison, any literature that does not mention one of these
techniques would be excluded.

Outcome relates to the qualities or results of the study focus that a researcher
or practitioner would identify as important. In this study, we identified the
outcome as a test, given that any test case generation technique should produce
at least one test case if successful.

Using the above criteria, we formulated the following search string by iden-
tifying synonyms for each group of search terms, joining these by the boolean
OR operator, and then joining the resulting clauses with the boolean AND

operator, as shown below in Listing 1. The one exception is the population
search terms, which are split into two OR clauses joined by an AND, such
that a study may refer to the population as an agent-based model, agent-based
system, agent-based simulation, multi-agent system, multi-agent model, or a
multi-agent simulation.

Similar to the validation procedure employed for the selection of data sources,
each researcher independently identified a collection of papers relevant to the lit-
erature review that was used as a benchmark to judge the validity of the search
string. The search string was modified until it was capable of obtaining all of the
benchmark studies from the selected data sources, resulting in the search string

11



displayed in Listing 1. This included the separation of the population terms by
the OR operator as described above, inclusion of the “simulation” term, and
inclusion of the term “parameter selection” which was often used to describe a
process that resembles test case generation. During this process the format of
the search string was also modified to fit the syntax of each individual search
engine, preserving the same meaning as much as possible, within the constraints
of the differing functionality of the data sources.

Whilst the validation procedure improves our confidence in the search string,
it does not guarantee that it will capture all relevant papers. In fact, we identi-
fied a further 4 relevant papers through forward snowballing. These papers were
not captured by the initial search as they included population or intervention
terms that were too general or niche to include in the search string. Inclusion
of the former would increase the rate of false positives, making it infeasible to
review each paper. Inclusion of the latter would not have improved the precision
beyond the snowballed paper, making the search string overly-specific (an issue
for digital libraries constrained to a maximum number of search terms such as
ScienceDirect).

3.5. Screening criteria

In order to systematically decide which of the retrieved studies were relevant,
we applied the inclusion and exclusion criteria shown in Table 2. In order to
satisfy the inclusion criteria, a paper must satisfy both IC1 and IC2 in addition
to at least one of IC3, IC4 or IC5. This ensures that a relevant paper focuses
on the topic of test case generation for agent-based models and has been peer-
reviewed. On the other hand, if any of the exclusion criteria are satisfied then
the paper is deemed irrelevant. The criteria were applied during each phase of
the search process, namely the title and abstract review, the full-text review
and snowballing as shown in Figure 2.

After applying the inclusion and exclusion criteria to an initial selection of
464 papers, we identified 20 relevant papers. A large number of false positives
were obtained as there exists a significant body of research on the application
of agents to testing activities, such as agent-based test case generation [41].
This research concerns a similar but irrelevant topic and thus uses terminology
that is difficult to distinguish from relevant research. To address this issue, we
introduced a specific exclusion criterion: EC2.

3.6. Quality assessment

To appraise the quality of the selected studies, we produced a quality as-
sessment questionnaire adapted from the example questionnaires presented by
Kitchenham and Charters [18], as shown in Table 3. We primarily judge the
credibility of a study based on the clarity of its objectives and evaluation, its re-
producibility and its real-world impact. Concerning each criterion, a study may
be scored as either 0, 0.5 or 1, corresponding to not fulfilled, partially fulfilled
and fulfilled respectively. To ensure the credibility of selected studies, we set a
minimum quality threshold of 1.5 such that any paper with a quality score less
than or equal to 1.5 is ignored due to a perceived lack of credibility.

12



ID Criteria

IC1 Evaluates or proposes at least one test case generation
method for an agent-based model

IC2 Study is published in either a journal or conference
proceedings

IC3 Mentions how the expected outcomes for generated test
cases are known i.e. whether a test case should pass
or fail for a given input

IC4 Mentions the information artifact from which test cases
are derived e.g. a specification

IC5 Mentions a test adequacy measure

EC1 Focus of the study does not relate to test case generation
for agent-based models

EC2 Study involves using agent-based models to generate test
cases for a system that is not agent-based

EC3 Non-English study
EC4 Duplicate study
EC5 Study is unavailable in hard or electronic format

Table 2: Inclusion and exclusion criteria for determining relevance of retrieved papers.

ID Criteria

QA1 Are the aims of the study clear?
QA2 Have all aims of the study been addressed in the

evaluation?
QA3 Is sufficient information available to reproduce the

study?
QA4 Does the study consider real-life applications?

Table 3: Quality assessment criteria for assessing the quality of relevant literature.

4. Results

In this section, we outline the results for each research question according to
a derived taxonomy. It is important to note that the purpose of the proposed
taxonomy is to group and discuss similar approaches to test case generation for
agent-based models, rather than to act as a concrete definition. As a result,
there may be some overlap between categories within a taxonomy. A sepa-
rate bibliography for the reviewed literature is included as an Appendix, where
citations to this bibliography are prefixed with “P” e.g. [P1].

4.1. RQ1: What artifacts are used to drive test case generation?

All of the reviewed approaches use some form of specification as an infor-
mation artifact to drive test case generation. The types of information artifact

13



can be divided into two different categories: formal and informal artifacts.

(a)

(b)

Figure 3: A taxonomy (a) and the distribution (b) of information artifacts that appear in the
literature.

4.1.1. Formal artifacts

Formal artifacts express unambiguous behaviour or functionality of the system-
under-test in a well-defined format. Four different forms of formal artifact have
been identified in the literature: design documents, state machines, contracts
and assertions, and ontologies as shown in Figure 3a.

Design documents - Design documents comprise a series of structured arti-
facts that are used in development methodologies such as Prometheus [49] and
Tropos [50] to specify requirements, goals and scenarios for the design and de-
velopment of agent-based systems. These documents contain details about the
system-under-test that span the system architecture, agent communication pro-
tocol and testing goals, often taking the form of a directed graph or an AUML
document. AUML is an agent-based variant of the Unified Modelling Language
[51] that is predominantly used to specify agent interaction protocols describing

14



the semantics and structure of agent communication [P4, P9, P11]. Design doc-
uments from the Prometheus design methodology can be enriched with “testing
descriptors” that map design variables to implementation variables, highlighting
the necessary information for test input generation [P22]. Prometheus design
documents have also been used as the basis for test generation in [P3, P7], and
similarly, Tropos design documents have appeared in [P1, P14]. Prior to the
development of the Tropos design methodology, BDI agent plans had also been
used to drive test case generation [P19].

State machines - An alternative approach is to develop state machine-based
agents. In these approaches the expected behaviour of an agent-based system
can be expressed using a state machine, such as an X-machine [52] or stream
X-machine [53], which enables existing automata testing theory to be applied.
Regardless of their exact form, state machine specifications all contain the same
basic components; states joined by transitions, where a transition corresponds to
an action that moves the system from one state to another. A path through the
specification corresponds to an execution of the system-under-test, and therefore
a state machine specification expresses the paths through the system that may
be tested [54]. A variety of different state machine information artifacts have
been seen in the literature, including extended and abstract state machines [P10,
P18], as well as X-machines and stream X-machines [P8, P12].

Contracts and assertions - A different approach to formally specifying the
expected behaviour of an agent-based system is the use of contracts and asser-
tions. In contract-based testing, a contract specifies a number of pre-conditions,
post-conditions, and invariants that assert the expected behaviour of a system
before, after, and during execution [55]. These conditions are a form of assertion
- a logical statement that places a constraint on some state of computation [56] -
that can be used as the basis for both test case generation and an oracle. Using
the formal programming language Maude [57], [P5] and [P6] have used rewrite
rules to specify the functional behaviour of an agent-based system in terms
of pre-conditions and post-conditions. The functional programming language
Haskell has also been used as an executable specification to assert properties
that must be satisfied during an execution and drive test case generation [P2].
Additionally, structured test scenarios containing assertion-like constructs that
describe the expected outcome for a given scenario have been used as the basis
for test case generation in [P17] and [P23].

Ontologies - Ontologies are another form of formal artifact that have ap-
peared in several of the reviewed techniques. An ontology is a collection of
concepts from a given domain, including properties of the concepts and rela-
tionships between them [58]. In the context of agent-based models, two forms
of ontology have been used as an information artifact: “interaction ontologies”
and “domain ontologies” [P13]. An interaction ontology defines the concepts,
relationships and interaction semantics of a model as entities and relations,
providing a specification of the system that dictates how agents can interact.
Whereas a domain ontology contains information specific to a domain or subject,
for example, ontologies describing a production system [P20] or an environment
[P21]. Using a technique known as ontology alignment, publicly available do-

15



main ontologies can be harnessed to supplement existing ontologies, enhancing
the information artifact used for test case generation [P13].

Formal Information Artifact Type Papers

Design documents [P1, P3, P4, P7, P9, P11, P14, P19, P22]
State machine [P8, P10, P12, P18]
Contracts and assertions [P2, P5, P6, P17, P23]
Ontologies [P1, P13, P20, P21]

Table 4: Summary of formal information artifacts used in the evaluated literature.

4.1.2. Informal artifacts

Informal artifacts concern qualitative features of the system-under-test that
are difficult to express formally. In comparison to formal artifacts, informal
artifacts appeared significantly less in the literature, as shown in Figure 3b, and
therefore we do not divide them further. However, it is important to distinguish
between formal and informal artifacts based on the type of information they
contain and the techniques that use them.

Informal artifacts typically capture qualitative features of an agent-based
model such as stakeholder requirements expressed as soft goals. A soft goal is
a goal that does not have a clear satisfiability definition and is often used for
modelling non-functional requirements such as security, usability and flexibility
[59]. Therefore, it is not possible to definitively prove whether a soft goal has
been satisfied as the threshold for satisfaction is subjective. Instead, judgements
are informed by an expert opinion or a fitness function that approximates the
soft goal, transforming the task of test case generation into a search problem
where the objective is to find test cases that satisfy the fitness function.

