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Abstract: Thermoanaerobacter species have recently been observed to reduce carboxylic acids to their
corresponding alcohols. The present investigation shows that Thermoanaerobacter pseudoethanolicus
converts C2–C6 short-chain fatty acids (SCFAs) to their corresponding alcohols in the presence of
glucose. The conversion yields varied from 21% of 3-methyl-1-butyrate to 57.9% of 1-pentanoate being
converted to their corresponding alcohols. Slightly acidic culture conditions (pH 6.5) was optimal
for the reduction. By increasing the initial glucose concentration, an increase in the conversion of
SCFAs reduced to their corresponding alcohols was observed. Inhibitory experiments on C2–C8
alcohols showed that C4 and higher alcohols are inhibitory to T. pseudoethanolicus suggesting that
other culture modes may be necessary to improve the amount of fatty acids reduced to the analogous
alcohol. The reduction of SCFAs to their corresponding alcohols was further demonstrated using
13C-labelled fatty acids and the conversion was followed kinetically. Finally, increased activity
of alcohol dehydrogenase (ADH) and aldehyde oxidation activity was observed in cultures of
T. pseudoethanolicus grown on glucose as compared to glucose supplemented with either 3-methyl-1-
butyrate or pentanoate, using both NADH and NADPH as cofactors, although the presence of the
latter showed higher ADH and aldehyde oxidoreductase (ALDH) activity.

Keywords: biocatalysis; extremophile; thermophile; fusel alcohols; carboxylic acids; volatile fatty
acids; bioreduction

1. Introduction

Beyond biofuels, the sustainable production of chemical building blocks from renew-
able materials is a major goal of the bioeconomy. In addition to their utility as solvents,
alcohols are very useful chemical intermediates in the synthesis of other materials. At
present, the vast majority of alcohols are produced via the oxo process from petrochemical
starting materials, although large quantities of 1-butanol were produced via fermenta-
tion in the early to mid-20th century [1] and the biological production of ethanol from
second-generation biomass is an expanding area of intense research. The production higher
carbon alcohols from gases (CO/CO2) has also been explored for 1- and 2-propanol [2],
2-methyl-1-butanol (iso-butanol), 1-hexanol [3], and 1-octanol [4] using a number of species
within the class of Clostridia, although these fermentation routes have not reached indus-
trial viability. Until recently, the production of C3 and higher alcohols has largely been
restricted to mesophiles. Instead of producing low molecular weight alcohols, a more
feasible approach would be to produce higher-order alcohols as their energy density in-
creases linearly with increasing carbon number. For example, the energy density of ethanol,
propanol, and butanol are 26.8, 33.4, and 36.1 MJ kg−1, respectively, as compared with
44.4 MJ kg−1 for isooctane. Higher-order alcohols, such as butanol, are also more desirable
as biofuels as they are less corrosive to existing infrastructure and are less hygroscopic
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than low molecular weight alcohols [5]. While biobutanol production has a long history
using mesophilic Clostridium species with the acetone-butanol-ethanol (ABE) fermentation
using Clostridium acetobutylicum and Clostridium beijerinckii dating back to the early 20th
century [6–9], the economic viability of such processes is, at present, limited to the cost of
substrates and enzymatic pretreatment of complex biomass. More recently, a wild-type
thermophilic Clostridia, Thermoanaerobacterium strain M5, [10] has been found to produce
butanol from a wide-range of substrates including xylan. These bacteria produce acetate
and butyrate in the acetogenic phase but due to the acid formation, the pH drops in the
medium and the bacteria convert the acids to acetone and butanol similar to mesophilic
Clostridia. As carboxylic acids are ubiquitous in nature, producing alcohols from abundant
and inexpensive sources such as waste streams could potentially present a sustainable
route to the valorization of these materials.

Thermophilic anaerobic bacteria within the genera of Thermoanaerobacter, Thermoanaer-
obacterium, and Caldanaerobacter within the class Clostridia have been known for some time
for being good ethanol and hydrogen producers as are other Firmicutes such as Geobacillus
thermoglucosidasius [11–13]. The use of these bacteria is especially advantageous when com-
plex biomass is used as a feedstock for fermentation, since they typically have a very broad
substrate spectrum degrading various monosaccharides, disaccharides, and oligosaccha-
rides present in these type of biomass to volatile end products [11]. More generally, the use
of thermophiles is often advantageous due to higher cultivation temperatures increasing
the thermodynamic favorability and decreasing the risk of mesophilic contamination while
facilitating the direct removal of volatile end products, many of which have deleterious
effects associated with their accumulation [12,14].

Thermoanaerobacter pseudoethanolicus strain 39E has been extensively investigated for its
biotechnological potential. This strain was isolated in the early 1970s from a thermal feature
in Yellowstone National Park (WY, USA) and originally classified as a strain of Clostridium
thermohydrosulfircum [15] before being transferred to the genus of Thermoanaerobacter as
a strain of Thermoanaerobacter ethanolicus [16]. Further studies based upon sequencing of
the 16S rRNA gene and DNA-DNA hybridization established that strain 39E was in fact a
novel species within the genus [17]. T. pseudoethanolicus has been extensively investigated
for its ability to produce ethanol from a wide range of carbohydrates, including xylose,
and its thermostable pullulanases [18,19] and glucotransferases [20–22]. Other organisms
within the genera of Thermoanaerobacter have broad biotechnological potential beyond their
abilities to produce biofuels. Thermoanaerobacter strains in general possess multiple alcohol
dehydrogenases (ADHs) which have either specificity for primary (PADHs) or secondary
alcohols (SADHs) [23–27]. These ADHs also possess different functions with the PADH
serving to oxidize ethanol using NAD+ and regenerate reducing potential while the SADH
is key for the production of ethanol and uses NADP(H) as a cofactor [25,26,28]. The SADHs
of Thermoanaerobacter pseudoethanolicus strain 39ET have been investigated for their ability to
reduce ketones [24,29] Additionally, an acetaldehyde dehydrogenase (AdhE) catalyzes the
NADH-dependent acetyl-CoA hydrolysis and condensation to form acetaldehyde which
can undergo subsequent reduction to ethanol [24].

