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Abstract Falciparum malaria is clinically heterogeneous and the relative contribution of parasite

and host in shaping disease severity remains unclear. We explored the interaction between

inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship

underpins the variation observed in controlled human malaria infection (CHMI). We uncovered

marked heterogeneity in the host response to blood challenge; some volunteers remained

quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional

evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced

hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to

ask whether variants associated with severe disease rapidly expand in naive hosts, we found no

transcriptional evidence to support this hypothesis. These data indicate that parasite variants that

dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they

presumably rely upon infection-induced changes in their within-host environment for selection.

Introduction
There is enormous diversity in the human response to identical immune challenge. This variation is

currently being interrogated in large cohorts of healthy volunteers to pinpoint the genetic and non-

genetic factors that dictate human immune decision-making (Bakker et al., 2018; Brodin et al.,

2015; Li et al., 2016; Patin et al., 2018; Piasecka et al., 2018; Ter Horst et al., 2016). Controlled

human malaria infection (CHMI) provides a well-established challenge model in which to examine

immune variation in vivo, and heterogeneity in the host response to Plasmodium falciparum is well-

recognised (Roestenberg et al., 2012; Yap et al., 2020). Prior work suggests a dichotomy in

immune decision-making with some individuals triggering an inflammatory response, which is charac-

terised by high circulating levels of IFNg, whilst others mount an alternative response distinguished
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by the early release of TGFb and suppression of IFNg signalling (de Jong et al., 2020; Harpaz et al.,

1992; Walther et al., 2005; Walther et al., 2006). The precise mechanisms underpinning these

divergent responses remain unknown.

Genome-wide transcriptional profiling has the potential to map immune decision-making in

unprecedented detail and previous CHMI studies have revealed an upregulation of genes associated

with pathogen detection, NFkB activation, and IFNg signalling consistent with a systemic inflamma-

tory response (Ockenhouse et al., 2006; Tran et al., 2019; Tran et al., 2016). A transcriptional sig-

nature of an alternative immune response has not been described in naive hosts. Nevertheless,

these prior studies were primarily designed to measure shared or common signatures of infection,

potentially masking variation between volunteers. Only one study (Burel et al., 2017) has specifically

investigated transcriptional variation in CHMI and it reported two distinct outcomes based on host

microRNA profiles; notably, the authors were able to correlate the induction of three specific miR-

NAs with a lower parasite burden suggesting that events early in infection may have important

downstream consequences. Identifying the sources of immune variation may therefore reveal some

of the factors that underpin the clinical heterogeneity of falciparum malaria. In this context, direct

intravenous challenge with blood-stage parasites provides a unique opportunity to assess the contri-

bution of host-intrinsic mechanisms of variation as it ensures all volunteers receive an identical

immune challenge (Duncan and Draper, 2012).

The potential role of parasite factors in influencing immune variation has not yet been explored in

CHMI. Expression of a subset of parasite variant surface antigens (VSA) known as group A and DC8

var genes is associated with severe malaria in both children and adults (Duffy et al., 2019;

Jespersen et al., 2016; Kyriacou et al., 2006; Lavstsen et al., 2012; Tonkin-Hill et al., 2018;

Warimwe et al., 2012). These virulence-associated genes encode PfEMP1 adhesion molecules that

mediate sequestration of infected red cells in the microvasculature. Group A/DC8-expressing para-

sites are thought to be more pathogenic than those expressing other var types (groups B and C)

and can bind the endothelium with high affinity in sensitive sites, such as brain (Jensen et al., 2020).

It is unknown whether expression of these variants can influence the immune response, for example

by causing dysregulated activation that leads to widespread collateral tissue damage. Or conversely,

whether inflammation might preferentially support the survival and expansion of these variants by

upregulating their binding sites on the endothelium.

It has been observed in previous CHMI studies that parasites transcribe a broad array of var

genes in naive hosts, with predominant expression of group B variants and no marked differences

between volunteers (Bachmann et al., 2019; Bachmann et al., 2016). Indeed, we have shown that

mosquitoes reset malaria parasites to ensure diverse expression of their VSA repertoire at the start

of the blood cycle (Spence et al., 2013). It therefore remains unclear how group A and DC8 var

genes come to dominate the PfEMP1 landscape in severe malaria. Antibody-mediated clearance of

parasites expressing group B variants is a possible explanation, but is unlikely because severe

malaria develops in hosts with low or absent immunity during their first few infections of life

(Gonçalves et al., 2014). It has instead been suggested that parasites expressing group A/DC8 var

genes rapidly and preferentially expand because they have an intrinsic growth and/or survival advan-

tage in naive hosts (Abdi et al., 2017; Bull et al., 2000; Jensen et al., 2004). This may be a conse-

quence of enhanced cytoadherence (reducing their mechanical clearance in the spleen), rosetting

(increasing their re-invasion efficiency) or specificity for tissues that are better able to support their

maturation (decreasing cycle length). This explanation is widely accepted but is not based on sub-

stantial evidence.

In this study, we have used a blood challenge model to investigate host-intrinsic variation in the

immune response to falciparum malaria and examined the interplay between parasite and host fac-

tors in shaping outcome of infection. This model has the advantage that an identical immune chal-

lenge is given to all volunteers and furthermore transcriptional profiling can be carried out on

parasites at the start and end of infection to track changes in VSA expression through time. We set

out to test the specific hypotheses that a, expression of group A and DC8 var genes would preferen-

tially increase as the infection progressed and b, there would be a measurable relationship between

inflammation and parasite VSA expression, which would shape the clinical outcome of infection.
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Results

Immune variation in falciparum malaria
To explore host-intrinsic variation in the immune response to P. falciparum, a cohort of 14 malaria-

naive volunteers were infected with an equal number of blood-stage parasites (clone 3D7) by direct

intravenous inoculation (Supplementary file 1). This enabled the pathogenic blood cycle to be initi-

ated in every volunteer within a 30-min window (Payne et al., 2016). Systemic changes in the host

response were then captured through time by transcriptionally profiling whole blood every 48 hr

from the day before infection until the day of diagnosis (the point of drug treatment). This time-point

varied between volunteers, occurring 7.5–10.5 days post-infection when two out of three diagnostic

criteria were met (positive thick blood smear and/or parasite density >500 parasites ml�1 by qPCR

and/or symptoms consistent with malaria). To reveal the diversity of responses within our cohort,

each volunteer’s time-course was analysed independently by tracking their dynamic changes in gene

expression as the infection progressed. Importantly, this approach does not assume shared features

between individuals, nor does it bias against uncommon (or rare) responses.

As a first step, we measured the variance of every gene through time and visualised the 100 pro-

tein-coding genes with highest variance in each volunteer (Figure 1—source data 1). To control for

baseline variation in gene expression, uninfected control volunteers were also analysed. We found

that variance in one third of infected volunteers (4/14) was comparable to the uninfected control

group, suggesting these four volunteers did not respond to infection (Supplementary file 2). To

explore this further, we merged the top 100 gene lists from all infected volunteers to produce a sin-

gle non-redundant list of the most dynamically expressed protein-coding genes across the cohort

(n = 517 unique genes, henceforth called the 517-gene superset); we could then directly compare

the transcriptional response between individuals. Accordingly, we performed a principal component

analysis (PCA) of these genes through time, and for each volunteer we determined the Euclidean dis-

tance travelled to quantify the magnitude of their response (Figure 1—source data 1 and

Supplementary file 2). Using the variance and distance travelled metrics, we then set two thresholds

to identify volunteers that triggered a measurable response to blood challenge (see

Materials and methods); four volunteers failed to cross both thresholds (v018, v012, v208, and v020)

and were therefore grouped and labelled unresponsive. A pairwise comparison between the diagno-

sis and pre-infection samples obtained from these four volunteers confirmed that there were zero

differentially expressed genes in this group (adj p<0.05). Immune quiescence is therefore a common

outcome of controlled human malaria infection.

In contrast, variance (Figure 1—source data 1) and distance travelled (Figure 1—figure supple-

ment 1) both suggested that the remaining 10 volunteers made a robust response to infection

(Supplementary file 2). And when we clustered and visualised the 517-gene superset expression

data we found that these volunteers could separate easily into two groups according to whether

they up- or downregulated gene expression at diagnosis (Figure 1 and Figure 1—source data 2).

Based on this observation, we grouped the eight volunteers who upregulated gene clusters 2 and 4

and performed a pairwise comparison between their diagnosis and pre-infection samples; we uncov-

ered 2028 differentially expressed genes (adj p<0.05) (Supplementary file 3). To gain insight into

the biological functions of this response, we used ClueGO (Bindea et al., 2009; Mlecnik et al.,

2014) to first identify the significant GO terms associated with these genes and then place them

into a functionally organised non-redundant gene ontology network. ClueGO uncovered 217 GO

terms across 34 functional groups (Supplementary file 4); the most significant groups related to

interferon signalling, activation of myeloid cells, production of inflammatory molecules, and activa-

tion of T cells (Figure 2a–b). These terms all indicate systemic interferon-stimulated inflammation (a

well-described host response to malaria in mouse and human studies [Montes de Oca et al., 2016;

Spaulding et al., 2016; Yu et al., 2016]) and we therefore labeled this group inflammatory. We then

biologically validated ClueGO’s in silico finding by measuring the plasma concentrations of two

interferon-stimulated chemokines, CXCL9 and CXCL10. These chemokines are primarily produced

by myeloid cells and specifically function to recruit and activate T cells (Groom and Luster, 2011).

We found a > 2-fold increase in one or both of these chemokines at diagnosis in every volunteer in

this group but no other volunteer (Figure 2c).

