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between foraging and guarding their chick on Grassholm,
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1.  INTRODUCTION

Male and female animals frequently occupy sepa-
rate foraging niches (Mysterud 2000, Catry et al.
2005, Wearmouth & Sims 2008), hypothesised to be
driven by a combination of competitive displacement
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ABSTRACT: Sex-specific niche differentiation is com-
mon in marine vertebrates, but how this varies long-
term is poorly understood. Here we investigated in -
terannual variation in sexual segregation among
breed ing northern gannets Morus bassanus, wide-
ranging central-place foragers with slight sexual di -
morphism. Over 11 breeding seasons, we used GPS
tracking and/ or stable isotopes to test for sex differ-
ences in foraging trip characteristics (range, duration
and timing); spatial distribution; habitat selection; and
carbon and nitrogen isotopes in blood. When combin-
ing data from all years, females foraged further and
for longer than males, yet despite this, the foraging ar-
eas of the sexes almost completely overlapped. Males
and females selected foraging habitats that differed in
terms of oceanography but not fishing vessel density.
We also detected temporal segregation: females were
more likely to be at sea during the day than at night,
while males were more likely to be at sea during the
night. However, foraging be haviour quantified by all
GPS analyses varied interannually, with sex differences
detected in some years but not others. Finally, males
had consistently higher red blood cell δ13C and δ15N
than females across all years, which was not driven by
size dimorphism, in stead likely by prey choice or very
fine-scale habitat selection. We conclude that envi-
ronmental variation influenced short-term sex differ-
ences in movement, but sex differences in stable iso-
topes that in tegrate behaviour over longer periods
re veal more consistent differences. Our results suggest
that inferences drawn from single-year studies may
not relate to general patterns, highlighting the impor-
tance of long-term studies and combining methods.
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and sex-specific specialisation (Catry et al. 2005). Sex-
specific foraging plays a major role in structuring spe-
cies distributions by reducing intraspecific competi-
tion (González-Solís et al. 2000, Catry et al. 2005) and
allowing the sexes to differ in activity budgets or
nutritional requirements related to their reproduc-
tive roles (Ruckstuhl & Neuhaus 2002). Sex-specific
niches can manifest in different ways, including in
space, time, habitat use, diet and parental roles
(Selander 1966, Bernstein & Maxson 1984, Mysterud
2000, Fraser et al. 2002, Breed et al. 2006). The de gree
of sexual segregation can vary over time, both be -
tween breeding stages (Phillips et al. 2004) and across
the annual cycle (Castillo-Guerrero & Mellink 2011,
Besel et al. 2018), but few studies have examined this
over long periods. Therefore, the persistence of such
niche segregation is rarely known and needs to be
addressed by multi-year studies during which envi-
ronmental conditions are likely to vary, and by using
multiple approaches to understand how the method
chosen impacts our ability to detect differences.

Seabirds are a useful model for studying sexual
segregation as they are socially monogamous and
share parental duties (Lack 1968), restricting both
sexes to the colony such that they compete during
breeding. Moreover, their longevity and the large
scale of their foraging trips allows us to explore seg-
regation over a range of ecological conditions. Stud-
ies have revealed sex differences in broad-scale
space use, fine-scale habitat use, activity patterns,
diet and trophic position (Solís et al. 2000, Bearhop et
al. 2006, González- Harris et al. 2013, De Pascalis et
al. 2020). Such studies are generally conducted over
1−3 breeding seasons (e.g. Becker et al. 2007, Woo et
al. 2008, Elliott et al. 2010, Burke et al. 2015), with
few examining long-term variability (but see Paiva et
al. 2017). Determining the extent to which sex differ-
ences are maintained over multiple years provides
insight into the possible influence of extrinsic and
intrinsic factors that underpin such differences.

Most studies of sexual segregation have focussed
on size dimorphic species (Ruckstuhl & Clutton-
Brock 2006, Phillips et al. 2011), and have demon-
strated that size differences explain significant
amounts of variation in habitat selection and forag-
ing behaviour (Selander 1966, Ruckstuhl & Neuhaus
2002, Wearmouth & Sims 2008). However, monomor-
phic seabirds also segregate by sex (Thaxter et al.
2009, Hedd et al. 2014), and there is no evidence that
the degree of size dimorphism is linked to the degree
of dietary segregation (Mancini et al. 2013). The
mechanisms for sex-specific foraging in species
where the sexes are broadly similar in size are often

unclear, as males and females appear to have similar
physical abilities to access prey and therefore poten-
tially more flexibility in the extent to which their for-
aging niches overlap. Differences may instead be
linked to distinct parental roles in which males pri-
oritise nest defence and females prioritise chick pro-
visioning (Burger 1981, Wojczulanis-Jakubas et al.
2009). As such, considering behavioural sex differ-
ences without clear morphological differences pro-
motes a greater understanding of the processes
underlying sex-specific foraging.