Another approach to the production of butanol and other higher-order alcohols would
be the biological reduction of inexpensive carbonyl-containing substrates such as ketones
and carboxylic acids. It has been demonstrated that Thermoanaerobacter species often
possess multiple alcohol dehydrogenases including those that are specific for the oxidation
and reduction of PADHs and SADHs. The use of Thermoanaerobacter SADHs has been
widely exploited for the asymmetric reduction of ketones to chiral alcohols as reviewed
elsewhere [30–35]. The utility of PADHs beyond their role in ethanol formation [36]
has received considerable attention. While PADHs are able to oxidize primary alcohols,
presumably to their corresponding aldehydes, the reduction of carboxylic acids to these
alcohols has only recently been demonstrated from carboxylic acids using glucose [36,37]
or amino acids [38,39] as a source of reducing potential.
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While the reduction of carboxylic acids to aldehydes and alcohols can be accomplished
using traditional synthetic techniques, these approaches often require stoichiometric quan-
tities of reducing agents [40]. The biological reduction of carboxylic acids to alcohols is
preferable to the synthesis of alcohols from petrochemical sources given the abundance
and low cost of fatty acids; the reduction of carboxylic acids has been previously stud-
ied for a number of aerobic organisms such as Norcardia [41], while a number of fungi
are known to produce mixtures of ketones and alcohols from fatty acids [42]. There are
two enzyme systems for the reduction of carboxylic acids, namely aldehyde:ferredoxin
oxidoreductases (AORs) and carboxylic acid reductases (CARs) with the latter using ATP
and NADPH to facilitate the reduction [43]. Among Clostridia, the study of carboxylic
acid reduction been mostly restricted to the Morella thermoacetica which possess both
a ferredoxin-dependent, tungsten-containing aldehyde-oxidoreductase [44] and several
mesophilic autotrophic Clostridia, such as Clostridium ragsdalei [45], Clostridium ljung-
dahlii [46], and Moorella (formerly Clostridium) thermoacetica [47] can also produce primary
alcohols from their corresponding carboxylic acid. Among fermentative heterotrophic
Clostridia, such as Thermoanaerobacter and Caldanaerobacter strains, it has been observed
that branched-chain amino acid catabolism yields a mixture of branched-chain fatty acids
(BCFA) and alcohols (BCOH) for which the reduction of the carboxylic acid to the alcohol
has also been observed [48]. In this case, it is not clear if the bacteria first produce the
acid before conversion to the alcohol or if the intermediate from the amino acid (α-keto
acid) is both oxidized to its corresponding fatty acid and reduced to alcohol. A recent
investigation in our laboratory on inhibitory effects of various volatile fatty acids on growth
revealed that many Thermoanaerobacter species can reduce short-chain fatty acids (SCFAs)
to their corresponding alcohols during growth on glucose [37]. It is suggested that Ther-
moanaerobacter species can utilize the reducing power generated by glucose oxidation to
reduce the acids to alcohols as has been demonstrated with a number of Thermoanaerobacter
strains, including T. pseudoethanolicus [36,37], and studied with respect to BCOH formation
Thermoanaerobacter strain AK85 during amino acid catabolism in which the amino acid is
the source of reducing potential [38].

As is well known, culture conditions are of great importance for end product formation.
For example, manipulation of the liquid–gas phase ratio or adding electron scavenging
molecules (such as thiosulfate) to the medium makes it possible to direct the end-products
to more reduced (ethanol) or oxidized (acetate and hydrogen) formation during glucose
or amino acid fermentation [49]. Thus, manipulating culture conditions in an effort to
maximize the formation of alcohols by reduction of carboxylic acids is of interest. The
present study examines some of the physiological aspects of T. pseudoethanolicus strain
39ET‘s ability to reduce C2 to C6 carboxylic acids using 13C NMR and enzyme assays. A
particular emphasis was placed on the influence of culture conditions such as the influence
of pH, liquid-gas phase ratio (L-G ratio), and the ratio of the concentration of glucose on
short-chain fatty acids. Also of interest is the rate at which carboxylic acids are reduced
to their corresponding alcohols and is investigated kinetically in batch culture as is the
inhibitory impact of C2–C6 alcohols accumulation.

2. Materials and Methods
2.1. General Methods

All materials were obtained from Sigma Aldrich unless otherwise stated. Hungate
tubes were acquired from ChemGlass (Vineland, NJ, USA). Nitrogen gas used was of
5.0 quality (<5 ppm O2) obtained from AGA gas. Nucleotide cofactors were obtained
from Megazyme with the exception of NADPH which was obtained from Sigma-Aldrich
(Taufkirchen, Germany).

2.2. Culture Media and Organisms

All cultivations were performed in Basal Mineral (BM) medium which consisted of the
following on a per liter basis: NaH2PO4·2H2O 3.04 g, Na2HPO4·2H2O 5.43 g, NH4Cl 0.3 g,
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NaCl 0.3 g, CaCl2·2H2O 0.11 g, MgCl2·6H2O 0.1 g, yeast extract 2.0 g, resazurin 1 mg, trace
element solution 1 mL, vitamin solution (DSM 141) 1 mL, and NaHCO3 0.8 g. Glucose was
used as a carbon source at a concentration of 20 mM (3.60 g per L) added after autoclaving
from a syringe-filtered (0.22 µm) stock solution stored under nitrogen. The trace element
composition was as described earlier [50]. The medium was prepared by adding the buffer
to distilled water containing resazurin and then boiled for 10 min followed by cooling under
nitrogen flushing (<5 ppm O2). The mixture was then transferred to serum bottles (typically
25 mL unless otherwise stated) using the Hungate technique [51,52] and autoclaved at
121 ◦C for 60 min. All cultivations were performed in serum bottles at pH 7.0 with a
liquid–gas phase ratio of 1:1 and incubated at 65 ◦C without agitation unless otherwise
stated. All experiments were conducted in triplicate for 5 days unless otherwise indicated.
T. pseudoethanolicus strain 39ET (DSM 2355) was purchased from Deutsche Sammlung von
Mikroorganismen und Zellkulturen. In all experiments, a 2% v/v inoculation volume
obtained from fresh cultures was used. After cultivation, hydrogen was analyzed by gas
chromatography, the cells were then centrifuged (13,000 rpm, 3 min) and the supernatant
was stored at −40◦ prior to further analysis.

2.3. Conversion of Fatty Acids to Alcohols in the Presence of Glucose

The strain was cultivated on glucose (20 mM) in the absence and presence of a range
of an externally added different fatty acid. The acids evaluated (acetate, 1-propionate,
1-butyrate, 2-methyl-1-propionate, 2-methyl-1-butyrate, 3-methyl-1-butyrate, 1-pentanoate,
and 1-hexanoate) were added to give a final concentration of 20 mM. The experiments were
performed in anaerobic tubes (18 × 150 mm) with equal volumes of liquid and headspace
and incubated for 5 days.

2.4. Kinetic Experiments of Carboxylic Acid Product Formation

Kinetic experiments on the fermentation of glucose, with and without added fatty
acids (1-butyrate, 3-methyl-1-butyrate) were performed in 125 mL serum bottles with a L-G
of 1:1 at 65 ◦C for an incubation period of 120 h. Periodically, 1 mL samples was removed
for the analysis of volatiles end products and 0.2 mL of headspace gas was removed for
hydrogen analysis.

2.5. Effect of Liquid–Gas Phase Ratio on Carboxylic Acid Reduction

The strain was cultivated in BM containing 20 mM of glucose (a) with addition of
1-propionate (b), 1-butyrate (c), 3-methyl-1-butyrate (d), and 2-methyl-1-butyrate (e). Five
different liquid–gas (L-G) ratios were used: 0.05, 0.34, 0.98, 2.08, and 5.40 in 58.9 mL serum
bottles; as an example, serum bottle with a nominal volume of 58.9 mL of BM will give a
L-G ratio of 1.0.