The final two volunteers were also grouped (and given the suppressor tag) based on their appar-

ent downregulation of clusters 1 and 3 at diagnosis (Figure 1). Significantly, a pairwise comparison
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between their diagnosis and pre-infection samples revealed a core signature of 77 genes that were

differentially expressed in response to blood challenge (adj p<0.05, Supplementary file 5). The

majority of these genes (62/77) were downregulated and crucially >85% were unique to this group,

including key regulators of monocyte and neutrophil differentiation (Csf3r) and recruitment and acti-

vation (Cxcl7, Cxcr2, Clec4e, Clec7a, and Mnda, Figure 2d). A direct pairwise comparison between

the inflammatory and suppressor groups confirmed that each of these six immune genes was
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Figure 1. Immune variation in falciparum malaria. Log2 expression values of 517 protein-coding genes in whole blood during infection. Genes (rows)

are ordered by hierarchical clustering whereas whole blood samples (columns) are ordered by volunteer and time-point (pre-infection to diagnosis, left

to right). Arrows start from the pre-infection sample and volunteers are grouped by host response. Uninfected controls demonstrate minimal within-

host variation in expression of these genes. Median sample number per volunteer = 6.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. An identical immune challenge leads to diverse outcomes in falciparum malaria.

Source data 2. Log2 transformed expression values of the 517-gene superset in whole blood during infection.

Figure supplement 1. Immune quiescence is a common early outcome of infection.
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Figure 2 continued on next page
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differentially expressed at diagnosis, together with a further 887 genes (adj

p<0.05, Supplementary file 6). Evidently, these host response profiles do not overlap and instead

likely represent distinct in vivo outcomes of immune decision-making. Nevertheless, a much larger

sample size would be required to fully elucidate immune suppression as an alternative response to

P. falciparum.

Collectively, these data reveal marked variation in the human immune response to falciparum

malaria with at least three possible outcomes of blood-stage infection – immune quiescence, inter-

feron-stimulated inflammation, and suppression of myeloid-associated gene expression.

Sporozoites have a limited role in shaping the host response to blood-
stage infection
We next explored the influence of the pre-erythrocytic-stages of infection on the immune response

to blood-stage parasites. Whilst blood challenge uses a recently mosquito-transmitted parasite line

(< 3 blood cycles from liver egress [Cheng et al., 1997]) this model nevertheless bypasses the skin

and liver stages, which have been proposed to elicit regulatory mechanisms that could modify the

subsequent immune response to blood-stage infection (Guilbride et al., 2010). We therefore inocu-

lated five additional malaria-naive volunteers with the same parasite genotype but this time by the

natural route of infection, mosquito bite (Supplementary file 1). As before, we transcriptionally pro-

filed whole blood from the day before infection until diagnosis (day 11), including the final day of

liver-stage infection (day 6). And once more, every volunteer was analysed independently this time

using EdgeR to identify highly dispersed genes within each time-course (see

Materials and methods). After merging these lists, we produced a single non-redundant list of the

most dynamically expressed genes across the mosquito challenge cohort (n = 117 unique genes,

henceforth called the 117-gene superset) (Supplementary file 7). When we clustered and visualised

the expression data within this superset we found that 116 out of 117 genes were upregulated exclu-

sively during the blood cycle (Figure 2—figure supplement 1a–b). And when we examined the bio-

logical functions of these genes ClueGO identified response to interferon gamma (GO: 0034341) as

the most significantly enriched GO term (Supplementary file 8). Notably, this was also the most sig-

nificant GO term in inflammatory volunteers infected by blood challenge (Supplementary file 4),

indicating concordance between the two infection models. In agreement, 19 of the 21 genes that

displayed the highest fold change in inflammatory volunteers (blood challenge) were also upregu-

lated in the 117-gene superset (mosquito challenge, Supplementary file 7). And at protein level,

high circulating levels of CXCL10 were detectable at diagnosis in four of the five volunteers infected

by mosquito bite (Figure 2—figure supplement 1c). Our data therefore demonstrate that inter-

feron-stimulated inflammation is the dominant human response to blood-stage parasites regardless

of the route of infection. Furthermore, our data fail to provide compelling evidence of a systemic

transcriptional response to liver-stage infection in human malaria (Figure 2—figure supplement 1b).

Taken together, these findings indicate that the pre-erythrocytic-stages of infection may have a lim-

ited role in shaping the immune response during the pathogenic blood cycle.

Systemic inflammation coincides with the onset of clinical symptoms
We therefore moved on to investigate the factors that influence human immune variation in the

blood challenge model and the consequences of these divergent paths. In the first instance, we

Figure 2 continued

Two GO terms of interest, which are not part of any functional group, are also shown in italics. (B) The proportion of GO terms in each of the top 12

functional groups; collectively, these account for two thirds of all significantly enriched GO terms in inflammatory volunteers. (C) Plasma concentration

of interferon alpha and gamma and interferon-stimulated chemokines (CXCL9 and CXCL10) during infection. One line represents one volunteer (no

data for v020) and lines are colour-coded by host response. For each volunteer, all data points are normalised to their own baseline (day �1); horizontal

green lines represent a twofold increase or decrease compared to baseline. (D) Log2 fold-change of nine immune genes involved in myeloid cell

differentiation and activation in whole blood at diagnosis. Data are presented relative to pre-infection samples and all genes are significantly

downregulated in the two suppressor volunteers (adj p<0.05).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sporozoites do not trigger a systemic transcriptional response in human malaria.
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asked whether the rate of parasite replication could shape the host response to infection; after all, a

simple assumption might be that inflammation is triggered by fast-growing parasites. The parasite

multiplication rate (PMR, modelled from the qPCR data [Payne et al., 2016]) varied considerably

between volunteers (range 6.7–12.8) despite every individual receiving an equal number of infected

red cells (Supplementary file 1). However, the parasite multiplication rate of the inflammatory group

was not significantly different to that of unresponsive or suppressor hosts (Figure 3a–b) and there-

fore appears to have little bearing on the outcome of immune decision-making. Inflammatory volun-

teers did, however, tend to have a longer course of infection (Figure 3a) and hence the parasite

burden at diagnosis was higher for the inflammatory group (median 30,309 parasites ml�1, range

9133–273,247) than the rest of the cohort (median 7899 parasites ml�1, range 1440–19,670) (Mann

Whitney test, p=0.02). Parasite burden may therefore promote an inflammatory response in this chal-

lenge model but cannot fully explain it; for example, 2/4 unresponsive volunteers (v018 and v020)

had parasite densities that were comparable to 4/8 inflammatory volunteers at diagnosis (v017,

v027, v026, and v106, Supplementary file 1). Our data therefore support previous observations that

the parasite density threshold required to trigger inflammation is highly variable between individuals

(Gatton and Cheng, 2002; Molineaux et al., 2002).

We next set out to ask whether immune variation had clinical consequences. Symptomatology

was scored throughout infection with adverse events graded as absent (0), mild (1), moderate (2), or

severe (3). Volunteers in the unresponsive and suppressor groups were essentially asymptomatic at

diagnosis, whereas inflammatory volunteers exhibited more frequent and/or severe adverse events,

including fever (Figure 3—figure supplement 1 and Figure 3—figure supplement 2a). When we

then calculated a cumulative clinical score for each volunteer (by summing all adverse events

throughout infection) we found a strong positive correlation between symptoms and the intensity of

inflammation (Figure 3c). In contrast, there was no correlation between clinical score and parasite

multiplication rate (Figure 3d). We then measured circulating levels of Angiopoietin-2, a biomarker

of endothelium dysfunction and indicator of disease severity (Yeo et al., 2008); only one volunteer

displayed elevated levels of Angiopoietin-2 (Figure 3—figure supplement 2b) and this individual

was the most inflammatory host in the cohort (based on upregulation of plasma CXCL10 and IFNg).

What’s more, haematological analysis revealed that only inflammatory volunteers experienced acute

lymphopenia, a conserved hallmark of clinical malaria (Figure 3—figure supplement 2c–

d; Hviid et al., 1997). Symptomatology is therefore not driven by the rate of parasite replication in

controlled human malaria infection. Instead, clinical outcome seems to depend upon the intensity of

inflammation, which varies widely between hosts.

In light of these findings, we examined the potential impact of inflammation on host metabolism

to better resolve the consequences of immune variation. Here, we used an LC-MS-based metabolo-

mics platform to measure changes in circulating metabolites during infection, and applied range-

scaling to ensure all metabolites (and their temporal fluctuations) were equally weighted (van den

Berg et al., 2006). When we compared the three most inflammatory and symptomatic volunteers to

unresponsive and suppressor hosts we could find no metabolic signature of inflammation that was

robust to multiple testing (zero metabolites with an FDR-corrected p value < 0.1). On the other

hand, if we simply considered all volunteers as a single group and compared their post-infection

time-points (day 8 and diagnosis) against pre-infection samples we could identify a conserved and

persistent signature of blood-stage infection (Figure 3—figure supplement 3). This was character-

ised by increased adenosine (promotes vasodilation [Ralevic and Dunn, 2015]), choline depletion

(supports parasite membrane synthesis [Witola and Ben Mamoun, 2007]) and reduced lysoPC (indu-

ces gametocytogenesis [Brancucci et al., 2017, Figure 3e–f]). Evidently, volunteers who are immune

quiescent are nevertheless metabolically responsive to P. falciparum, and their response is indistin-

guishable from inflammatory hosts.

All together, these data reveal that immune decision-making, systemic metabolism and parasite

replication all operate independently in the early stages of the blood cycle. And they further reveal a

clear relationship between the intensity of inflammation and symptomatology in falciparum malaria.