Informal artifacts do not provide the same level of detail about the system-
under-test as their formal counterparts, but instead, approximate desired qual-
ities of the system-under-test that cannot be expressed formally. As a conse-
quence, informal artifacts are generally expressed using natural language rather
than a formal specification language, however, soft goals may also appear in
design documents as additional information [59]. In the reviewed literature,
informal artifacts have been used to drive evolutionary approaches to test case
generation, where fitness functions representing soft goals are used to continu-
ously evolve more challenging test cases [P16, P24]. Examples of soft goals seen
in the agent-based test case generation literature include reliability, efficiency
and robustness [P15, P16].

4.2. RQ2: What approaches are used to generate tests from the artifacts?

Four different groups of generation mechanism have been identified in the
agent-based literature: path traversal, information extraction, random testing
and rule-based, as shown in Figure 4a.

16



(a)

(b)

Figure 4: A taxonomy (a) and the distribution (b) of generation mechanisms that appear in
the literature.

4.2.1. Path-traversal

Path-traversal generation mechanisms are approaches that explore the differ-
ent possible paths through a traversable representation of the system-under-test,
such as a Petri net [60] or a state machine [61], where different paths through
the system correspond to different possible executions and therefore test cases.
The identified path-traversal generation mechanisms can be further divided into
three categories based on their subject: state machines, Petri nets and AUML.

State machine - Several of the reviewed approaches adopt state machine-
based specifications, where different paths correspond to different sequential
behaviours of the system-under-test. State machines are supported by a range
of automated testing techniques that make them particularly effective for speci-
fying and testing complex systems such as agent-based models [62]. Informally,
these techniques derive sequences of inputs from the specification representing
paths through the system, that are used to determine whether the implementa-

17



tion conforms to the specification. One such technique known as the W-method
[54] has been used as a generation mechanism for agent-based systems that are
equipped with X-machine specifications [P8, P12]. A similar approach has also
been used to generate test cases from an extended state machine specification
[63] for the unit and pair testing of BDI agents [P10]. Test cases have also
been generated using a model-checker to identify paths through a multi-agent
abstract state machine that satisfy a series of data-flow coverage criteria [P18].

Petri net - Path-traversal mechanisms also appear in the literature where
Petri nets have been used as a graphical representation of the system-under-
test. A Petri Net is an abstract, formal model used to describe the flow of
information in systems, where dynamic components are captured by tokens
that can move between states, enabling asynchronous and concurrent behaviour
to be captured [64]. Given that agents are often required to perform multiple
tasks concurrently [65], Petri nets are a particularly effective tool for specifying
and testing the behaviour of agent-based systems. In the reviewed literature,
Petri nets have been used to represent and test the structure of BDI agent plans
[P5]. Recursive coloured Petri nets [66] have also been used, enabling multiple
levels of abstraction of an agent-based model to be captured and accessed via
recursive unfolding of nested Petri nets [P11]. To automate the generation of
test cases from Petri nets, algorithms have been used that first transform the
nets into a machine-readable format such as a state table, before traversing the
individual paths and extracting their corresponding input sequences [P11].

AUML - Another form of graphical representation appearing in the litera-
ture that facilitates test generation through path-traversal is AUML. Similar
to Petri Nets, AUML also provides support for concurrent behaviour amongst
other agent-related characteristics [67], however, AUML is arguably more ac-
cessible due to its similarity to UML [68]. In the reviewed literature, algorithms
have been presented that convert AUML sequence diagrams into a traversable
format in order to identify paths through the system corresponding to test cases.
For example, in an approach for testing holonic multi-agent systems [69], a hier-
archical AUML sequence diagram is converted into a traversable format known
as a graph sequence diagram. A series of algorithms are presented to iden-
tify the different paths through the graph, before extracting the pre-conditions
and post-conditions necessary to form a covering test suite [P4]. Later this
approach was extended to include OCL annotations, allowing tests to identify
which agent caused an error in a scenario or interaction that contains multiple
agents [P9]. AUML sequence diagrams have also been translated into recursive
coloured Petri nets, using its corresponding state table as the basis for test case
generation [P11].

4.2.2. Information extraction

Information extraction generation mechanisms comprise approaches to test
case generation that are driven by the extraction of test information from an
information artifact, such as the extraction of variable-value pairs from design
documents. In the literature, information extraction techniques have generally

18



been applied to two different forms of information artifact: design documents
and ontologies (see Figure 4b).

Design documents - As discussed in Section 4.1.1, design documents com-
prise a series of artifacts that are used for the design of agent-based models in
agent development methodologies. For testing, useful information can be ex-
tracted from design documents and used to form test cases, such as agent goals
and plans. For example, by following a structured approach, integration test
suites can be derived from Tropos design documents concerning the system goals
of an agent-based system [P14]. Design documents can also be enriched with
test descriptors to provide additional information for test case generation, such
as highlighting variables that influence a testing scenario. With this additional
information, a test case specification can be extracted from design documents
that highlights any initialisation procedures and relevant variables involved in
a scenario that can be modified to form new test cases [P3]. Whilst this ap-
proach is only semi-automatic, a similar approach automates the extraction of
variable-value pairs from Prometheus design documents. This is achieved us-
ing equivalence class partitioning and boundary value analysis to generate a
minimal set of values for each influencing variable [P22]. Later, this approach
was used alongside a model-based test oracle generation technique to provide
automatic unit testing for agent systems [P7].

Ontology - Another form of artifact containing useful information that may
be extracted for testing is an ontology. An ontology [70] is a formal model of
knowledge representation for a given domain, detailing a set of concepts and
how they are related to facilitate the exchange and organisation of knowledge
[71]. In the context of an agent-based model, ontologies are used to model a
vast variety of information ranging from properties of agents and their context
to interaction protocols. It follows that information extraction approaches have
been proposed in the literature to utilise the information hosted by ontologies
for the purpose of test case generation. One approach to ontology-based test
case generation focusing on message-passing agents combines both agent inter-
action ontologies and domain ontologies, generating test cases in the form of
messages that conform to an interaction protocol. The task of test generation
then consists of generating meaningful message content that is to be sent by a
TesterAgent to an agent-under-test in order to provoke a particular behaviour.
To generate the message content, valid and invalid inputs are generated by se-
lecting an existing instance of a concept from the ontology that conforms to
OCL constraints. Alternatively, if there is no existing concept then a new one is
generated according to a series of input generation rules which will be discussed
in Section 4.2.4. A technique known as ontology alignment (or ontology match-
ing) [72] is also used to expand existing ontologies by supplementing them with
additional information from publicly available ontologies [P13]. Ontology-based
techniques have also been used to generate test cases that focus on industry
specific applications [P20] and the context of an agent-based system [P21].

19



4.2.3. Random testing

Random testing [73] is a well-known testing strategy where inputs are gen-
erated at random to exercise a system-under-test. As the name suggests, the
generation mechanism behind random testing is the process by which random
inputs are generated or selected. In comparison to other test case generation
mechanisms, random testing has not received as much attention in the agent-
based testing literature.

Random generation of numerical inputs is the most basic example of ran-
dom testing, where in general, generation of a test case corresponds to randomly
selecting a series of numerical values as input to the system-under-test. Depend-
ing on the system-under-test, the domain could be restricted to a user-defined
range of numerical values or a particular set such as the natural or real num-
bers. Perhaps due to the challenging characteristics of an agent-based model
such as communication through message-passing [32], richer inputs are required
and therefore random generation of numerical inputs has not been used as a
generation mechanism alone.

Instead, this approach has been used to support other forms of generation
mechanism, such as an ontology-based technique, by selecting numerical values
within a range specified as an OCL constraint to form valid and invalid inputs
[P13]. Random testing can also involve sampling non-numerical, user-specified
domains to generate more sophisticated test cases. For example, one approach
uses random testing to sample a domain data model which defines the range
and structure of messages permitted by a specific agent-interaction protocol
[P1]. In addition, QuickCheck [74] - a library for random testing of program
properties - has also been used to check whether a series of formally specified
properties hold in an agent-based system. To achieve this, QuickCheck can au-
tomatically generate simple test inputs and provides the functionality to define
custom test data generators for more complex inputs. In this work, QuickCheck
is demonstrated on a simple SIR (susceptible-infectious-recovered) model [75]
and on a more complex model of an artificial society, SugarScape [76]. In the
former, QuickCheck generates a series of agent populations as test cases, whilst
in the latter, a custom data generator is used to generate complex SugarScape
environments [P2].

4.2.4. Rule-based

The final group of test generation mechanisms used in the agent-based litera-
ture concern rule-based approaches. Rule-based generation mechanisms involve
a series of user-defined or automatically derived rules that describe how a test
case can be manipulated to create new ones. Two types of rule-based genera-
tion mechanism have been identified in the literature: transformation rules and
genetic operators.

Transformation rules - Transformation rule-based generation mechanisms
concern test generation techniques that are driven by a series of rules describ-
ing how one test case can be transformed to form a new one, by a logical
transformation. User-defined transformation rules have been applied to testing

20



agent-based models for infrastructure protection and emergency response sim-
ulation, targeting models of marine safety and security operations in particular
[P17]. To this end, structured textual descriptions of example scenarios, known
as vignette specifications, are modified by a library of user-defined transfor-
mation rules in order to produce different variations of the same scenarios as
test cases. These transformation rules can be applied to selected variables in
the vignette specification such as the number of boats involved in a scenario,
their positions and their physical dimensions. Similar approaches have also used
transformation rules as a generation mechanism to manipulate “test data mod-
els” to create new test data [P21], as well as applying them to XML definitions
of an interaction protocol to form “mock agents” [P23].

A number of the reviewed techniques used Maude rewrite rules as a gener-
ation mechanism. In rewriting logic [77], a rewrite rule is a procedure which
describes how an object can be transformed into another object. Maude [57] is
a formal language based on rewriting logic which allows users to specify compo-
nents of the system-under-test and their expected behaviour as an executable
specification using rewrite rules. In Maude, a rewrite rule is a local transition
rule t => t’ that describes a valid transformation of term t into another term
t’; for example, the rule rl [buy-drink] : coin => drink describes the action of
buying a drink for a coin. In the agent-based literature, Maude rewrite rules
have been used as a rule-based mechanism for generating test cases alongside
their expected results from a specification expressed in Maude [P5, P6].