Here, we investigated long-term patterns in the
sex-specific foraging behaviour of a slightly dimor-
phic species, the northern gannet Morus bassanus
(hereafter ‘gannet’). Previous research revealed sex
differences over 1−3 breeding seasons in isotopic
niche, departure direction, dive characteristics, forag-
ing trip distance and duration, and habitat selection
(Lewis et al. 2002, 2004, Stauss et al. 2012, Cleasby et
al. 2015, Cox et al. 2016). We used GPS tracking and
stable isotopes to test for sex differences in trophic
(isotopic), spatial and temporal niches across 11
breed ing seasons from 2006 to 2017. We aimed to
measure the stability of foraging niche differentia-
tion between the sexes to provide insights into the
drivers of sexual segregation whilst highlighting
methodological considerations for similar studies.

2.  MATERIALS AND METHODS

2.1.  Study site and sampling

Fieldwork took place on Grassholm Island, Wales,
UK (51° 43’ N, 05° 28’ W), during the chick-rearing
periods (late June to August) of 11 breeding seasons
(2006 and 2008−2017, with GPS tracking in 2006 and
2010−2017, and stable isotope sampling in 2006,
2008−2014 and 2016). The colony held ~30 000 pairs
during the study period (Murray et al. 2015, Deakin
et al. 2019). Adult gannets were captured at the nest
using a carbon fibre pole with a noose or crook dur-
ing the changeover between partners so that chicks
were not left unattended. We captured the outgoing
parent to ensure that foraging trips began immedi-
ately after release. GPS loggers were attached to the
lower back or central tail feathers with Tesa® 4651
cloth tape. In 2006, birds were equipped with Earth
and Ocean Technology ‘GPSlog’ loggers (65 g) set to
record fixes every 3 min. In 2010−2017, birds were
equipped with Mobile Action Technology i-gotU GT-
120 (18 g) or GT-600 (35 g) loggers set to record fixes
every 1 or 2 min. In some years, a subset of birds was
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equipped with additional loggers (time depth re -
corders, altimeters, accelerometers or video cameras)
with a maximum total weight of 50.5 g, but their
presence had no effect on the spatial foraging behav-
iours recorded here (M. Francis et al. unpubl.). Studies
have shown no effects of loggers weighing 20, 30 or
70 g on the foraging trip duration or body mass of
chick-rearing gannets (Lewis et al. 2002, Hamer et al.
2007, 2009, Cleasby et al. 2015). Individual consis-
tency in the foraging trip destination and dive loca-
tion of chick-rearing individuals means that tracking
a single foraging trip is likely to be representative of
that individual within years and, to a lesser extent,
between years (Patrick et al. 2014, Wakefield et al.
2015, Votier et al. 2017). A 1−2 ml blood sample was
taken from the tarsal vein using 23−25-gauge nee-
dles for stable isotope analysis and molecular sexing.
We recorded mass to the nearest 50 g, flattened wing
chord length to the nearest 1 cm and bill length to
feathering to the nearest 0.1 mm. All procedures
were carried out under licence from Natural Re -
sources Wales (22478:OTH:SB:2010), the British Trust
for Ornithology (BTO:A4257), the BTO Special Meth-
ods Panel and the UK Home Office (30/3065).

2.2.  Foraging trip range and duration

We defined foraging trips as beginning and ending
when individuals crossed a radius of 200 m from the
centre of the colony (approximately the radius of the
island) and excluded incomplete trips. We calculated
foraging range (maximum Euclidean distance from the
colony) using the R package ‘geosphere’ (Hijmans
2017). Range and trip duration were Box-Cox trans-
formed, then modelled as functions of sex, year
(treated as a factor), mass (as females are 6.8% heav-
ier than males, with no difference in bill or tarsus
length; Table S1 in the Supplement at www. int-res.
com/ articles/ suppl/ m661 p001 _ supp .pdf) and a sex:mass
interaction using linear mixed-effects models in the R
package ‘lme4’ (Bates et al. 2014), with random inter-
cepts for each individual. We present the models with
the lowest value of Akaike’s information criterion cor-
rected for sample sizes (AICc).

