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Modified GAN-cAED to Minimize Risk of

Unintentional Liver Major Vessels Cutting by

Controlled Segmentation Using CTA/SPET-CT

Abstract—This paper substantially advances upon state-of-the-
art to enhance liver vessels segmentation accuracy by leveraging
advantages of synthetic PET-CT (SPET-CT) images in addition
to computed tomography angiography (CTA) volumes. Our setup
makes a hybrid solution of modified GAN-cAED combining
synthetic ability of generative adversarial network (GAN) to
deliver SPET-CT images with generative ability of convolutional
autoencoder (cAED) network in terms of latent learning to more
refined segmentation of major liver vessels. We improve time
complexity through a novel concept of controlled segmentation
by introducing a threshold metric to stop segmentation up-to
a desired level. The innovative concept of controlled vessel seg-
mentation with a stopping criterion via variant threshold levels
will help surgeons to avoid unintentional major blood vessels
cutting, which eventually reduces the risk of excessive blood loss.
Clinically, such solutions offer computer-aided liver surgeries and
drug treatment evaluation in a CTA-only environment, shorten
the requirement of radioactive and expensive fused PET-CT
images.

Index Terms—Liver vessel segmentation, image synthesis, fused
positron emission tomography-computed tomography (PET-CT),
synthesized PET-CT (SPET-CT), liver resection.

I. INTRODUCTION

C
OMPUTER tomography angiography (CTA) volumes

provide vital information for computer-aided [1] liver

disease-diagnosis and surgical planning. In critical cases like

liver tumor resection, the medical experts must know the

pathoanatomical [2] association of hepatic tumor with main

blood vessels [3] to enhance the effectiveness of results.

Especially, those patients who have several hepatic disorders

other than liver tumors, the surgeon should eradicate the tumor

cautiously with extreme care of remaining blood vessels [4]

and enough liver tissue behind for adequate functionality. Due

to the dual blood supply in liver, any unintentional injury

to the liver tissue or associated major blood vessels during

the resection leads to fatal bleeding problems. Therefore,

computer aided [5] liver surgeries significantly depend upon

precise vessel segmentation techniques to select the appropri-

ate puncture pathway for minimizing unintentional cutting of

liver vessels.

The accuracy of segmented vessels highly depends on

properties of CTA volume like contrast, brightness, and noise

presence [6]. Special care should be taken for peripheral

vessels, in which contours reveal clearly. For hepatic vessels

surrounding the tumors, the keen segmentation accuracy is

required for completely differentiate vessels from a tumor to

be removed. In case of vessel tree branches, the meeting points

should be precisely marked [7]. However, vessels segmentation

using only CTA volumes is still considered to be a challenging

task due to ramified nature of vessel branches, low contrasted

of critical vessels as compared to surroundings, irregular vessel

shapes and inherent scanner-oriented noise presence.

One possible solution to improve the results is using in-

tensive preprocessing and post-processing of the segmented

results, which, however, may impose a redundant computa-

tional cost [8]. A combined use of CTA [9] and fused PET-CT

may be an alternative to complement the shortcomings of CTA

volumes, i.e. difficulty to differentiate major blood vessels

from liver tissue, and to improve liver vessel segmentation.

The theoretical motivation of this study for offering a novel

candidate in the form of CTA/fused PET-CT images is their

ability to accomplish each other limitations for an enhanced

liver vessels segmentation. Since last few years, a combination

of CT and PET images has become a popular component of

oncological analysis [10]. Anatomical details in PET image

such as liver tissues are comparatively less due to a lower

resolution than the CTA volume [11]. However, fused PET-

CT offers cross-sectional anatomic information provided by

CT and the metabolic information provided by PET. This

study exploited the aforementioned trait of fused PET-CT to

augment CTA vessels segmentation results.

Although the use of fused PET-CT imaging is progressively

increasing yet it offers a few drawbacks. Fused PET-CT

involves additional radiation disclosure in contrast to CT

images. Furthermore, fused PET-CT is reasonably costly and

still not popular across worldwide. The experimental signifi-

cance of fused PET-CT in managing oncological applications

generates a latent requirement for a substitute, cost-effective

synthetic fused PET-CT (SPET-CT) imaging. Considering the

rare availability of PET imaging and to avoid potential risk

to patient’s health due to unnecessary radiation exposure

because of repetitive clinical examine, SPET-CT is an effective

solution [11] for enhancing the performance of computer-aided

liver surgeries. The combined use of CT and MR imaging has

been extensively investigated in hepatic vessels segmentation

with promising results [12]. Recently, authors in [11] have

employed cross-modality CT to fused PET-CT synthesis for

liver lesion segmentation. However, due to rare availability of

fused PET-CT images in addition to higher radiation risk to

patients, a hybrid combination of CT + fused PET-CT is still a

challenge modality to overcome CT limitations for improving

liver vessels segmentation

Inspired by the remarkable performance of synthetic image

usage and motivated to tackle the limitations offered by the

CT images, this paper aims at investigating the use of novel

generative adversarial network techniques to hybrid CT and

SPET-CT images for improving accuracy of liver vasculature
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segmentation. Specifically, we firstly proposed a modified

disco Generative Adversarial Network-convolutional Autoen-

coder (GAN-cAED) based model to effectively extract liver

vasculatures from CTA and SPET-CT images. As shown in

Fig. 1, the proposed network is composed of two components:

a disco GAN to synthesize the fused PET-CT image and con-

volutional AED to learn the complementary features from the

CTA/SPET-CT images and based on the features to produce

the segmentation results. Then, we propose a new threshold

metric with respect to variant dice loss function by refining

the penalties for the number of under/over segmented vessels.