Genetic operators - In the context of software testing, genetic algorithms
[78] can be harnessed to evolve new test cases. Informally, a genetic algorithm
is an algorithm inspired by evolution in which a solution to a specific problem,
such as a test case for test case generation, is encoded as a data structure that
resembles a chromosome. A series of genetic operators, namely mutation and
crossover, are then applied to chromosomes repeatedly to modify them in such
a way that preserves favourable features [79]. Mutation is the process by which
the chromosomes are randomly changed, and crossover is the process in which
the genetic information of two parent chromosomes are combined. To guide the
algorithm towards an optimal solution, it is also necessary to define a fitness
function as a measure of how well the solution attains its objective.

For testing agent-based models, genetic operators can be considered as rule-
based generation mechanisms as they are applied to existing test cases to form
new, potentially more challenging ones. For example, an evolutionary approach
to test case generation has been proposed in the agent-based literature where the
aim is to evolve test cases that are challenging with respect to soft goals such as
efficiency, as discussed in Section 4.1.2. This is achieved using a multi-objective
genetic algorithm, NSGA-II [80], with multiple fitness functions that represent
the soft goals. The genetic algorithm applies mutation operators and crossover
with a given probability to a chromosome representing the agent-under-test’s
environment, producing new environments as test cases that are potentially
more challenging. The approach is evaluated in an example scenario where a
CleanerAgent is tasked with cleaning a grid whilst maintaining a certain power
level and avoiding obstacles efficiently. Test cases are generated with multiple

21



obstructions and difficult to reach charging stations, presenting a significant
challenge for the agents [P16]. This approach was later adopted to support
AgentTest, a specification language for agent-based system testing [P15], before
being improved with a preference-based multi-objective algorithm, r-NSGA-II,
that is capable of prioritising a subset of the multiple objectives, such that
generated test cases are most challenging with respect to those objectives [P24].

Generation Mechanism Type Papers

Path-traversal [P4, P5, P8-P12, P18]
Information extraction [P1, P3, P7, P13, P14, P20-P22]
Random testing [P1, P2, P13]
Rule-based [P1, P5, P6, P15-P17, P21, P23, P24]

Table 5: Summary of different generation mechanisms used in the literature.

4.3. RQ3: How are verdicts assigned to generated test cases?

Due to the exploratory nature of an agent-based model, the “correct” out-
come of an execution is often unknown and it may be particularly difficult to
assign a verdict to a test case. This is known formally as the test oracle prob-
lem, where the test oracle is the mechanism behind the decision. In the reviewed
literature, three of the four different categories of oracle introduced by McMinn
et al. [29] have been identified: specified, human and derived (see Figure 5a).

4.3.1. Specified

Specified test oracles are mechanisms that assign test verdicts based on a for-
mal specification of the system-under-test [29]. Formal specifications, including
design documents, state machines, contracts and assertions, and ontologies, ex-
press the expected behaviour of the system-under-test under various conditions,
defining what should happen and implicitly what should not. Given that the
majority of the reviewed approaches involve a formal specification (discussed in
Section 4.1.1), it follows that most of the approaches also include a specified
oracle as shown in Figure 5b. Whilst the oracle information is present in these
approaches, several have not explained how it can be compared to the test exe-
cution in order to assign a verdict [P3, P12, P14, P19, P20, P22, P23]. On the
other hand, one of the reviewed approaches focuses on the automatic generation
of partial, passive test oracles from Prometheus agent design documents for BDI
agent-based systems alongside a technique for test case generation [P7]. Using
this approach, a selection of faults in BDI agent plans, events and beliefs can
be automatically detected in an implementation of a BDI agent system, based
on the expected behaviour specified in Prometheus design documents.

4.3.2. Derived

Derived test oracles are mechanisms that assign test verdicts based on in-
formation derived from artifacts of the system-under-test, rather than infor-
mation that is explicitly defined in a formal specification [29]. Whilst most

22



(a)

(b)

Figure 5: A taxonomy (a) and the distribution (b) of test oracles that appear in the literature.

of the reviewed approaches use a formal specification as an information arti-
fact, three approaches focus on generating test cases that satisfy soft goals, or
non-functional requirements, of the system-under-test that cannot be formally
expressed [P15, P16, P24]. To address this issue, fitness functions have been
used to approximate the fulfilment of a particular soft goal, acting as an oracle
that measures whether a certain quality or non-functional requirement is sat-
isfied by agents. Fitness functions are typically derived from qualities of the
system-under-test, rather than a feature of a formal specification. For example,
the efficiency of an agent cleaning a grid can be measured by a pair of fitness
functions [P16]:

fpower =
1

Total power consumption

fobs =
1

Number of obstacles encountered

In this scenario, a threshold value can be set such that any agent that exceeds the
threshold is to be considered efficient, providing an approximation of correctness
and a goal for test case generation.

4.3.3. Human

A human oracle is used where no information artifact can be used as the basis
of a test oracle, and instead, a human must make the decision as to whether
a test case should pass or fail using domain expertise [29]. In the reviewed

23



literature, all of the approaches use a formal or informal specification as an
information artifact and thus provide at least a derived oracle. However, many
of the approaches focus entirely on how test cases are generated and not how
verdicts are assigned. Even in the case that the information artifact contains the
information necessary to determine whether an execution is as expected, human
judgement may still be required to compare the execution to the specification.
Whilst this comparison is straightforward in some instances, for models with
visual or otherwise complex outputs, the comparison may be subjective. In
such cases, the distinction between different forms of an oracle is less clear. For
example, in one state machine-based approach, a human must observe the visual
output produced by the system-under-test and compare it with the expected
output expressed by a stream X-machine specification [P12]. In this situation,
the type of oracle used is unclear: the stream X-machine specification is a
specified oracle, but it requires a subjective human decision which could itself
constitute a human oracle. Whilst only one approach explicitly mentions the
need for human comparison [P12], several others may also require the same
treatment [P3, P14, P19, P20, P22, P23].

Test Oracle Type Papers

Specified [P1-P14, P17-P23]
Derived [P15, P16, P24]
Human [P12]

Table 6: Summary of test oracles used in the evaluated literature.

4.4. RQ4: How is the adequacy of a generated test suite measured?

An effective approach to test case generation should be guided by some
measure of how good a test suite is [81], known more formally as a measure of
test adequacy. In the literature, we have identified two core measures of test
adequacy that have been used as the goal for test case generation: coverage
criteria and fitness functions (see Figure 6a).

4.4.1. Coverage criteria

Coverage criteria are a measure of test adequacy that focus on how thor-
oughly a test suite covers a specified portion of the information artifact that
represents some functionality in the system-under-test. Where a state machine
specification is available, test adequacy is often measured using state and tran-
sition coverage [10, 12], or alternatively, test adequacy can be measured using
statement coverage, branch coverage and path coverage [28]. However, the lat-
ter criteria are not directly applicable to agent-based models as the notions
of branches and paths from other programming paradigms do not translate to
agent-based models clearly [82]. To address this, several works have proposed
coverage criteria specific to agent-based frameworks and testing approaches, in-
cluding the following particularly interesting criteria: BDI artifact coverage,
data-flow coverage and ontology coverage.

24



(a)

(b)

Figure 6: A taxonomy (a) and the distribution (b) of test adequacy criteria that appear in
the literature.

BDI artifact coverage - A series of belief-desire-intention coverage criteria
have been defined which draw parallels to existing coverage criteria such as
branch and statement coverage, but instead apply to the equivalent BDI ar-
tifacts: plan-based and node-based criteria [P19]. The group of node-based
criteria are designed to generate test cases that cover all possible states of the
system, whereas the group of path-based criteria aim to test how agent plans
are related to one another. Additionally, a subsumption hierarchy is defined,
indicating the minimal necessary coverage criteria for generating a satisfactory
test suite. Alternative definitions for coverage of BDI events, beliefs, context
conditions and plans have also been given in later works [P7], including a series
of state machine-based coverage criteria that are applicable when BDI agents
can be modelled as an extended state machine [P10].

Data-flow coverage - An alternative test case generation technique has been
developed that focuses on data flow [83]. In this approach, a series of data
flow coverage criteria are introduced to enable data flow testing of multi-agent
abstract state machines, focusing on the interaction of agent components. Data
flow testing [84] concerns a family of testing techniques that explore how vari-
ables are defined and subsequently used in a system to reveal unreasonable data
usage, such as declaring but never using a variable. Typically, data flow test-
ing is based on the control flow graph of the system-under-test, however, an

25



agent-based model does not have a one-to-one mapping from code to control
flow graph and therefore traditional approaches to data flow testing are not
directly applicable. Instead, this approach adapts traditional data flow test-
ing techniques to handle abstract state machine representations of agent-based
models, including a series of abstract state machine-specific data flow coverage
criteria [P18].

Ontology coverage - Test case generation has also been guided by the coverage
of an ontology in ontology-based approaches [P13]. In this approach, concepts
and instances from an ontology that have not been previously selected for test
cases are prioritised to provide greater coverage of the input space, instead of
focusing on a narrow subset of information. In the case that an instance must
be reused in a test case, the most infrequently used instance is selected in order
to maximise the diversity of the test suite. As a consequence of the thorough
exploration of the input space, the fault detection capability of the generated
test suite is shown to be superior to manual testing. In other approaches,
coverage of concepts derived from context ontologies [P21] and coverage of the
possible test cases that can be formed from a given testing scenario derived from
a domain ontology [P20] have been used as measures of test data adequacy.

4.4.2. Fitness functions

A fitness function evaluates how well a particular solution satisfies a problem-
specific objective, providing a ranking over all potential solutions [79]. For the
activity of test case generation, a fitness function can be used to measure the
adequacy of a test case with respect to a problem-specific objective, including
satisfaction of stakeholder goals such as collision avoidance [P16] or the ability
to reveal known faults [P21]. In the literature, fitness functions have also been
defined to capture soft goals of agent-based systems, where the adequacy of a
generated test suite is measured by the fulfilment of non-functional requirements
such as efficiency and reliability [P15, P16, P24]. Consequently, fitness functions
have been used to guide evolutionary approaches to test case generation in
which genetic operators are applied to evolve test suites that are challenging
with respect to a defined objective, as described in Section 4.2.4. As part of
the eCAT test case generation tool for multi-agent systems, mutation adequacy
score has been used as a measure of adequacy for test suites generated using
the EVOL-MUTATION approach [P1]. Mutation adequacy is the fraction of injected
faults that are detected by the test suite, summarising the ability of a test suite
to detect known faults in the system-under-test [85].

