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ABSTRACT 

Objective: The paper presents a systematic analysis of drivers’ crash avoidance response during 

crashes and near-crashes and developed a machine learning-based predictive model that can 

determine driver maneuver using pre-incident driver behavior and driving context. Methods: We 

analyzed 286 naturalistic rear-end crashes and near-crashes from the SHRP2 naturalistic driving 

study. All the events were manually reduced using face video (face and forward) and kinematic 

responses. In this paper, we developed new reduction variables that enhanced the understanding 

of drivers’ gaze behavior and roadway attention behavior during these events. These features 

reflected how the event criticality, measured using time to collision, related to drivers’ pre-

incident behavior (secondary behavior, gaze behavior), and drivers’ perception of the event 

(physical reaction and maneuver). The imperative understanding of such relations was validated 

using a random forest- (RF) based classifier, which efficiently predicted if a driver was going to 

brake or change the lane as an avoidance maneuver. Results: The RF presented in this paper 

effectively explored the nonlinear patterns in the data and was highly accurate (~96%) in its 

prediction. A further analysis of the RF model showed that six features played a pivotal role in 

the decision logic. These included the drivers’ last glance duration before the event, last glance 

eccentricity, duration of ‘eyes on road’ immediately before the event, the time instance and 

criticality when the driver perceives the threat as well as acknowledge the threat, and possibility 

of an escape path in the adjacent lane. Using partial dependency plots, we also showed how 

different thresholds of these feature variables determined the drivers’ maneuver intention. 

Conclusions: In this paper we analyzed driving context, drivers’ behavior, event criticality, and 

drivers’ response in a unified structure to predict their avoidance response. To the best of our 

knowledge, this is the first such effort where large-scale naturalistic data (crashes and near 
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crashes) was analyzed for prediction of drivers’ maneuver and determined key behavioral and 

contextual factors that contribute to this avoidance maneuver. 
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1  INTRODUCTION 

In 2015 (National Highway Traffic Safety Administration, 2017), rear-end crashes were the most 

prevalent crash type involving another vehicle that resulted in an injury or property-damage only 

(32.4% and 33.9%, respectively), and the third most prevalent crash type in fatal crashes involving 

another vehicle (6.8%). Most of these crashes occur when the following vehicle (or striking 

vehicle) makes contact with a stopped or decelerating lead vehicle (Najm et al., 2013). Naturalistic 

driving studies and national crash databases have found that inattention (likely visual in nature) 

appears to play a significant role in rear-end crashes (Eiríksdóttir, 2016; Engström et al., 2013; 

Harb et al., 2009; Klauer et al., 2006; Victor et al., 2015). Automated driving systems (ADS) have 

the potential to significantly reduce these rear-end crashes (National Transportation Safety Board; 

Najm et al., 2013). However, their success depends on the extent to which they are designed within 

human capabilities (Lee, 2018; Seppelt & Victor, 2016). In rear-end crashes, the driver’s avoidance 

response decision (e.g., steering and/or braking) is a critical aspect of the safety of the response. 

Understanding the factors that influence this decision may lead to more accurate process models 

of driver behavior in rear-end collisions. Such models can be used to predict driver responses to 

estimate the safety benefits of ADS and in turn design effective warnings for driver responses and 

take-over requests (Bärgman, Boda, & Dozza, 2017; Markkula et al., 2018; McDonald et al., 

2019). 

 

Different approaches have been used to assess drivers’ choice of avoidance response in crash/near-

crash situations. Kaplan & Prato (2012) used data from a national crash database (General 

Estimates System or GES) to evaluate attributes that predicted drivers’ attempted crash avoidance 

maneuvers. Although the authors did not report findings for rear-end crashes, they reported that 
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68% of the crashes involved no avoidance response, followed by braking, steering, braking and 

steering, and other maneuvers. Harb et al. (2009) also used GES data, but only reported the drivers’ 

avoidance response as a binary variable (yes/no). However, they stratified their results by three 

different crash types: rear-end, head-on, and angle crashes. The three most important variables in 

classifying if a driver made an avoidance maneuver in a rear-end crash (compared to no avoidance 

maneuver) were physical impairment (fatigue and/or alcohol), distraction, and speed limit. 

Although these data are informative, they have several limitations. The accuracy of data from post-

crash reconstruction relies heavy on witness testimony and/or a clear indication of vehicle 

kinematics (such as skid marks). The authors noted this as a limitation and reported that over 60% 

of drivers’ avoidance responses were coded as “unknown”. This suggests there was insufficient 

data to determine the avoidance response made by the driver, or even if an avoidance response was 

made at all. In fact, the 68% estimate of lacking avoidance response cited above (Kaplan & Prato, 

2012) is strongly at odds with naturalistic crash data which have shown that the majority of crashes 

include braking and/or steering avoidance responses (e.g., Engström et al., 2013). Moreover, these 

data do not include measures of drivers’ visual attention to the forward roadway prior to the crash, 

which is important in determining drivers’ avoidance response (Markkula et al., 2016; Svärd et al., 

2017; Venkatraman et al., 2016; Xue, et al., 2018). 

 

Simulator studies using a car-following or vehicle cut-in paradigm have also been used to evaluate 

driver’s avoidance response in rear-end crash scenarios. Hu et al. (2017) used a cut-in scenario to 

evaluate drivers’ decision to brake or steer (i.e., change lanes). Driver factors, such as personality 

traits, and the driver’s perceived safe zone largely predicted the avoidance response during the 

vehicle cut-in. The authors found that age and drivers’ geographic location (or location of the data 
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collection site) affected a braking or steering response in a simulated car following paradigm. 

Venkatraman et al. (2016) reported that perceptual variables, such as optical angle and tau, were 

better predictors of drivers’ decision to brake or steer than alerts from a collision warning system 

in a simulated car following paradigm. Braking was more likely as the driver got closer to the lead 

vehicle, and, in turn, less likely to steer. Xue et al. (2018) found that an evidence accumulation 

model (i.e., multiple sources of evidence per time unit), which included brake lights, was better at 

predicting brake response time than a looming threshold model (i.e., optical expansion). Although 

these simulator studies are informative, they were performed in a controlled environment where 

the drivers’ eyes were always on the road and considered a small number of independent variables. 

The simulator is unable to account for the complexities of natural driver behavior, as many factors 

are likely to influence drivers’ decision to perform an avoidance maneuver. 

 

Several studies have investigated naturalistic driving data for predicting driver responses. Dozza 

(2013) used naturalistic driving car and truck data to assess driver response times for evasive 

maneuvers in crashes and near-crashes (not limited to rear-end events). Not surprisingly, Dozza 

(2013) found that attendance to eyes-off-road and secondary tasks delayed response times. 