2.3.  Spatial segregation

We used GPS locations to quantify the broad-scale
spatial overlap of foraging trips between males and
females for each year. We subsampled locations
to the nearest 2 min interval and excluded loca-

tions within 6.8 km of the colony, as gannets from
Grassholm rest on the water in this area (Carter et al.
2016). We projected locations onto a Lambert azi -
muthal equal-area projection centred around the
colony and estimated 100% utilisation distributions
(UDs) for each year and sex with kernel density esti-
mation in the R package ‘adehabitatHR’ (Calenge
2006), using the bivariate normal kernel with a cell
size of 500 m and a smoothing parameter of 11 km
(chosen to reflect the mean area-restricted search
scale for foraging gannets of 9.1 ± 1.9 km, Hamer et
al. 2009). We measured UD overlap using Bhat-
tacharyya’s affinity (BA), which uses the kernel den-
sity in 3D, as this is robust to outliers and considers
the parts of the distributions that do not overlap as
well as parts that do. BA ranges from 0 (no overlap) to
1 (total overlap) (Bhattacharyya 1943, Fieberg &
Kochanny 2005). We tested for a significant differ-
ence between the observed BA and a null distribu-
tion generated from 1000 randomisations of sex
using the observed sex ratio of each year. Signifi-
cance is defined as when P, the proportion of ran-
domised BAs that do not exceed the observed BA, is
less than 0.05 (see Breed et al. 2006, Cleasby et al.
2015). As sample sizes varied between 29 (in 2006)
and 203 trips, we repeated the procedure with 3 ran-
dom samples of 29 trips for 2010−2017. Home range
size was estimated in km2 using the 95% UD
(because home range size is more affected by outliers
than BA overlap), and was then Box-Cox trans-
formed and analysed using a linear model in R with
sex and number of trips fitted as fixed effects. We cal-
culated 25% UDs to visualise core use areas.

2.4.  Habitat selection

We tested whether foraging habitat use differed be-
tween the sexes as a function of 4 candidate covariates:
sea surface temperature (SST), chlorophyll a (chl a),
thermal fronts and fishing vessel density. We included
SST and chl a given that male gannets from some
colonies are more likely to use warmer areas with
higher productivity than females (Cleasby et al. 2015).
We included thermal fronts as gannets are more likely
to perform area-restricted searching behaviour and
dive in areas of seasonally persistent fronts (Scales et
al. 2014, Cox et al. 2016), and the response to fronts
can differ with sex (Cox et al. 2016). Fishing vessel lo-
cations were included because gannets scavenge at
fishing boats (Votier et al. 2010, 2013, Bodey et al.
2014), with some evidence that males scavenge more
than females (Stauss et al. 2012, Votier et al. 2013), al-
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though other studies suggest no sex differences in
terms of scavenging (Patrick et al. 2015). The Natural
Environment Research Council Earth Observation
Data Acquisition and Analysis Service (NEODAAS)
supplied data for chl a concentration (Aqua-MODIS
and Suomi-VIIRS, see Gohin et al. 2002), SST (AVHRR,
see Miller et al. 1997) and thermal fronts (see Miller
2009) in a 1 × 1 km grid. Composite front maps for the
month of July (when the majority of the data were col-
lected) were used to provide sufficient cloud-free time
and because persistent fronts are important as forag-
ing habitat (Scales et al. 2014, Cox et al. 2016). To re-
duce noise from non-persistent transient features,
front composites combined the gradient, persistence
and proximity of fronts over this 1 mo period (see
‘Fcomp’ in Suberg et al. 2019). This combined front
metric facilitated the analysis by reducing the number
of variables included in the habitat models. Vessel
monitoring system (VMS) data, on the density of ves-
sels ≥15 m in length, was obtained for 3 years (2005−
2007) in a 3 × 3 km grid for vessels travelling at speeds
of 3−10 km h−1, which indicates fishing activity (Witt &
Godley 2007). Although we recognise that these data
do not match our tracking period, Witt & Godley
(2007) found that fisheries activity hotspots were con-
sistent over a 5 yr period (2000−2004). To account for
very high vessel densities near ports, we calculated
the maximum vessel density in the study area more
than 5 km from the coast, and then excluded values
exceeding this maximum within 5 km of the coast
(Witt & Godley 2007).

We modelled selection by comparing the habitat at
foraging locations with the available habitat (Aarts et
al. 2008). We first subsampled GPS data to 2 min inter-
vals and extracted foraging locations based on speed,
acceleration and tortuosity thresholds (see Wake field
et al. 2013, Bennison et al. 2018). For each foraging lo-
cation, we generated 3 pseudo-absences from areas
with complete environmental information within the
100% minimum convex polygon for all years (we did
not use the 100% UD calculated from the kernel den-
sity, as this results in separated areas when gannets
could forage in between). We first fitted binomial gen-
eralised linear models (GLMs; R package ‘glmmTMB’,
Brooks et al. 2017) with a logit link to model the pres-
ence/pseudo-absence of foraging locations in relation
to each of the habitat variables (SST, chlorophyll,
thermal fronts, vessel density), sex and the interaction
between habitat and sex. We did not include bird ID
as a random term because all birds were given the
same number of pseudo-absences per presence point,
so all individuals have the same intercept (probability
of any location being a presence or a pseudo-absence).