Vessels extraction results are returned using cAED network

by adjusting threshold levels for enhancing visualization of

extracted vessels. Finally, the proposed technique is validated

by a number of experiments to prove its efficiency on im-

proving the visualization of segmented vessels with a required

accuracy. The validation results show that the proposed method

is superior to conventional intensity based models in terms of

accuracy and visualization.

The main contributions of this paper are as follows:

• A novel hybrid model with generative adversarial network

and autoencoder is proposed to effectively and robustly

extract high quality of liver vasculatures from CTA and

SPET-CT images for enhanced accuracy of liver vessels

segmentation. The model enables mining latent represen-

tations of features from the CTA and SPET-CT images,

further improving the segmentation performance.

• A new threshold metric with respect to variant dice loss

function is introduced in the proposed model for solving

the problems with elevated noise, low contrast and diverse

vessel structure of CT, along with low resolution of SPET-

CT. As a hybrid solution, our novel concept of variant

threshold level offers a cost-effective solution in terms of

stopping criterion up to desired point for controlled vessel

segmentation to avoid unintentional cutting of critical

(major) vessels.

• A comprehensive experimental evaluation and analysis of

the proposed solution is given. The experimental results

show that the proposed method is capable of delivering

controlled segmentation as a cost effective solution for

a given accuracy than the the conventional intensity

based models [6] and recent 3D UNet based liver vessels

segmentation technique [8].

In according to above advantages, our method can compute

efficiently finer visualization of segmented liver vessels will

will boost the surgeons capabilities for effective computer-

aided liver surgeries. The proposed method can proficiently

build the virtual relationship of associated vessels tree with re-

spect to the location of any required liver area. The distinctive

evaluation phenomenon used in this research in terms of the

threshold metric may prove to be a benchmark for concerning

the quality of results.

II. RELATED WORK

According to the latest review [13], current liver vessel seg-

mentation techniques are generally categorized into algorithms

for a deformable model, tracking-based approaches, machine

Fig. 1: The training and testing workflow of proposed network.

learning techniques, and image filtering with enhancement

methods [14]. Deformable model-based algorithms closely

related to level set have shown fine performance on drop-

ping the effects of intensity contrast variations besides blood

vessels. These models were typically susceptible to contour

selection, initial seeds, and may generate fluctuated output

into adjoining tissues for low contrast input. In tracking-based

approaches, model-based algorithms are usually employed

which use minimum cost path to track vessels using the

predefined models [12]. These methods may prove to be error-

prone for vessels with asymmetric nature especially associated

with liver tumors, and hence these algorithms require post-

processing as well as user assistance [15].

A review of image filtering and enhancement schemes found

in [16] reveal the use of filters like Gabor, Hessian-based

and Diffusion filters for vessels segmentation. These methods

usually enhance vessel structure by exploiting multi-scale high

order deviations and image gradients. Afterward, the enhanced

vessels are extracted and segmented using context-based vot-

ing [17], graph cuts, and region-growing algorithms [18]. In

machine learning-based algorithms, k-means clustering extract

liver vessels and then some iterative refinements are performed

for vessel reconstruction using morphological operations and

linear contrast stretching [17]. The above methods have shown

improved performance over state-of-the-art. However, extreme

care is required to balance different parameters for devising

important characteristics of liver vessels to generate an accu-

rate segmentation of vasculature system [19].

Since past few years, deep convolutional neural networks

(CNN) [20]–[25] have performed a notable enhancement re-

garding segmentation task for liver and retinal vessels segmen-

tation. These networks can instinctively discover compound

image attributes and merge them into hierarchical abstraction

for classification and segmentation. Current CNN methods are

predominantly popular for small datasets. In the case of liver

vessel structure, complexity and diversity are the two main

reasons for the estimated extent of segmentation results [24].

3D U-Net based method [26] has achieved a remarkable

vessel segmentation in terms of accuracy and specificity
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Fig. 2: The implemented GAN consists of two components. First is a disco generator (G), which attempts to generate synthetic

PET-CT image using (CTA + fused PET-CT) as an input while second is disco discriminator (D) trained to differentiate between

real (x, y) and synthetic pairs (x́, ý). D and G are neural networks where G is a disco type generator act as an adversary to

D. Output of GAN i.e. SPET-CT image is feed forward to cAED.

metrics for liver vessels. However, low contrast and intensity

in-homogeneity often occur in CTA volumes leads to biased

segmentation results for critical vessels. Cross-modality learn-

ing with adversarial network setup of CNN is exploited to

segment vessels [27]–[29]. In this setup, one network generates

applicant segmentation maps by learning the latent generative

representation form input image and the second one evaluates

them.

Recently, a combination of CT and PET-CT images has

become a popular component of oncological analysis [10],

[30]. Authors in [11] used cross-modality CT to PET synthesis

for liver lesions segmentation using FCN and GAN network.

Although the use of PET-CT imaging is progressively increas-

ing, PET-CT involves supplementary radiation disclosure and

cost as compared to CT modality. Therefore, it is still not

popular worldwide. Considering the inherent shortcomings of

PET-CT and CT images, SPET-CT is an effective solution for

enhancing the performance of computer-aided liver surgeries.