Markkula et al. (2016) assessed naturalistic driving behavior in a sample of rear-end crashes and 

near-crashes. This included events with/without visual distraction. Braking response times were 

more strongly dependent on visual looming than brake light onset. The authors used an 

accumulation model to predict drivers’ response to a takeover request from an ADS in a rear-end 

crash scenario. Braking was hypothesized to function much like that presented by Dozza (2013); 

however, steering was dependent on early detection of the threat or awareness that braking alone 
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would not mitigate/prevent the threat (both modulated by looming and knowledge that steering to 

another lane is available). 

The prior studies have identified eyes-off-road distractions, driver impairment, speed limits, driver 

personality factors, and accumulated optical evidence as critical factors in a driver’s decision to 

steer or brake in response to a rear-end emergency. However, these studies did not include the 

driver’s gaze eccentricity, which has been shown to adversely impact lane keeping and braking 

response to a lead vehicle (Lamble, Laakso, & Summala, 1999; Senders et al., 1967). In addition, 

prior work (Hu et al., 2017) established that tree-based machine learning approaches, such as 

decision trees and random forests, are effective methods for inference in rear-end emergencies. 

The prior work is limited in analyses of naturalistic driving data and in its focus on broad gaze 

metrics (e.g., eyes-on-road/eyes-off-road) rather than specific measures of gaze eccentricity. Thus, 

our two main research questions for this analysis constitute clear advances beyond the prior work: 

(1) What factors determine whether drivers will brake and/or steer to avoid a real-world rear-end 

crash/near crash?; and (2) How do these driver responses depend on gaze eccentricity? We address 

these questions with a machine learning analysis of drivers’ avoidance response choices during 

rear-end crashes and near-crashes in the SHRP 2 second Strategic Highway Research Program 

(SHRP 2) dataset. We analyzed a large set of rear-end events in the SHRP 2 data set, extracting 

from each event a range of new information relevant to our research questions (Section 2). Then, 

we used this extracted event-level information as training data for a random forest classifier, 

predicting driver maneuver in each event (Section 3). Finally, we used this model for an inferential 

analysis of the factors that influence braking/steering decisions (Section 4 and Section 5).  
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2 METHODS 

Data from rear-end car crashes and near-crashes from the second Strategic Highway Research 

Program Naturalistic Driving Study (SHRP2 NDS) were used in this study. A detailed overview 

of the SHRP2 NDS methodology can be found in Dingus et al. (2015). SHRP2 NDS collected two 

petabytes of data from over 3,000 participants, encompassing nearly 40 million miles of 

naturalistic driving data. The InSight website (https://insight.shrp2nds.us/) has more information 

about the study and detailed descriptions of available variables. Post processing of SHRP2 NDS 

data identified and analyzed 41,476 events using the event analysis protocol, including all crashes, 

near crashes, and some baseline events. Of these, 391 rear-end crash and near-crash events where 

the subject vehicle was the following vehicle were used in this analysis.  All the rear-end events 

included at least two light vehicles (excluding rear-end events with a pedestrian, pedalcyclist, 

heavy truck, etc.). After initial review, thirty-six of these events were removed due to one or more 

of the following: (1) maximum speed less than 15 m/s, (2) no valid data for speed, acceleration, or 

gyroscope data, (3) no radar data point from the lead vehicle. The existing data annotations from 

the 355 rear-end subject vehicle striking events in SHRP2 NDS were reviewed. Based on the 

review process, we developed several new reduction variables. These variables were merged with 

the existing annotations in SHRP2 NDS. Table 1 shows a step-by-step process on how this was 

executed.  

Table 1 A step by step process of data post processing for feature generation and 

aggregation. 

Step 1 Access all NDS event data and existing reduction data for SHRP2 data 
Step 2 Select events with: 

1. Rear end crashes/ near-crashes with subject driver at fault 
2. Maximum speed > 15 m/s 
3. All kinematic data available (speed, acceleration, radar, gyro etc.) 

Step 3 Perform additional video review and annotation development pertaining 
to driver decision (see Section 2.1.2)  

Step 4 Compute new feature variables (Section 2.2 – 2.5) 



STEER OR BRAKE         9 
 

Step 5 Combine new feature variables (Steps 3 and 4) with existing reduction 
variable (Step 2) 

 

2.1 Data Reduction 

2.1.1 Existing Data Reduction and Radar Data Pulled from SHRP 2 

The existing annotations (see https://insight.shrp2nds.us/ for complete list of variables) and radar 

data from the 355 rear-end crashes and near crashes were extracted from the SHRP2 NDS data 

repository. This included one minute of radar data and subject driver eye glance behavior (i.e., 

where the subject driver was looking, categorical data with 19 levels, such as ‘Forward’, 

‘Transition’, ‘Rearview Mirror’, etc.). In addition, existing categorical and continuous variables 

from this prior data reduction were included including, (i) time stamp for the selected event, (ii) 

subject driver variables (gender, age), (iii) time stamp of the evasive braking and/or steering 

response by the subject vehicle, (iv) time stamp for start of subject physical reaction (i.e., subject 

driver’s physical reaction to awareness of impending crash or near crash), (v) driver glance data, 

(vi) driver impairment, and (vii) secondary tasks.        

 

2.1.2 New Data Reduction 

The videos from the 355 rear-end events were manually reviewed to support the specific research 

questions mentioned in the Introduction, extracting an extended set of variables, as defined in 

Table 1. These variables were selected due to their importance in answering the research questions. 

This additional data reduction involved watching the video and coding each variable per the 

operational definition and value. Many of the new variables were coded with respect to the “the 

last glance”, which is operationally defined in Section 2.2.2. Table 1 displays each variable’s 

operational definition and counts for the existing and new variable reduction (i.e., not included in 



STEER OR BRAKE         10 
 

prior SHRP 2 reduction). Note the counts reflect 286 rear-end events as a filtering process 

(described in Section 2.3) eliminated 69 events. 

 

Table 2. Variable Name, Operational Definition, and Reponses Choices for the New 

Variable Reduction 

Variable Name Description Values 

Gaze 
Eccentricity 
(for last 
glance) 

Horizontal 
Eccentricity 

Zero vertical and 
horizontal glance 
eccentricity would be a 
driver looking straight 
ahead. Eccentricity was 
categorized into bins of 
20 degrees (e.g., ‘down 
between 70-90 degrees’). 
Then, horizontal and 
vertical glance events 
were combined and 
differentiated between 
the directions of the 
glances by means of the 
instrumented vehicle 
driver left/right and 
up/down, respectively. 
The middle value in the 
range was used in the 
analysis (e.g., ‘down 
40%’ was used instead of 
‘down between 30-50 
degrees’). 

‘left 100 degrees’ (n = 8), ‘left 70 degrees’ (n 
= 4), ‘left 60 degrees’ (n = 5), ‘left 40 
degrees’ (n = 18), ‘left 20 degrees’ (n = 18), 
‘straight ahead’ (n = 133), ‘right 90 degrees’ 
(n = 5), ‘right 80 degrees’ (n = 5), ‘right 60 
degrees’ (n = 13), ‘right 40 degrees’ (n = 21), 
‘right 20 degrees’ (n = 55). 
 