We did not include random slopes because individual
responses did not appear to be linear, even though
the population response is in aggregate. To account
for spatial autocorrelation, we used residual autoco-
variate (RAC) models (Crase et al. 2012, 2014, Escalle et
al. 2016). To do this, we extracted residuals from a fully
fitted GLM to create a gridded raster of the spatial
autocorrelation between neighbouring cells (based
on a mean focal operation for a first-order neighbour-
hood) using the R package ‘raster’ (Hijmans 2018). We
ex tracted the corresponding RAC value for each
presence/ pseudo- absence location and then re-fitted
a GLM including the generated RAC as a linear term
(Crase et al. 2012, 2014). We fitted a model for all
years, and separate models for each year (2006 and
2010−2016) to investigate interannual variation. We
did not have oceanographic variables for 2017. Models
were as sessed with and without the RAC term using
Cohen’s kappa, the area under the receiver operating
characteristic curve (AUC), and the Boyce index
(Boyce et al. 2002, Hirzel et al. 2006).

2.5.  Diel segregation

To test whether male and female foraging trips dif-
fered with the time of day, we extracted the times of
at-sea locations during foraging trips at a 30 min res-
olution. We analysed the timestamps using the R
package ‘overlap’ designed for quantifying the over-
lap in diel cycles (Ridout & Linkie 2009). Using this
package, we calculated kernel density estimates from
the timestamps, with time of day treated as a circular
variable such that 23:59 h is 1 min before 00:00 h. We
used the recommended smoothing para meter based
on simulations in Ridout & Linkie (2009). We tested
the overlap between males and females by combin-
ing the data for all years, and separately for each
year. We quantified the overlap using the Δ̂4 coeffi-
cient of overlap (0 = no overlap, 1 = total overlap) and
estimated 95% confidence intervals by bootstrap-
ping with 10 000 resamples (Linkie & Ridout 2011).

2.6.  Isotopic segregation

To test for sex differences in diet, we measured sta-
ble isotope ratios in red blood cells (which have a
turnover of 4−6 wk; Rodnan et al. 1957, Hobson 2005).
Blood samples collected in 9 years (2006, 2008−2014
and 2016) were centrifuged to separate red blood
cells from plasma. Red blood cells were freeze-dried
and homogenised into a fine powder, and 0.7 ± 0.1 mg

4



was weighed into tin capsules. Analysis took place at
the National Environment Research Council National
Environmental Isotope Facility in East Kilbride, or
the University of Exeter facility at the Environment
and Sustainability Institute in Penryn. Results for iso-
tope ratios of carbon 13C/12C and nitrogen 15N/14N are
expressed as delta (δ) units, as parts per thousand
(‰) difference from international standards (Vienna
Pee Dee belemnite for carbon and atmospheric N2 for
nitrogen). Using linear models, we modelled stable
isotope values for δ13C and δ15N in response to sex,
year (treated as a factor), mass and the interaction
be tween sex and mass.

3.  RESULTS

3.1.  Foraging trip range and duration

We recorded 645 620 GPS locations during 634 com -
plete foraging trips from 138 female and 159 male
gannets across 9 breeding seasons. Females under-
took trips with 21% greater foraging ranges and
20% longer trip durations, controlling for mass
(Table 1). Mean ± SE foraging trip range was 107 ±
4 km for males and 129 ± 5 km for females, with
a mean trip duration of 20.1 ± 0.8 h for males and
24.2 ± 1.2 h for females (Fig. 1, Tables S2−S4). Heav-
ier individuals of both sexes made shorter trips
(Table S3). Foraging range and duration both varied
with year, but there were no significant year:sex or
year:mass interactions (Table 1, Fig. 1).

3.2.  Spatial segregation

There was no difference in home range size across
all years (linear model, F2,15 = 1.54, p = 0.234; Fig. 2),
but the home range was slightly larger for females in
some years and males in others (Fig. 3; Table S2), with
a substantial difference in 2006 (223% larger for fe -

males). When the data from all years were combined,
the 100% UDs for males and females were not signif-
icantly different (BA overlap = 0.92, p = 0.087; Fig. 2).
There was, however, interannual variation (Fig. 3),
with significant segregation occurring in 2006 (BA =
0.432, p = 0.004) and 2013 (BA = 0.798, p = 0.022). As
the sample size was smallest in 2006 (29 trips), we
took 3 random sub-samples of 29 trips for the years
2010−2017. These produced lower BA values, but no
significant segregation was detected (Table S5), indi-
cating that the segregation detected in 2006 was not
a result of the smaller number of recorded trips.