2.6. Effect of Initial pH on Carboxylic Acid Reduction

The strain was cultivated in BM containing 20 mM of glucose (a) with addition of
1-propionate (b), 1-butyrate (c), 3-methyl-1-butyrate (d), and 2-methyl-1-butyrate (e). The
strain was cultivated at an initial pH between 5.0 and 8.5 in 0.5 unit increments by adjusted
with 6 M NaOH or HCl prior to autoclaving. Cultivations were performed in Hungate
tube (18 × 150 mm) with a L-G ratio of 1.0.

2.7. Inhibitory Effects of C2–C6 Alcohols on End Product Formation

To investigate the inhibitory effects of fatty acids and alcohols, the strain was cultivated
on glucose in the presence of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-
propanol, 2-methyl-1-butanol, 1-pentanol, and 1-hexanol. The concentrations used were
0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 7.0% (v/v). Experiments were performed in Hungate tubes
(16 × 150 mm) with L-G ratio of 1:1.
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2.8. Effect of Glucose and Fatty Acid Ratio on End Product Formation

The strain was cultivated at different concentrations of glucose (0, 10, 20, 30, and
40 mM) in the presence of 1-propionate (20 mM), 1-butyrate (20 mM), or 2-methyl-1-
butyrate (20 mM). The experiment was performed in Hungate tubes (16 × 150 mm) with
L-G ratio of 1:1.

2.9. Nuclear Magnetic Resonance (NMR) Experiment

The strain was cultivated in the presence of 20 mM 13C1-labled 3-methyl-1-butyrate
and glucose (20 mM) in an 8.7 mL serum bottle (L-G 0.98) for 7 days and analyzed. 13C
nuclear magnetic resonance (NMR) spectra were obtained using a Bruker AV400 at 298 K
after spiking with D2O to obtain a signal lock (0.3 mL addition of D2O to 1 mL of aqueous
sample).

2.10. Enzyme Assays

Cells for enzymatic assays were cultivated on 20 mM of short-chain fatty acid (SCFA)
+ 20 mM glucose in 1 L serum bottles containing 500 mL of medium; cells were harvested
after 18 h of cultivation via centrifugation (4700 rpm, 0–4 ◦C after dithionate addition to
afford a final concentration of 5 mg/L) followed by washing three times with degassed
50 mM Tris-HCl (pH 7.5). Cells were suspended in 10 mL of 50 mM Tris-HCl (pH 7.5) to
which an equal volume of glass beads (150–212 µm) were added followed by vortexing for
30 s and then by cooling on an ice bath for 2 min; this was repeated three times. Cell debris
was removed by centrifugation and the supernatant transferred to nitrogen-flushed serum
bottles. ADH and AOR activity assays were immediately performed using the nitro blue
tetrazolium (NBT) method of [53] as previously described earlier [38] and the concentration
of generated NAD(P)H were determined after 60 min and calculated according to the
equation below.

ADH activity
(

mU
mL

)
=

nmol NADH
v·t = nmol NADHx2

2.11. Analytical Methods

Hydrogen was analyzed with a Perkin Elmer Auto System XL gas chromatograph
equipped with a thermo-conductivity (TCD) detector as previously described [54]. Alcohols
and volatile fatty acids were measured by gas chromatography using a Perkin-Elmer
Clarus 580 gas chromatograph equipped with flame ionization detector (FID) as previously
described [54]. Optical density was determined using a Shimadzu UV-1800 at a wavelength
of 600 nm (l = 1 cm). Protein was quantified using the Lowry assay as described by [55]
with minor modifications as described by [38]. Bovine serum albumin (BSA) was used as a
standard at a concentration ranging from 0.1 to 1.4 mg/mL.

3. Results and Discussion

Recent investigations in our laboratory concerning the ability of Thermoanaerobacter
species to ferment hydrolysates of carboxylic acid-rich biomass revealed that most species
within the genus can reduce carboxylic acids to their corresponding alcohols using glucose
as a source of reducing potential. This phenomenon has now been demonstrated with
several Thermoanaerobacter strains [36] including T. pseudoethanolicus [37] and further by one
strain isolated in Iceland, Thermoanaerobacter strain AK85 [38]. The present investigation
examines the ability of T. pseudoethanolicus to reduce carboxylic acids to their corresponding
alcohols with an emphasis on the influence of culture conditions and the inhibitory impact
of alcohols on fermentation as well as the activities of enzymes likely involved in the
conversion.
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3.1. Fatty Acid Conversion to Alcohols

To investigate the range of short-chain fatty acids that could be reduced by T. pseu-
doethanolicus, the strain was cultivated on 20 mM glucose in the absence or presence of
20 mM of various C1 to C8 SCFAs, including several branched-chain fatty acids, as shown
in Figure 1. Formate, heptanoate, and octanoate were not reduced while the C3–C6 SCFA
were reduced with conversions between 21.0–59.7% which is similar to the values reported
earlier for this strain [37]. While acetate reduction to ethanol is difficult to detect due to
T. pseudoethanolicus being highly ethanologenic, previous work does indeed confirm that
acetate can be reduced to ethanol [38]. The conversion yields of the C3–C6 SCFAs examined
varied; the addition of 1-butyrate resulted in the highest conversion to its corresponding
alcohol, 1-butanol (57.9%; 11.58 mM) but only 21% (4.2 mM) of the 3-methyl-1-butyrate
was converted to 3-methyl-1-butanol (Figure 1).
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Figure 1. End product formation after 5 days cultivation from cultures of T. pseudoethanolicus containing glucose (20 mM)
and of exogenously added carboxylic acid (20 mM) and its conversion to its corresponding short-chain alcohol (SCOH).
Values represent the average of triplicate fermentations with standard deviation presented as error bars.