The methods proposed in [31], [32] employed a hybrid com-

bination of various techniques such as fuzzy connectedness

and region growing to improve existing filters having an

already well-known goal of achieving higher segmentation

accuracies. Although, these methods have advantages in the

current literature, however our work’s key focus is highly

varied from these mentioned papers. Inspired from the latent

capacity of learning representation of adversarial network [11]

and to leverage the fast convergence ability of CNN, we have

finely tuned mechanism for liver vasculature segmentation

from CT as well as synthesized PET-CT images to deliver

remarkable segmentation accuracy. The difference between our

proposed solution and recent state-of-the-art is to minimize

risk of unintentional vessels cutting during liver surgeries.

Therefore, we have introduced novel concept of controlled

segmentation using threshold metric (α). According to our

setup, we have used nine liver landmarks to define variant

threshold levels which technically differentiate our method as

compare to existing liver vessels segmentation techniques.

A. State-of-the-Art Image Synthesis Techniques

State-of-the-art techniques for image synthesis such as

atlas-based methods or simulated/physical phantoms based

techniques [33] offer limited capacity in synthesizing images

such as fused PET-CT. As, PET images have relatively low

resolution with large anatomical and functional differences.

The rapid advancement of generative adversarial networks

(GANs) [11] in recent years opens a new gateway of auto-

mated image synthesis by generating realistic images with

parallel implementation of generator and discriminator. The

major distinctive approaches explored in current state-of-the-

art for GAN-based image synthesis involve image-to-image

translation [34], direct image generation [35] and image com-

position [36]. We have exploited the GAN-based image-to-

image translation approach which aims for appearance realism

by learning the style of images of the target domain.

III. METHOD

The proposed model comprises of two core components:

a GAN component to synthesize fused PET-CT images and

cAED component to use CTA/SPET-CT to carry out liver

vessels segmentation. The complete process is twofold de-

scribed in Fig. 1. i.e. training module and a testing module.

The strengths of GAN and cAED networks are combined to

enhance segmentation visibility. Algorithm 1 is describing the

flow of overall process. Mainly, we focus to segment critical

(major) blood vessels by employing the use of realistic-looking

SPET-CT images. Following subsections give details for each

component of the proposed method.
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Fig. 3: Detailed architecture of cAED network. A hybrid combination of images CTA/SPET-CT is provided at input. Encoder

and decoder modules contain five convolution layers for down-sampling and up-sampling respectively, followed by batch-

normalization and leaky ReLU on each convolution layer.

A. Data Preprocessing

The training module of the proposed method takes two

images as input, a CTA volume and a fused PET-CT. The

first step is to make alignment with respect to two types of

images as CTA volume and fused PET-CT images may vary in

resolution scale. We use affine transformation with linear inter-

polation [11] by harnessing an offset distance and voxel size of

CTA volume with fused PET-CT images. For this, we denote

three dimensional offset distance between CT (ct) and the

fused PET-CT (pet) scan as = (dx, dy, dz), three dimensional

voxel size of CTA volume as ct v = (ct v1, ct v2, ct v3) and

voxel size of fused PET-CT scans as (pet v1, pet v2, pet v3).









ct/pet v1 0 0 dx
0 ct/pet v2 0 dy
0 0 ct/pet v3 dz
0 0 0 1









(1)

Fluoro-D-glucose (FDG) [11] is widely used radiotracer in

current PET clinical practice for cancer, its uptake act as

an in-vivo biomarker of glucose metabolism. Standardized

uptake value (SUV) is a measured quantity that can provide

insight into the histopathological nature of the tumor to

assess the response of cancerous cells. In image processing

SUV normalises the update values to a standard range. For

measuring FDG uptake, the (SUV) [37] of PET-CT used for

our setup is defined as follows: SUV= e
β/f . Here, radioactivity

concentration by the PET-CT scanner is denoted by e for

the targeted body part, β is the decay-corrected quantity of

inserted FDG and f is used for an associated weight of a

patient. To support the proposed method for straightforwardly

utilize cross-modality images of a varied range of values,

we select clipping and scaling constraints to adjust PET-CT

images for a range of SUV between (0− 20) and CT images

within a range of Hounsfield Units of (-160 to 240). For

CT images with slice thickness below or above 5mm, we

employed coordinate transform and cubic spline interpolation

to adjust slice thickness of those images up to 5mm.

Algorithm 1 GAN-cAED Learning

Input: CTA Volumes Ic = {Ic1 , I
c
2 , I

c
3 , ......, I

c
N}, Fused

PET-CT images Ip = {Ip1 , I
p
2 , I

p
3 , ......, I

p
N}, SPET-CT

images Is = {Is1 , I
s
2 , I

s
3 , ......, I

s
N}, Input Parameters

Ii = {N,L,M,O}, CTA/SPET − CT = Ic/s =
[GAN(Generator(Ic, Ip)&&Discriminator(Is, Ip)], It-

erations ith to nth, Threshold (α);

Output: Learned GAN-cAED Network

Ii ← Initialize Values of Ii = {N,L,M,O}
P Network ← Prop EncoderDecoder(Ic, Is, Ii);
for (Encoderi=1→Encoderi=N&&Decoderi=1→Decoderi=N )

do

L = Extract LatentInfoSPET←Forward Prop(Ii,Leaky

ReLui=n);

M = Extract LiverVesselsSPET←Back Prop(L,Leaky

ReLui=n);