 
Vertical 
Eccentricity 

‘down 80 degrees’ (n = 2), ‘down 60 degrees’ 
(n = 23), ‘down 40 degrees’ (n = 46), ‘down 
20 degrees’ (n = 16), ‘straight ahead’ (n = 
168), ‘up more than 90 degrees’ (n = 0), ‘up 
80 degrees’ (n = 1), ‘up 60 degrees’ (n = 1), 
‘up 40 degrees’ (n = 4), ‘up 20 degrees’ (n = 
25) 

Road 
Attention 
Allocation  

Forward The attention allocated to 
the roadway in respect to 
the subject’s own lane, 
adjacent lanes, the rear of 
the vehicle, and the 
awareness of potential 
hazards in the present 
traffic environment 

‘full’ (n = 169) or ‘intermittent’ (n = 117) 

Right ‘yes’ (n = 44) or ‘no’ (n = 242) 

Left ‘yes’ (n = 73) or ‘no’ (n = 213) 

Back ‘yes’ (n = 56) or ‘no’ (n = 230) 
Escape Path Feasible The feasible escape 

directions for an 
emergency maneuver. 
Reduced into a binary 

‘yes’ (n = 180) or ‘none’ (n = 106) 
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Variable Name Description Values 

variable on the feasibility 
of an escape path. 

Escape Glance  The direction of the 
escape glance made by 
the subject driver after 
becoming aware of an 
impending near crash or 
crash. Reduced to a 
binary variable of ‘yes’ 
or ‘no’ 

‘yes’ (n = 132) or ‘none’ (n = 154) 

Last Glance Location The last glance is 
operationally defined in 
Section 2.3.2. The last 
glance location uses the 
driver glance data to 
define the driver’s glance 
location during the last 
glance. This was reduced 
into a binary value of 
‘interior” and ‘exterior’ 

‘exterior (n = 199) or ‘interior’ (n = 87) 

Driver Impairments The driver intoxicated, 
drugged, and/or 
sleepy/asleep 

‘yes’ (n = 10) or “no” (n = 276) 

Secondary Task The driver performing a 
secondary task 

‘yes’ (n = 190) or ‘no’ (n = 96) 

Maneuver What maneuver decision 
the driver used 

Braking (n = 255) or Steering (n = 31) 

 

2.2 Calculation of Inverse Time to Collision (TTC-1) and Visual Cue Onset Point (VCOP) 

SHRP 2 data includes kinematic variables, including speed, acceleration, gyroscope, and radar. 

The radar data identifies the location and relative speed of up to eight objects simultaneously in 

the forward direction. We denote 𝑥!"#$  and 𝑦!"#$  as the position of the 𝑖%& object (in the current 

study, this was always another vehicle) relative to the instrumented vehicle. Here, 𝑥!"#$  was in the 

longitudinal position of the vehicle and 𝑦!"#$  was the lateral position of the vehicle with right side 

being positive. Please note that these distances refer to the bumper to bumper distance, the distance 

between the front bumper of the ego vehicle and rear bumper of the lead vehicle (SAE 
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International, 2015). The relative speeds in the longitudinal (𝑥) and lateral (𝑦) directions are 

denoted by �̇�!"#$  and �̇�!"#$  respectively.  

 

The raw radar data were noisy. Apart from temporal noise in the speed and position values, it often 

failed to identify continuity of a target after an instance of occlusion. Sometimes the radar reported 

identification of an object when there was no object present (“ghost objects”). Therefore, the raw 

radar data were passed through a post processing algorithm (Gorman, Stowe, & Hankey, 2015) 

that eliminated ghost objects, as well as used smoothing filters to eliminate noise. The output also 

specified if a certain object was the lead vehicle relative to the instrumented vehicle. This filtering 

eliminated an additional 69 events due to poor radar data, resulting in 286 rear-end events included 

in the analysis (278 near-crashes and 8 crashes). 

 

2.2.1 TTC, TTC-1, and Looming 

Time to collision (TTC) is often used to quantify proximity to a potential crash, computed as 

follows (Östlund et al., 2006; SAE International., 2015): 

																				𝑇𝑇𝐶 = 	𝑥!"#$ �̇�!"#$)   (1) 

where, 𝑇𝑇𝐶 is the instantaneous measurement where relative speed is maintained at �̇�!"#$ . 

Similarly, inverse TTC is computed as: 

 𝑇𝑇𝐶'( =	 �̇�!"#$ 𝑥!"#$)    (2) 

A higher value of 𝑇𝑇𝐶'( indicates a closer proximity to a potential crash. Close approximations 

of 𝑇𝑇𝐶 and 𝑇𝑇𝐶'( are readily available to the human visual system via the optical expansion, or 

looming, of the lead vehicle on the retina (Lee, 1976), and they have been previously implicated 

in driver near-crash maneuvering (e.g., Kondoh et al. 2014; Markkula et al., 2016, 2018). 
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2.2.2 Visual Cue on Point (VCOP) and Last Glance 

The VCOP denotes the time instance when it is believed the driver received the first visual input 

of a potential crash. In this paper, we specified VCOP as conditional to the criticality of the event. 

Here, VCOP was defined based on the time instance, 𝑇%& where 𝑇𝑇𝐶'( crossed a certain threshold 

𝑇𝑇𝐶%&'(. Formally VCOP was represented as: 

 𝑉𝐶𝑂𝑃 = - 𝑇%& , 𝑑𝑟𝑖𝑣𝑒𝑟	𝑔𝑙𝑎𝑛𝑐𝑒 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑇%& + Δ𝑇, 𝑑𝑟𝑖𝑣𝑒𝑟	𝑔𝑙𝑎𝑛𝑐𝑒	 ≠ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑  

(3) 

Here, Δ𝑇 denoted the time duration between the 𝑇𝑇𝐶'( value crossed 𝑇𝑇𝐶%&'(, and the driver’s 

glance returned forward (𝑇)*). This instance was also referred to as the time the “last glance” 

ended.  

  

In this paper we have used two different thresholds, for 𝑇𝑇𝐶'(, 0.1 and 0.2.  Recent literature 

analyzing naturalistic crash and near crashes found that most reactions occur at an 𝑇𝑇𝐶'( of 0.2 

(Markkula et al., 2016; Victor et al., 2015;). Many researchers have argued that driver behavior, 

especially gaze concentration at inverse 𝑇𝑇𝐶 value as low as 0.1 has a significant impact on the 

outcome of the event (e.g. Victor et al., 2015; Bergman et al. 2015; Bärgman et al., 2017).While 

other studies have explored higher 𝑇𝑇𝐶'( thresholds (Kiefer et al., 2005; Moon and Yi, 2008; 

Kondoh et al., 2014),  this document links between driver reactions and 𝑇𝑇𝐶'( of value 0.1 and 

0.2. As this paper mostly concerns in predicting driver reactions ahead of the actual maneuver, we 

focus on these values.    