3.3.  Habitat selection

Male and female gannets differed in their habitat
selection, but this was highly variable between years
(Fig. 4, Table S6). When combining all years, females
made greater use of locations with lower SSTs and
higher composite thermal front intensity (combined
strength, persistence and proximity) than males. Sex-
specific differences in response to SST occurred in
4 years, 5 years for chl a and 3 years for thermal
fronts. Responses to chl a concentrations varied inter-
annually in the direction of the effect. There was no
sex-specific selection for the density of fishing vessel
activity (number of VMS records at fishing speed)
when considering all years, but small effects were
detected in 3 years when considered individually.
The models performed very well (kappa = 0.86−0.95,
AUC = 0.98−0.997, Boyce index = 0.797−0.992), al -
though this is partially explained by the residual
auto-correlation term (Table S7).

3.4.  Diel segregation

Male and female gannet at-sea locations broadly
overlapped in their time of day, but the bootstrapped
upper 95% confidence intervals (CIs) indicate tempo-
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Model AICc ΔAICc AICc weights Deviance Resid. df

Range Sex + Year + Mass + Sex:Mass 1051.2 − 0.564 1022.4 497
Sex + Year + Mass 1052.0 0.78 0.383 1025.2 498
Sex + Year 1057.9 6.69 0.020 1033.3 499

Duration Sex + Year + Mass 378.5 − 0.659 351.7 498
Sex + Year + Mass + Sex:Mass 379.9 1.40 0.327 351.0 497
Sex + Year 387.5 9.05 0.007 362.9 499

Table 1. Top candidate linear mixed models to explain northern gannet foraging trip range and duration as a function of sex,
year and mass, with individual as a random intercept. Means, estimates and test statistics are provided in Tables S2−S4. AICc: 

Akaike’s information criterion corrected for small sample size
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ral segregation (across all years: Δ̂4 coefficient of over -
lap = 0.970, 95% CI = 0.960−0.980). Males were more
likely to have foraging trips that included an overnight
component, while females were more likely to be
away from the colony during the day (Fig. 5). This ef-
fect was detected within 6 of the 9 years studied.

3.5.  Isotopic segregation

Stable isotope values for δ13C and δ15N were signif-
icantly different between the sexes and were also
significantly associated with year and mass (Table 2).
There was a sex:year interaction for δ13C, with over-
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Fig. 1. Foraging trip (a) range (maximum distance from the colony) and (b) duration for 138 female (red diamonds, n = 272 trips)
and 159 male (blue circles, n = 362 trips) chick-rearing northern gannets on Grassholm, Wales, UK. Bars show annual means 

± SE and jittered points show individual trips
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lap in 2010 and 2013 (Table 2), but females still had
lower mean δ13C than males in all years of the study
(Fig. 6, Tables S8−S10). There was no sex:year
interaction for δ15N, and errors overlapped only in
2010 (Fig. 6). The best models for δ13C (r2 = 0.478)
and δ15N (r2 = 0.479) also contained a sex:mass inter-
action, although this was within 2 ΔAICc units of
the model without the interaction for δ15N (Table 2,
Fig. 7). Values for δ13C were significantly lower for
females than males, and values increased with
mass for females (the heavier sex), but not for males
(Table 2, Fig. 7).

4.  DISCUSSION

By combining GPS and stable isotope analysis, we
show that, despite overlap in broad-scale space use,
breeding male and female gannets differed in
terms of their foraging niche as characterised by
foraging trip range, duration and timing, fine-scale

habitat selection and isotopic niche. Importantly,
these sex differences varied over the 11 years studied
in terms of trip range, duration, habitat selection,
timing and space use, while isotopic niche re mained
consistent.

4.1.  Foraging trip range and duration

Overall, females spent 20% more time on forag-
ing trips and reached distances 21% further from
the colony than males (Fig. 1). Seabirds of the
larger sex generally make shorter foraging trips
(Weimerskirch et al. 1997, González-Solís et al.
2000, Lewis et al. 2005). However, female gannets
are slightly heavier than males (Table S1) but trav-
elled further. Heavier gannets within each sex
made shorter trips in distance and duration, show-
ing that the differences related to sex are not due
to size dimorphism (Table 1). Instead, sex differ-
ences may relate to competitive exclusion of fe -
males (Bodey et al. 2018), sex-specific dietary
requirements (Machovsky-Capuska et al. 2016)
leading to habitat selection (Cleasby et al. 2015),
or males investing more time in nest defence
(Burger 1981). A key finding was that sex differ-
ences varied among years (Fig. 1) as observed in
other seabird species (Ishikawa & Watanuki 2002,
Gladbach et al. 2009, Castillo-Guerrero & Mellink
2011, Paiva et al. 2017). This suggests a role for
extrinsic factors such as variation in food availabil-
ity, wind, oceanography or a combination of these
things. For instance, breeding female Cory’s shear-
waters Calonectris borealis travelled relatively fur-
ther than males during years when oceanographic
conditions were ‘poor’ compared to ‘good’ years
(Paiva et al. 2017), as did female Cape gannets
Morus capensis (Botha et al. 2017). However, prey
shortages may also decrease sex differences
(Fraser et al. 2002), highlighting the need to better
understand how environmental conditions may in -
fluence sex-specific foraging.