TotalDice Loss =
∑

1
2 [Extracted Liver Vessels - Re-

maining Liver Vessels]2;

Update Ii(Dice Loss, Learned P Network);

repeat

until 0.50 ≤ α ≤ 0.70← Stop(M)‖(Learned GAN-

cAED Network=true)

end for

B. GAN for Synthesizing Fused PET-CT

As shown in Fig. 2, the implemented GAN consists of

two components. First is a generator (G), which attempts to

generate realistic looking fused PET-CT image while second

is discriminator (D) trained to differentiate between real

and synthesized fused PET-CT image. D and G are neural

networks where G is a disco type generator act as an adver-

sary to D. While humans easily recognize relations between

data from different image modalities without any supervision

however, learning to automatically discover them is in general

very stimulating. For the charge of discovering cross-modality

relations from two different modalities i.e. CTA and Fused

PET-CT, we have employed a modified GAN inspired from
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TABLE I: Details of architectural design for convolutional autoencoder module of the proposed method with encoder and

decoder layers defined separately.

Encoder Decoder

Layers Details Size:Stride Layers Details Size:Stride

Input CTA: 512×512×1:2 Upsampling1 3×3×512 16×16×512:2
SPET-CT conv6→conv3

↑ conv5→conv3

⊕ conv4→conv3

conv1→conv3
3×3×32 256×256×32:2 Upsampling2 3×3×256 32×32×256:2

BN, LReLu conv7→conv3
↑ conv6→conv3

⊕ conv3→conv3

conv2→conv3
3×3×64 128×128×64:2 Upsampling3 3×3×128 64×64×128:2

BN, LReLu conv8→conv3
↑ conv7→conv3

⊕ conv2→conv3

conv3→conv3
3×3×128 64×64×128:2 Upsampling4 3×3×64 128×128×64:2

BN, LReLu conv9→conv3
↑ conv8→conv3

⊕ conv1→conv3

conv4→conv3
3×3×256 32×32×256:2 Softmax layer - 256×256×32

BN, LReLu

conv5→conv3
3×3×512 16×16×512:2 Output CTA/SPET-CT 512×512×1

BN, LReLu

the original disco GAN [38], [39]. The difference from the

original disco GAN is that it utilized cross-domain images,

we have employed it in a novel way for cross-modality image

reconstruction. Unlike previous methods, our model can be

trained with two sets of images without any explicit pair labels

and does not require any pre-training. G′s goal is to exploit

the misclassification error of D, while D′s aim is to conquer

G by seeking a true representation from generated and real

PET-CT images. Here, x́ means the real fused PET-CT image,

ý means the real CTA image and the G(ý) is the generated

PET-CT image. Adversarial loss of D and G is represented

by the following formulation in our setup:

LossGAN (G,D) = E(x́,ý)∼pairs(x́,ý)

[

logD(x́, ý)
]

+ E(ý)∼pairs(ý)

[

log(1−D(ý, G(ý)))
] (2)

Here E(x́,ý)∼pairs(x́,ý) is representing estimation over the

real and synthetic pairs(x́, ý). The G′s aim is to maximize

LossGAN (G,D) while D′s goal is to minimize it. whereas

minimizing LossGAN (G,D), induce the generator to generate

visually sharp results recent work in [40] has shown that

combining Equation 3 with global loss L1 provide more

consistent results. Hence, we have added a global loss L1 for

more refined SPET-CT images as:

L2−recons−GAN (G,D) =

LossGAN (G,D)+αE(x́,ý)∼pairs(x́,ý)

[

||ý −G(ý)||
] (3)

Where α is the threshold loss to balance the two losses of

generator and discriminator.

C. cAED as a Generative Model for Segmenting Liver Vessels

Convolutional autoencoder used in this research, is a partic-

ular type of self-supervised feed forward convolutional neural

network [13] where the input images (CTA+SPET-CT) is com-

pressed into a lower-dimensional latent-space representation

and then reconstruct the output from this representation in

the form of CTA/SPET-CT images with marked segmented

vessels.

The input (CTA+SPET-CT) passes through the encoder

X , which is a fully convolutional neural network having,

five 3× 3 convolution layers for down-sampling followed by

batch-normalization and leaky ReLu as an activation function.

Table I is describing the detailed architecture of our cAED

network. Encoder X maps an input image M to latent

representation W = X(M). The decoder Y has a similar

CNN structure by having five 3×3 convolution layers for up-

sampling followed by Batch-Normalization and Leaky ReLU.

Decoder Y maps W to an output aims to be an image

CTA/SPET-CT with segmented vessels, further details of the

architectural design are represented in Fig. 3.

Along with reducing the dimensionality of input data, cAED

reconstructs an output using the learned latent representation

W . For which the decoder as a second model takes input in

the form of a combination of the real CTA and generated

PET-CT image, while its output is the vessel segmentation

result. We have trained the convolutional autoencoder into

a training set of input images (CTA+SPET-CT), in order

to reduce a reconstruction loss RLoss(X,Y) to determine

probability distributions X(M|W), Y(W|M). To achieve proper

abstraction from convolutional autoencoder, several types of

regularization are employed e.g. minimizing RLoss(X,Y) to

fulfill the goal of providing new fundamentals close to the

original input data [41]. Thus, the proposed setup efficiently

utilize adversarial network synthesis ability along with the

generative power of convolutional autoencoder network in

terms of latent learning process to segment more refined liver

vessels.