 

A pictorial depiction of the VCOP, and last glance is shown in Figure 1 for two distinct scenarios. 

Figure 1 shows the value of the 𝑇𝑇𝐶'(and the driver glance location with respect to time. In Figure 
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1(a), the driver looked forward when 𝑇𝑇𝐶'(reached 𝑇𝑇𝐶%&'(. We denoted this time instance as the 

VCOP (or eyes-on-threat). However, if 𝑇𝑇𝐶'(reached 𝑇𝑇𝐶%&'( when the driver was looking away, 

as shown in Figure 1(b), VCOP was defined for the time instance (𝑇)*) when the driver returned 

his/her gaze toward the forward roadway (or eyes-off-threat).   

 

In this study, we captured gaze eccentricity of the driver’s last glance before the safety-critical 

condition. A last glance was defined as the glance location away from forward roadway observed 

before the vehicle enters a safety-critical condition. The last glance was performed before either 

the subject physical reaction, or, if no subject reaction was visible, before the first significant 

approach of the lead vehicle becomes visible in the front facing video (i.e. looming). This 

specifically excluded all glances performed as a reaction to the conflict (i.e. searching for an escape 

path). Again, the time instance, 𝑇%& where 𝑇𝑇𝐶'(  crossed a certain threshold 𝑇𝑇𝐶%&'( was used as 

a reference to identify the driver’s last glance. If the driver looked forward at 𝑇%&, as shown in 

Figure 1(a), then the last glance location prior to this was considered the last glance (if the last 

glance is within 10 seconds of 𝑇%&). If the driver did not look away, or there was no glance away 

from the forward roadway within 10 seconds of 𝑇%&, no last glance location was recorded. If the 

driver looked away at 𝑇%&, as shown in Figure 1(b), we considered the glance location at 𝑇%&as the 

last glance. Any glance other than the last glance during this time period 𝑡 ∈ [𝑇%& − 10	, 𝑇%&) was 

considered eyes-off-threat. In both cases shown in Figure 1, the 𝑇𝑇𝐶'( threshold was considered, 

𝑇𝑇𝐶%&'( = 0.1. The VCOP computation resulted in 160 eyes-on-threat events (4 crashes and 154 

near-crashes) and 126 eyes-off-threat events (4 crashes and 122 near-crashes). Eyes-on-threat 

cases also included the variable ‘eyes on threat before VCOP’ (or EOTB-VCOP), which measured 

the duration of forward glance between last glance and VCOP points. The EOTB-VCOP should 
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assess the impact of the last glance on the driver’s maneuver decision. If the EOTB-VCOP value 

was high, which meant the driver was looking forward for a long period of time before the event 

criticality became high, then the last glance and its associated variables (explained later in the 

paper) could be expected to have a limited effect on the decision of the driver. 

 

 

(a) 

 

(b) 

Figure 1. Schematic depiction of two VCOP cases: (a) eyes-on-threat (b) eyes-off-threat. In 

both cases the 𝑻𝑻𝑪'𝟏 threshold was 0.1. 

 

2.3 Driver Reaction and Maneuver  

In this analysis, two types of avoidance maneuvers were considered: braking-only (BR) and 

Steering and Braking (SB). In a BR scenario, the driver decided to stay in the same lane of the 

conflicting lead vehicle and the maneuver was restricted only to longitudinal direction. In SB 



STEER OR BRAKE         16 
 

scenarios, the driver decided to steer to a different lane than the conflicting lead vehicle. In this 

work, we have annotated the time instance when the driver initiated the steering maneuver using 

the steering wheel.  

  

2.4 Driver Gaze Eccentricity 

We quantified the driver’s gaze away from forward roadway using their horizontal and vertical 

deviation, termed here as Horizontal Gaze Eccentricity (𝛼) and Vertical Gaze Eccentricity (𝛽). 

As mentioned in Sec 2.1.2, in each event the driver’s last glance behavior was annotated in terms 

of 𝛼 and 𝛽, sometimes with a large range (e.g., ‘down between 30 to 50 degrees’). In order to 

quantify distraction, we considered a middle value (e.g., 40 degrees for case noted as ‘down 

between 30 to 50 degrees’). Now, in order to understand the combined effect of 𝛼 and 𝛽, we 

introduced a single measure that merged the horizontal and vertical eccentricity, Combined Gaze 

Eccentricity (𝛾). Figure 2 shows an illustration of this idea. Using simple geometry, 𝛾 is 

calculated as: 

    

Figure 2 Schematic for the combined gaze eccentricity or  computed from the horizontal 

gaze eccentricity and vertical gaze eccentricity 
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 𝛾 = tan'(NOtan, 𝛼 + tan, 𝛽P  (4) 

 
2.5 Computed Feature Variables  

In addition to the data variables obtained from the data reduction procedure, described in Table 

2, we computed five new variables from the event analysis using VCOP and 𝑇𝑇𝐶'( plot shown 

in Figure 3, Figure 4, and Figure 5; see Table 2. 

 

Table 3 Computed Variables from the VCOP Features. 

Variables Definition 

VCOP Condition Depending on the definition in Section 2.2.2 the VCOP 
condition has two values: ‘eyes on threat’, ‘eyes off threat’ 

Last Glance Duration Based on the glance location coded in the reduction data and 
definition of last glance from Section 2.2.2, last glance duration 
is computed as the time duration in second.  

TTC at VCOP Once VCOP point is defined, the TTC value is computed from 
the radar data at the VCOP timestamp.  

TTC at Physical Reaction Denotes the TTC value at the time instance of physical reaction 
Last Glance Eccentricity 
Combined 

The combined eccentricity defined by eq. (4) 

Eyes on Threat before 
VCOP’ (EOTB-VCOP) 

Computed from the glance location coded in the reduced data 
along with the definition of last glance and VCOP from Section 
2.2.2.  

 

2.6 Illustrative Example Events 

Figures 3, 4, and 5 show three representative near-crash cases. These figures highlight the VCOP, 

physical reaction point, braking maneuver start point, steering maneuver start point, if any and the 

driver gaze forward. They also show the progression of 𝑇𝑇𝐶'( over time and the 𝑇𝑇𝐶%&'(	value of 

0.1. In events where two lead vehicles were involved, trajectory of the conflicting vehicle and the 

non-conflicting vehicle are shown.  
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Figure 3 shows the simplest case of a BR-only event with one lead vehicle. Here the 𝑇𝑇𝐶'( 

threshold was crossed when the driver’s eyes were off road. The criticality of the event increased 

once the driver looked back at the road at the VCOP, with the driver applying brakes within one 

second. As a result, the 𝑇𝑇𝐶'(  drops back below the criticality level.  

 

 

Figure 3. Eyes-off-threat event with one lead vehicle. Here the driver applied brake as the 

evasive maneuver. 