Parasite variants associated with severe disease do not rapidly expand
in naive hosts
To investigate the origin of immune variation and gain further insight into the factors that can shape

outcome of infection we measured parasite VSA expression. To this end, we applied ultra-low input
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Figure 3. Systemic inflammation coincides with the onset of clinical symptoms. (A) Parasite growth curves colour-coded by host response; each line

represents one volunteer. Blood samples were collected every 12 hr for qPCR analysis of circulating parasite density and the horizontal green line

represents the lower limit of quantification (20 parasites ml�1). (B) Parasite multiplication rates colour-coded by host response; each dot represents one
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plotted against clinical score (the sum of adverse events during infection). CXCL10 fold-change measures plasma concentration at diagnosis over

Figure 3 continued on next page
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RNA-sequencing methodology to parasites isolated during CHMI and mapped their transcriptional

profiles from the start to end of infection. In the first instance, we examined the hierarchy of var

gene expression in the inoculum used for blood challenge; this derived from a single malaria-

infected volunteer infected by mosquito bite and was cryopreserved ex vivo (without culture) after

just three cycles of asexual replication (Cheng et al., 1997). Although each individual blood-stage

parasite will only transcribe a single var gene (Freitas-Junior et al., 2005) the parasite population as

a whole can express many different variants within a host. In agreement, we found more than 20 var

genes highly transcribed in the inoculum; notably, the expression hierarchy was dominated by group

B variants and there was very low (or undetectable) transcription of most virulence-associated group

A or DC8 var genes (Figure 4a and Figure 4—source data 1). One exception was PF3D7_0400400

(previously PFD0020c), which encodes a group A brain endothelial cell binding PfEMP1 variant

(Claessens et al., 2012). We further found that group B var genes dominated the PfEMP1 landscape

when parasites were isolated from our mosquito challenge cohort, albeit with a higher proportion of

var gene reads mapping to group A and with two DC8-like variants highly transcribed in some volun-

teers (PF3D7_0600200 (aka PFF0010w) and PF3D7_0800300 (aka PF08_0140)) (Figure 4a, Figure 4—

figure supplement 1a–b and Figure 4—source data 1). Our data therefore confirmed previous

observations that whilst malaria parasites exit the human liver expressing a diverse var gene reper-

toire, variants associated with severe disease constitute a minority population (Bachmann et al.,

2019; Bachmann et al., 2016; Peters et al., 2002; Wang et al., 2009).

Current theory predicts that group A and DC8 variants should rapidly and preferentially expand

in naive hosts because of an intrinsic growth and/or survival advantage favouring their selection

(Abdi et al., 2017; Bull et al., 2000; Jensen et al., 2004). Blood challenge provides a unique oppor-

tunity to directly test this hypothesis as it increases the number of asexual replication cycles over

which variant switching and selection can take place (cf. mosquito challenge [(Draper et al., 2018)]).

Parasites were therefore isolated from volunteers infected by blood challenge and processed imme-

diately (without culture) for RNA-sequencing; after six cycles of replication, the expression hierarchy

of var genes was essentially unchanged from that observed in the inoculum (Figure 4a and Fig-

ure 4—figure supplement 1b). Indeed, the group B var gene PF3D7_1041300 remained the most

highly expressed variant in every volunteer, and transcription of group A and DC8 var genes

remained low or undetectable at diagnosis (Figure 4—source data 1). Surprisingly, this included the

virulence-associated brain endothelial cell binding variant PF3D7_0400400, which was transcribed at

the start of infection (Figure 4a). We could further highlight the significance of this result by looking

only at intron-spanning reads, which must derive from functional var gene transcripts (rather than

regulatory antisense transcripts, Amit-Avraham et al., 2015). We found that PF3D7_0400400 was

functionally transcribed in the inoculum but intron-spanning reads were absent in all volunteer sam-

ples (Figure 4—figure supplement 1c). Differential gene expression analysis (using DESeq2) then

confirmed that no var gene was more highly transcribed at the end of infection as compared to the

start (adj p<0.01). Evidently, there was no preferential expansion of group A or DC8 variants within

the time-frame of this study.

Figure 3 continued

baseline (day �1). One dot represents one volunteer (no data for v020) and dots are colour-coded by host response. The green line represents the

best-fit model (p value of the slope is shown) and dashed lines are the 95% confidence intervals. (E) Log10 transformed intensity values of adenosine in

plasma during infection. An authentic standard was run in tandem with all samples to validate adenosine detection. (F) Range-scaled intensity values of

10 plasma metabolites that were differentially abundant during infection. Metabolites (rows) and samples (columns) are ordered by hierarchical

clustering. Note that an authentic standard was used to validate detection of all underlined metabolites and the full name for oxoglutaric acid is 4-

hydroxy-2-oxoglutaric acid. (E and F) Only plasma samples from the most inflammatory and symptomatic volunteers (v016, v017, and v013), the

suppressor volunteers (v022 and v019) and two unresponsive volunteers (v018 and v208) were analysed for metabolite abundance.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Adverse events after blood challenge.

Figure supplement 2. Inflammation is linked to hallmark symptoms of malaria.

Figure supplement 3. A conserved early metabolic signature of falciparum malaria.
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Figure 4. Parasite variants associated with severe disease do not rapidly expand in naive hosts. (A and B) Rlog expression values of var (A) and rifin (B)

genes in the inoculum and diagnosis parasite samples after blood challenge (blue study); parasites obtained from volunteers infected by mosquito bite

are also shown (pink study). Genes (rows) are ordered by hierarchical clustering and colour-coded by var type; parasite samples are colour-coded by

host response; and in vitro cultured ring-stage parasites are shown for comparison. Two volunteers did not have parasite sequencing data

Figure 4 continued on next page
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When we expanded our analysis to include rifin genes we still could find no evidence of gene

switching or selection. Indeed, the only rifin that was differentially expressed at diagnosis

(PF3D7_0401600, log2 fold-change = 7.59, adj p=0.0002) was already dominantly transcribed at the

start of infection (Figure 4b). It should be noted, however, that ex vivo RNA-sequencing (ideal for

var gene analysis as whole blood contains mainly ring-stage parasites) is less suited to rifins, which

are predominantly transcribed at later stages of the parasite life cycle (Kyes et al., 2000). We there-

fore moved on to directly test the relationship between inflammation and parasite VSA expression.

Once again, we used DESeq2 to identify differentially expressed parasite genes but this time

between inflammatory volunteers and the rest of the cohort. There were no differentially expressed

var or rifin genes (adj p<0.01). In fact, only one differentially expressed gene could be identified

(Pfck1) - this gene encodes casein kinase one and was more highly transcribed in the inflammatory

group (PF3D7_1136500, log2 fold-change = 7.32, adj p=0.002). The diverse clinical outcomes

observed in this trial cannot therefore be easily explained by variation in parasite gene expression;

instead, they must largely originate from host-intrinsic immune variation.

Discussion
In this study, we set out to map immune variation in falciparum malaria and explore the interplay

between parasite and host factors in shaping outcome of infection. Of particular interest was how

group A and DC8 var genes, which are associated with severe malaria in children and adults, come

to dominate infections when parasites egress from the liver expressing mainly group B and C var

genes. One leading hypothesis is that group A/DC8 variants have an intrinsic growth and/or survival

advantage leading to their rapid expansion in naive hosts. To directly test this hypothesis, we devel-

oped methodology that allowed us to measure var gene expression across 10 days of infection in a

human blood challenge model. Surprisingly, we found no transcriptional evidence for the preferen-

tial expansion of group A or DC8 variants. These data indicate that other factors (such as inflamma-

tion, tissue damage, or endothelium activation) must be required to promote the selection of these

variants in hosts that develop severe disease. We also found that the diverse outcomes of controlled

human malaria infection must largely originate from host-intrinsic variation as just one differentially

expressed parasite gene could be identified between volunteers that trigger systemic inflammation

(leading to hallmark symptoms of clinical malaria) and those that remain asymptomatic (by prevent-

ing or delaying the acute phase response). Taken together, these data emphasise the importance of

the human host in determining their own fate.

This conclusion is well supported by epidemiological studies showing that the clinical manifesta-

tions of severe malaria depend upon host age (Dondorp et al., 2008) and children learn to tolerate

high parasite densities, which could otherwise cause life-threatening disease (Gonçalves et al.,

2014; Ademolue et al., 2017). As such, we must understand the rules of immune decision-making if

we want to uncouple mechanisms of pathology versus tolerance. In this study, we identified at least

three possible early outcomes of blood-stage infection. The most likely outcome is interferon-stimu-

lated inflammation, which is characterised by activation of myeloid cells and systemic release of

inflammatory molecules. Notably, only inflammatory volunteers developed hallmark signs and symp-

toms of malaria (e.g. pyrexia and lymphopenia) providing further support for the idea that inflamma-

tion causes the earliest manifestations of disease. It is often assumed that the flip-side to this cost is

Figure 4 continued

(unresponsive volunteer v208 and suppressor volunteer v022) and the two inoculum samples are technical replicates of one biological sample. The var

(PF3D7_1041300) and rifin (PF3D7_0401600) genes dominantly expressed across all samples are labelled. Var genes associated with severe disease

(group A variant PF3D7_0400400 and DC8-like variants PF3D7_0600200 and PF3D7_0800300) are also labelled. Gene counts show the number of

parasite genes that have at least three uniquely mapping reads; this provides a measure of genome coverage in every sample.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Rlog expression values of var and rifin genes in parasites isolated from whole blood after controlled human malaria infection.

Figure supplement 1. Group B var genes dominate the PfEMP1 landscape in naive hosts.
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immediate or early control of parasite burden and yet we find that the parasite multiplication rate of

the inflammatory group is comparable to all other volunteers. It therefore appears that we might

need to re-assess the role of innate immunity in the first hours and days of the pathogenic blood

cycle – rather than serving as an early brake on parasite replication it may be that systemic inflamma-

tion primarily functions to switch bone marrow production in favour of myelopoiesis and mobilise

the required effector cells to the spleen.