We have utilized gradient descent to perform training with

the gradients estimated by standard back-propagation [42].

This is accomplished by maximizing the following loss:

RLoss(X,Y ) = EW∼Y (W )

[

log
(

XW (W )
)

]

+ EM∼Y data(M)

[

log
(

1−XW

(

X(W/M)
)

)] (4)

Now the complete loss of convolutional autoencoder along
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TABLE II: Experimental results of various threshold (α) levels (0.50 ≤ α ≤ 0.70) on controlled vessels segmentation in terms

of seven metrics.

Threshold (α) Sensitivity(%) Specificity(%) Accuracy(%) Dice(%) Recog Rate(%) Overlap measure(%) Avg distance(mm)

α = 0.50 84.4±0.4 96.7±0.7 96.8±0.3 91.65±0.3 95.92±0.15 66.5±0.24 1.37±0.85
α = 0.55 86.3±0.2 98.5±0.6 97.9±0.4 92.40±0.4 96.16±0.54 68.2±0.45 2.01±1.45
α = 0.60 89.1±0.5 99.9±0.6 99.8±0.1 95.30±0.6 97.41±0.25 69.0±0.34 2.50±1.61

α = 0.65 86.5±0.6 94.5±0.4 95.4±0.8 93.35±0.8 94.19±0.17 63.8±0.63 1.21±1.23
α = 0.70 87.6±0.4 95.9±0.2 94.6±0.9 92.16±0.9 93.25±0.46 62.9±0.45 1.03±1.25

with GAN network loss is calculated as follows:

RLosscomb
(X,Y,GAN) =

RLoss(X,Y ) + ηLossop−GAN (G,D)
(5)

Here, η represents the importance of weights for the two

losses. From the above relation, it is obvious that both sub-

tasks are profoundly interrelated. As a consequence, cAED

also attains payback when the GAN produces realistic SPET-

CT images. A schematic demonstration of the complete con-

volutional autoencoder module is illustrated in Fig. 3.

D. Threshold (α) for Controlled Segmentation

To avoid mislabeled vessel branches caused by biased classi-

fication due to unlabeled foreground (vessels) and background

(liver) classes, we have introduced a threshold metric to

establish controlled segmentation.

For defining a threshold (α) according to our setup we have

used nine liver anatomical landmarks [17]. Using landmarks,

it is deduced that the portal vein and hepatic artery deliver

blood to the liver by dividing into branches of a sinusoid.

Sinusoids join to formulate hepatic vein to drain the liver.

Usually, in CT images, sinusoids are invisible, so portal and

hepatic vessels are visually alienated vasculature [17]. Based

on the anatomical landmark hierarchy, our proposed method

segment liver vasculature globally i.e. on the branch level

(BL), for controlled segmentation using a threshold (α) as:

Threshold(α) = [CVi,j,k ∪BL] (6)

The connectivity measures all potential paths of a vessel

(i, j, k) in three dimensions to extend a tubular structure. In

other words, we can measure curvature θ, length of a vessel

l, diameter r with respect to each direction (e1 for l, and e2
for r), using connectivity between vessels of the segmented

tree. Hence connectivity CV(i,j,k) of tree vessels in three

dimensions is defined as:

CV(i,j,k) =










1 if f ≤ 0.9

exp(− r2

e2
1

)exp(− l2

e2
2

) if f > 0.9,− π
0.5 ≤ θ ≤ π

0.5

0 if others

(7)

Branch level (BL) on a threshold is the recognition rate of

vessels and it is measured as:

BL(i,j,k) =







LHV,MHV,RHV if cv(i,j,k) ≤ 0.70
LPV,MPV,RPV if cv(i,j,k) ≥ 0.50
others if cv(i,j,k) < 0.50

(8)

Fig. 4: Qualitative results during phase 1 to 4 using CTA,

Fused PET-CT, SEPT-CT, and CTA/SPET-CT data.

Hence using connectivity CV(i,j,k) and branch level BL(i,j,k)

the threshold (α) values vary from 0.50 − 0.70. Using this

varied value we have defined criteria for controlled segmen-

tation. Our approach detects critical vessels i.e left, middle,

and right hepatic arteries and portal veins (LHA, MHA, RHA,

LPV, MPV, and RPV) for the defined levels of threshold

(0.50 ≤ α ≤ 0.70) illustrated in Fig. 5. We have redefined

Dice Similarity Coefficient (DSC) to evaluate segmentation

accuracy of our approach. Generally, DSC is defined as:

DSCv1(E,R) =
(E ∩R)

(E ∩R)± 0.5(|E −R|+ |E +R|)
(9)

Where E is the estimated position of segmented vessels and

R is the ground truth position of estimated vessels tree. Intro-

ducing α in DSCv2 gives us a variant of DSCv1
using α values

i.e. (0.50 ≤ α ≤ 0.70). Variant DSCv2
is defined by adding

α for estimated tree values Ei and ground truth values Ri for

foreground (E1i, R1i) and background (E2i, R2i) classes as:

DSCv2(E,R, α) =
∑n

i=1 E1iR1i
∑n

i=1 E1iR1i + 0.5α
∑N

i=0(E1iR2i + E2iR1i)

(10)

The variant of DSCv2
in addition to refined threshold help us to

detect critical vessels and ignore non-critical vessels to enable
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TABLE III: Quantitative results of proposed method with three levels of SUV (high, medium, and low) for different formations

in terms of mean absolute error (MAE) and peak-signal-to-noise-ratio (PSNR).