Test Data Adequacy Criterion Papers

Coverage criteria [P5-P8, P10, P12, P13, P18-P21]
Fitness function [P1, P4, P15, P16, P21, P24]

Table 7: Summary of test data adequacy critria used in the evaluated literature.

26



4.5. RQ5: What level of abstraction do the generated test cases target?

Agent-based models comprise multiple levels of abstraction, from the indi-
vidual units that form a single agent up to a society composed of multiple in-
teracting agents, each containing different functionality and testing objectives.
Nguyen et al. have distinguished five different testing objectives that should be
considered when testing a typical agent-based model: unit, agent, integration,
society and testing [31] as shown in Figure 7a.

(a)

(b)

Figure 7: A taxonomy (a) and the distribution (b) of levels of abstraction that have been
tested in the literature.

4.5.1. Unit

The lowest level of abstraction to consider when testing an agent-based
model is that of the constituent units that make up an agent, such as goals,
plans and rules. Several approaches from the reviewed literature have focused
on the generation of unit tests for agent-based systems alone [P7, P19, P22],
whilst a further three approaches have also considered additional levels of ab-
straction, such as the agent-level [P2, P6, P15]. For example, the beliefs, plans
and events of a BDI agent-based model have been subjected to boundary value
analysis and equivalence class partitioning in order to generate variable-value
pairs as test cases that exercise these units of the system-under-test [P22].

27



4.5.2. Agent

Agent-level testing concerns the integration of the units that compose an
agent (covered individually in unit testing), such as goals and plans, that col-
lectively make up the behaviour of an individual. A significant majority of the
approaches from the reviewed literature focus on generating test cases that ex-
ercise agent-level behaviour alone or in addition to other levels of abstraction
[P2, P5, P6, P8, P10-P13, P15, P16, P18, P21, P23, P24]. For example, using
the random testing tool QuickCheck, test cases focusing on unit and agent-level
behaviour have been generated for property-based testing [86] of agent-based
models [P2].

4.5.3. Integration

Integration-level testing concerns the interaction between individual agents
and their environments towards cooperative behaviour. Several works have fo-
cused on both the agent-level and integration-level of interaction [P6, P10, P18,
P23], where test cases target both individual agent behaviour and behaviour
that is the result of agent-to-agent or agent-to-environment interactions. In ad-
dition, a pair of techniques focusing solely on integration-level testing have been
proposed [P9, P14]. For example, BDI agents have been modelled as extended
state machines where pair-wise interaction can be captured by the product ma-
chine composed of two individual extended state machines. As a consequence,
existing testing techniques can be used to generate both agent and integration-
level test cases corresponding to testing individual and cooperative behaviour
[P10].

4.5.4. Society

Perhaps the most complicated level of abstraction to test is the society level,
concerning the complex emergent behaviours that are the product of the lower
levels of abstraction. Emergence in agent-based systems can be described as
“the arising of novel and coherent structures, patterns and properties during
the process of self-organisation in complex systems”, as defined by Goldstein
[87]. Society level test case generation has received little attention with only
three approaches considering this level of abstraction [P4, P6, P23]. One of
the approaches targets test case generation for holonic multi-agent systems [69],
focusing on testing emergent behaviours that have been acquired over time in
order to deal with challenging and previously unseen situations [P4]. Another
approach introduces a testing framework for agent-based models that supports
the testing of agent, integration and society-level testing through the generation
of mock agents from XML protocol specifications that trigger a testing scenario
[P23]. The third approach involves conformance testing of agent-interaction
protocols specified in Maude, where the specified transition sequences are ex-
tracted and used to conduct testing at the unit, agent, integration and society
levels of testing [P6].

28



4.5.5. Acceptance

The final level of abstraction to consider when testing an agent-based model
is acceptance. Acceptance testing is a well-known software testing practice that
involves testing whether high-level acceptance criteria are met, such as the fulfil-
ment of user requirements [88]. In the reviewed literature, a couple of approaches
for acceptance testing have been proposed that focus on generating alternative
versions of the same user-specified scenario. One approach focuses on gener-
ating different variations of a specified marine safety and security scenario as
test cases [P17], whilst the other approach is a more general testing framework
that enables acceptance testing of scenarios specified as part of the Prometheus
agent development methodology [P3]. In addition, evolutionary approaches to
test case generation have been proposed that are suitable for requirements test-
ing [P16, P24]. In these approaches, stakeholder goals are formulated as fitness
functions which act as both the generation mechanism, as discussed in Section
4.2.4, and an oracle for evaluating whether a particular execution meets the
stakeholder goal, as discussed in Section 4.3.2. This approach has also been
used as a complementary testing methodology for the AgentTest specification
language that covers unit, agent and acceptance level testing [P15].

Level of abstraction Papers

Unit [P2, P6, P7, P15, P19, P22]
Agent [P2, P5, P6, P8, P10-P13, P15, P16, P18, P21, P23, P24]
Integration [P6, P9, P10, P14, P18, P23]
Society [P4, P6, P23]
Acceptance [P3, P15-P17, P24]

Table 8: Summary of levels of abstraction tested in the evaluated literature.

4.6. Publication trends

In this section, the publication trends collected during the data extraction
are presented, including publication venues and the results of the quality assess-
ment. Notice that the quality assessment presented in Table 10 does not include
any literature with quality ≤ 1.5, as any study below this threshold would be ex-
cluded due to a perceived lack of quality in accordance to the quality assessment
procedure discussed in Section 3.6.

As shown in Table 9, the reviewed literature has been published in a variety
of conferences and journals spanning multiple subject areas. Whilst this demon-
strates that agent-based models and test case generation are multidisciplinary
research topics, it also highlights the lack of an established publication channel.

As shown in Table 10, the majority of the reviewed publications scored
highly in QA1 and QA2 as a result of having well-defined aims that were clearly
met. However, many of the publications did not include a thorough evaluation
of the proposed technique and did not include sufficient details for replication.
Consequently, studies did not score as highly in QA3 and QA4 in general.

29



Venue Count

International Conference on Autonomous Agents and Multi-Agent Systems 4
International Workshop on Agent-Oriented Software Engineering 2
IEEE/ACS International Conference on Computer Systems and Applications 2
International Conference on Software Engineering and Knowledge Engineering 1
International Conference on Informatics in Control, Automation and Robotics 1
International Conference on Agents and Artificial Intelligence 1
IEEE Transactions on Software Engineering 1
IEEE International Conference on Software Maintenance 1
Summer Simulation Conference 1
Engineering Applications of Artificial Intelligence 1
Science and Information Conference 1
Federated Conference on Computer Science and Information Systems 1
International Conference on Networking and Advanced Systems 1
International Symposium on Search Based Software Engineering 1
Asia-Pacific Software Engineering Conference 1
Journal of Computer Science 1
Neurocomputing 1
Security Informatics 1
Formal Aspects of Computing 1

Table 9: Publication venues of reviewed work.

ID QA1 QA2 QA3 QA4 Total

[P1] 1 1 0 1 3
[P2] 1 1 0.5 1 3.5
[P3] 1 1 0.5 0.5 3
[P4] 1 1 1 1 4
[P5] 1 1 0.5 0.5 3
[P6] 1 1 0.5 0.5 3
[P7] 1 1 0.5 1 3.5
[P8] 1 1 0.5 0.5 3
[P9] 1 0.5 1 0 2.5
[P10] 1 1 1 0 3
[P11] 1 1 0.5 0.5 3
[P12] 1 1 0.5 0.5 3
[P13] 1 1 0.5 0.5 3
[P14] 1 0.5 0.5 0.5 2.5
[P15] 1 1 0.5 0.5 3
[P16] 1 1 1 0.5 3.5
[P17] 1 1 0.5 1 3.5
[P18] 1 1 0.5 0.5 3
[P19] 1 1 0.5 0.5 3
[P20] 0.5 0.5 0.5 0.5 2
[P21] 0.5 0.5 0.5 0.5 2
[P22] 1 1 0.5 0.5 3
[P23] 1 1 1 0.5 3.5
[P24] 1 1 0.5 0.5 3

Table 10: Quality assessment scores of the reviewed literature.

30



5. Discussion

This section provides a collective discussion of the reviewed literature, high-
lighting the advantages and disadvantages of the reviewed techniques, interest-
ing observations from each research questions, and future research directions.

5.1. Advantages and disadvantages

In response to RQ1 and RQ2, we reviewed a range of information artifacts
and generation mechanisms, each having different advantages and disadvantages
that make it more or less suitable for particular applications. In Tables 11 and
12, we summarise the relevant advantages and disadvantages of the reviewed
information artifacts and generation mechanisms respectively.

Information Artifact Advantage Disadvantage

Design documents Widely used in agent-
oriented development and
therefore applicable to
many existing systems [89].

Requires the user to follow
particular design method-
ologies which are time con-
suming to learn [90].

State machines Supports the use of a range
of established test genera-
tion techniques [91].

Requires the user to learn
how to formally specify
state machines [92].

Contracts and assertions Users can specify behaviour
independent of the imple-
mentation i.e. what the
model should do, not how
the model should do it [46].

No guarantee that a test
case will be generated that,
upon execution, covers a
specified contract or asser-
tion [93].

Ontologies Supported by many popu-
lar agent development plat-
forms including JADE [30].

Converting domain exper-
tise into an ontology is dif-
ficult and time consuming
[94].

Table 11: Advantages and disadvantages of the different information artifacts

31



Generation Mechanism Advantage Disadvantage

Path-traversal (State ma-
chine)

Under specific design-for-
test conditions, certain
techniques can guaran-
tee correctness of the
implementation [95].

Suffers from state-explosion
problem, particularly in
concurrent systems [92].

Path-traversal (Petri net) Provides a natural repre-
sentation for concurrent be-
haviour [96], a defining fea-
ture of agent-based models.

Suffers from the complex-
ity problem. That is, they
quickly become too large to
analyse for even modest-size
systems [97].