4.2.  Spatial segregation

Male and female foraging areas overlapped
extensively, and we only detected significant spa-
tial segregation in 2006 and 2013 (Fig. 3). In con-
trast, gannets tracked from the much larger colony
at Bass Rock, UK, had consistent sexual segre -
gation over 3 breeding seasons (Cleasby et al.
2015). This may relate to a more predictable envi-
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Fig. 2. Home ranges (95% utilisation distribution isopleth)
and core areas (25% isopleth) for female (red) and male
(blue) northern gannets GPS-tracked from Grassholm,
UK, combined across 2006 and 2010−2017. Bhatta charyya’s
affinity (BA): estimated overlap between male and fe male
100% utilisation distributions; P: proportion of simulated
BAs that did not exceed the observed BA; n: number of 

trips
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ronment in the North Sea (Hamer et al. 2001), dif-
ferent coastal morphology creating fewer foraging
areas (Cleasby et al. 2015) and/or the larger colony
increasing intraspecific competition (Wakefield et
al. 2013). Inter-colony variation in sex segregation
has been observed for other seabirds, with wan-
dering albatrosses Diomedea exulans exhibiting

broad-scale spatial sexual segregation at some
sites (Weimerskirch et al. 2012, Åkesson & Weimer-
skirch 2014), but not others (Xavier et al. 2004,
Pereira et al. 2018). These patterns indicate that
the extent of spatial segregation is not fixed over
time but instead may relate to sex differences in
response to intrinsic and extrinsic factors.

8

Fig. 3. Annual home ranges (95% utilisation distribution isopleths) and core areas (25% isopleths) for female (red) and male
(blue) northern gannets GPS-tracked from Grassholm, UK. Bhattacharyya’s affinity (BA): estimated overlap between male and
female 100% utilisation distribution; P: proportion of simulated BAs that did not exceed the observed BA; n: number of trips; 

*p < 0.05, **p < 0.01
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Fig. 4. Habitat selection for female (red) and male (blue) northern gannets GPS-tracked from Grassholm, UK, over 8 breeding
seasons. Plots show the predicted linear response on the logit link scale for the probability of locations being a foraging event
rather than a pseudo-absence in response to sea surface temperature (°C), chlorophyll a concentration, thermal fronts
(strength, persistence and proximity) and density of fishing vessels travelling at fishing speed. Ribbons represent 95% confi-
dence intervals. Grey shading indicates that the sex:habitat interaction is not significant (p > 0.05). p: p-value of the sex:habitat 

interaction; n: number of trips
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4.3.  Habitat selection

We found evidence for sex-specific habitat selec-
tion despite large-scale spatial overlap (Figs. 2−4).
When effects were detected, females preferred to
forage in cooler waters with higher front intensity
compared to males. There was no sex difference in
response to fishing vessel density when data were
aggregated across years. However, small differences
were detected in 2010, 2011 and 2013 (Fig. 4), but
this may be because the vessel data were not tempo-
rally matched to the gannet tracking data. There was
much inter-annual variation in the effect size (SST
and fronts) and direction (chl a and fishing density),
indicating that sex differences in habitat choice were

not fixed. We detected a sex interaction with all
oceanographic indices only in 2006 and 2012. Over-
all, responses to the habitat variables measured in
our study were highly changeable, which may be
explained by the sample of individuals tracked each
year, individual flexibility in foraging strategy and/or
by interannual variation in local conditions. Individual
gannets may have specific habitat types or foraging
specialisms (such as scavenging from fishing vessels;
Votier et al. 2013), with competitive pressure leading
to a diversity of strategies, where the likelihood of
choosing a particular specialism may or may not
relate to sex. Furthermore, most individual gannets
repeatedly use the same foraging areas (Patrick et al.
2014, Wakefield et al. 2015, Votier et al. 2017), and so
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Fig. 5. Density of at-sea locations across the hours of the day for female (red) and male (blue) northern gannets GPS-tracked
from Grassholm, UK, during the breeding seasons of 2006 and 2010−2017. Purple shading indicates the overlap between
sexes. n: number of trips; Δ̂4: coefficient of overlap; CI: bootstrapped 95% confidence interval (CIs crossing 1 indicate that no 

difference was detected; grey shading)
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differences in sex-specific behaviour may occur due to
changes in the underlying habitat if individuals are
more faithful to geographic space than habitat types.