High Medium Low Average

Our Method (Variants) MAE PSNR MAE PSNR MAE PSNR MAE PSNR

α0.55(GAN+cAED) 1.40±0.75 22.0±0.48 0.14±0.03 33.3±1.70 0.80±0.01 38.2±1.02 0.718±0.216 31.1663±1.064

α0.60(GAN+cAED) 1.29±0.74 20.1±0.65 0.12±0.01 35.1±1.60 0.65±0.03 38.1±1.35 0.686±0.260 31.100±1.200

α0.65(GAN+cAED) 1.45±0.40 23.0±0.49 0.13±0.04 34.6±1.60 0.70±0.05 40.1±1.32 0.716±0.116 32.067±1.136

GAN-U-Net Variant 1.35±0.50 21.5±0.42 0.12±0.02 36.7±1.50 0.90±0.03 41.0±1.89 0.719±0.181 33.134±1.273

GAN-FCN Variant 1.49±0.42 21.9±0.57 0.17±0.01 32.7±1.30 0.81±0.06 42.7±1.25 0.822±0.162 32.413±1.041

cAED-Loss-Variant1 1.38±0.30 22.8±0.65 0.16±0.05 34.9±1.35 0.95±0.07 40.3±1.35 0.831±0.143 32.614±1.116

cAED-Loss-Variant2 1.35±0.25 20.9±0.70 0.15±0.07 38.3±1.45 0.11±0.03 44.1±1.42 0.539±0.121 34.015±1.201

Fig. 5: Threshold (α) impact on controlled vessels segmenta-

tion. α=0.50 and α=0.70 shows over-segmentation and under-

segmentation respectively whereas α=0.60 is best suited for

concrete and compact vessels tree segmentation.

the proposed method efficiently segment vessels by reducing

the time complexity.

IV. EVALUATIONS AND DISCUSSIONS

To evaluate the qualitative and quantitative performance

of the proposed approach, we carried out several sets of

experiments using visual and statistical comparisons based on

threshold (α) variants.

A. Datasets Description

To express the achievability of learning compact visual-

ization from large-scale 3D volumetric data, the proposed

technique has been assessed on two clinical datasets. First,

150 CTA volumes collected in the year 2018 from co-

operated hospital1. The type of CTA volume was con-

trast enhanced with axial views of abdomen parts. Each

CTA volume is comprised of four phases i.e. arterial,

portal, venous, and equilibrium phase. The quantity of a

voxel of CTA dataset was approximately 350×300×350

with voxel spacing from (0.85mm, 0.75mm, 0.85mm) to

(0.95mm, 1.0mm, 0.95mm) having slice thickness of 5mm.

1Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai 200233, China

Second is a fused PET-CT dataset comprises of 150 scans with

a slice thickness of 4mm and 3mm as pixel spacing.

B. Implementation Details

The ratio for training, testing, and validation for CTA and

fused PET-CT datasets comprises (3 : 1 : 1). Our method

utilized paired images of CTA + fused PET-CT for training

as well as testing. The training time was about 60 hours with

GPU of NVIDIA GeForce GTX Titan and 2.70 GHz Intel

Xeon E5-2680 CPU. It takes around 2 minutes to segment

liver vessels from CTA/SPET-CT image on a trained GAN-

cAED network. We have obtained the manually labeled ground

truth of (30 CTA + 30 fused PET-CT scans). It cost around

30 days (5 hours per day) to manually label our required data

by two medical experts from the same cooperated hospital.

Final segmentation results are cross verified from the experts

to clinically validate the obtained accuracy.

C. Qualitative Evaluation

For qualitative results, we have presented a visual eval-

uation of the proposed approach in Fig. 4. This pictorial

illustration is showing our synthetically generated images and

final segmentation results. From left to right, column 1 to

column 4, four phases of CTA and fused PET-CT images

are represented while top to bottom rows are showing the

mechanism of the proposed approach to synthesize SPET-CT

image. Results to segment liver vessels form CTA/SPETCT

images are presented in the last row. The initial segmented

result of the hepatic vasculature is morphologically not as clear

between hepatic vein and portal vein because at this stage i.e.

third row-phase three, the system does not add refinement by

addition of CTA/SPET-CT images. After segmenting vessels

from CTA/SPET-CT image at last row-phase four, we can see

the concrete vessels segmentation results showing six critical

identified components i.e. left hepatic, right hepatic, middle

hepatic, and left portal, middle portal, and right portal veins.

The hepatic artery and portal vein branches are marked on the

visual results according to their actual anatomical location in

the liver.

D. Threshold (α) Impact on Controlled Vessels Segmentation

The impact of various threshold values on quality as well as

applicability of our novel concept i.e. controlled segmentation

are illustrated in Fig. 5. Vessels segmentation results are

retuned by threshold levels (0.50 ≤ α ≤ 0.70) for enhancing
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visualization of critical (major) vessels and to ignore non-

critical (thin) vessels. As shown in Fig. 5, variants of threshold

levels will provide an opportunity to surgeons for controlled

segmentation up to the desired level. In addition, it will offer a

stopping criterion for vessels segmentation with cost-effective

solution. In the given dataset, α value at 0.5 shows over-

segmentation results as during liver ablation, surgeons have to

take care of blood vessels which are most critical with respect

to the source of major blood supply, hence over-segmentation

may induce time and resource complexity. While α = 0.70
in Fig. 5 shows under-segmentation results for vessels tree

generation from CTA/SPET-CT, which is again will provide

incomplete details for accurate liver surgical treatments. There-

fore, in the given dataset, our proposed approach defined an

optimal threshold value at 0.6 for concrete and compact vessels

tree segmentation as a cost-effective solution. Fig. 6 provided

more qualitative results to visually demonstrate the accuracy

of proposed method.