 

Figure 4 shows an example of an SB event. Here the 𝑇𝑇𝐶'(  threshold was crossed when the 

driver’s eyes were on road. In this specific case, two lead vehicles were involved. The host vehicle 

was following a vehicle (non-conflicting) until the conflicting vehicle appears to the driver’s view 

at time 𝑡 = 459.5. In this case, the non-conflicting vehicle changed its lane, possibly to avoid the 

impending threat from the conflicting vehicle. After the VCOP point, the driver immediately 

acknowledged the threat (physical reaction) and made evasive actions, braking and using a steering 

maneuver to change lanes.  
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Figure 4: Eyes-on-threat event with two lead vehicles. In this case the driver changed lane 

as the evasive maneuver. 

 

Figure 5 shows a BR event with two lead vehicles [LD1 (non-conflicting) and LD2 

(conflicting)]. The instrumented vehicle was following a lead vehicle (non-conflicting) at time 

𝑡 = 1491. Then, LD1 suddenly changed lanes and another vehicle became the lead vehicle. The 

video shows LD1 changing lanes to avoid a collision with a slower moving LD2. As LD1 

changed lanes, revealing the conflicting situation of LD2 to the instrumented vehicle driver, the 

situation escalated until the driver applied the brakes at 𝑡 = 1493. The driver was looking away 

when the 𝑇𝑇𝐶'( crossed the threshold.  
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Figure 5. Eyes-off-threat event with two lead vehicles. Here the driver applied brake as the 

evasive maneuver. 

 

The three cases above show that critical events, such as a near-crash, the 𝑇𝑇𝐶'( value increases 

exponentially until an evasive action is taken. 

 

3 ANALYSIS APPROACH 

3.1 Driver Reaction Classification 

We used two different models to predict driver maneuver (1) linear model using logistic 

regression (LR) and (2) non-linear model using random forest. Both models have been widely 

used in classification tasks (Murphy, K., 2012). An LR model builds a discriminative model that 

creates a linear combination of the features and then passes it through a logistic function to 

determine conditional class probability. With a predetermined threshold (often 0.5) applied to the 

computed probability value, a classification task is formed. An RF model is an ensemble of 

decision trees (DT), that learns a set of decision rules by creating a hierarchical graph structure 

(Ho, 1995; Rokach & Maimon, 2008). The graph constitutes a set of nodes. A parent node in the 

graph splits into child nodes, unless no more splitting is possible. The splitting action splits the 
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data into a subset of data conditioned on a feature value. In general, the creation of child nodes in 

an DT increases the homogeneity of the resultant nodes. RF has been successful in transportation 

and human factors research due to its capability in capturing nonlinear relations (Harb et al., 

2009; McDonald et al., 2014, 2019). One advantage of using a DT-based method is the resulting 

classifier is relatively interpretable, for example using standardized methods for measuring the 

relative importance of the feature variables.  

 

3.1.1 Data Preprocessing 

This step mainly involves two tasks, addressing class imbalance and partitioning the full dataset 

into training and testing datasets. Seventy percent (70%) of the data were used in training with 

the remaining thirty percent (30%) for testing. Now, the dataset in consideration contains lesser 

number of events from SB maneuver compared to BR. It is known that unbalanced data can 

undermines the decision tree training process (He & Garcia, 2008). One of the standard method 

to address this issue is to oversample the minority class. Such over-sampling has been shown in 

simulation to provide more robust results than alternative methods (Pulgar et al., 2017). 

Therefore, we used random oversampling method to up-sample the SB events in order to balance 

the data in both BR and SB events in the training dataset. After over-sampling, the dataset 

contained 249 BR events and 232 SB events (originally, 29 SB events1). All the variables in 

Table 2 and Table 3 were used as dependent variables in the RF model with no specific 

restrictions in the tree structure. As the 𝑇𝑇𝐶 and 𝑇𝑇𝐶'( are reciprocal and RF is a nonlinear 

 
 
 
1 One SB event was eliminated as the corresponding sensor values had noise and creating numerical instability.  
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method, we considered only one value. However, after checking different combinations, it 

appears using TTC values produced the best classification results.  

 

3.1.2 Model training and evaluation process 

The LR model and the RF model were trained in Python using the scikit-learn library (Pedregosa 

et al., 2011).  For both the models, 70% of the data were used for training and cross validation, 

the rest of the data (30%) were used for testing. In the RF model, we used entropy as the measure 

for splitting the nodes. Hyperparameters were optimized using an internal cross-validation 

process. First, we tested the variation of the area under the curve value by varying individual 

parameters to assess how and when the RF overfit. After reviewing these results to better 

understand the data, we used three-fold cross validation with random search over the combined 

grid of the parameter space. The parameters used for the cross validation were (a) depth of tree, 

(b) number of trees in the forest (c) minimum number of samples required to initiate the split of a 

node, (d) maximum number of features considered at the node split, and (e) minimum samples at 

the split of a node. The final hyperparameters selected were 500 trees, at a depth of six in the RF 

model. Following the training, the models were evaluated by their accuracy, precision, and recall 

on the testing dataset. RF models were initially trained for of 0.1 and 0.2.  

 

3.1.3 Model inference 

Following the model training process, inference was performed using the variable importance 

plots from the random forest and partial dependence plots. Variable importance is a measure of 

the loss in accuracy associated with the iterative removal of a feature from the algorithm (James 

et al., 2017). This iterative calculation is limited as it does not control for contributions from 
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other features or correlations between features. Partial dependence measures address this gap by 

explicitly marginalizing over all other features and calculating the impact of a feature value on 

classification over the range of values in the training data set (Friedman, 2001). Partial 

dependence is calculated using the following equations: 

 

𝑓U(𝑥) = 	 1𝑛W𝑓(𝑥, 𝑥$-)
.

$/(

 (5) 

 

Where ƒ(x) was the partial dependence of feature x, n was the number of samples in the dataset, 

𝑋$-  was the other features in the dataset, the sum was the predicted class and 𝑓(𝑥) is: 

 𝑓(𝑥) = log	𝑝0(𝑥) −	 (1∑ log	𝑝2(𝑥)1
2/(  (6) 

Where 𝐾 was the number of classes (2 in this case), 𝑘 was the reference class (breaking), and 𝑝2 
was the proportion of votes for the class 𝑗 predicted by the random forest algorithm (Liaw & 

Wiener, 2002). Thus, partial dependence illustrates how changes in the value of a feature 

influence the predicted class (Zhao & Hastie, 2019). A final method to perform inference was to 

analyze the structure of the DTs from the RF. By visualizing these trees, one can see the logic 

chains that led to classification and the learned logical connections between variables. In this 

work, we visualized a single tree, the DT, with the maximum F1 score among all of the trees in 

the RF. 