Recent evidence suggests that blood-stage parasites first trigger interferon signalling in the bone

marrow (Spaulding et al., 2016) and the transcriptional changes we observe in whole blood are thus

likely to be a signature of activated monocytes and neutrophils trafficking from bone marrow to

spleen. Furthermore, the major secreted products of this emergency myeloid response (CXCL9 and

CXCL10) specifically recruit T cells out of the circulation (Groom and Luster, 2011). The innate

response to malaria therefore quickly re-structures and co-localises key strands of the immune sys-

tem; whether this leads to an effective response that can limit parasite burden and minimise collat-

eral damage will depend upon the outcome of cell-cell circuits in the spleen. Measuring the

activation and differentiation of CD4+ T cells – the key orchestrators of innate and adaptive immunity

– would provide a downstream readout of these critical tissue-specific interactions in human volun-

teers. Unfortunately, we cannot begin to examine these outcomes in our current datasets because at

our final time-point (diagnosis) CD4+ T cells are still sequestered in the tissue. Nevertheless, future

studies could extend sampling beyond drug treatment to analyse resolution of the acute phase

response and examine the heterogeneity between volunteers in T cell profiles as they are released

back into the circulation. Due to the inherent adaptive plasticity of human T cells (Sallusto et al.,

2018), this is likely to reveal much greater variation between hosts in their response to a first malaria

episode.

A second common outcome of infection in this study was immune quiescence. Although the

course of infection tended to be shorter in unresponsive volunteers than the others this could not

fully explain their lack of response to blood challenge. After all, half of unresponsive volunteers (2/4)

had parasite densities comparable to half of the inflammatory group (4/8). And furthermore, v017

triggered a measurable inflammatory response at just 157 parasites ml�1, whereas v018 remained

unresponsive at 20,000 parasites ml�1. These observations are entirely in-line with meta-analysis of

historical malariotherapy data that measured the pyrogenic threshold in falciparum malaria as span-

ning more than four-orders of magnitude (Molineaux et al., 2002). Immune variation therefore dic-

tates how you respond and when. Pushing up the pyrogenic threshold to disarm emergency

myelopoiesis is a well-recognised host adaptation that promotes immune quiescence and allows

individuals to transition from clinical to asymptomatic malaria (usually in adolescence, Gatton and

Cheng, 2002; Portugal et al., 2014). This is helpful if you have developed partial humoral immunity

that can restrict total pathogen load but whether a pre-existing high threshold is advantageous in a

naive host is unclear. This could indicate a natural tendency towards disease tolerance

(Medzhitov et al., 2012) or it may simply delay the time until an emergency myeloid response inevi-

tably has to be triggered. Indeed, it remains a possibility that all naive hosts (including those that ini-

tially suppress genes involved in myeloid cell activation) will eventually converge on interferon-

stimulated inflammation as the infection progresses. After all, every volunteer increased their circu-

lating levels of adenosine as part of a shared metabolic response to blood-stage infection and aden-

osine is a potent paracrine inhibitor of inflammation (Faas et al., 2017). This metabolic switch may

therefore represent a hardwired mechanism of self-regulation because systemic inflammation is an

unavoidable fate in naive hosts.

We also examined the in vivo relationship between inflammation and parasite VSA expression,

asking whether this could shape the clinical outcome of controlled human malaria infection. We con-

firmed the previous finding that group B var genes, which encode PfEMP1 variants associated with

uncomplicated malaria, are dominantly expressed in human volunteers infected by mosquito bite

(Bachmann et al., 2019; Bachmann et al., 2016; Peters et al., 2002; Wang et al., 2009). The

unique features of the blood challenge model then allowed us to examine the widely held belief that

variants associated with severe disease rapidly and preferentially expand in naive hosts. Unexpect-

edly, we found no evidence to support this hypothesis. In fact, we found limited transcriptional evi-

dence of var gene switching or selection over six cycles of replication. This is in contrast to a

previous study that suggested var gene expression changes within the first few days of blood-stage

infection (Lavstsen et al., 2005). However, in that study parasites were isolated from volunteers and
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then placed into culture for one month before var gene profiling – switching may therefore have

occurred in vitro confounding interpretation of these data. Our study, which measured var gene

expression ex vivo, avoids any bias introduced by culturing parasites but nevertheless has limitations

that require careful consideration. In particular, we have studied a single parasite genotype in a small

number of hosts over a short window of infection. The potential for these factors to explain the

absence of var gene switching/selection are considered below.

This study (and most previous CHMI trials) used the 3D7 P. falciparum clone or its parent line

NF54 (Stanisic et al., 2018). The 3D7 clone was cultured for many years before preparation of the

inoculum used for blood challenge (Cheng et al., 1997) and could have acquired mutations that

affect its behaviour in vivo (Claessens et al., 2017). This could theoretically include a reduced capac-

ity to switch var gene expression; direct experimental evidence that the 3D7 parasites used in this

study have retained their ability to switch would therefore strengthen our conclusions. Nevertheless,

in the absence of these data it is notable that a previous study using the same 3D7 inoculum clearly

showed var gene switching when parasites recovered from volunteers were returned to culture

(Peters et al., 2002). Furthermore, in our mosquito challenge cohort there was considerable varia-

tion between volunteers in which group A and DC8 var genes were highly transcribed, indicating

that 3D7 has retained its potential to express a wide range of virulence-associated variants. Overall,

we consider it possible, but unlikely, that our data can be explained by a mutation in 3D7 that affects

var gene switching. A more interesting possibility is that parasite genotypes may vary in their capac-

ity to switch towards group A or DC8 variants. Additional parasite genotypes are being developed

for CHMI that would allow this hypothesis to be tested in vivo (Moser et al., 2020; Stanisic et al.,

2015).

Another possibility is that 3D7 might only switch towards group A/DC8 variants in a minority of

hosts. Indeed, in endemic settings the frequency of severe disease is low (around 1% of all clinical

episodes) and the small number of volunteers in this study would be unlikely to capture a rare event.

Nevertheless, it is clear that the incidence of severe malaria is much higher in naive hosts

(Marsh and Snow, 1997). And moreover, naive hosts in endemic areas are generally infants and

young children who are much less susceptible to severe disease than naive adults (Baird et al.,

2003; Baird et al., 1998). In CHMI, we are therefore recruiting those individuals who are most likely

to develop life-threatening complications in the absence of drug treatment; we can therefore rea-

sonably expect that severe disease would not have been a rare outcome of infection in our two

cohorts of volunteers. As such, it is unlikely that a different pattern of var gene switching would have

been observed if a larger number of volunteers were examined, but this cannot be excluded. An

alternative explanation is that a parasite density threshold needs to be crossed to promote var gene

switching in vivo, and this threshold is not reached in controlled human malaria infection. In support

of this argument, parasite density is known to be an important factor in severe malaria

(Dondorp et al., 2005) and this effect could potentially be mediated by quorum sensing, which

operates in trypanasomes to control their virulence (Rojas et al., 2019). However, no external signals

that can cause var gene switching have yet been identified (Deitsch and Dzikowski, 2017;

Guizetti and Scherf, 2013).

How then do group A and DC8 var genes become predominantly transcribed in patients with

severe malaria? The most plausible explanation for our data is that the short duration of CHMI does

not allow enough time for the selection of these variants, and that this would have been observed if

drug treatment was withheld. However, the preferential expansion of group A/DC8 variants would

need to occur rapidly because at the mean parasite multiplication rate of 10 seen in this study only

2–3 more cycles of replication would have been required for some volunteers to reach parasite bur-

dens at which severe disease can occur (5000 parasites ml�1 or 0.1% parasitaemia [Field, 1949]). Var

gene switching rates of culture-adapted parasites are low in vitro (estimated mean on-rates of

0.025–3% per generation [Horrocks et al., 2004; Roberts et al., 1992; Ye et al., 2015]) and

although mathematical modelling suggests the possibility of higher switching rates in vivo

(Gatton et al., 2003) experimental data are lacking. We therefore propose that rather than a sudden

increase in the rate of switching an environmental change instead leads to the rapid selection of var-

iants associated with severe disease – this could include systemic inflammation, collateral tissue dam-

age, metabolic disturbance and/or endothelium activation. In this scenario, group A and DC8

variants have no intrinsic growth or survival advantage; instead, their preferential expansion in naive
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hosts relies upon infection-induced changes in their within-host environment. The responsibility for

severe malaria is therefore likely shared between parasite and host.

In theory, inflammation will lead to the selection of parasites expressing group A and DC8 var

genes because of cytokine-mediated upregulation of endothelial receptors such as ICAM-1, which is

upregulated in response to TNF (Bernabeu et al., 2019). This is predicted to enhance their cytoad-

herence and reduce mechanical clearance in the spleen, as compared to parasites expressing group

B and C var genes that bind only CD36 (Smith et al., 2013). In our study, there was no evidence for

increased transcription of group A or DC8 var genes in volunteers who showed clear clinical, tran-

scriptional, and biochemical evidence of inflammation. However, circulating levels of plasma TNF

had not yet increased at diagnosis and so more time is clearly required for interferon signalling to

drive the cytokine cascades necessary to activate endothelial cells. One argument against an essen-

tial role for inflammation is that Endothelial Protein C Receptor (EPCR), currently thought to be a

key receptor for cytoadherence in cerebral malaria (Turner et al., 2013), is downregulated on micro-

vascular endothelial cells exposed to inflammatory cytokines (Bernabeu et al., 2019). The role of

EPCR as a receptor for infected red cell binding remains controversial (Azasi et al., 2018) but if

EPCR does prove to be a major host receptor for sequestration then selection of dual-binders that

also interact with ICAM-1 (Lennartz et al., 2017) would be expected in an inflammatory environ-

ment. One other intriguing finding that emerged from our analysis was that parasites from inflamma-

tory volunteers express higher levels of Pfck1 – a serine-threonine kinase (Cheong and Virshup,

2011; Jiang et al., 2018) that has been shown to regulate pathogen virulence in leishmaniasis (Dan-

Goor et al., 2013) and toxoplasmosis (Wang et al., 2016), and which may be able to directly regu-

late type I interferon signalling (Liu et al., 2009). If this observation could be validated in a separate

study it would identify a possible mechanism through which malaria parasites may in turn attempt to

influence the host response to infection. CHMI trials that follow volunteers for one or two more

blood cycles would be required to explore the consequences of increased Pfck1 transcription and of

prolonged systemic inflammation, and consideration should be given as to whether this can be done

safely.