The catabolism of glucose without addition of fatty acids resulted in the production of
ethanol as the main end product (35.1 ± 1.3 mM or 87.8% of the theoretical yield) with other
end products being acetate (6.9 ± 0.1 mM) and hydrogen (3.7 ± 0.5 mmol/L). The end
product formation from glucose, in the presence of fatty acids show a decrease in ethanol
formation (35.1 mM in the glucose control as compared to 16.5 mM when 1-propionate
is included) and an increase in acetate (9.4 mM on 3-methyl-1-butyrate to 22.3 mM when
cultivated on 3-methyl-1-propionate) along with the conversion of the exogenously added
carboxylic acid to the corresponding alcohol (Figure 1) when exogenous fatty acids are
provided. The decrease in ethanol formation suggests that reducing equivalences from
glucose oxidation is being redirected from ethanol towards the reduction of the SCFA while
the remaining carbon from glucose metabolism is being shunted towards acetate allowing
additional ATP formation. This is evidenced by higher optical densities when SCFAs were
provided (Figure 1) with the exception of formate which was not reduced to methanol and
resulted in a mild inhibition as evidenced by both lower end production formation and a
drop in optical density (OD). This is similar to the result reported by Hitschler et al. [38] in
which the addition to 2-methyl-1-propionate to glucose-containing fermentations resulted
in an increase in OD from 0.58 to 0.80.
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Generally, the range of SCFAs reduced by T. pseudoethanolicus is quite limited compared
to other organisms, such as Mycobacterium marinum which can convert C6-C18 fatty acids to
alcohols [56]. There are relatively few reports of reduction of carboxylic acids by Clostridia
and those that have been reported are mostly autotrophic (Table 1). The whole cell system
of Moorella thermoacetica can also reduce a wide range of carboxylic acids including C3-
C5 fatty acids as well as much more sterically bulky aromatic fatty acid derivatives [47].
The results obtained in this study are very similar to those recently reported by [36] for
Thermoanaerobacter strains using a whole-cell system (Table 1). These authors also reported
a titer of approximately 15 mM of 2-methyl-1-propanol (30% conversion) produced from
50 mM of the corresponding fatty acid for T. pseudoethanolicus using a 1:2 glucose:SCFA ratio
as compared to 9.9 mM (49.7% conversion) from a 1:1 glucose:SCFA ratio. This suggests
that the ratio of reducing equivalence can be used to manipulate the conversion of SCFA to
its corresponding alcohol. This is further investigated and discussed in later sections.

Table 1. Conversion of exogenously added carboxylic acids to their corresponding alcohols by selected Clostridia.

Organism(s) Substrate Alcohol Titer (mM) %c References

Alkalibaculum bacchi strain CP15 Syngas + 1-propionate 6.7 (1-PrOH) 36.8 [57]
Alkalibaculum bacchi strain CP15+ Cl. propinicum Syngas + 1-propionate 16.6 (1-PrOH) 83.4 [57]

Alkalibaculum bacchi strain CP15 Syngas + 1-butyrate 6.7 (1-BuOH 38.6 [57]
Alkalibaculum bacchi strain CP15+ Cl. propinicum Syngas + 1-butyrate 11.0 (1-BuOH) 74.7 [57]

Alkalibaculum bacchi strain CP15 Syngas + 1-hexanoate 7.9 (1-Hexanol) 63.6 [57]
Alkalibaculum bacchi strain CP15+ Cl. propinicum Syngas + 1-hexanoate 9.8 (1-Hexanol) 90.7 [57]

“Clostridium ragsdalei” CO + propionate (15 mM) 7.5 mM (1-PrOH) 30% [46]
“Clostridium ragsdalei” CO + propionate (30 mM 29 mM 97% [45]

C. ljungdahlii ERI-2 CO + propionate (15 mM) 10.4 mM (1-PrOH) 69.4 [46]
Clostridium butylicum Glucose (36 mmol) 22 mM (1-BuOH n/a [58]

Clostridium butylicum Glucose (36 mmol) +
1-butyrate (15 mmol) 26 mM (1-BuOH) 26.7 a [58]

T. pseudoethanolicus Glu + 1-propionate 6.62 (1-PrOH) 33.0 [37]
T. pseudoethanolicus Glu + 1-butyrate 9.14 (1-BuOH) 55.6 [37]
T. pseudoethanolicus Glu + 1-hexanoate 6.69 (1-Hexanol) 33.5 [37]

Thermoanaerobacter strain AK152 Glu + 1-propionate (pH 6.7) 11.5 (1-PrOH) 57.3 [59]
Thermoanaerobacter strain X514 Glu + 1-propionate 25 mM (1-PrOH 50 [36]
Thermoanaerobacter strain X514 Glu + 1-butryate <2 mM (1-BuOH) <4 [36]
Thermoanaerobacter strain X514 Glu + 1-hexanoate 8 mM 16 [36]

T. brockii subsp. finnii Glu + 1-propionate 21 mM (1-PrOH) 42 [36]
T. brockii subsp. finnii Glu + 1-butryate <5 mM <10 [36]
T. brockii subsp. finnii Glu + 1-hexanoate <5 mM <10 [36]

a Amount produced from glucose alone subtracted. n/a-Not applicable.

3.2. Kinetic Experiments

To better understand the conversion of SCFAs to alcohols by T. pseudoethanolicus,
fermentations were monitored kinetically on 20 mM glucose in the absence and presence
of 1-butyrate and 3-methyl-1-butyrate (both 20 mM) as model compounds. Kinetic growth
in controls (yeast extract only) are shown in Supplementary Figure S1. During growth on
glucose without acid addition, the strain reached a maximum OD after 18 h, producing
35.0 mM of ethanol, 7.7 mM of acetate, and 2.6 mmol/L of hydrogen (Figure 2A) with
the maximum ethanol productivity of 2.0 mmol L−1 h−1). The degradation of glucose
in the presence of 1-butyrate (20 mM) reached a maximum OD within 18 h and, once
again, the dominant end products were ethanol, acetate, and hydrogen. As before, 1-
butyrate was reduced to 1-butanol; the amount of the acid consumed was 13.6 mM which
resulted in production of 13.0 mM of the alcohol or a conversion of 65.0% (Figure 2B). The
concentration of ethanol (26.2 mM) was lower compared with the fermentation of glucose
alone but the concentration of acetate was higher (15.9 mM). The ethanol productivity was
1.41 mmol L−1 h−1, considerable lower (30%) as compared with fermentation of glucose
only, while the observed maximum productivity for the conversion of butyrate to 1-butanol
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was 0.94 mmol L−1 h−1. The decreased ethanol productivity can likely be due to the flow
of electrons being diverted to 1-butyrate reduction.
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Figure 2. Time-course studies of fermentation of 20 mM glucose (A), 20 mM 1-butyrate + 20 mM
glucose (B), and 20 mM 3-methyl-1-butyrate + 20 mM glucose (C) by T. pseudoethanolicus. Values
represent the average of triplicate fermentations with standard deviation presented as error bars.

Similarly, the degradation of glucose in the presence of 3-methyl-1-butyrate resulted in
the same end products as before (ethanol, acetate, and hydrogen) in similar concentrations
as during the growth on glucose in the presence of 1-butyrate. 3-Methyl-1-butyrate was
converted to 3-methyl-1-butanol although to a lesser extent as compared with conversion
of 1-butyrate to 1-butanol (Figure 2C). The concentration of 3-methyl-1-butyrate decreased
from 20 mM to 13.0 mM and 6.2 mM of 3-methyl-1-butanol were produced. As with
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glucose, the maximum OD was also reached within 18 h suggesting that SCFA conversion
occurs rapidly when reducing equivalence are available. The maximum ethanol and
3-methyl-1-butanol productivity was 1.90 and 0.61 mmol/L/h, respectively.