Path-traversal (AUML) Effective for generating test
cases that exercise agent in-
teractions and scenarios [96,
98].

Agents are represented as
objects in AUML, limiting
the ability to express and
test proactive behaviour
[99].

Information extraction (De-
sign documents)

Supports class partitioning
and boundary value analy-
sis to efficiently achieve a
particular level of coverage
[100].

Additional testing informa-
tion must be added manu-
ally to design documents to
enable test case generation
[100, 101].

Information extraction (On-
tology)

Supports ontology align-
ment to expand and diver-
sify the available testing in-
formation [30].

Ontology-based approaches
require greater effort than
manual testing to set up ini-
tially, but are more efficient
in the long term [71].

Random testing Capable of generating large
amounts of test cases for a
relatively small cost [102].

Requires manual interven-
tion or custom data gen-
erators to handle complex,
non-numerical inputs [46].

Rule-based (Transforma-
tion rules)

Enables the automatic gen-
eration of domain-relevant
test cases using reusable
transformation rules [103].

Transformation rules must
be manually specified based
on domain expertise [103],
often using a formal lan-
guage such as Maude [104].

Rule-based (Genetic opera-
tors)

Enables the generation of
test cases that are challeng-
ing with respect to a spe-
cific user-defined testing ob-
jective [105].

Performance is dependent
on how accurately the fit-
ness function captures the
testing objective [105].

Table 12: Advantages and disadvantages of the different generation mechanisms

5.2. Discussion of results

In response to RQ1, two different groups of information artifacts were iden-
tified: formal and informal. The results to RQ1 showed that significantly more
approaches use formal information artifacts than informal information artifacts
as the basis for test generation. As a consequence, the majority of the reviewed
approaches focus on well-defined, functional properties of an agent-based sys-
tem that can be verified using existing, well-established testing techniques. For
example, where state machines have been used as a formal specification of the

32



system-under-test, the W-method may be used to generate test cases. However,
a state machine does not support the specification and testing of non-functional,
qualitative properties intrinsic to agent-based models such as efficiency and re-
liability. Conversely, only a small number of approaches have used informal
information artifacts to drive test case generation, that instead focus on ap-
proximating soft goals and testing whether they are fulfilled.

Observation 1: The majority of reviewed information artifacts do not facilitate
specification and testing of non-functional requirements such as soft goals.

In response to RQ2, four groups of generation mechanism were found: in-
formation extraction, path traversal, rule-based and random testing. Following
the outcome of RQ1, most of these generation mechanisms harness information
expressed by a formal information artifact, such as a Petri net, state machine
or ontology, to form new test cases that test different behaviour. Whilst path-
traversal, information extraction and rule-based mechanisms were extensively
used, only a small number of approaches used random testing as a mechanism
for test case generation.

Observation 2: Information extraction, path traversal and rule-based mech-
anisms have been used as techniques for generating test cases that exercise
functional requirements.

We found that in the few approaches where informal artifacts had been used,
genetic algorithms had been adopted as a solution to generate test cases that
satisfy a non-functional requirement. In these approaches, the genetic operators
known as mutation and crossover are repeatedly applied to seed test cases to
form new, potentially more challenging tests with respect to a non-functional
requirement expressed as a fitness function.

Observation 3: Genetic algorithms have been used as a technique for evolving
test cases that exercise non-functional requirements.

In response to RQ3, three forms of test oracle were discussed: specified, de-
rived, and human. Due to most approaches involving some form of specification
as an information artifact, the vast majority of approaches involved a specified
oracle. Where informal specifications of non-functional requirements were used,
oracles were generally derived from the system-under-test or domain knowledge
in the form of fitness functions that approximate soft goals. One approach also
required a human oracle to judge whether the visual output of an agent-based
model matched the specification. This research question proved particularly
difficult to answer as most of the reviewed literature did not discuss the test
oracle in great detail, neglecting information about how the outcome of a test
execution is compared to the specification in order to assign a verdict. Whilst in
some cases this is a trivial comparison, in others, it is not so straightforward and
it appears that domain expertise are needed to compare the actual execution

33



to the expected execution, raising questions over whether the oracle should be
considered specified or human. Therefore, it is necessary to communicate all
details of the oracle.

Observation 4: Most of the reviewed approaches do not provide sufficient
details regarding the test oracle.

In response to RQ4, two forms of test data adequacy criterion were identified:
coverage criteria and fitness functions. Where a formal information artifact has
been used to specify the behaviour of the system-under-test, we found that a
variety of different agent-based coverage metrics were used as a measure of test
data adequacy. For example, in some BDI agent systems, test suites have been
created with the aim of covering various different artifacts specific to the BDI
agent architecture such as agent plans.

Observation 5: The adequacy of a functional test suite is generally measured
by some form of agent-based coverage.

Where an informal information artifact has been used, fitness functions cap-
turing application-specific soft goals have generally been used as a measure of
test adequacy, such that an adequate test suite is one that poses a significant
challenge with respect to the non-functional requirement in question. Therefore,
the goal of techniques driven by informal artifacts is not to cover a particular
component of the system-under-test, but to develop test cases that force the
system-under-test into extreme conditions under which soft goals such as effi-
ciency become increasingly difficult to satisfy.

Observation 6: The adequacy of a non-functional test case is generally mea-
sured using a fitness function that represents fulfilment of the non-functional
requirement.

In response to RQ5, we classified each of the reviewed approaches according
to the level of abstraction that the generated test suites target: unit, agent,
integration, society, and acceptance. We found that the significant majority of
approaches target the agent level of testing, generating test cases that target
the functionality of individual agents. Several approaches also targeted the unit,
integration and acceptance levels of testing. However, the society level of testing
has received far less attention than the other levels of abstraction.

Observation 7: Most of the reviewed approaches target the agent-level of
abstraction, whilst the society-level has received the least attention.

After conducting the quality assessment, we found that the quality of the
reviewed approaches was generally high, with most of the reviewed literature
scoring highly in QA1 and QA2 reflecting clear definition and fulfilment of aims.
However, we found that in most cases there were insufficient details to replicate

34



the approach, and in particular, only a few approaches were evaluated on “real-
world” agent-based systems.

Whilst the majority of techniques were demonstrated on toy examples, one
technique was evaluated thoroughly on a complex production automation sys-
tem [71]. The evaluation focused on the feasibility, cost-reducing capability, and
coverage of possible scenarios achieved using an ontology-based test case genera-
tion technique. The authors demonstrated that in the long-term, ontology-based
test case generation outperforms manual test case generation in all dimensions.
Given the success of this technique in an industrial context, future work should
also consider real-world case studies for evaluation in order to demonstrate their
potential in industry.

Observation 8: Evaluation is rarely performed on real-world systems that in-
clude typical agent-based properties such as concurrency and non-determinism.

Most of the reviewed literature did not include an experimental evaluation.
Instead, most techniques were demonstrated on example systems ranging from
bibliographic management systems to implementations of agent interaction pro-
tocols. However, these did not incorporate a controlled comparison with other
techniques. In the few papers that did conduct an experimental evaluation, mu-
tation testing was generally applied to an example system. These works report
the mutation score or fault detection rate of their test generation technique with
respect to a number of known or seeded faults.

Whilst mutation testing provides a measure of fault detection capability,
multiple confounding factors must be considered in order to provide a robust
comparison between techniques [106]. In particular, the results of mutation
testing depend on the introduced faults and the system-under-test. Therefore,
to achieve a fair comparison, techniques should be compared in terms of their
ability to reveal faults in identical systems. To this end, future work would
benefit from a database of benchmark agent-based systems seeded with faults,
similar to the Defects4J framework in Java [107].

Observation 9: Existing techniques are difficult to compare due to a lack of
consistent experimental evaluation methodology.

5.3. Impact on research and practice

The findings of this literature review have several implications for both re-
search and practice concerning agent-based models:

1. Testing of non-functional requirements needs greater attention from re-
searchers. There are comparatively few test case generation techniques
that support the specification and testing of non-functional requirements
in agent-based models. This is a significant limitation as agent-based mod-
els often have soft goals as requirements, such as reliability and safety, that
the majority of approaches cannot test.

35



2. To advance the reproducibility and comparability of techniques, researchers
should provide greater detail about the test oracle. Without full details of
the test oracle, the reader is left to make implicit assumptions about the
testing procedure, making the comparison of research difficult [47].

3. Additionally, future work would be more comparable if experimental eval-
uations used the same subject systems. To that end, we recommend that a
collection of faulty agent-based models, similar to the Defects4J framework
in Java [107], should be developed to be used as a baseline for comparing
agent-based testing techniques.

4. Due to a lack of rigorous experimental evaluation, it is currently unclear
how effective the reviewed approaches would be in practice. In order
to achieve more rigorous and realistic evaluations, future work should
consider using real-world case studies as examples, such as the complex
automation system studied by Moser et al. [71].

5. In RQ1, we identified a number of forms of information artifact. A po-
tential barrier to their adoption in industry is the time required to learn
and construct them. Future work should investigate methodologies for
developing user-friendly artifacts in a timely manner so as to encourage
wider adoption.

6. Only one of the reviewed test case generation techniques covered both
functional and non-functional test input generation. Therefore, practi-
tioners will usually have to adopt multiple techniques in order to generate
test cases that exercise both functional and non-functional requirements.
To address this, future tools would benefit from providing both functional
and non-functional test case generation.

7. Most of the reviewed test case generation techniques are only applicable to
a particular form of agent-based model or development methodology. Fu-
ture work should consider techniques that could be applied more generally
to any form of agent-based model, without requiring significant additional
effort. We believe that this is one of the necessary steps towards adoption
in industry.

5.4. Threats to validity

Following Kitchenham and Charter’s guidelines for conducting systematic
literature reviews, we have considered potential threats to validity that may
affect the results presented in this systematic literature review. We discuss the
following categories of threats to validity defined by Zhu et al. [108]: construct
validity, internal validity, external validity and conclusion validity.