To complement the study of var gene switching and selection in naive hosts, future work should

also aim to examine the neutralisation of parasite variants associated with severe disease in semi-

immune adults. Immunity to severe malaria can be acquired early in life (Gonçalves et al., 2014) and

so will require the rapid production of cross-reactive antibodies that recognise and eliminate group

A and DC8 variants if these are sufficient to cause life-threatening disease. Whether antibodies can

effectively neutralise these variants in vivo remains to be directly shown, but the RNA-sequencing

methodology that we developed for this study (https://doi.org/10.17504/protocols.io.brgjm3un)

now allows transcriptional profiling of P. falciparum at ultra-low densities – indeed, we can spike just

2000 ring-stage parasites into 50 ml whole blood and map their complete VSA profiles (Figure 4).

Applying this methodology to CHMI in an endemic setting would therefore allow switching and

selection to be tracked under immune pressure in volunteers that can restrict and slow parasite

replication.

In summary, our study failed to provide compelling transcriptional evidence that parasite variants

associated with severe disease rapidly and preferentially expand in vivo. Our data do not therefore

support the hypothesis that group A and DC8 variants have an intrinsic growth and/or survival

advantage in naive hosts. This leaves open the question as to how these variants come to dominate

severe episodes of malaria when parasites egress from the liver expressing mainly group B and C var

genes. We propose that infection-induced changes in the host environment (including inflammation)

can rapidly select for parasites with a higher efficiency to cytoadhere, sequester and cause severe

disease. Notably, our study uncovered marked variation between volunteers in their innate response

to blood-stage parasites, which might explain why not all clinical episodes lead to severe malaria. An

enormous body of evidence now supports the critical role of host-intrinsic variation in shaping the

human immune response to pathogens and their products (Bakker et al., 2018; Brodin et al., 2015;

Li et al., 2016; Patin et al., 2018; Piasecka et al., 2018; Ter Horst et al., 2016); remarkably most

of this variation is underpinned by non-heritable factors (Bakker et al., 2018; Brodin et al., 2015;

Piasecka et al., 2018; Ter Horst et al., 2016). Taken together, these data emphasise the impor-

tance of the human host in shaping their own fate.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background (Plasmodium falciparum)

clone 3D7 Cheng et al., 1997 PMID:9347970

Sequence-
based reagent

TaqMan probe Applied Biosystems 50 FAM
AACAATTGGAGGGCAAG
NFQ-MGB 30

Sequence-
based reagent

ISPCR primer biomers.net 5’- AAG
CAGTGGTATCAACGCAG
AGT �3’

Sequence-
based reagent

LNA-modified TSO exiqon.com 5’- AAGCAGTGGTATCAACG
CAGAGTACATrGrG+G
�3’

Sequence-
based reagent

Oligo-dT30VN biomers.net 5’- AAGC
AGTGGTATCAACGCAGAGT
ACT30VN �3’

Commercial
assay or kit

Tempus spin
RNA isolation

Applied
Biosystems

cat. no.
4378926

Commercial
assay or kit

RNA clean
and concentrator

Zymo
Research

cat. no.
R1016

Commercial
assay or kit

Globin-Zero Gold Illumina cat. no. GZG1224

Commercial
assay or kit

RNA 6000 pico chip Agilent cat. no.
5067–1513

Commercial
assay or kit

High sensitivity
DNA kit bioanalyzer

Agilent cat. no.
5067–4626

Commercial
assay or kit

TruSeq stranded
mRNA library

Illumina cat. no.
RS-122–2101

Commercial
assay or kit

NEBNext Ultra
DNA library prep kit

New England
Biolabs

cat. no.
E7370

Software,
algorithm

Kallisto v0.42.3 Bray et al., 2016 RRID:SCR_016582 PMID:27043002

Software,
algorithm

EdgeR Robinson et al., 2010 RRID:SCR_012802 PMID:19910308

Software,
algorithm

ClueGO v2.5.4 Bindea et al., 2009 RRID:SCR_005748 PMID:19237447

Software,
algorithm

IDEOM Creek et al., 2012 PMID:22308147

Software,
algorithm

mzCloud RRID:SCR_014669

Software,
algorithm

DESeq2 Love et al., 2014 RRID:SCR_015687 PMID:25516281

Other Saponin from
quillaja bark

Sigma Aldrich cat. no.
S7900

test each batch

Other Leucoflex
LXT filters

Macopharma macopharma.com
/transfusion

Other KAPA HiFi
HotStart ReadyMix

Biosystems cat. no.
KK2601

Other AMPure XP beads Beckman Coulter cat. no.
A63881

Study participants and ethical approval
The 14 volunteers recruited for blood challenge were infectivity controls in a phase I/IIa vaccine trial

(VAC054) that took place at the Centre for Clinical Vaccinology and Tropical Medicine (CCVTM),
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Oxford (Payne et al., 2016). This study received ethical approval from the UK NHS Research Ethics

Service (Oxfordshire Research Ethics Committee A, 13/SC/0596) and the Western Institutional

Review Board (WIRB) in the USA (20131985). The study was approved by the UK Medicines and

Healthcare products Regulatory Agency (MHRA) (21584/0326/001–0001) and the trial was registered

on ClinicalTrials.gov (NCT02044198). The five volunteers infected by mosquito bite were recruited at

the same site and this study (VAC065) received ethical approval from the UK NHS Research Ethics

Service (South Central Berkshire Research Ethics Committee, 16/SC/0261) and was approved by the

UK MHRA (21584/0360/001–0001). The trial was registered on ClinicalTrials.gov (NCT02905019).

Both trials were conducted according to the principles of the current revision of the Declaration of

Helsinki 2008 and in full conformity with the ICH guidelines for Good Clinical Practice (GCP).

Controlled human malaria infection
Blood challenge
Details of inoculum preparation and assessment of parasite viability have been published previously

(Payne et al., 2016). The 14 volunteers (non-vaccinated infectivity controls) received an identical

challenge by intravenous injection of 690 P. falciparum (clone 3D7) infected erythrocytes in 5 ml of

0.9% saline. All inoculations were performed within 2 hr and 13 min of inoculum preparation.

Mosquito challenge
CHMI was performed as previously described (Sheehy et al., 2012) using five infectious bites from

P. falciparum (clone 3D7) infected Anopheles stephensi mosquitoes at the Alexander Fleming Build-

ing, Imperial College, London, UK. Infected mosquitoes were supplied by Jittawadee R. Murphy,

Department of Entomology, Walter Reed Army Institute of Research, Washington, DC, USA.

Monitoring volunteers
Blood samples were collected to measure parasitaemia by qPCR twice daily, starting 2 days post-

infection for blood challenge and 6.5 days post-infection for mosquito challenge. In both trials, thick

blood smears were also evaluated by experienced microscopists at each time-point. All reported

clinical symptoms (pyrexia, fever, rigor, chills, sweats, headache, myalgia, arthralgia, back pain,

fatigue, nausea, vomiting, and diarrhoea) were recorded as adverse events and assigned a severity

score: 1 - transient or mild discomfort (no medical intervention required); 2 - mild to moderate limita-

tion in activity (no or minimal medical intervention required); 3 - marked or severe limitation in activ-

ity requiring assistance (may require medical intervention). A cumulative clinical score was then

obtained by summing these adverse events across all time-points for each volunteer. At every clinic

visit, staff at the CCVTM also assessed core temperature, heart rate and blood pressure. And on

days �1, 6, 28, and 90 post-infection (plus diagnosis) full blood counts and blood biochemistry were

performed at the Churchill and John Radcliffe Hospitals in Oxford, providing five-part differential

white cell counts and a quantitative assessment of electrolytes, urea, creatinine, bilirubin, alanine

aminotransferase, alkaline phosphatase and albumin.

Diagnostic criteria and drug treatment
Treatment with the artemether and lumefantrine combination drug Riamet was prescribed to volun-

teers when two out of three diagnostic criteria were met: a positive thick blood smear and/or para-

site density >500 parasites ml�1 by qPCR and/or symptoms consistent with malaria.

qPCR and parasite multiplication rate modelling
Blood was collected and prepared for qPCR analysis as previously described (Payne et al., 2016;

Sheehy et al., 2012). In brief, DNA was extracted from 0.5 ml whole blood using the Qiagen Blood

Mini Kit (as per manufacturer’s instructions) and 10% of each extraction was run in triplicate wells

(equating to 150 ml total blood volume). Previously published primers with TaqMan probes (50 FAM-

AAC AAT TGG AGG GCA AGNFQ-MGB 30) (Applied Biosystems) were used to amplify the P. falci-

parum 18S ribosomal region and parasites ml�1 equivalent mean values were calculated using a

defined plasmid standard curve and TaqMan absolute quantitation. Mean values below 20 parasites

ml�1 (or values with only one positive replicate of the three tested) were classed as negative. Para-

site multiplication rate (PMR) was then calculated using a linear model fitted to log10 transformed
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qPCR data, as previously described (Sheehy et al., 2012; Douglas et al., 2013). In the blood chal-

lenge model, fitted lines were constrained to pass through the known starting parasitemia, deter-

mined by the viability of the inoculum and a weight-based estimate of each volunteer’s total blood

volume (Payne et al., 2016).