3.3. Influence of Initial pH and Partial Pressure of Hydrogen

The end product formation profile of a cultivation of the strain can be easily manip-
ulated by alternating the culture parameters. To investigate the effect of pH and L–G
ratio on the conversion of carboxylates to their corresponding alcohols, T. pseudoethanolicus
was cultivated on glucose containing one of four model carboxylic acids, 1-propionate,
1-butyrate, 2-methyl-1-butyrate, and 3-methyl-1-butyrate. The effect of initial pH did not
have a dramatic effect on the resultant alcohol/carboxylic acid ratio although a pH value
of around 6.5 appears to be optimal for the alcohol formation (Figure 3A). The influence
of initial pH was most pronounced in the case of 1-butyrate reduction; the percentages of
1-butyrate reduced to 1-butanol ranged from 28.1% (at pH 5.0) to 50.0% at pH 6.5 while
only 44.6% of the 1-butyrate is converted at pH 7.0. Similarly, the other carboxylic acids
showed the highest conversion to their corresponding alcohols at an initial pH of 6.5 with
the notable exception of the reduction of 2-methyl-1-butyrate which showed the highest
conversion was at an initial pH of 6.0 (24.1% conversion).
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Figure 3. Influence of initial pH (A) and liquid–gas phase ratio (B) on cultures of T. pseudoethanolicus
grown on glucose (20 mM) supplemented a carboxylic acid (20 mM). Values represent the average of
triplicate measurements ± standard deviation.

It is well known that the partial pressure of hydrogen (pH2) strongly effects the ratio
of oxidized and reduced end product formation with some strains of Thermoanaerobac-
ter [60–64]. Thus, at high pH2, the tendency is to produce more reduced end products like
ethanol and lactate but less acetate and hydrogen. During growth on glucose alone, the
strain produced a mixture of ethanol and acetate together with hydrogen (Supplementary
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Figure S2A). At the lowest L-G ratio used, the ratio of ethanol and acetate was 1.76. During
other conditions (growth on glucose with supplementary fatty acids) more ethanol and
less acetate were produced with increasing L-G ratios (ethanol-acetate ratio varied from
3.51 (0.34 L-G ratio) to 8.95 (at 5.26 L-G ratio) (Supplementary Figure S2B–E).

During growth of the strain on glucose in the presence of 1-propionate (20 mM)
the strain produced 13.5 mM of ethanol and 14.7 mM at the lowest L-G ratio applied
(Figure 3B). The concentration of ethanol in the presence of 1-propionate was however
much less as compared with glucose alone but visa verse for acetate (Supplementary
Figure S2B). This indicates that the electrons are directed away from ethanol formation but
towards the reduction of 1-propionate to 1-propanol. Ethanol concentrations were stable at
higher L-G ratios (between 9.1 to 11.2 mM or about a one third compared to the glucose
control) whereas acetate production decreased with increasing L-G ratios (from 14.7 to
3.6 mM) clearly suggesting that reducing equivalence are being redirected to carboxylic acid
reduction (Supplementary Figure S2B). The amount of 1-propionate that was converted to
1-propanol was similar under different L-G ratios and approximately 50% of the acid was
converted to the alcohol.

During growth on glucose in the presence of 1-butyrate the strain produced more
ethanol as compared with the addition of 1-propionate; between 20.6 mM to 24.7 mM of
ethanol, which is approximately two-thirds of ethanol concentrations in the glucose control,
and between 14.0 and 19.4 mM of acetate were produced (Supplementary Figure S2C).
1-Butyrate was converted to similar amounts of 1-butanol at all L-G ratio conditions
(1-butanol concentrations ranged from 9.9 to 11.2 mM; Figure 3B). Again, acetate concen-
trations were highest at low L-G ratios. The differences in the amount of 1-propanol and
1-butanol produced may suggest differences in the specificity of the alcohol dehydrogenases
involved as has been previously reported for other clostridial solvent producers [23,64].

During the degradation of glucose in the presence of 3-methyl-1-butyrate and 2-
methyl-1-butyrate, similar trends in ethanol and acetate were observed as before although
ethanol concentrations were higher as compared with addition of 1-propionate and 1-
butyrate (Supplementary Figure S2D,E). However, less of the BCFAs were converted to
their corresponding alcohol. Maximum concentrations of 3-methyl-1-butanol and 2-methyl-
1-butanol were 5.9 mM and 8.1 mM, respectively (Figure 3B).

Overall, the impact of L–G ratio on the amount of carboxylic acid converted to the
corresponding fatty acid appears to be limited; the small quantities of hydrogen produced
by T. pseudoethanolicus may limit the impact of hydrogen accumulation. Exogenously added
hydrogen may be an option to supplement the reducing potential generated by glucose
oxidation and drive further carboxylic acid reduction.

3.4. Effect of the Ratio of Glucose and Fatty Acid Concentration on Alcohol Formation

In an effort to increase the amount of carboxylic acid converted to its corresponding
alcohol, the use of additional reducing potential by increasing the initial concentration
of glucose was investigated on three model carboxylic acids: 1-propionate, 2-methyl-1-
propionate, and 1-butyrate. Figure 4A–C) shows the increase in the conversion of SCFA to
alcohol from 0 to 40 mM glucose which corresponds to a molar ratio of 0.5 to 2 of glucose
to SCFA.

Without addition of any glucose, 3.41 mM of 1-propanol were produced from 1-
propionate, presumable by using electrons produced from oxidation of substrates present
in the yeast extract (Figure 4A). Increased glucose concentrations increased the amount of
the alcohol from the acid, reaching a maximum at 40 mM glucose with 74.1% conversion.
Clearly, there is a substrate inhibition that occurs between 20 and 30 mM of glucose as
reflected in the decrease in the amount of ethanol produced per mole of glucose degraded
with similar results being obtained with increasing initial glucose concentrations without
the addition of exogenously added SCFA. It is well known that many thermophiles are
strongly inhibited at moderate (20–30 mM) initial substrate concentrations [11]. It is unlikely
that this decrease of glucose degradation is caused by the addition of the alcohol since
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20 mM of 1-propanol is only 0.12% and as stated below the strain tolerates up to 3% 1-
propanol concentration. Similar results were also obtained from cultivation of the strain in
the presence of 1-butanol and 2-methyl-1-propanol; maximum conversion were observed at
the highest concentration of glucose applied, or 50.7% and 53.4%, respectively (Figure 4B,C).
Also, similar trends in less glucose degradation as with the culture amended with 1-
propanol were observed.
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Figure 4. Impact of glucose concentration on end product formation by T. pseudoethanolicus in the
presence of (A) 1-propionate (B) 1-butyrate (C) 2-methyl-1-propionate bioconversion. Additionally,
the percent of glucose consumed is shown (%C). Standard deviation is presented as error bars.