4.4.  Diel segregation

There were slight sex differences in the timing of
foraging trips; males were more likely to be at sea
overnight and females during the day (Fig. 5), as

observed in other sulids (Botha et al. 2017, Miller et
al. 2018). This may occur if males invest more in
defending the nest against diurnal conspecifics and
predators (e.g. great black-backed gulls Larus mari-
nus; Garthe & Huppop 1996). Diel segregation re -
duces intraspecific competition (Bernstein & Maxson
1984), including between sexes (Elliott & Gaston
2015). However, sex-specific timing of foraging in
imperial shags Phalacrocorax atriceps occurred only
during the breeding season, suggesting that this was

11

Model AICc ΔAICc AICc weights Resid. deviance Resid. df Adj. r2

δ13C Sex + Year + Mass + Sex:Year + Sex:Mass 433.1 – 0.586 62.52 314 0.478
Sex + Year + Mass + Sex:Year 435.2 2.09 0.206 63.34 315 0.473
Sex + Year + Mass 436.8 3.66 0.094 67.11 323 0.477

δ15N Sex + Year + Mass + Sex:Mass 577.3 – 0.393 101.54 322 0.479
Sex + Year + Mass 577.4 0.09 0.375 102.23 323 0.477
Sex + Year 579.6 2.31 0.124 103.58 324 0.472

Table 2. Top candidate linear models to explain δ13C and δ15N stable isotope values in blood for northern gannets. Means, 
estimates and test statistics are provided in Tables S8−S10

Fig. 6. Mean ± SE stable carbon and nitrogen isotope values derived from red blood cells for 168 female (red diamonds) and
193 male (blue circles) northern gannets from Grassholm, UK (2006, 2008−2014 and 2016). Dashed lines indicate that values 

are from the same year
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driven by the constraint of competition or attending
the nest rather than foraging specialisation (Harris et
al. 2013). Diel cycles could also impact gannet diet.
Fish tend to inhabit deeper waters during daylight to
avoid visual predators (Gliwicz 1986, Wilson et al.
1993), and so diel vertical migration can impact prey
accessibility (Garthe et al. 2000, 2007). Male gannets
perform overall shallower V-shaped dives than fe -
males when accounting for body size differences
(Lewis et al. 2002, Cleasby et al. 2015, Cox et al.
2016). There were no sex differences in the depth of
U-shaped ‘pursuit’ dives, but they were less likely at
dusk and dawn (Cleasby et al. 2015), which may
relate to visibility constraints.

4.5.  Isotopic segregation

The strongest and most consistent sex difference
was in terms of isotopic niche (Fig. 6). Males had
higher δ13C and δ15N values than females across all
years, although there was some interannual variation
in the strength of the effect (Fig. 6). These differ-
ences may relate to differences in isotopic baselines
(Kelly 2000), such as the tendency for coastal areas to
have lower δ13C and δ15N values than offshore waters
(Hobson et al. 1994, Cherel & Hobson 2007). These
findings are consistent with more offshore foraging
in females, but somewhat at odds with the consider-

able spatial overlap (Fig. 2). The largest difference in
δ13C occurred in 2006, which also had the greatest
spatial segregation, but other years show very high
overlap between the sexes. Isotopic differences in
the absence of spatial segregation may be because
red blood cells represent foraging over the previous
4−6 wk (Hobson 2005), so they are less susceptible to
short-term environmental fluctuations that may in -
fluence movement behaviour. Alternatively, our re -
sults may reflect differences in fine-scale habitat
use (Fig. 4), diel segregation (Fig. 5) or prey choice.
While there were no sex differences in selection for
fishing activity density (Fig. 4), this may be due to
temporal mismatch with the vessel data, and so scav-
enging may still explain isotopic differences. Previ-
ous work from this colony suggested males fed more
on discards (Stauss et al. 2012, Votier et al. 2013),
which would create the observed isotopic differences
(Votier et al. 2010). However, spatial analysis here
(Fig. 4) and elsewhere (Bodey et al. 2014, Patrick et
al. 2015) suggest no sex difference in fisheries over-
lap. It is unclear whether these inconsistencies are
due to methodological differences (e.g. limitations in
VMS, especially for illegal, unreported and unregu-
lated fishing), environmental variation influencing
scavenging tendency (Clark et al. 2020) or both.