Uninfected control volunteers
Blood challenge
Four healthy adult volunteers were recruited at the University of Edinburgh to serve as uninfected

controls for the blood challenge study. These volunteers had no history of malaria, and included two

male and two female Caucasians with a mean age of 24 years (range 22–25). Written informed con-

sent was given by all participants and the study was approved by the University of Edinburgh, School

of Biological Sciences Ethical Review Committee (arowe-0002 and pspence-0002).

Mosquito challenge
One volunteer recruited to the VAC065 study was exposed to the bites of 5 infectious mosquitoes

but did not develop measurable parasitaemia at any point during the 28 day study (limit of detection

is five parasites ml�1). This volunteer therefore served as an internal uninfected control for the mos-

quito challenge study.

Processing whole blood for host RNA and plasma
Blood challenge
For microarray analysis, 3 ml venous blood was drawn directly into a Tempus Blood RNA Tube

(Applied Biosystems), mixed and stored at �80˚C. To obtain plasma, 14 ml venous blood was drawn

into lithium heparin vacutainers, transferred to Leucosep tubes (Greiner Bio-One) containing 15 ml

Lymphoprep (Axis Shield) and centrifuged at 1000xg for 13 min at room temperature. Two ml of the

plasma fraction was collected, snap-frozen on dry ice and stored at �80˚C.

Mosquito challenge
For host RNA-sequencing, 6 ml venous blood was drawn into EDTA-coated vacutainers, from which

1 ml blood was removed and mixed with 2 ml Tempus reagent; samples were stored at �80˚C. To

obtain platelet-depleted plasma, a further 1 ml blood was removed from the vacutainer and given

two spins; first at 1000xg for 10 min and then at 2000xg for 15 min (both at 4˚C). After each spin,

the plasma was transferred to a new tube (leaving behind any residual red cells or pelleted platelets)

and finally the plasma was snap-frozen on dry ice and stored at �80˚C.

Host RNA extraction, quantification, and quality control
RNA extraction was performed with the Tempus Spin RNA Isolation Kit (Applied Biosystems) accord-

ing to the manufacturer’s instructions. The following modification was applied to mosquito challenge

samples because of their reduced volume: after thawing, just 1 ml PBS was added to each sample to

maintain Tempus stabilising reagent at the correct final concentration. Note that for all samples, a

DNase treatment step using Absolute RNA wash solution (Applied Biosystems) was included for the

removal of genomic DNA. Samples were quantified by nanodrop and RNA integrity was assessed on

an Agilent 2100 Bioanalyzer using RNA 6000 nano chips. A RIN value above 7.0 was accepted as suf-

ficiently high-quality RNA for downstream steps.

Host microarray and data processing (blood challenge)
Whole blood transcriptomics was undertaken with the Affymetrix GeneChip Human Transcriptome

Array 2.0 ST by Hologic Ltd. (Manchester, UK); samples were randomised to ensure unbiased sam-

ple-chip positioning. Raw array data in the form of compressed CEL files were processed in the R

environment using Bioconductor packages (oligo, pd.hta.2.0, affy) to generate an HTAFeatureSet

object (gene level). After visual inspection for QC purposes, raw and normalised (using the rma()

function of the affy package or normalizeQuantiles() function from the limma Bioconductor package,

as appropriate) versions of the intensities were retained for subsequent analyses. Array feature anno-

tation was generated using the AnnotationForge package and the Bioconductor human reference

database (org.Hs.eg.db).
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Plotting the 100 protein-coding genes with highest variance
For each volunteer, a subset of the data was made encompassing all available time-points in chrono-

logical order. For each array feature, the variance of the intensities across the time-points was calcu-

lated using the var() function in R. The 100 protein-coding array features with the highest variance

were then selected and for each of these features the median value of the intensities across all time-

points was calculated and subtracted from the actual intensity values, resulting in a set of ‘deviation

from median’ values. These values were plotted using the heatmap.2() function in R and dendro-

grams, where shown, were calculated based on Euclidean distance measures of the input data

(hclust() and dist() functions of the stats package).

Plotting the 517-gene superset
The lists of 100 protein-coding genes with highest variance in each of the 14 volunteers infected by

blood challenge were merged to create a non-redundant set of 517 unique genes. Log2 transformed

intensity values were then scaled with scale (scale=TRUE, center=TRUE), plotted with pheatmap and

clustered using hclust and cutree in R, with k = 8.

PCA plots of the 517-gene superset
For each volunteer, a subset of the data was made encompassing all available time-points in chrono-

logical order. The log2 transformed intensity values of the 517 genes were normalised using the nor-

malizeQuantiles()function from the limma Bioconductor package prior to principal component

analysis using the prcomp() function of the stats Bioconductor package. Plots of the first two dimen-

sions were generated using the standard plot() function of the graphics package. To measure the

magnitude of each volunteer’s immune response we calculated the Euclidean distance travelled

along principal component 1, as this accounted for almost all of the variance in every time-course.

As every sample in a time-course was centred around zero we calculated the distance travelled for

every volunteer (relative to their own average position through time) as the x-coordinate of the diag-

nosis sample.

Differential gene expression
Analysis of differential gene expression was carried out using the limma package from Bioconductor,

with eBayes correction for multiple testing; an adjusted p value below 0.05 was required for signifi-

cance. This analysis was performed to quantify the number of differentially expressed genes

between time-points for each group (unresponsive, inflammatory, and suppressor). It was also car-

ried out to quantify the number of differentially expressed genes between groups at a given time-

point.

Allocation of volunteers to groups after blood challenge
To be classified as responsive to blood challenge volunteers had to pass two sequential thresholds:

first, for every volunteer the mean variance of their 50 most variable protein-coding genes was calcu-

lated. This figure had to be at least 1.5-fold higher than the mean of the four uninfected controls

(i.e. 1.5 � 0.202 = 0.303). Second, the distance travelled in each volunteer’s PCA plot of the 517-

gene superset had to be greater than two standard deviations above the mean of the four unin-

fected controls (i.e. 2.67 + (2 � 1.102)=4.874). Volunteers had to pass both thresholds in order to

be classified as responsive; those who failed one or both of these tests (v018, v012, v208, and v020)

were classified as unresponsive. The remaining volunteers were then grouped into inflammatory

(v016, v017, v013, v027, v026, v206, v106, and v024) or suppressor (v022 and v019) hosts based on

their upregulation of clusters 2 and 4 or downregulation of clusters 1 and 3, respectively (see Fig-

ure 1). Note that differential gene expression analysis (as detailed above) was used to confirm that

the unresponsive group had zero differentially expressed genes at diagnosis (compared to baseline).

Host RNA-sequencing and data processing (mosquito challenge)
Indexed sequencing libraries were prepared from 500 ng RNA using the TruSeq Stranded mRNA

Library kit (Illumina), according to the manufacturer’s instructions. Samples were pooled and

sequenced on two separate lanes of the same Illumina HiSeq v4 flow cell to generate ~33 million

reads per sample (75 bp paired-end reads). Note that globin depletion was not performed; instead,
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sequencing was carried out to sufficient depth that the globin reads (accounting for no more than

20% of any given sample) could simply be discarded during data processing. Read counts per gene

were quantified against the Gencode human v28 basic transcript sequences (Frankish et al., 2019)

using Kallisto v0.42.3 (92). The index was built using default parameters and quantification was per-

formed with -t 12 -b 0; genes not expressed with at least one count per million in at least one sam-

ple were excluded. EdgeR (Robinson et al., 2010) was used to identify highly dispersed genes

(BCV >0.4 and FDR < 0.1) for each volunteer’s time-course with the exact test. Next, the lists of

highly dispersed genes in each of the five volunteers infected by mosquito bite were merged to cre-

ate a non-redundant set of 226 unique genes, which were used for clustering with hclust in the

pheatmap R package. This identified a single major cluster comprising 117 unique genes that was

taken forward for downstream analyses (e.g. plotting the 117-gene superset and ClueGO). Note

that to visualise and cluster the 226 unique genes and the 117-gene superset, read counts across

the entire dataset were normalised using rlogs (blind=TRUE) in DESeq2 (Love et al., 2014).

Gene ontology analysis and networks (ClueGO)
Blood challenge
The list of 2028 genes differentially expressed at diagnosis in the inflammatory group was imported

into ClueGO v2.5.4 (Bindea et al., 2009; Mlecnik et al., 2014). ClueGO identified the significantly

enriched GO terms associated with these genes and placed them into a functionally organised non-

redundant gene ontology network based on the following parameters: pvalue cutoff = 0.05; correc-

tion method used = Bonferroni step down; min. GO level = 5; max. GO level = 11; number of

genes = 3; min. percentage = 5.0; GO fusion = true; sharing group percentage = 40.0; merge redun-

dant groups with >40.0% overlap; kappa score threshold = 0.4; and evidence codes used [All]. Each

of the 34 functional groups was assigned a unique colour and a network was then generated using

an edge-weighted spring-embedded layout based on kappa score. To provide an overview of the

inflammatory response we then labelled the leading GO term in the top 12 functional groups, as fol-

lows: groups were first ordered by adj p value; starting with the most significant group we chose the

level 4 GO term with the highest significance and made this the group name; we then moved on to

the next most significant group and again chose the level 4 GO term with the highest significance as

group name; we repeated this process until 12 groups had been named. Note that there were two

exceptions to these rules: first, if there was not a level 4 GO term within a group then this group was

excluded (to avoid naming groups that were too broad or specific in ascribing function); and second,

if the most significant level 4 GO term was shared with a group already named then this GO term

was excluded and the group was instead named after the next most significant level 4 GO term (to

avoid redundancy).