5.4.1. Construct validity

Construct validity primarily concerns the review protocol and how inclusive
the selected search string, data sources and screening criteria were with respect
to the research questions. To minimise threats to construct validity, we included
a validation procedure for each of the components of the review protocol. For
example, when designing the search string the authors each selected a sample

36



of three papers that they believed the search should retrieve. The search string
was then iteratively improved until it could retrieve all of the selected literature.
However, it is still possible that some relevant literature may have been missed
by the search due to the choice of search terms, data sources and screening
criteria.

5.4.2. Internal validity

Internal validity concerns the trustworthiness of the cause-effect relationship
between the results and the review methodology. In this review, the search
procedure was primarily conducted by a single researcher, and therefore the
results may be subject to selection bias. To reduce this, a validation procedure
was conducted where a randomly selected collection of papers were reviewed by
the other authors, such that each paper was reviewed by both the first author
and at least one other author. Out of a set of 32 papers, 84% yielded the same
verdict by both authors, and after group discussion over the studies yielding a
disagreeing verdict, 90% of the other authors’ verdicts were in agreement with
the primary authors. Furthermore, the search procedure has been conducted to
favour false positives over false negatives, such that a study was only rejected if
the author was certain that it was irrelevant according to the screening criteria.
In the case of any doubt, a paper would be moved forwards to the next stage,
and if after a full-text review the verdict of a paper was still unclear, it would
be reviewed by all authors independently and discussed until a group consensus
was reached.

5.4.3. External validity

External validity concerns the applicability of the results to a given domain,
which in our case is testing for agent-based models. Due to the lack of an agreed-
upon definition of an agent-based model, it is possible that some of the reviewed
approaches do not conform to a particular definition of an agent-based model.
To minimise this threat, we provided an inclusive definition of an agent-based
model in Section 2.1 and designed our review protocol accordingly. Further-
more, we carefully designed a taxonomy to group similar responses to each
research question under a generalised category, providing results that generalise
to various forms of agent-based model regardless of their exact details.

5.4.4. Conclusion validity

Conclusion validity concerns the reproducibility of the results. In order to
maximise the reproducibility of our results, we followed Kitchenham and Char-
ter’s guidelines for systematic literature reviews to provide details including the
choice of search string, data sources and screening criteria. We also introduced
a taxonomy based on the reviewed literature to provide a more structured ap-
proach for answering the qualitative research questions. However, there remains
subjectivity over the classification of an approach according to the taxonomy
and therefore we cannot guarantee that upon replication the exact same con-
clusions would be met.

37



6. Conclusion

With the need for drastic improvements in model validation and testing
being highlighted recently [17, 16], it is clear that more effective and accessible
techniques must be developed for testing agent-based models. In this review, we
have collected, organised, and presented the literature on test case generation
for agent-based models, providing insights into the current state-of-the-art for
test case generation in agent-based models. The systematic literature review
was conducted using five digital libraries, yielding a total of 464 papers from
which 24 relevant studies were identified. We used the relevant studies to answer
five research questions related to the key aspects of test case generation: the
information artifact, the generation mechanism, the test oracle, the test data
adequacy criterion, and the level of abstraction tested.

The results showed that 88% of the reviewed approaches focus on generating
test cases that test functional requirements, and conversely, that only 12% of
approaches focus on testing non-functional requirements. This statistic suggests
that testing of soft goals is not well supported by the majority of the existing
approaches, limiting the potential of these techniques in practice. We also found
that the majority of the techniques could be classified as information extraction,
path-traversal or rule-based in terms of the mechanism used to create test cases.
Furthermore, we identified a number of agent-based coverage criteria used to
measure the adequacy of functional test suites and described the use of fitness
functions to measure the adequacy of non-functional test suites.

This review has also revealed a lack of information regarding test oracles
in the agent-based literature. To increase reproducibility and comparability of
results and techniques, the procedure for assigning a verdict to a test case based
on the provided information must be clearly communicated. It is not enough
to state that “the expected outcome can then be compared to the actual out-
come”. Most of the reviewed approaches were also found to generate test cases
that exercise agent-level behaviour, whereas the emergent societal behaviours
inherent to agent-based systems have been largely ignored. Similarly, we found
that evaluation of the reviewed approaches were often conducted using simplis-
tic examples that do not exhibit properties typical of an agent-based system
that would make test case generation considerably more difficult. Therefore,
future techniques should consider society-level testing and use more realistic
examples for evaluation that exhibit challenging agent-based properties such as
non-determinism and concurrency.

Declaration of competing interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Acknowledgements

Walkinshaw and Hierons are funded by the EPSRC CITCOM grant EP/T030526/1.

38



Appendix. Research papers evalutated in the review

[P1] Nguyen, C.D., Perini, A. and Tonella, P., 2008, May. eCAT: a tool for
automating test cases generation and execution in testing multi-agent
systems. In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems: demo papers (pp. 1669-
1670).

[P2] Thaler, J. and Siebers, P.O., 2019, July. Show me your properties:
the potential of property-based testing in agent-based simulation.
In Proceedings of the 2019 Summer Simulation Conference (p. 1).
Society for Computer Simulation International.

[P3] Thangarajah, J., Jayatilleke, G. and Padgham, L., 2011. Scenarios
for system requirements traceability and testing. In Autonomous
Agents and MultiAgent Systems (pp. 285-292). IFAAMAS.

[P4] Dehimi, N.E.H., Mokhati, F. and Badri, M., 2015. Testing HMAS-
based applications: An ASPECS-based approach. Engineering Ap-
plications of Artificial Intelligence, 46, pp.232-257.

[P5] Kissoum, Y. and Sahnoun, Z., 2007, May. A formal approach for
functional and structural test case generation in multi-agent systems.
In 2007 IEEE/ACS International Conference on Computer Systems
and Applications (pp. 76-83). IEEE.

[P6] Mokhati, F., Badri, M. and Zerrougui, S., 2013, October. A novel
conformance testing technique for Agent Interaction Protocols. In
2013 Science and Information Conference (pp. 485-495). IEEE.

[P7] Padgham, L., Zhang, Z., Thangarajah, J. and Miller, T., 2013.
Model-based test oracle generation for automated unit testing of
agent systems. IEEE Transactions on Software Engineering, 39(9),
pp.1230-1244.

[P8] Eleftherakis, G., Kefalas, P. and Kehris, E., 2011, September. A
methodology for developing component-based agent systems focusing
on component quality. In 2011 Federated Conference on Computer
Science and Information Systems (FedCSIS) (pp. 561-568). IEEE.

[P9] Dehimi, N.E.H. and Mokhati, F., 2019, June. A Novel Test Case
Generation Approach based on AUML sequence diagram. In 2019
International Conference on Networking and Advanced Systems (IC-
NAS) (pp. 1-4). IEEE.

[P10] Zheng, M. and Alagar, V.S., 2005, December. Conformance testing of
BDI properties in agent-based software. In 12th Asia-Pacific Software
Engineering Conference (APSEC’05) (pp. 8-pp). IEEE.

[P11] Kissoum, Y. and Sahnoun, Z., 2008, March. A Recursive Colored
Petri Nets semantics for AUML as base of test case generation. In
2008 IEEE/ACS International Conference on Computer Systems and
Applications (pp. 785-792). IEEE.

39



[P12] Sakellariou, I., Dranidis, D., Ntika, M. and Kefalas, P., 2015, January.
Stream X-Machines for Agent Simulation Test Case Generation. In
International Conference on Agents and Artificial Intelligence (pp.
37-57). Springer, Cham.

[P13] Nguyen, C.D., Perini, A. and Tonella, P., 2008, May. Experimental
evaluation of ontology-based test generation for multi-agent systems.
In International Workshop on Agent-Oriented Software Engineering
(pp. 187-198). Springer, Berlin, Heidelberg.

[P14] Houhamdi, Z. and Athamena, B., 2011. Structured integration test
suite generation process for multi-agent system. Journal of Computer
Science, 7(5), p.690.

[P15] Babac, M.B. and Jevtić, D., 2014. AgentTest: A specification lan-
guage for agent-based system testing. Neurocomputing, 146, pp.230-
248.

[P16] Nguyen, C.D., Miles, S., Perini, A., Tonella, P., Harman, M. and
Luck, M., 2012. Evolutionary testing of autonomous software agents.
Autonomous Agents and Multi-Agent Systems, 25(2), pp.260-283.

[P17] Shahir, H.Y., Glässer, U., Farahbod, R., Jackson, P. and Wehn, H.,
2012. Generating test cases for marine safety and security scenarios:
a composition framework. Security Informatics, 1(1), p.4.

[P18] Cavarra, A., 2011. A data-flow approach to test multi-agent ASMs.
Formal aspects of computing, 23(1), pp.21-41.

[P19] Low, C.K., Chen, T.Y. and Rónnquist, R., 1999. Automated test case
generation for BDI agents. Autonomous Agents and Multi-Agent
Systems, 2(4), pp.311-332.

[P20] Moser, T., Dürr, G. and Biffl, S., 2010. Ontology-Based Test Case
Generation For Simulating Complex Production Automation Sys-
tems. In SEKE (pp. 478-482).

[P21] Szatmári, Z., Oláh, J. and Majzik, I., 2011, July. Ontology-based
Test Data Generation using Metaheuristics. In ICINCO (2) (pp.
217-222).

[P22] Zhang, Z., Thangarajah, J. and Padgham, L., 2009, May. Automated
testing for intelligent agent systems. In International Workshop on
Agent-Oriented Software Engineering (pp. 66-79). Springer, Berlin,
Heidelberg.

[P23] Coelho, R., Cirilo, E., Kulesza, U., von Staa, A., Rashid, A. and
Lucena, C., 2007, October. Jat: A test automation framework for
multi-agent systems. In 2007 IEEE International Conference on Soft-
ware Maintenance (pp. 425-434). IEEE.

[P24] Kalboussi, S., Bechikh, S., Kessentini, M. and Said, L.B., 2013, Au-
gust. Preference-based many-objective evolutionary testing generates
harder test cases for autonomous agents. In International Sympo-
sium on Search Based Software Engineering (pp. 245-250). Springer,
Berlin, Heidelberg.

40



References

[1] A. Liu, M. Paddrik, S. Y. Yang, X. Zhang, Interbank contagion: An
agent-based model approach to endogenously formed networks, Journal
of Banking & Finance 112 (2020) 105191.