E. Quantitative Evaluation

As described in Table II, we have used following seven

metrics i.e. sensitivity, specificity, accuracy, dice, branch level

(recog. rate), overlap measure, and avg distance to measure the

performance of this research quantitatively with respect to α
levels. In our setup, sensitivity and specificity are the metrics

to indicate the amount of properly segmented vessels for true

positive and true negative classes.

The branch-level (recong. rate) is defined as the ratio of

the number of correctly segmented vessels branches to the

portal/hepatic veins divided by a total number of assembled

branches of major vessels. Table II describes the values of the

threshold metric from a range of 0.50 to 0.70. It is deduced

that at α = 0.60, the proposed system shows the best results

of sensitivity (%) =89.1 ± 0.5, specificity (%) =99.9 ± 0.6,

accuracy(%) = 99.8 ± 0.1, DSC (%) =95.30 ± 0.6, branch

level (recog. Rate %) =97.41 ± 0.25, overlap measure (%)

=69.0 ± 0.34, and average distance (mm) =2.50 ± 1.61. The

best values of sensitivity, specificity and accuracy at α = 0.60
for our technique are also illustrated in Fig. 7a.

F. Discussion on Various Combination of the Proposed

Method w.r.t SUV Range

As discussed in Table III and illustrated in Fig. 7b, we

have accomplished a various combinations of the proposed

approach with the three levels of SUV range i.e high (larger

than 2.5), medium (approx 1.5) and low (less than 0.9). On all

these three levels we have calculated the mean absolute error

(MAE) and peak-signal-to-noise-ratio (PSNR).

From Table III, we can deduce that variants of GAN

network i.e. FCN [11] as a generator in GAN-FCN and

U-Net [26] as a generator in GAN-U-Net, U-Net conver-

gence is better to give appropriate reconstruction results and

synthesize enhanced quality SPET having lower values of

PSNR and MAE at high SUV levels. From variants of

convolutional autoencoder network with respect to simple dice

loss (cAED Loss v1) and variant dice loss in addition to

threshold metric (cAED Loss v2), we have achieved better

Raw Data

Ground Truth

Our  Results

Inner Points: TP FP Outer Points: FN TN

Fig. 6: Qualitative results to show the comparison of gold

standard ground truth and obtained segmentation. The blue

dots inside the segmented liver vasculature are showing true

positive (TP) for our model means correctly segmented; how-

ever blue dots outside the boundary of liver vasculature are

labeled as false positive (FP) means incorrectly segmented.

On the contrary, a true negative (TN) is a case indicating red

dots outside the liver vasculature boundary showing correctly

not segmented, red dots inside the segmented liver vasculature

boundary are false negative (FN) in the case of incorrect

segmentation.

TABLE IV: Experimental results on various formations of the

proposed technique for optimal value of α = 0.60.

P.Network variants
@(α = 0.60)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

v1(cAED loss1+GAN-U-NET) 96.6±0.33 66.8±0.30 95.1±0.63
v2(cAED loss1+GAN-FCN) 97.7±0.54 85.8±0.45 96.8±0.14
v3(cAED loss2+GAN-U-NET) 99.8±0.10 89.2±0.32 99.9±0.25

v4(cAED loss2+GAN-FCN) 97.4±0.76 85.1±0.76 95.8±0.65

results for (cAED Loss v2) in terms of lower values of MAE

and PSNR. Whereas, among variants of proposed method with

respect to three threshold levels i.e. [α = 0.55(GAN+cAED),

α = 0.60(GAN+cAED), and α = 0.65(GAN+cAED)], α =
0.60(GAN+cAED) gives the best performance for high SUV
on values of MAE =0.65 ± 0.03, and PSNR =38.1 ± 1.35.

Table IV shows another set of experiments on combining

various formations of the proposed technique by keeping
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(a)

(b)

Fig. 7: (a) Quantitative evaluation in terms of sensitivity,

specificity, and accuracy. The black dots with highest metrics

values at α = 0.60 are showing an optimal value of threshold.

(b) Quantitative evaluation of three levels of SUV range in

terms of peak-signal-to-noise-ratio (PSNR).

threshold consistent at α = 0, 60. We have achieved the

best results at v3(cAED loss2+GAN-U-NET) for which we

have use variant DSC in addition to threshold and U-Net

as a generator in GAN. We have described various levels

TABLE V: Comparison of our method with six state-of-the-art

approaches w.r.t dice (%), accuracy (%), and sensitivity (%).

Methods Dice(%) Accuracy(%) Sensitivity(%)

Chi et al. [17] 72.5±7.4 97.5±0.1 79.2±8.3
Lu et al. [4] 76.6±7.2 90.6±0.4 77.1±7.1
Zeng et al. [43] 79.9±3.5 97.7±0.3 85.7±7.7∗

Zeng et al. [6] 84.1±3.3 97.8±0.6∗ 83.1±4.5
Huang et al. [8] 92.5±7.2∗ 98.7±0.2∗ 85.6±6.8
Ban et al. [11] 93.6±2.9∗ 96.4±0.5 85.9±3.1∗

Our Method 94.9±0.4 99.8±0.3 87.3±2.6
P < 0.05, * derived for a paired t-test shows statistically significance

difference.

of threshold with respect to sensitivity and specificity in

receiver operating characteristics (ROC) curves with respect

to statistical results obtained from Table IV as shown in the

Fig. 8.