 

4 RESULTS 

Table 4 shows the result of the prediction for the test set of the dataset. We trained the LR model 

and RF models using two different inverse TTC threshold values (𝑇𝑇𝐶%&'(), 0.1 and 0.2. For 
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𝑇𝑇𝐶%&'( = 0.1, the trained model achieved the best performance with an accuracy of 95.86%, 

precision of 100%, and recall of 91.42% with 500 trees. As shown in Table 4, the LR model 

underperformed the RF model. Here and below in this paper, all accuracy/precision/recall 

percentages are for the performance on the test set (i.e., the 30% of the data that were withheld 

during RF training). The result with 𝑇𝑇𝐶%&'( = 0.1, as shown in Table 4, is better than 𝑇𝑇𝐶%&'( =
	0.2. These results suggest the RF classifier was capable of accurately predicting the drivers’ 

maneuver and reflects the underlying reasoning. The RF model with 𝑇𝑇𝐶%&'( = 0.1was more 

accurate; thus, all the subsequent discussion is focused on models built with this threshold value. 

 

Table 4 Comparison of classification accuracy of two RF models. 

 Accuracy Precision Recall 

RF model with 𝑇𝑇𝐶%&'( = 0.1 95.86% 100% 91.42% 

RF model with  𝑇𝑇𝐶%&'( = 0.2 85.45% 78.95% 90.81% 

LR model with  𝑇𝑇𝐶%&'( = 0.1 58.62% 57.58% 54.29% 

LR model with  𝑇𝑇𝐶%&'( = 0.2 61.49% 57.14% 69.57% 

 

4.1 Inference of the Decision Logic 

In order to understand the underlying decision logic of the RF, we look deeper into the model. 

First, we study the relative importance of the features in the process of the decision making. 

Next, we a single tree from the random forest to understand a typical decision logic. This step 

helps us to visualize how the algorithm may be forming the decision logic. Finally, we study the 

partial dependence plot that shows the marginalized effect of a single variable in creating the 

final decision. This step helps us to identify key threshold of each of the participating variables 

and draw key conclusion about the decision process of a driver in a safety critical condition.  
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4.1.1 Variable Importance 

Figure 6 displays the results for the analysis of the variable importance, including all the 

variables provided as input features to the DT. The six most important variables for classification 

were TTC at the Physical Reaction (19.3% accuracy loss when removed), TTC at the VCOP 

(18.1%), Escape Path Feasibility (12.2%), EOTB-VCOP (9.8%), Last Glance Duration (8.4%), 

and Combined Last Glance Eccentricity (7.9%). Notably, the Combined Gaze Eccentricity had 

higher importance than either Horizontal Eccentricity or Vertical Eccentricity. It is further 

notable that Secondary Task Involvement had low influence on the drivers’ maneuvering 

decision and that drivers’ maneuver decision was not dependent on Last Glance Location 

(outside vs inside). 

 

 
Figure 6. Variable Importance in the RF Model. 

 

4.1.2 Random Tree Decision Structure 

In order to understand the underlying decision logic, we used the top six predictive features 

shown in Figure 6 and trained another RF. The overall performance of the RF decreased to 83% 
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from 96%, using the six variables compared to all feature variables, respectively. A 

representative structure of the DT is shown in the Figure 7, where Class 1 = BR and Class 0 = 

SB (all had braking as the first response). The tree in Figure 7 had the highest F1-score among 

all the trees. F1 score is the harmonic mean of the precision and recall.  

These decision logics are possible examples the RF may use for its decision. This tree is one of 

the 500 trees created during the process. Every logic presented here might not be the final logic 

used in the final RF decision. However, these examples provide insight for the decision 

philosophy, which is further investigated below.  

 

 

Figure 7: Structure of a Single Decision Tree. Class = 1 represents BR and Class = 0 

represents SB2.  

 

 
 
 

2 The color ‘blue’ highlights the class = 1 cases. The color ‘orange’ highlights class = 0. The brightness depends on 

the entropy value. Higher entropy (~1) has higher brightness and lower entropy (~0) has darker shade.  
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A summary of all the decision logics are shown in Table 5, where six decision paths lead to an 

SB output and five lead to an BR output. We summarize the DT as follows:  

1. Looking deeper into decision cases 8 to 11 in Table 5 reveals that, when the drivers’ eyes 

are on threat for more than about a second before the looming reaches threshold 

(EOTBVCOP > 0.97 s), and TTC values at VCOP and physical reaction are substantially 

high (TTC at VCOP = 10 in these scenarios), the driver tends to make a steering 

maneuver if there is an escape path making the lane change feasible. They brake if the 

steering maneuver is not feasible. When the TTC at the physical reaction is smaller (<=
	4.1𝑠), drivers tend to brake only, even if the steering maneuver is feasible. 

Table 5. Elaboration of the Decision Logic. 

Decision Case Conditions Decision Class 

Case 1 
𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 <= 	0.973 and 
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 <= 1.4578 and 
𝑇𝑇𝐶_𝑃ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 <= 0.6053 

SB 

Case 2 
𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 <= 	0.973 and 
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 > 	1.4578 and 
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 <= 1.7342 

SB 

Case 3 
𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 <= 	0.973 and 
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 <= 1.4578 and 
𝑇𝑇𝐶_𝑝ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 > 	0.6053 

BR 

Case 4 
𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 <= 	0.973 and 
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 > 	1.7342 and 
𝐸𝑠𝑐𝑎𝑝𝑒𝑃𝑎𝑡ℎ𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒	 = 	𝐹𝑎𝑙𝑠𝑒 

BR 

Case 5 

𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 <= 	0.973 and 
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 > 	1.7342 and 
𝐸𝑠𝑐𝑎𝑝𝑒𝑃𝑎𝑡ℎ𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒	 = 	𝑇𝑟𝑢𝑒 and 
𝐿𝑎𝑠𝑡𝐺𝑙𝑎𝑛𝑐𝑒𝑑𝐸𝑐𝑐𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑	 <= 	46.1632 

BR 

Case 6 

𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 <= 	0.973 and 
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 > 	1.7342 and 
𝐸𝑠𝑐𝑎𝑝𝑒𝑃𝑎𝑡ℎ𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒	 = 	𝑇𝑟𝑢𝑒 and 
𝐿𝑎𝑠𝑡𝐺𝑙𝑎𝑛𝑐𝑒𝑑𝐸𝑐𝑐𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑	 > 	46.1632 

SB 

Case 7 
𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 > 	0.973	and 
𝑇𝑇𝐶_𝑃ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 <= 	0.545 

SB 



STEER OR BRAKE         28 
 

Decision Case Conditions Decision Class 

Case 8 
𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 > 	0.973 and 
𝑇𝑇𝐶_𝑃ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 > 	0.545 and  
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 > 	9.8887 

SB 

Case 9 

𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 > 	0.973 and 
𝑇𝑇𝐶_𝑃ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 > 	0.545 and  
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 <= 	9.8887 and  
𝐸𝑠𝑐𝑎𝑝𝑒𝑃𝑎𝑡ℎ𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒	 = 	𝐹𝑎𝑙𝑠𝑒 