[2] M. Tracy, M. Cerdá, K. M. Keyes, Agent-based modeling in public health:
current applications and future directions, Annual review of public health
39 (2018) 77–94.

[3] S. Flaxman, S. Mishra, A. Gandy, H. Unwin, H. Coupland, T. Mellan,
H. Zhu, T. Berah, J. Eaton, P. Perez Guzman, et al., Report 13: Esti-
mating the number of infections and the impact of non-pharmaceutical
interventions on covid-19 in 11 european countries (2020).

[4] J. Panovska-Griffiths, C. Kerr, R. M. Stuart, D. Mistry, D. Klein, R. M.
Viner, C. Bonell, Determining the optimal strategy for reopening schools,
work and society in the uk: balancing earlier opening and the impact of
test and trace strategies with the risk of occurrence of a secondary covid-19
pandemic wave, medRxiv (2020).

[5] C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, G. Hart, K. Rosen-
feld, P. Selvaraj, R. C. Nunez, B. Hagedorn, L. George, et al., Covasim:
an agent-based model of covid-19 dynamics and interventions, medRxiv
(2020).

[6] R. Ramler, K. Wolfmaier, Economic perspectives in test automation:
balancing automated and manual testing with opportunity cost, in: Pro-
ceedings of the 2006 international workshop on Automation of software
test, 2006, pp. 85–91.

[7] P. McMinn, Search-based software test data generation: a survey, Soft-
ware testing, Verification and reliability 14 (2004) 105–156.

[8] P. Godefroid, M. Y. Levin, D. A. Molnar, et al., Automated whitebox
fuzz testing., in: NDSS, volume 8, 2008, pp. 151–166.

[9] M. Prasanna, S. Sivanandam, R. Venkatesan, R. Sundarrajan, A survey
on automatic test case generation, Academic Open Internet Journal 15
(2005).

[10] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino, et al., An orches-
trated survey of methodologies for automated software test case genera-
tion, Journal of Systems and Software 86 (2013) 1978–2001.

[11] U. Kanewala, J. M. Bieman, Testing scientific software: A systematic
literature review, Information and software technology 56 (2014) 1219–
1232.

41



[12] S. Russell, P. Norvig, Artificial intelligence: a modern approach (2002).

[13] M. Luck, P. McBurney, O. Shehory, S. Willmott, Agent technology: com-
puting as interaction (a roadmap for agent based computing), University
of Southampton, 2005.

[14] O. for Budget Responsibility, Coronavirus analysis, http://obr.uk/

coronavirus-analysis/, 2020. (Accessed on 05/19/2020).

[15] Covid-19 covidsim model, https://github.com/mrc-ide/covid-sim,
2020. (Accessed on 05/19/2020).

[16] F. Squazzoni, J. G. Polhill, B. Edmonds, P. Ahrweiler, P. Antosz,
G. Scholz, É. Chappin, M. Borit, H. Verhagen, F. Giardini, et al., Com-
putational models that matter during a global pandemic outbreak: A call
to action, Journal of Artificial Societies and Social Simulation 23 (2020).

[17] L. Wynants, B. Van Calster, M. M. Bonten, G. S. Collins, T. P. Debray,
M. De Vos, M. C. Haller, G. Heinze, K. G. Moons, R. D. Riley, et al.,
Prediction models for diagnosis and prognosis of covid-19 infection: sys-
tematic review and critical appraisal, bmj 369 (2020).

[18] B. Kitchenham, S. Charters, Guidelines for performing systematic litera-
ture reviews in software engineering (2007).

[19] A. T. Crooks, A. J. Heppenstall, Introduction to agent-based modelling,
in: Agent-based models of geographical systems, Springer, 2012, pp. 85–
105.

[20] A. S. Rao, M. P. Georgeff, et al., Bdi agents: from theory to practice., in:
Icmas, volume 95, 1995, pp. 312–319.

[21] S. Wolfram, Statistical mechanics of cellular automata, Reviews of modern
physics 55 (1983) 601.

[22] K. F. Arnold, W. J. Harrison, A. J. Heppenstall, M. S. Gilthorpe, Dag-
informed regression modelling, agent-based modelling and microsimula-
tion modelling: a critical comparison of methods for causal inference,
International journal of epidemiology 48 (2019) 243–253.

[23] D. Chao, H. Hashimoto, N. Kondo, Dynamic impact of social stratification
and social influence on smoking prevalence by gender: an agent-based
model, Social Science & Medicine 147 (2015) 280–287.

[24] E. Frias-Martinez, G. Williamson, V. Frias-Martinez, An agent-based
model of epidemic spread using human mobility and social network infor-
mation, in: 2011 IEEE third international conference on privacy, security,
risk and trust and 2011 IEEE third international conference on social
computing, IEEE, 2011, pp. 57–64.

42



[25] N. Chatterjee, Transparency, reproducibility, and validity of covid-19 pro-
jection models, 2020.

[26] P. C. Jorgensen, Software testing: a craftsman’s approach, CRC press,
2018.

[27] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,
S. A. Spoon, A. Gujarathi, Regression test selection for java software,
ACM Sigplan Notices 36 (2001) 312–326.

[28] H. Zhu, P. A. Hall, J. H. May, Software unit test coverage and adequacy,
Acm computing surveys (csur) 29 (1997) 366–427.

[29] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, The oracle
problem in software testing: A survey, IEEE Transactions on Software
Engineering 41 (2015) 507–525.

[30] C. D. Nguyen, A. Perini, P. Tonella, Experimental evaluation of ontology-
based test generation for multi-agent systems, in: International Workshop
on Agent-Oriented Software Engineering, Springer, 2008, pp. 187–198.

[31] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, J. Thangarajah, Testing
in multi-agent systems, in: International Workshop on Agent-Oriented
Software Engineering, Springer, 2009, pp. 180–190.

[32] L. Padgham, M. Winikoff, Developing intelligent agent systems: A prac-
tical guide, volume 13, John Wiley & Sons, 2005.

[33] S. F. Adra, P. McMinn, Mutation operators for agent-based models, in:
2010 Third International Conference on Software Testing, Verification,
and Validation Workshops, IEEE, 2010, pp. 151–156.

[34] A. M. Tiryaki, S. Öztuna, O. Dikenelli, R. C. Erdur, Sunit: A unit testing
framework for test driven development of multi-agent systems, in: Interna-
tional Workshop on Agent-Oriented Software Engineering, Springer, 2006,
pp. 156–173.

[35] M. Zheng, V. S. Alagar, Conformance testing of bdi properties in agent-
based software, in: 12th Asia-Pacific Software Engineering Conference
(APSEC’05), IEEE, 2005, pp. 8–pp.

[36] R. S. Freedman, Testability of software components, IEEE transactions
on Software Engineering 17 (1991) 553–564.

[37] H. J. Scholl, Agent-based and system dynamics modeling: a call for
cross study and joint research, in: Proceedings of the 34th annual Hawaii
international conference on system sciences, IEEE, 2001, pp. 8–pp.

43



[38] C. D. Nguyen, A. Perini, P. Tonella, Ontology-based test generation for
multiagent systems, in: Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems-Volume 3, 2008, pp.
1315–1320.

[39] N. A. Bakar, A. Selamat, Agent systems verification: systematic literature
review and mapping, Applied Intelligence 48 (2018) 1251–1274.

[40] D. Blanes, E. Insfran, S. Abrahão, Requirements engineering in the devel-
opment of multi-agent systems: a systematic review, in: International
Conference on Intelligent Data Engineering and Automated Learning,
Springer, 2009, pp. 510–517.

[41] P. K. Arora, R. Bhatia, A systematic review of agent-based test case gen-
eration for regression testing, Arabian Journal for Science and Engineering
43 (2018) 447–470.

[42] K. M. Keyes, M. Tracy, S. J. Mooney, A. Shev, M. Cerdá, Invited com-
mentary: agent-based models—bias in the face of discovery, American
journal of epidemiology 186 (2017) 146–148.

[43] D. Platt, A comparison of economic agent-based model calibration meth-
ods, Journal of Economic Dynamics and Control 113 (2020) 103859.

[44] P. Godefroid, M. Y. Levin, D. Molnar, Sage: whitebox fuzzing for security
testing, Queue 10 (2012) 20–27.

[45] G. Fagiolo, M. Guerini, F. Lamperti, A. Moneta, A. Roventini, Validation
of agent-based models in economics and finance, in: Computer Simulation
Validation, Springer, 2019, pp. 763–787.

[46] J. Thaler, P.-O. Siebers, Show me your properties: the potential of
property-based testing in agent-based simulation, in: Proceedings of the
2019 Summer Simulation Conference, Society for Computer Simulation
International, 2019, p. 1.

[47] M. Staats, M. W. Whalen, M. P. Heimdahl, Programs, tests, and oracles:
the foundations of testing revisited, in: 2011 33rd international conference
on software engineering (ICSE), IEEE, 2011, pp. 391–400.

[48] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting sys-
tematic mapping studies in software engineering: An update, Information
and Software Technology 64 (2015) 1–18. URL: http://dx.doi.org/10.
1016/j.infsof.2015.03.007. doi:10.1016/j.infsof.2015.03.007.

[49] L. Padgham, M. Winikoff, Prometheus: A methodology for developing
intelligent agents, in: International Workshop on Agent-Oriented Software
Engineering, Springer, 2002, pp. 174–185.

44



[50] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tro-
pos: An agent-oriented software development methodology, Autonomous
Agents and Multi-Agent Systems 8 (2004) 203–236.

[51] B. Bauer, J. P. Müller, J. Odell, et al., Agent uml: A formalism for
specifying multiagent interaction, ????

[52] S. Eilenberg, Automata, languages, and machines, Academic press, 1974.

[53] G. T. Laycock, The theory and practice of specification based software
testing, Ph.D. thesis, Citeseer, 1993.

[54] T. S. Chow, Testing software design modeled by finite-state machines,
IEEE transactions on software engineering (1978) 178–187.

[55] R. Heckel, M. Lohmann, Towards contract-based testing of web services,
Electronic Notes in Theoretical Computer Science 116 (2005) 145–156.