Additionally, we have conducted experiments for the various

level of threshold with respect to following four metrics. i.e.

Root Mean Square (RMS) symmetric surface distance (mm),

average symmetric surface distance (mm), relative absolute

volume difference (%), volumetric overlap error (%). Table VI

is showing the obtained results with respect to five threshold

levels.

TABLE VI: Experimental results of the proposed method

based on α = 0.50 to α = 0.70 using VOE (%), RAVD

(%), ASSD (mm), and RMS-SSD (mm).

Levels
(α)

VOE
(%)

RAVD
(%)

ASSD
(mm)

RMS-SSD
(mm)

α = 0.50 9.84 6.75 0.59 0.68
α = 0.55 6.53 5.52 0.45 0.59
α = 0.60 5.52 4.23 0.23 0.35

α = 0.65 6.19 5.98 0.34 0.45
α = 0.70 8.32 6.95 0.49 0.57

Avg values 7.28 5.88 0.42 0.52

(a)

(b)

Fig. 8: (a) Receiver operator curves (ROC) for various levels of

threshold metric (α) with respect to sensitivity and specificity.

α value @ 0.55 shows under-segmentation represented by

green curve with area under the ROC Curve (AUC) = 0.75, α
@ 0.65 in yellow curve are over-segmentation having AUC =
0.8 and α @ 0.60 in blue curve is representing best suited

threshold level with AUC = 0.90 for an optimal vessels tree

generation. (b) Quantitative evaluation of proposed method

on set of experiments combining various formations of the

proposed technique with respect to threshold values for ROC

curves. Four formations of the proposed technique includes

v1(cAED loss1+GAN-U-NET) as P.NetworkV1 in orange

curve, v2(cAED loss1+GAN-FCN) as P.Networkv2 in yel-

low curve, v3(cAED loss2+GAN-U-NET) as P.Networkv3
in green curve, v4(cAED loss2+GAN-FCN) as P.Networkv4
in brown curve with respect to sensitivity, and specificity.

V3(cAED loss2+GAN-U-NET) shows the best performance

with AUC = 0.92 represented by green curve.

G. Comparison with State-of-the-Art Methods

Table V describes the comparison of the proposed method

with six state-of-the-art liver vessels segmentation approaches.

The methods like Huang et al. [8] has used 3D-U-Net, Ben

et al. [11] employed GAN-FCN to use cross-modality CT to

PET images, Chi et al. [17] implement context-based voting,
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Lu et al. [4] make use of a variational level set method, Zeng

et al. have applied oriented flux symmetry with graph cuts

in [43] and centerline constraint in addition to intensity model

for [6].

Fig. 9: Comparison of the proposed method with six state-of-

the-art liver vessels segmentation approaches.

We have carried out performance evaluation using dice

(%), accuracy (%), and sensitivity (%) of segmented liver

vessels. It is revealed from the Fig. 9 that we have achieved

improved results on all the mentioned existing techniques

in terms of dice (%)=94.9±0.4, accuracy (%)=99.8 ± 0.3,

and sensitivity (%)=87.3 ± 2.6. For testing the significance

of differences between the results of comparison methods,

we have computed the p-value using the paired t-test (two-

sample t-test) with significance level of p at 0.05. Although

the recent 3D U-Net based liver vessels segmentation [8] and

intensity based models [6] generate liver vasculature system

with accuracy up to approximately 97%, however, our method

gives a novel idea of controlled segmentation by employing

threshold levels for a cost-effective medical solution. Fig. 9

illustrates that obtained results are comparable to the Huang

et al. [8] still, we have achieved enhanced accuracy with

controlled segmentation using fusion of (CTA + SPET-CT

images) to make fine refinements in vessels segmentation

accuracy and visualization which differentiates the proposed

method from existing liver vessel segmentation methods. This

study solely aims to minimize risk of unintentional liver major

vessels cutting by controlled segmentation using CTA/SPET-

CT. Tumor structure detection and quantifying its locality with

respect to critical blood vessels can be an extension of this

work.

V. CONCLUSION

The three-dimensional CTA volumes provides vital informa-

tion for computer-aided liver diagnosis and surgical planning.

The information of comparative position of diseased area

with associated vessel branches may enhance the effective-

ness of liver ablation and resection results. Inspired by the

remarkable performance of synthetic images usage and also

motivated to tackle the limitation offered by the current CT

images, we propose a novel GAN-cAED model to extract

liver vasculatures from a hybrid combination of CTA/SPET-CT

images. Vessel segmentation results are retuned by proposing

variant threshold levels with respect to dice loss function for

enhancing visualization of critical (major) blood vessels and

to ignore non-critical (thin) vessels for avoiding unintentional

cutting to minimize the risk of excessive blood loss. Visually

enhanced segmented vessels will boost the surgeon’s capabili-

ties in computer-aided liver surgeries and drug treatment. The

proposed method will efficiently guide surgeon’s to estimate

the comparative position of the diseased area with associated

major blood vessels in a CTA-only environment with least

requirement of radioactive PET scans.
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