BR 

Case 10 

𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 > 	0.973 and 
𝑇𝑇𝐶_𝑃ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 > 	4.1298 and  
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 <= 	9.8887 and  
𝐸𝑠𝑐𝑎𝑝𝑒𝑃𝑎𝑡ℎ𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒	 = 	𝑇𝑟𝑢𝑒 

SB 

Case 11 

𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 > 	0.973 and 
𝑇𝑇𝐶_𝑃ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 > 	0.545 and  
𝑇𝑇𝐶_𝑃ℎ𝑦𝑠𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 <= 	4.1298 and  
𝑇𝑇𝐶_𝑉𝐶𝑂𝑃	 <= 	9.8887 and  
𝐸𝑠𝑐𝑎𝑝𝑒𝑃𝑎𝑡ℎ𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒	 = 	𝑇𝑟𝑢𝑒 

BR 

 

 

 

2. The drivers always tend to brake only if no escape path is feasible (cases 4,5, and 6).  

3. In cases when the eyes on threat time before VCOP is substantially small 

(𝐸𝑂𝑇𝐵𝑉𝐶𝑂𝑃	 < 	1.0	𝑠𝑒𝑐𝑜𝑛𝑑), the driver can still choose the steering maneuver option, 

especially when the last glance gaze eccentricity is very high, and the lane change is 

feasible.  

4.1.3 Partial Dependence Plots 

Figure 8 displays the partial dependence plot for the six most important variables in the RF 

model in Figure 6. Positive values on the y-axis indicate the driver was more likely to brake at 

that value of the feature, whereas negative values indicate the driver was more likely to steer and 

brake. Values near zero indicate that the feature does not significantly contribute to classification 

at that value. The gray bars are a rug plot that shows the distribution of the feature values in the 

dataset. The plots show two straightforward trends: (1) when an escape path was not feasible, the 
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driver was likely to brake; and (2) when the last glance duration was above 1.3 seconds, the 

driver was more likely to brake. The trends of variables TTC at VCOP, TTC and Physical 

Reaction, and Combined Gaze Eccentricity are more difficult to interpret. The plots show that 

braking is more likely in the range between 1.5 seconds and 8.5 seconds TTC at VCOP. TTC at 

the Physical Reaction less than zero indicates that steering is more likely (a negative TTC value 

indicates the relative distance between the vehicles was increasing), however, this trend is biased 

by the relatively few samples less than zero and should be investigated further in future work. 

Combined Gaze Eccentricities less than 9 degrees led to substantially increased likelihood of 

braking; however, Combined Gaze Eccentricities greater than 100 degrees did not have a strong 

effect. 

 

 

Figure 8. Partial dependence plot for six most important variables. 

 

Two-dimensional partial dependence plots which show algorithm predictions across two 

variables provide additional insight into the algorithm predictions. Two examples of these plots 
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are shown in Figure 9 and Figure 10. Figure 9 shows the two-dimensional partial dependence 

plot for TTC at the Physical Reaction and Escape Path. In the figure, black squares indicate the 

highest likelihood in predicting a lane change maneuver and the white squares indicate the 

highest likelihood in predicting braking. The figure shows that when there is no escape path, the 

TTC at the Physical Reaction has little impact on the model’s predictions, however, when there 

is a feasible escape path, drivers are more likely to brake at very low and high values of TTC at 

the Physical Reaction.     

 

Figure 9. Two-dimensional partial dependence plot showing the interaction between the 

TTC at physical reaction and Escape path feasibility. The color scale indicates the 

likelihood that the algorithm predicted braking, where darker squares indicate higher 

likelihood of braking. 
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Figure 10 shows the two-dimensional partial dependence plot for last glance eccentricity 

combined and last glance duration. Changes in these variables primarily increased the likelihood 

of the algorithm in predicting braking (lighter squares in this case indicate no effect on 

predictions). The highest likelihood of braking prediction occurred when last glance duration and 

gaze eccentricity were 0 (i.e., the driver was looking straight ahead). Braking predictions were 

more likely across the spectrum of duration when the gaze eccentricity was less than 50; 

however, as eccentricity increased beyond 50, gaze duration and gaze eccentricity were less 

likely to predict braking. Generally, this figure illustrates a lack of interaction between glance 

eccentricity and duration.  

 
Figure 10 Two-dimensional partial dependence plot for Last glance gaze eccentricity and 

last glance duration. 

 

5 DISCUSSION 

In this analysis we investigated drivers’ maneuver decisions during real-world rear-end crashes 

and near-crashes, extending prior research in this domain by including specific gaze eccentricity 

measures and visual looming-relative features—via the visual cue onset point. The analysis here 
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suggests that these gaze parameters, scenario kinematics, and the driving environment (e.g., 

escape path feasibility) are sufficient to predict driver braking or steering and braking responses 

with high accuracy. Further the variable importance results show that the TTC at the driver’s 

physical reaction, the TTC at the visual cue onset point, the presence of an escape path, the last 

time that the driver’s eyes were on the threat before the visual cue onset point, and the last glance 

eccentricity and duration are the most important features for predicting driver evasive maneuver 

choices. The partial dependence and decision tree analysis further highlight the ranges of these 

features that lead to maneuver choices.  

 

The overall predictive accuracy of the RF model compares favorably to prior machine learning 

based evasive maneuver prediction algorithms. For example, Hu et al. (2017) found 80.3% 

accuracy differentiating between braking and lane change maneuvers and Harb et al. (2009) 

found 76% accuracy identifying maneuvers in rear-end collisions. Although it is difficult to 

directly compare these results to the 95% accuracy observed in this analysis due to the 

differences in features, datasets, and training processes, the results suggest that random forests 

trained with the features used in this analysis are a promising method for prediction driver 

maneuver decisions. These findings should be further validated with additional data; however, 

after validation RFs, such as the one trained here, may be used in driver process models to 

accurately represent driver decision making.  

 

The inferential analysis here also agrees with prior work. Harb et al. (2009) and Kaplan and 

Prato (2012) found that roadway features such as the number of lanes were important for driver 

avoidance maneuver decision making. Although we did not explicitly model roadway type our 
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findings that the availability of an escape path was an important feature in classification, and that 

when escape paths were feasible it was likely that drivers steered and braked agree with both 

studies. These findings also align with the model proposed in Markkula et al. (2018) which 

suggests that steering avoidance is subject to the availability of evidence to the driver that it is 

safe to change lanes. Our findings add to these earlier works in that they more clearly describe 

the relationship between escape paths, maneuvers, and scenario kinematics. Availability of an 

escape path predicted a steering except in cases when the driver’s awareness of the imminent 

threat (TTC at Physical Reaction) occurred when the instrumented vehicle was close to the lead 

vehicle (𝑇𝑇𝐶	𝑎𝑡	𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙	𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	 <= 4.1𝑠). This suggests a crash was imminent and the 

time to perform a steering maneuver would be insufficient to avoid the crash (i.e., late detection); 

thus, making braking only more likely. 