[56] B. Korel, A. M. Al-Yami, Assertion-oriented automated test data genera-
tion, in: Proceedings of IEEE 18th International Conference on Software
Engineering, IEEE, 1996, pp. 71–80.

[57] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer,
J. F. Quesada, Maude: Specification and programming in rewriting logic,
Theoretical Computer Science 285 (2002) 187–243.

[58] C. Calero, F. Ruiz, M. Piattini, Ontologies for software engineering and
software technology, Springer Science & Business Media, 2006.

[59] L. Padgham, M. Winikoff, S. DeLoach, M. Cossentino, A unified graphical
notation for aose, in: International Workshop on Agent-Oriented Software
Engineering, Springer, 2008, pp. 116–130.

[60] C. A. Petri, Kommunikation mit automaten (1962).

[61] A. Gill, et al., Introduction to the theory of finite-state machines (1962).

[62] D. Lee, M. Yannakakis, Principles and methods of testing finite state
machines-a survey, Proceedings of the IEEE 84 (1996) 1090–1123.

[63] K.-T. Cheng, A. S. Krishnakumar, Automatic functional test generation
using the extended finite state machine model, in: 30th ACM/IEEE
Design Automation Conference, IEEE, 1993, pp. 86–91.

[64] J. L. Peterson, Petri nets, ACM Computing Surveys (CSUR) 9 (1977)
223–252.

[65] O. Shehory, A. Sturm, Evaluation of modeling techniques for agent-based
systems, in: Proceedings of the fifth international conference on Au-
tonomous agents, 2001, pp. 624–631.

45



[66] S. Haddad, D. Poitrenaud, Theoretical aspects of recursive petri nets,
in: International Conference on Application and Theory of Petri Nets,
Springer, 1999, pp. 228–247.

[67] S. J. Juneidi, G. Vouros, Survey and evaluation of agent-oriented soft-
ware engineering main approaches, International Journal of Modelling
and Simulation 30 (2010) 1–13.

[68] J. Peres, U. Bergmann, Experiencing auml for mas modeling: A critical
view, Software Engineering for Agent-Oriented Systems, SEAS (2005).

[69] C. Gerber, J. Siekmann, G. Vierke, Holonic multi-agent systems (1999).

[70] B. Smith, Ontology, in: The furniture of the world, Brill Rodopi, 2012,
pp. 47–68.

[71] T. Moser, G. Dürr, S. Biffl, Ontology-based test case generation for sim-
ulating complex production automation systems., in: SEKE, 2010, pp.
478–482.

[72] J. Euzenat, P. Shvaiko, et al., Ontology matching, volume 18, Springer,
2007.

[73] R. Hamlet, Random testing, Encyclopedia of software Engineering (2002).

[74] K. Claessen, J. Hughes, Quickcheck: a lightweight tool for random testing
of haskell programs, Acm sigplan notices 46 (2011) 53–64.

[75] N. T. Bailey, et al., The mathematical theory of infectious diseases and
its applications, Charles Griffin & Company Ltd, 5a Crendon Street, High
Wycombe, Bucks HP13 6LE., 1975.

[76] J. M. Epstein, R. Axtell, Growing artificial societies: social science from
the bottom up, Brookings Institution Press, 1996.

[77] J. Meseguer, Conditional rewriting logic as a unified model of concurrency,
Theoretical computer science 96 (1992) 73–155.

[78] L. Davis, Handbook of genetic algorithms (1991).

[79] D. Whitley, A genetic algorithm tutorial, Statistics and computing 4
(1994) 65–85.

[80] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary
computation 6 (2002) 182–197.

[81] A. P. Mathur, W. E. Wong, An empirical comparison of data flow and
mutation-based test adequacy criteria, Software Testing, Verification and
Reliability 4 (1994) 9–31.

46



[82] C. K. Low, T. Y. Chen, R. Rónnquist, Automated test case generation
for bdi agents, Autonomous Agents and Multi-Agent Systems 2 (1999)
311–332.

[83] A. Cavarra, A data-flow approach to test multi-agent asms, Formal
aspects of computing 23 (2011) 21–41.

[84] S. Rapps, E. J. Weyuker, Selecting software test data using data flow
information, IEEE transactions on software engineering (1985) 367–375.

[85] Y. Jia, M. Harman, An analysis and survey of the development of muta-
tion testing, IEEE transactions on software engineering 37 (2010) 649–678.

[86] G. Fink, M. Bishop, Property-based testing: a new approach to testing for
assurance, ACM SIGSOFT Software Engineering Notes 22 (1997) 74–80.

[87] J. Goldstein, Emergence as a construct: History and issues, Emergence 1
(1999) 49–72.

[88] R. Miller, C. T. Collins, Acceptance testing, Proc. XPUniverse 238 (2001).

[89] L. Padgham, Z. Zhang, J. Thangarajah, T. Miller, Model-based test oracle
generation for automated unit testing of agent systems, IEEE Transac-
tions on Software Engineering 39 (2013) 1230–1244.

[90] I. Hadar, T. Kuflik, A. Perini, I. Reinhartz-Berger, F. Ricca, A. Susi,
An empirical study of requirements model understanding: Use case vs.
tropos models, in: Proceedings of the 2010 ACM Symposium on Applied
Computing, 2010, pp. 2324–2329.

[91] A. S. Kalaji, R. M. Hierons, S. Swift, Generating feasible transition paths
for testing from an extended finite state machine (efsm), in: 2009 inter-
national conference on software testing verification and validation, IEEE,
2009, pp. 230–239.

[92] G. Friedman, A. Hartman, K. Nagin, T. Shiran, Projected state machine
coverage for software testing, ACM SIGSOFT Software Engineering Notes
27 (2002) 134–143.

[93] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, A. Fiva, Contract driven de-
velopment test driven development-writing test cases, in: Proceedings of
the the 6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of software
engineering, 2007, pp. 425–434.

[94] H. Tan, V. Tarasov, A. Adlemo, Lessons learned from an application
of ontologies in software testing, in: JOWO 2019, The Joint Ontology
Workshops, Graz, Austria, September 23-25, 2019., volume 2518, CEUR-
WS, 2019.

47



[95] G. Eleftherakis, P. Kefalas, E. Kehris, A methodology for developing
component-based agent systems focusing on component quality, in: 2011
Federated Conference on Computer Science and Information Systems
(FedCSIS), IEEE, 2011, pp. 561–568.

[96] Y. Kissoum, Z. Sahnoun, A recursive colored petri nets semantics for
auml as base of test case generation, in: 2008 IEEE/ACS International
Conference on Computer Systems and Applications, IEEE, 2008, pp. 785–
792.

[97] T. Murata, Petri nets: Properties, analysis and applications, Proceedings
of the IEEE 77 (1989) 541–580.

[98] N. E. H. Dehimi, F. Mokhati, A novel test case generation approach
based on auml sequence diagram, in: 2019 International Conference on
Networking and Advanced Systems (ICNAS), IEEE, 2019, pp. 1–4.

[99] E. J. T. Gonçalves, M. I. Cortés, G. A. L. Campos, Y. S. Lopes, E. S.
Freire, V. T. da Silva, K. S. F. de Oliveira, M. A. de Oliveira, Mas-ml
2.0: Supporting the modelling of multi-agent systems with different agent
architectures, Journal of Systems and Software 108 (2015) 77–109.

[100] Z. Zhang, J. Thangarajah, L. Padgham, Automated testing for intelligent
agent systems, in: International Workshop on Agent-Oriented Software
Engineering, Springer, 2009, pp. 66–79.

[101] J. Thangarajah, G. Jayatilleke, L. Padgham, Scenarios for system require-
ments traceability and testing, in: Autonomous Agents and MultiAgent
Systems, IFAAMAS, 2011, pp. 285–292.

[102] A. Arcuri, M. Z. Iqbal, L. Briand, Random testing: Theoretical results
and practical implications, IEEE Transactions on Software Engineering
38 (2011) 258–277.

[103] H. Y. Shahir, U. Glässer, R. Farahbod, P. Jackson, H. Wehn, Gener-
ating test cases for marine safety and security scenarios: a composition
framework, Security Informatics 1 (2012) 4.

[104] F. Mokhati, M. Badri, S. Zerrougui, A novel conformance testing tech-
nique for agent interaction protocols, in: 2013 Science and Information
Conference, IEEE, 2013, pp. 485–495.

[105] C. D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, M. Luck,
Evolutionary testing of autonomous software agents, Autonomous Agents
and Multi-Agent Systems 25 (2012) 260–283.

[106] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, M. Harman,
Mutation testing advances: an analysis and survey, in: Advances in Com-
puters, volume 112, Elsevier, 2019, pp. 275–378.

48



[107] R. Just, D. Jalali, M. D. Ernst, Defects4j: A database of existing faults
to enable controlled testing studies for java programs, in: Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
2014, pp. 437–440.

[108] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity
of systematic literature reviews in software engineering, in: 2016 23rd
Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2016, pp.
153–160.

49


	Introduction
	Background
	Agent-based models
	Test case generation
	Testing agent-based models
	Related work

	Research methodology
	Research questions
	RQ1: What artifacts are used to drive test case generation for agent-based models?
	RQ2: What mechanisms are used to generate tests?
	RQ3: How are verdicts assigned to generated test cases?
	RQ4: How is the adequacy of a generated test suite measured?
	RQ5: What level of abstraction do the generated test cases target?

	Review protocol
	Data sources
	Search string
	Screening criteria
	Quality assessment

	Results
	RQ1: What artifacts are used to drive test case generation?
	Formal artifacts
	Informal artifacts

	RQ2: What approaches are used to generate tests from the artifacts?
	Path-traversal
	Information extraction
	Random testing
	Rule-based

	RQ3: How are verdicts assigned to generated test cases?
	Specified
	Derived
	Human

	RQ4: How is the adequacy of a generated test suite measured?
	Coverage criteria
	Fitness functions

	RQ5: What level of abstraction do the generated test cases target?
	Unit
	Agent
	Integration
	Society
	Acceptance

	Publication trends

	Discussion
	Advantages and disadvantages
	Discussion of results
	Impact on research and practice
	Threats to validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity


	Conclusion