Mosquito challenge
The 117-gene superset was imported into ClueGO to identify the significant GO terms associated

with these genes. This was carried out exactly as described for blood challenge with the exception

of the following parameter changes: number of genes = 2; min. percentage = 4.0; merge redundant

groups with >50.0% overlap.

Quantification of cytokines and chemokines in plasma
Interferon alpha (IFNa), interferon gamma (IFNg), CXCL9 (MIG), and CXCL10 (IP-10) were quantified

in plasma as part of a custom-design multiplex assay from BioLegend (LegendPlex). Samples were

run in duplicate and the assay was performed according to the manufacturer’s instructions using low

protein-binding filter-bottom plates (Merck). Beads were acquired on a BD LSRFortessa running

FACSDiva software and data were analysed with LEGENDPlex analysis software. For blood chal-

lenge, data are presented as fold-change relative to pre-infection samples; when analytes were

undetectable samples were simply assigned the largest integer below the limit of detection to allow

normalisation and graphing of all time-points.

Quantification of Angiopoietin-2 in plasma
Angiopoietin-2 was measured in plasma at pre-infection and diagnosis time-points using the Human

Angiopoietin-2 Quantikine ELISA kit from R and D Systems. Samples were run in duplicate and the
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assay performed as per the manufacturer’s instructions. Optical density (OD) was determined on a

Multiskan Ascent plate reader by subtracting measurements taken at 570 nm wavelength from read-

ings at 450 nm. All samples and standards were background-corrected by subtracting the mean OD

measured in blank wells containing only assay diluent. A seven-point standard curve was then con-

structed by plotting the mean absorbance of each standard against known concentration and using

regression analysis to draw a best fit line (R2 = 0.998). Data are presented as mean concentration of

the duplicate samples.

Detection of anti-Cytomegalovirus IgG in plasma
Cytomegalovirus (CMV) seropositivity was assessed in all volunteers before CHMI using an anti-CMV

IgG Human ELISA Kit (Abcam). Samples were run in duplicate and OD was determined on a Multis-

kan Ascent plate reader by subtracting measurements taken at 620 nm wavelength from readings at

450 nm. All samples and controls were background-corrected by subtracting the mean OD mea-

sured in substrate blank wells. Samples were scored positive if their absorbance value was > 10%

above the mean absorbance value of the CMV IgG cut-off control. This was calculated by converting

OD values to Standard Units using the following equation: mean sample absorbance value x 10 /

mean absorbance value of the cut-off control. Samples with < 9 standard units were classified as

CMV-negative, whereas samples with > 11 standard units were classified as CMV-positive.

LC-MS-based analysis of plasma metabolites
Malaria-induced changes in metabolite abundance were measured in seven volunteers from the

blood challenge cohort: two unresponsive volunteers (v018 and v208), the three most inflammatory

volunteers (based on upregulation of plasma CXCL10 and IFNg) (v016, v017, and v013) and the two

suppressor volunteers (v022 and v019). Samples were prepared by diluting 25 ml of plasma in 1000

ml of 4˚C (HPLC-grade) chloroform/methanol/water at a 1:2:1 ratio. Samples were then vortexed for

5 min and spun at 13,000xg for 3 min at 4˚C. After centrifugation, the supernatant was collected and

stored in cryovials at �80˚C ready for downstream processing. LC-MS-based metabolomics analyses

were conducted at Glasgow Polyomics. Hydrophilic interaction liquid chromatography (HILIC) was

performed on a Dionex UltiMate 3000 RSLC system (Thermo Fisher Scientific, UK) using a ZIC-pHILIC

column (150 mm � 4.6 mm, 5 mm column from Merck Sequant). For each sample, a 10 ml volume

was injected into the system. Samples were maintained at 5˚C prior to injection. The column was

kept at 30˚C throughout the analysis and samples were eluted with a linear gradient (from 20% 20

mM ammonium carbonate in water (A) and 80% acetonitrile (B) to 80% A and 20% B) at a flowrate

of 300 ml/min over 24 min. Mass spectrometry analysis was performed on a Thermo Orbitrap QExac-

tive operated in polarity-switching ionisation mode with the following parameters: resolution of

70,000; automated gain control of 106; m/z range of 70–1,050; sheath gas flowrate of 40 arbitrary

units (au); auxiliary gas flowrate of 5 au; sweep gas flowrate of 1 au; probe temperature of 150˚C

and capillary temperature of 320˚C. The parameters for positive mode ionisation were as follows:

source voltage +3.8 kV, S-Lens RF Level 30.00, S-Lens Voltage �25.00 V, Skimmer Voltage �15.00

V, Inject Flatapole Offset �8.00 V, Bent Flatapole DC �6.00 V. For negative mode ionisation, a

source voltage of �3.8 kV was used. Volunteer samples were run alongside three mixes of authentic

standards (total number: 248) involved in various metabolic pathways to facilitate metabolite identifi-

cation based on exact mass and retention time. Fragmentation of the top 20 ions was performed

with the following parameters: collision energy: 25%; isolation window: 1.2; dynamic exclusion after

one time; exclusion duration: 6s; exclude isotopes: true; and minimum intensity: 5000. LC-MS raw

data were processed with IDEOM (using default parameters [Creek et al., 2012]), which uses the

XCMS (Smith et al., 2006) and mzMatch (Scheltema et al., 2011) software in the R environment.

The levels of reliability of the spectral assignment to metabolites, as defined by the Metabolomics

Standard Initiative (Sumner et al., 2007), are as follows: ’MSI:1 (identified metabolites)’ – high-reso-

lution mass (three ppm) and retention time (5%) matched to an authentic standard and ’MSI:2 (puta-

tively annotated compounds)’ – high-resolution mass matched to a public library (three ppm).

Xcalibur software (Thermo Fisher Scientific) was used to generate fragmentation spectra, which were

further exported into mzCloud to search for compounds in the database with matching spectra.
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Metabolomics data processing and analysis
Metabolite intensities were log2 transformed and intensity ratios were calculated as the fold-change

in metabolite abundance at day 8 or diagnosis relative to pre-infection. A pairwise comparison (t-

test) between post- and pre-infection samples was then carried out for every metabolite and p val-

ues were adjusted for multiple testing by applying a false discovery rate (FDR). Differentially abun-

dant metabolites were called using an FDR threshold of 0.1 and an intensity ratio equivalent to a

1.5-fold change in abundance. A volcano plot showing the intensity ratios and FDR-corrected p val-

ues of all metabolites was generated using ggplot2. Next, the differentially abundant metabolites

were range-scaled according to van den Berg et al., 2006 and a heatmap of range-scaled intensity

values was generated using the gplots R package. Here range-scaling is used to make every metabo-

lite equally important by scaling the intensity of each metabolite relative to its own biological range

across all samples.

Isolation of parasites for ex vivo RNA-sequencing
A step-by-step guide to our ultra-low density RNA-sequencing methodology for human malaria par-

asites is available at protocols.io (dx.doi.org/10.17504/protocols.io.brgjm3un).

Blood challenge
50 ml whole blood was drawn into lithium heparin vacutainers at diagnosis (immediately before drug

treatment) and white cells were removed by passing the blood through a leucoflex LXT filter (Maco-

pharma). The flow-through was collected into a 250 ml centrifuge bottle (with silicone O-ring) and

the filter was washed with 200 ml PBS to maximise recovery of infected red cells. The flow-through

was spun at 1000xg for 10 min at room temperature with brake off and the supernatant carefully

aspirated (being careful not to disturb the pelleted red cells). The red cells were gently agitated to

resuspend and then lysed by addition of 200 ml ice-cold saponin at 0.015% in PBS (w/v). The cell sus-

pension was incubated on ice for 10 min and then spun at 15,000xg for 10 min at 4˚C with brake off

to pellet the free parasites. The supernatant was slowly aspirated being very careful not to disturb

the pelleted parasites, which were then gently resuspended in 1 ml ice-cold PBS and transferred to a

1.5 ml tube. The parasites were pelleted by centrifugation at 16,000xg for 5 min at 4˚C in a micro-

fuge and two sequential washes were performed with 1 ml ice-cold PBS to remove free globin. After

the final spin, the parasite pellet was resuspended in 1 ml TRIzol, incubated in a 37˚C water bath for

5 min and snap-frozen on dry ice. All samples were stored at �80˚C prior to RNA extraction.

Mosquito challenge
Parasites were isolated from 20 ml whole blood drawn on days 9, 10, and 11 post-infection accord-

ing to the blood challenge protocol, with the following modifications. Red cells were lysed by addi-

tion of 80 ml ice-cold saponin at 0.0075% in PBS (w/v); after the 10 min incubation on ice, free

parasites were then pelleted by centrifugation at 18,000xg for 20 min at 4˚C with brake off.

Inoculum
Two samples of the inoculum used for blood challenge were prepared independently for RNA-

sequencing to provide technical replicates. For each sample, 1 ml of the pre-diluted inoculum (esti-

mated to contain 1000 parasites ml�1 in 0.9% saline) was transferred to a 1.5 ml tube; infected red

cells were pelleted by centrifugation at 1000xg for 5 min at room temperature and (after removal of

the supernatant) resuspended in 1 ml TRIzol. The samples were carefully mixed, incubated in a 37˚C

water bath for 5 min and then snap-frozen on dry ice.