To achieve higher conversions, another culture mode such as fed-batch or continuous
culture maybe more appropriate. Furthermore, the use of a biphasic system to remove
the SCOHs produced from the fermentation broth may increase titers. This approach has
proven successful with butanologenic Clostridia using ionic liquids [65], in situ vacuum
distillation [66], and fed-batch supplemented with a non-ionic surfactant such as Tween
80 [67,68].
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3.5. Inhibitory Impact of the Alcohols on End Product Formation from Glucose

Understanding the impact of the conversion of SCFAs to their corresponding alcohols
is necessary to determine at which alcohol concentration become toxic to cells. It is well
known that alcohols in general inhibit bacteria by disrupting the cell membrane when in
high enough concentrations [69,70]. The severity of inhibition by alcohols is more apparent
with higher order alcohols such as butanol as compared with ethanol. For example, most
T. pseudoethanolicus can tolerate ethanol up to 2.5% but only 1% v/v 1-butanol [69] although
some strains of T. ethanolicus can tolerate up to 10% v/v of ethanol [71]. In order to
investigate the inhibitory effects of aliphatic alcohols, T. pseudoethanolicus was cultivated
on glucose (20 mM) in the presence of exogenously added alcohols (C2 to C6 alcohols) for
5 days as shown in Figure 5A–H. It should be noted that OD data for the higher-order
alcohols is not given due to their poor solubility and clouding in aqueous solution.
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Figure 5. Impact of alcohol addition on end product formation of glucose fermentation by T. pseu-
doethanolicus using (A) ethanol, (B) 1-propanol, (C) 2-propanol, (D) 1-butanol, (E) 2-methyl-1-
propanol, (F) 2-methyl-1-butanol, (G) 1-pentanol, (H) 1-hexanol. Values represent the average of
triplicate measurements ± standard deviation.

In case of ethanol, 1-propanol and 2-propanol, ethanol is not shown in Figure 5A–C,
either because it was exogenously added or because both propanol types co-elute with
ethanol on the GC. The strain tolerated ethanol up to 4% concentration, and in fact hydrogen
and acetate production was considerably higher at concentrations between 0.5–3% v/v
as compared with control (no added ethanol) (Figure 5A). The ethanol tolerance here is
higher than the result reported previously by Burdette et al. [24] who reported decreased
growth rates at least than 1.5% v/v. At 4% v/v and higher ethanol concentration end
product formation was gradually lower until at 7% when a complete inhibition occurred.
Similarly, higher hydrogen and acetate concentrations were observed on 1-propanol when
added between 0.5–2.0% v/v concentration although a complete inhibition of glucose for
both alcohols were observed at 3% and higher concentrations (Figure 5B). The addition of
2-propanol resulted in a complete inhibition at 4% v/v and somewhat higher hydrogen
and acetate production was observed at 2.0–3.0% v/v as compared with cultivation on
glucose without acid addition (Figure 5C). It is known that 1-butanol strongly inhibits most
bacteria at concentrations around 1% v/v [72,73], and this was reflected in the results with
T. pseudoethanolicus in present study. The strain produced higher amounts of hydrogen
and acetate at 0.5% v/v 1-butanol concentrations but was inactive at higher concentrations
(Figure 5D). The remaining alcohols tested (2-methyl-1-propanol, 1-pentanol, 2-methyl-
1-butanol, 1-hexanol) all inhibited the strain at concentration of 0.5% (v/v), except for
2-methyl-1-butanol (1.0% v/v) (Figure 5E–H).

3.6. 13C NMR Studies

Isotopically labelled studies of the conversion of 13C1 acetate, 13C1 1-propionate, and
13C1 1-butyrate have been previously reported for T. pseudoethanolicus (Scully et al. 2019).
Here, we demonstrate that 13C1 3-methyl-1-butyrate is also converted to its corresponding
alcohol in the presence of glucose (Figure 6). The appearance of a new peak (δ 60.3 ppm)
can be attributed to the formation of 3-methyl-1-butanol. This is similar to the production
of 3-methyl-1-butanol from 13C2-labeled leucine recently reported (Scully and Orlygsson,
2019a; Scully and Orlygsson, 2019b). Using 13C1 butyrate as a model, the fermentation
kinetics were monitored over 96 h of fermentation as shown in Figure 7. 13C1 1-butyrate
(183.5 ppm) is rapidly converted to the 13C1 1-butanol (60.3 ppm) achieving maximum
conversion between 16 and 24 h (Figure 7) which is similar to the kinetic experiment
performed earlier (Figure 2B). Interestingly, the 13C1-butanol peak decreases slightly after
30 h, which corresponds with a similar increase in the 13C-1-butyrate peak, suggesting that
the fermentation mixture is not yet at equilibrium.
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3.7. Enzymatic Assays

T. pseudoethanolicus was cultivated on glucose (20 mM) with and without the addition
of C5 fatty acids (3-methyl-1-butyrate and pentanoic acid) for 24 h at which time the
activities of alcohol dehydrogenase (ADH) and aldehyde oxidoreductase (ALDH) were
determined with both NAD+ and NADP+ as cofactors as summarized in Figure 8A–C.
The ALDH activity is likely the result of an AOR as previously suggested by [36] and is
common with other carboxylic acid-reducing Clostridia such as “Clostridium ragsdalei” [46].
Generally, the ADH and ALDH activities were higher in glucose-grown cultures containing
exogenously added fatty acids. On glucose only, the activity of ADH for NAD ranged from
virtually zero (with 3-methyl-1-butanol) to 35.9 mU/mg protein (with 1-pentanol). Testing
from NADP resulted in range of enzyme activity from 18.3 mU (1-octanol) to 90.8 mU/mg
protein. In the presence of 3-methyl-butyrate, there was a considerable increase in activity of
both NAD and NADP for ALD. The highest NAD activity was actually observed on ethanol
(126.3 mU/mg) but on 1-heptanol (128.2 mU/mg) for the NADP activity. The addition of 1-
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pentanoate resulted in a slightly lower increase in both NAD and NADP for ALDH activity.
Values for NAD activity ranged from 45.2 mU/mg (with 2-propanol) to 77.4 mU/mg (with
pentanol). Similarly, values for NADP ranged from 62.3 to 167.3 mU/mg with 2-propanol
and 1-heptanol, respectively. Interestingly, activity towards C7 and C8 substrates was
detected even though earlier experiments with exogenously added heptanoic and octanoic
acid did not produce the corresponding alcohols.
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Many Thermoanaerobacter strains, including T. pseudoethanolicus, have multiple ADHs,
including both primary and secondary-specific ADHs which differ in their cofactor speci-
ficity [23,26,35]; both primary specific and secondary specific ADHs are active under the
examined conditions. This may suggest that higher ADH expression can be achieved
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by adding SCFAs to the fermentation medium. Interestingly, lower ALDH activities on
C2–C4 aldehydes are observed using NAD+ as a cofactor in the C5-alcohol grown cells as
compared with the glucose controls; for example, ALDH activities towards propionalde-
hyde are 42.6, 67.9, and 71.4 mU/mg of protein for cells grown on glucose, glucose and
3-methyl-1-butyrate, and glucose and 1-pentanoate, respectively. Interestingly, the ADHs
present seem to be able to oxidize 1-heptanol and 1-octanol although the corresponding
AOR activity was not examined. It should be noted that C7 and C8 alcohols are poorly sol-
uble in aqueous systems so non-aqueous or biphasic systems may be necessary to achieve
reduction of the corresponding C7 and C8 carboxylic acids.