 

The importance of visual kinematic evidence in our model agrees with the findings of the models 

discussed in Venkatraman et al. (2016), Hu et al. (2017), Xue et al. (2018), and Markkula et al. 

(2016). Our model is influenced primarily by two types of kinematic information: the TTC at 

physical reaction and the TTC at the visual cue onset point. These points reflect the driver’s 

acknowledgment of the scenario criticality and the likely first available visual evidence of the 

emergency scenario, respectively. In general, the importance of these variables adds to the 

mounting evidence of the importance of perceived kinematics in driver decision making and 

behavior (Markkula et al., 2016; Markkula et al., 2018). More specifically, our thresholds show 

that steering is more likely for TTC values at the physical reaction near zero and less than zero. 

Video review of these cases showed that TTC values less than zero represent cases where drivers 
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initially braked then realized that a lane change would be safe and executed it. This behavior 

supports the evidence accumulation framework established in the Markkula et al. (2018) model.  

 

The inclusion of quantitative last glance gaze eccentricity and duration metrics are novel 

additions in this analysis compared to prior work on driver decision making models. The results 

suggest that both eccentricity and duration are important for driver evasive maneuver decision 

making. However, the contribution of these variables is complex as illustrated in Figures 8 and 

10. The figures suggest that gaze eccentricities less than 46.1 degrees from center are likely to 

lead to driver braking and that in this range the effect of eccentricity dominates the effect of 

duration. In larger eccentricities the current model suggests that eccentricity does not 

significantly contribute to classification (i.e. the partial dependence is near zero). This is not 

surprising given that there is some question regarding drivers’ ability to identify hazard in the 

peripheral vision region of the eyes (Larson & Loschky, 2009). It is notable that the 46.1 degree 

threshold found in this study is well within the 90 degree detection threshold reported in Lamble 

et al. (1999), albeit the Lamble et al. study focused specifically on vertical eccentricity. The 

findings also agree with that of Huestegge & Böckler (2016) who manipulated gaze eccentricity 

and hazard severity in a static traffic hazard perception task (i.e., looking at traffic images on a 

computer screen) and found that hazard detection was the same for central and peripheral vison 

for dangerous hazards, but medium hazards resulted in a significant decline from central to 

peripheral vision. A final notable observation in the model is the role of eccentricity in eyes on 

threat versus eyes-off-threat CNC which is illustrated in Figure 11. The figure shows a trend of 

an increased likelihood of steering and braking as gaze eccentricity increases in eyes off threat 
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cases and a more stable trend of increased likelihood of braking in cases where the driver had 

their eyes on the threat. Future work should explore the former trend in more detail. 

 

Figure 11. Partial dependence of last glance gaze eccentricity for eyes on and eyes off threat 

examples. 

 

In general, longer Last Glance Durations (especially those greater than 0.8345 seconds) were 

associated with a braking response, whereas very brief Last Glance Durations were associated 

with a lane change maneuver.  Combined with the finding that drivers’ Last Glance Duration was 

highly correlated with 𝑇𝑇𝐶'( at the start of the last glance (𝑟	 = 	0.61), this suggests that drivers 

made a decision, based on the following distance to the lead vehicle, on the length of time they 

could look away from the forward roadway (i.e., the criticality of the situation was low; thus, a 

longer glance was judged as safe) and then responded. This finding is in line with the studies by 

Eiriksdottir (2016) and Victor et al. (2015) plotted the change rate in 𝑇𝑇𝐶'( as a function of 

drivers’ last glance duration in rear-end crashes and near-crashes in the ANNEXT and SHRP2 

NDS datasets, respectively. Both found the rate of criticality in the event during the last glance 

was inversely related to the length of the last glance (e.g., the rate of criticality decreased as the 

length of the last glance increased).  
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5.1 Limitations 

Despite these promising results, this analysis has several limitations.  Due to the lack of eye 

tracking software, gaze eccentricity was measured using estimations from review of the video. 

For this reason, gaze eccentricity was measured in ranges (see Table 2) as it was deemed too 

unreliable to estimate specific eccentricities. Although these ranges were largely based on 

manual eye glance reduction, it is difficult to be certain where the driver was looking 

independent of the drivers’ head position. Drivers’ secondary task and driver impairment were 

reduced to binary variables, which may not reflect the variability in the intensity of specific sub-

categories of secondary tasks (e.g., texting) and driver impairment (e.g., sleep) in the derived 

prediction algorithm. Also, there were only eight crashes included in the analysis; thus, the 

findings generally pertain to rear-end near crashes. Subsequent analyses should validate these 

findings with more granular measures of eccentricity and a larger dataset that may validate the 

model’s predictions. 

 

6 CONCLUSIONS 

In this paper we have shown that an RF model can efficiently predict drivers’ maneuver in a 

rear-end crash, and near crash scenario given the contextual features extracted from the event 

analysis and annotations. We reviewed 286 rear-end crash and near-crash events from the 

SHRP2 data and manually coded behavioral features. This paper specifically focused on the 

visual perception of drivers during rear-end events and the corresponding physical reaction and 

related them to the event criticality using features like TTC. We also assessed the effect of 

drivers’ gaze eccentricity and total time spent for evidence accumulation through VCOP and 

EOTB-VCOP. To the best of our knowledge, this is the first effort that evaluated drivers’ 

maneuver responses using large- scale naturalistic rear-end crash and near-crash events to 
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understand the combined significance of driver attention, driver perception, and driver reaction. 

The study explores the relative importance and nonlinear pattern of interactions between these 

behavioral and situational variables. As a result, we have developed a RF-based algorithm that 

can efficiently predict the drivers’ maneuver in with high accuracy. The RF explores the 

nonlinear pattern of interactions between the behavioral and situational variables. We have 

quantitatively shown the relative importance of each contributing factor in the drivers’ decision 

making, our main conclusions are: 

1. The first driver response in rear-end crashes and near-crashes are predominantly applying 

the brake (slowing down).  

2. The feature importance analysis showed that Last Glance Duration, Last Glance 

Combined Gaze Eccentricity, TTC at Physical Reaction, Escape Path Feasibility, TTC at 

Visual Cue Onset Point, and Eyes On Threat Before Visual Cue Onset Point played vital 

roles in drivers’ decision-making process in braking and/or changing a lane. 

3. Inverse TTC threshold of 0.1 (which is equivalent to TTC value of 10 seconds) provides 

better performance compared to inverse TTC value of 0.2 (equivalently, TTC value of 5 

seconds).  

4. The feasibility of an escape path is the most prominent governing factor in the decision-

making process of the driver in making a steering maneuver. 

5. In general, longer last glance durations were associated with a braking maneuver and 

shorter last glance locations were associated with a steering maneuver. Increasing values 

of Combined Gaze Eccentricity up to 46.1632 degrees during the last glance increased 

the likelihood of a braking maneuver. 
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