In vitro cultured ring-stage parasites
Two mock samples were prepared using in vitro cultured parasites (clone 3D7) to test the sensitivity

of our ultra-low input methodology for parasite RNA-sequencing. Briefly, parasites were cultured

and synchronised to ring-stage using 5% sorbitol, and the first mock sample was prepared by spiking

2000 parasites into 50 ml whole blood (40 parasites ml�1). The second mock sample was prepared

by spiking 8000 parasites into 20 ml whole blood (400 parasites ml�1). These parasite densities were

chosen to represent the likely burden in the first and second blood cycle after liver egress in
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volunteers infected by mosquito bite (Roestenberg et al., 2012). Parasites were isolated from these

mock samples according to the mosquito challenge protocol above.

Parasite RNA extraction and depletion of globin and ribosomal RNA
Samples were thawed at room temperature and 200 ml bromochloropropane was added; samples

were then vortexed, incubated for 3 min at room temperature and centrifuged at 12,000xg for 15

min at 4˚C. 500 ml of the aqueous phase was transferred to a 1.5 ml tube and diluted 1:1 with abso-

lute ethanol. RNA purification was then carried out using the RNA Clean and Concentrator kit, as

per the manufacturer’s instructions (Zymo Research). RNA was eluted in 14 ml DEPC-treated water

and quantified by nanodrop; quality was assessed using the Agilent 2100 Bioanalyzer with RNA

6000 pico chips. A RIN value above 7.0 was accepted as sufficiently high-quality RNA for down-

stream steps. Samples were then DNase-treated and depleted of globin and ribosomal RNA with

the Globin-Zero Gold kit (Illumina), according to the manufacturer’s instructions. For samples with

less than 1 mg RNA (the recommended starting material) reagent volumes were downscaled for low-

input methodology (as described in the kit). After removal of globin and ribosomal RNA, the remain-

ing RNA was precipitated overnight at 4˚C in 600 ml absolute ethanol, 18 ml sodium acetate (3M),

and 2 ml linear acrylamide (5 mg/ml). The RNA was then pelleted by centrifugation at 12,000xg for

20 min at 4˚C and washed two times with 75% ethanol. Samples were air-dried for 5 min and the

RNA was dissolved in 12 ml DEPC-treated water by heating to 65˚C for 5 min. RNA was stored at

�80˚C prior to cDNA synthesis and amplification.

Parasite RNA-sequencing and data processing
Blood challenge
Double-stranded cDNA was synthesised from 2 ml parasite RNA using the Smart-Seq2 protocol

described by Picelli et al., 2013 and modified for use with low-input P. falciparum RNA (Reid et al.,

2018). cDNA was amplified with 25 cycles of PCR using the KAPA HiFi reaction mix and ISPCR

primer, and purified with Agencourt AMPure XP beads at a 1:1 DNA to bead ratio. Indexed

sequencing libraries were constructed from 500 ng of cDNA with no further PCR amplification.

cDNA was sheared to 400–600 bp with a Covaris sonicator and libraries prepared using the NEB-

Next Ultra DNA library prep kit, according to the manufacturer’s instructions. Libraries were pooled

and run on two separate lanes of distinct Illumina HiSeq v4 flowcells to produce 75 bp paired-end

reads. Read counts per gene were quantified against the P. falciparum v3 transcript sequences

(Böhme et al., 2019) using Kallisto v0.42.3 (Bray et al., 2016). The index was built using default

parameters and quantification was performed with -t 12 -b 0.

Mosquito challenge
Double-stranded cDNA was synthesised and amplified exactly as described for blood challenge,

with the exception that the number of PCR cycles was reduced to 20. Indexed sequencing libraries

were prepared from 1 ng cDNA with the Nextera XT library kit (Illumina), as per the manufacturer’s

instructions. One ml of each undiluted library was run on the Agilent bioanalyzer high sensitivity DNA

chip for quantification and quality assessment, and all libaries were pooled and run on a single lane

of an Illumina Hiseq v4 flowcell. Read counts per gene were quantified against the P. falciparum v3

transcript sequences using Kallisto v0.42.3, as above. The index was built using default parameters

and quantification was performed with -t 12 -b 0.

Analysis of parasite var and rifin expression
For every volunteer infected by mosquito bite, read counts were pooled from days 9, 10, and 11

post-infection to generate a comprehensive parasite transcriptome 2–3 cycles after liver egress. The

two inoculum samples (blood challenge) were not pooled and thus provide technical replicates of a

single biological sample. Data from the mosquito and blood challenge studies were merged and

rlog values (blind=TRUE) were calculated across the entire dataset using DESeq2 (Love et al.,

2014); these values were then used to generate heatmaps of expression intensity. Sub-family classifi-

cations for the 62 var genes were determined from PlasmoDB (Warrenfeltz et al., 2018 based on

Rask et al., 2010) and 158 rifin genes were identified from the same database. Heatmaps were

drawn using pheatmap, clustered with hclust. To generate pie charts of var gene sub-family
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expression we summed FPKM-normalised (Fragments Per Kilobase per Million mapped reads) read

counts for each var gene sub-family for each volunteer. Genes with a summed FPKM of <1 in any

given sample were excluded for that sample and plots were drawn using matplotlib in Python. To

examine reads mapping across var gene introns, we followed the protocol outlined in Reid et al.,

2018. Briefly, we generated a HISAT2 (v2.0.0-beta) index of the P. falciparum v3 genome sequence

using default parameters and mapped reads with parameters -max-intronlen 5000 p 12 (Kim et al.,

2015). We identified reads overlapping annotated var genes using bedtools intersect (Quinlan and

Hall, 2010). We then selected reads with an N in the CIGAR string, indicating a split read. We

counted only those reads that were split exactly over the intron of a var gene. We called expression

for a var gene where there were at least two reads mapping over the intron; read counts were then

converted to logs of Counts Per Million (CPM) using the total number of reads mapping to all other

features and the heatmap was drawn using pheatmap.

Calling differentially expressed parasite genes
To determine whether any parasite genes were differentially expressed between volunteers with dif-

ferent clinical outcomes after blood challenge, we used DESeq2 (Love et al., 2014) to compare par-

asite gene expression profiles from inflammatory volunteers (n = 8) versus the rest (unresponsive

and suppressor, n = 4). In the same way, we used DESeq2 to compare parasite gene expression pro-

files between the inoculum samples (n = 2) and all volunteer samples (n = 12) after blood challenge.

Accession numbers

. Blood challenge human microarray dataset (NCBI GEO): GSE132050

. Mosquito challenge human RNA-sequencing dataset (EBI EGA): EGAS00001003766

. Parasite RNA-sequencing dataset (blood and mosquito challenge) (EBI ENA): PRJEB33557

. Blood challenge metabolomics dataset (MetaboLights): MTBLS1188
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Supplementary files
. Supplementary file 1. Demographics of volunteers infected by blood or mosquito challenge;

includes genetic and non-genetic variables known to influence human immune variation in vitro.

Classification of volunteers by host response after blood challenge is described in the results and

methods.

. Supplementary file 2. Three metrics that measure the magnitude of the human immune response

to blood challenge. [1] The mean variance of the top 50 most variable protein-coding genes in each

volunteer. [2] The Euclidean distance travelled during principal component analysis of the 517-gene

superset. [3] The number of differentially expressed genes at diagnosis in each group. Note that

uninfected control volunteers set a threshold for baseline variation in gene expression through time;

a Mann Whitney test was then used to support the observation that unresponsive volunteers were

comparable to uninfected controls. Classification of volunteers by host response after blood chal-

lenge is described in the results and methods.

. Supplementary file 3. List of the 2028 differentially expressed genes identified in inflammatory vol-

unteers at diagnosis (compared to pre-infection samples). These data underpin the gene ontology

network in Figure 2a.

. Supplementary file 4. List of the 217 significantly enriched GO terms identified in inflammatory vol-

unteers at diagnosis. GO terms are arranged into their functional groups and groups are ordered by

size. The leading GO term in the top 12 functional groups is highlighted in red. On sheet 2, we high-

light the top 20 GO terms as ordered by p value.

. Supplementary file 5. List of the 77 differentially expressed genes identified in suppressor volun-

teers at diagnosis (compared to pre-infection samples). These data underpin the heatmap in

Figure 2d.

. Supplementary file 6. List of the 893 genes that were differentially expressed between inflamma-

tory and suppressor hosts at diagnosis. There were no differentially expressed genes between these

volunteers prior to infection (adj p<0.05).

. Supplementary file 7. Rlog expression values of the 117-gene superset in whole blood after mos-

quito challenge. These data underpin the heatmap in Figure 2—figure supplement 1a. On sheet

two we highlight the volunteers in which EdgeR identified these genes as differentially expressed.

And on sheet three we look at the 21 genes that were most upregulated in inflammatory volunteers

after blood challenge.

. Supplementary file 8. List of the 44 significantly enriched GO terms identified in the 117-gene

superset. GO terms are arranged into their functional groups and groups are ordered by size. On

sheet two we highlight the top 20 GO terms as ordered by p value.

. Transparent reporting form

Data availability

Microarray data have been deposited in NCBI GEO, accession code GSE132050 (blood challenge

human microarray dataset). Sequencing data have been deposited in EBI EGA, accession code EGA

S00001003766 (mosquito challenge human RNA-seq dataset) and EBI ENA, accession code

PRJEB33557 (parasite RNA-seq dataset (blood and mosquito challenge)). Metabolomics data have

been deposited in MetaboLights, accession code MTBLS1188 (blood challenge metabolomics data-

set). Information on clinical trials are available at ClinicalTrials.gov using accession codes

NCT02044198 and NCT02905019.
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