While the conversions of carboxylic acids to their corresponding alcohols is lower
than some of those reported by mesophilic acetogens, the ability of T. pseudoethanolicus to
perform these reductions quickly using reducing potential from carbohydrates presents a
substantial advantage over autotrophic systems for which the solubility of gases becomes
limiting. Forthcoming work will specifically examine the possibility of using a fed-batch
approach coupled with in situ alcohol extraction as a means of improving alcohol yields
from carboxylic acid reduction. While a number of challenges remain, such as the toxicity
of the higher-order alcohols, the use of other sources of reducing potential is interesting.
An area of deserving further scrutiny is the nature of the metabolic intermediate during
carboxylic acid reduction as well as the path that the reducing potential takes during the
course of carboxylic acid reduction. Future efforts will focus on techniques to mitigate
the toxicity of alcohol accumulation and directing more of the reducing potential towards
carboxylic acid reduction perhaps through the elimination of competing pathways, such as
those involved in hydrogen and lactate production.

4. Conclusions

T. pseudoethanolicus is a promising strain for the reduction of carboxylic acids as
it rapidly converts C2–C6 short-chain fatty acids to their corresponding alcohols in the
presence of glucose under slightly acidic conditions. Other culture conditions such as liquid–
gas phase ratio have little impact on the conversion of the short-chain fatty acids to alcohols
although providing additional reducing potential (glucose) increases the amount converted.
C4 and higher alcohols are particularly inhibitory to T. pseudoethanolicus suggesting that
other culture modes may be necessary to improve the amount of fatty acids converted. The
use of T. pseudoethanolicus for the reduction of carboxylic acids present a potentially useful
route to the production of alcohols from inexpensive carboxylic acids.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-2
607/9/1/162/s1, Figure S1: Time-course studies of yeast extract (control) fermentation by T. pseu-
doethanolicus. Values represent the average of triplicate fermentations with standard deviations
presented as error bars. Figure S2 A–E. Influence of LG ratio on end product fermentation by T. pseu-
doethanolicus grown on glucose (20 mM) supplemented with carboxylic acids. Values represent the
average of triplicate measurements with standard deviations presented as error bars. (A) Glucose,
(B) glucose and 1-propionate, (C) glucose and 1-butyrate, (D) glucose and 3-methyl-1-butyrate, (E)
glucose and 2-methyl-1-butyrate.

Author Contributions: Conceptualization, J.Ö.; methodology, S.M.S. and J.Ö.; investigation, S.M.S.,
A.E.B., Y.M.-H.; resources, J.Ö. and A.B.R.; data curation, S.M.S.; writing—original draft preparation,
S.M.S.; writing—review and editing, S.M.S., A.B.R. and J.Ö.; visualization, S.M.S. and J.Ö.; supervi-
sion, J.Ö., A.B.R., S.M.S.; project administration, J.Ö., A.B.R.; funding acquisition, J.Ö. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Engineering & Physical Sciences Research Council [grant
number EP/L014912/1] and by a grant from Landsvirkjun (project number NÝR-25-2018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository.

https://www.mdpi.com/2076-2607/9/1/162/s1
https://www.mdpi.com/2076-2607/9/1/162/s1


Microorganisms 2021, 9, 162 18 of 20

Acknowledgments: The assistance of Sigríður Jónsdóttir (University of Iceland) for her help obtain-
ing 13C NMR spectra is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jones, D.T. Applied Acetone-Butanol Fermentation. In Clostridia: Biotechnology and Medical Applications; Bahl, H., Durre, P., Eds.;

CRC Press: Weinheim, Germany, 2001; pp. 125–168.
2. Krouwel, P.G.; Groot, W.J.; Kossen, N.W.F. Continuos IBE fermentation by immobilized growing Clostridium beijerinckii cells in a

stirred-tank fermentor. Biotechnol. Bioeng. 1983, 25, 281–299. [CrossRef] [PubMed]
3. Phillips, J.R.; Atiyeh, H.K.; Tanner, R.S.; Torres, J.R.; Saxena, J.; Wilkins, M.R.; Huhnke, R.L. Butanol and hexanol production

in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresour. Technol. 2015,
190, 114–121. [CrossRef] [PubMed]

4. Richter, H.; Molitor, B.; Diender, M.; Sousa, D.Z. A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production
from Syngas in a Continuous Co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-Line Product Extraction.
Front. Microbiol. 2016, 7, 1173. [CrossRef]

5. Amiri, H.; Karimi, K. Biobutanol Production. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts;
Hosseini, M., Ed.; Elsevier: New York, NY, USA, 2019; pp. 109–133.

6. Dürre, P. Fermentative butanol production: Bulk chemical and biofuel. Ann. N. Y. Acad. Sci. 2008, 1125, 353–362. [CrossRef]
[PubMed]

7. Sauer, M. Industrial production of acetone and butanol by fermentation—100 years later. FEMS Microbiol. Lett. 2016, 363, fnw134.
[CrossRef] [PubMed]

8. Moon, H.G.; Jang, Y.S.; Cho, C.; Lee, J.; Binkley, R.; Lee, S.Y. One hundred years of clostridial butanol fermentation. FEMS Micro-
biol. Lett. 2016, 363, fnw001. [CrossRef] [PubMed]

9. Huang, H.; Liu, H.; Gan, Y.R. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass.
Biotechnol. Adv. 2010, 28, 651–657. [CrossRef]

10. Jiang, Y.; Guo, D.; Lu, J.; Dürre, P.; Dong, W.; Yan, W.; Zhang, W.; Ma, J.; Jiang, M.; Xin, F. Consolidated bioprocessing of butanol
production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnol. Biofuels 2018, 11, 89.
[CrossRef]

11. Scully, S.M.; Orlygsson, J. Recent advances in second generation ethanol production by thermophilic bacteria. Energies 2015,
8, 1–30. [CrossRef]

12. Taylor, M.P.; Eley, K.L.; Martin, S.; Tuffin, M.I.; Burton, S.G.; Cowan, D.A. Thermophilic ethanologenesis: Future prospects for
second-generation bioethanol production. Trends Biotechnol. 2009, 27, 398–405. [CrossRef]

13. Cripps, R.E.; Eley, K.; Leak, D.J.; Rudd, B.; Taylor, M.; Todd, M.; Boakes, S.; Martin, S.; Atkinson, T. Metabolic engineering of
Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 2009, 11, 398–408. [CrossRef] [PubMed]