Males and females may select different prey due to
distinct nutritional requirements (Morehouse et al.
2010), leading to isotopic differences. For instance,
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Fig. 7. Stable isotope values for (a) carbon (δ13C) and (b) nitrogen (δ15N) in relation to body mass derived from red blood cells
for female (red diamonds) and male (blue circles) northern gannets from Grassholm, UK, collected during the breeding seasons 

of 2006, 2008−2014 and 2016. Solid lines: model predictions; dashed lines: SE
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male Australasian gannets M. serrator feed on fish
with a higher protein-to-lipid and water-to-lipid ratio
and a higher trophic level than females (Machovsky-
Capuska et al. 2016). Nutritional requirements can
be linked to size dimorphism, but our results showed
that the trophic niche was not driven by mass (Fig. 6).
Sex differences in chick-rearing gannets are un -
likely to be due to female investment in the egg
since the single-egg clutch laid by gannets is one
of the smallest compared to female mass at 3.3%
(Perrins 1970, Western & Ssemakula 1982), with a
very low energy and lipid content (Ricklefs & Monte -
vecchi 1979).

4.6.  Sexual segregation in gannets

For gannets nesting on Grassholm, we found con-
sistent sexual segregation in isotopic values and
more variable segregation in movement metrics. Our
results are consistent with both competitive exclu-
sion and niche specialisation as potential mechanisms
(Catry et al. 2005). Overall, female gannets travelled
further than males, which is unusual for the larger
sex (Weimerskirch et al. 1997, González-Solís et al.
2000, Lewis et al. 2005). Females could be competi-
tively excluded by males despite being larger if they
are less aggressive (Nelson 1965), but we have no
direct evidence for this. As such, it seems unlikely to
be the only driver. The sexes may instead each prefer
slightly different prey or select habitats at a scale that
is finer than our methods could detect, or involving
other factors such as wind (De Pascalis et al. 2020). A
third explanation for consistent differences in trophic
indicators could be that males invest more time in
nest defence (Burger 1981), particularly during the
day. As a consequence, males are unable to travel as
far as females, and spend more time at-sea during
the late evenings and early mornings when different
prey may be available in the same location in the
middle of the day. As such, differing diets may be in
part a by-product of parental niche segregation
rather than selection at sea. It is likely that a combi-
nation of mechanisms is involved, each with a differ-
ent sensitivity to environmental conditions. Future
work could examine the influence of inter-annual
variation in food availability, or their proxies such as
SST, primary production and wide scale climatic
indices, such as the North Atlantic Oscillation (NAO)
Index (Paiva et al. 2017). In addition to the NAO, pro-
gressive warming in the North Atlantic poses a chal-
lenge to gannets breeding at the southerly edges of
their range, with warm years leading to reduced pro-

ductivity (Montevecchi et al. 2013). Data for further
years or comparisons between colonies could provide
a means to investigate how the degree of sexual seg-
regation may relate to climatic conditions.

4.7.  Methodological considerations

Our findings suggest that interpreting tracking
data over small temporal windows could lead to spu-
rious inference. This could relate to sex-specific
responses to short-term variation in environmental
conditions. More research into the impact of the spa-
tial and temporal scale of remotely sensed variables
required to reveal individual niches would be valu-
able, and technological developments are likely to
facilitate this in coming years. Finally, we do not
have a good understanding of the sample sizes re -
quired to characterise possible sex-specific behav-
iours (Soanes et al. 2013). We therefore encourage
tracking over an extended period, careful considera-
tion of statistical power and accounting for variation
in environmental conditions. Our stable isotope re -
sults indicate more consistent sexual niche segrega-
tion across years, probably because they integrate
foraging over the previous 4−6 wk (Hobson 2005).
However, the significant year:sex interaction for δ13C
(Fig. 6) re veals variation in the degree of segre -
gation, possibly relating to differences in habitat
specialisation (because δ13C has a strong spatial
component; Cherel & Hobson 2007). We therefore
re commend the use of stable isotopes and tracking
in tandem to better understand the extent to which
males and females segregate, along with other types
of niche segregation.

4.8.  Conclusion

Male and female gannets exhibited consistent iso -
topic differences among years, although the strength
of segregation varied, possibly relating to habitat
specialisations that are not driven by size dimor-
phism. However, the degree of spatial and temporal
sex-specific segregation was more variable, pos -
sibly related to environmental conditions or the
short temporal scale of GPS tracking. We also con-
clude that analysis based on data from 1 or 2 years
may not reflect overall movement patterns, al -
though stable isotopes tend to be less affected,
emphasising the value of long-term studies and
multiple methods for fully understanding sex dif-
ferences in behaviour.
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