14. Chang, T.; Yao, S. Thermophilic, lignocellulolytic bacteria for ethanol production: Current state and perspectives. Appl. Micro-
biol. Biotechnol. 2011, 13–27. [CrossRef] [PubMed]

15. Hollaus, F.; Sleytr, U. On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch. Mikrobiol.
1972, 86, 129–146. [CrossRef] [PubMed]

16. Lee, Y.E.; Jain, M.K.; Lee, C.; Zeikus, J.G. Taxonomic Distinction of Saccharolytic Thermophilic Anaerobes: Description of Ther-
moanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; Reclassification
of Thermoanaerobium bro. Int. J. Syst. Bacteriol. 1993, 43, 41–51. [CrossRef]

17. Onyenwoke, R.U.; Kevbrin, V.V.; Lysenko, A.M.; Wiegel, J. Thermoanaerobacter pseudethanolicus sp. nov., a thermophilic het-
erotrophic anaerobe from Yellowstone National Park. Int. J. Syst. Evol. Microbiol. 2007, 57, 2191–2193. [CrossRef]

18. Mathupala, S.P.; Zeikus, J.G. Improved purification and biochemical characterization of extracellular amylopullulanase from
Thermoanaerobacter ethanolicus 39E. Appl. Microbiol. Biotechnol. 1993, 39, 487–493. [CrossRef]

19. Mathupala, S.P.; Lowe, S.E.; Podkovyrov, S.M.; Zeikus, J.G. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter
ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J. Biol. Chem. 1993, 268, 16332–16344. [CrossRef]

20. Podkovyrov, S.M.; Burdette, D.; Zeikus, J.G. Analysis of the catalytic center of Cyclomaltodextrinase from Thermoanaerobacter
ethanolicus 39E. FEBS Lett. 1993, 317, 259–262. [CrossRef]

21. DiScenza, D.J.; Levine, M. Sensitive and selective detection of alcohols via fluorescence modulation. Supramol. Chem. 2016,
28, 881–891. [CrossRef]

22. Saha, B.C.; Zeikus, J.G. Characterization of thermostable cyclodextrinase from Clostridium thermohydrosulfuricum 39E. Appl. Envi-
ron. Microbiol. 1990, 56, 2941–2943. [CrossRef]

23. Lamed, R.J.; Zeikus, J.G. Novel NADP-linked alcohol-aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria.
Biochem. J. 1981, 195, 183–190. [CrossRef] [PubMed]

24. Burdette, D.; Zeikus, J.G. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter
ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2◦ Adh) as a bifunctional alcohol dehydrogenase-
acetyl-CoA reductive thioes. Biochem. J. 1994, 302, 163–170. [CrossRef] [PubMed]

http://doi.org/10.1002/bit.260250121
http://www.ncbi.nlm.nih.gov/pubmed/18548553
http://doi.org/10.1016/j.biortech.2015.04.043
http://www.ncbi.nlm.nih.gov/pubmed/25935391
http://doi.org/10.3389/fmicb.2016.01773
http://doi.org/10.1196/annals.1419.009
http://www.ncbi.nlm.nih.gov/pubmed/18378605
http://doi.org/10.1093/femsle/fnw134
http://www.ncbi.nlm.nih.gov/pubmed/27199350
http://doi.org/10.1093/femsle/fnw001
http://www.ncbi.nlm.nih.gov/pubmed/26738754
http://doi.org/10.1016/j.biotechadv.2010.05.015
http://doi.org/10.1186/s13068-018-1092-1
http://doi.org/10.3390/en8010001
http://doi.org/10.1016/j.tibtech.2009.03.006
http://doi.org/10.1016/j.ymben.2009.08.005
http://www.ncbi.nlm.nih.gov/pubmed/19703579
http://doi.org/10.1007/s00253-011-3456-3
http://www.ncbi.nlm.nih.gov/pubmed/21800031
http://doi.org/10.1007/BF00413368
http://www.ncbi.nlm.nih.gov/pubmed/5081116
http://doi.org/10.1099/00207713-43-1-41
http://doi.org/10.1099/ijs.0.65051-0
http://doi.org/10.1007/BF00205038
http://doi.org/10.1016/S0021-9258(19)85426-1
http://doi.org/10.1016/0014-5793(93)81288-B
http://doi.org/10.1080/10610278.2016.1140897
http://doi.org/10.1128/AEM.56.9.2941-2943.1990
http://doi.org/10.1042/bj1950183
http://www.ncbi.nlm.nih.gov/pubmed/7030321
http://doi.org/10.1042/bj3020163
http://www.ncbi.nlm.nih.gov/pubmed/8068002


Microorganisms 2021, 9, 162 19 of 20

25. Yao, S.; Mikkelsen, M.J. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for
ethanol production in Thermoanaerobacter mathranii. J. Mol. Microbiol. Biotechnol. 2010, 19, 123–133. [CrossRef] [PubMed]

26. Zhou, J.; Shao, X.; Olson, D.G.; Murphy, S.J.L.; Tian, L.; Lynd, L.R. Determining the roles of the three alcohol dehydrogenases
(AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation. J. Ind. Microbiol. Biotechnol. 2017, 44, 745–757.
[CrossRef] [PubMed]

27. Scully, S.M.; Örlygsson, J. Thermostable Thermoanaerobacter alcohol dehydrogenases and their use in organic synthesis. In Physio-
logical and Biotechnological Aspects of Extremophiles; Salwan, R., Sharma, V., Eds.; Academic Press: Cambridge, MA, USA, 2020;
pp. 183–193.

28. Burdette, D.S.; Jung, S.-H.; Shen, G.-J.; Hollingsworth, R.I.; Zeikus, J.G. Physiological Function of Alcohol Dehydrogenases and
Long-Chain (C30) Fatty Acids in Alcohol Tolerance of Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 2002, 68, 1914–1918.
[CrossRef] [PubMed]

29. Burdette, D.S.; Vieille, C.; Zeikus, J.G. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E
secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem. J. 1996, 316, 115–122. [CrossRef]

30. Nealon, C.M.; Musa, M.M.; Patel, J.M.; Phillips, R.S. Controlling Substrate Specificity and Stereospecificity of Alcohol Dehydroge-
nases. ACS Catal. 2015, 5, 2100–2114. [CrossRef]

31. Musa, M.M.; Phillips, R.S. Recent advances in alcohol dehydrogenase-catalyzed asymmetric production of hydrophobic alcohols.
Catal. Sci. Technol. 2011, 1, 1311–1323. [CrossRef]

32. Hummel, W. New alcohol dehydrogenases for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 1997, 58, 145–184.
33. Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T. Recent developments in asymmetric reduction of ketones with biocatalysts.

Tetrahedron Asymmetry 2003, 14, 2659–2681. [CrossRef]
34. Scully, S.M.; Orlygsson, J. Thermostable Alcohol Dehydrogenases from Thermoanaerobacter species and their use in organic

synthesis. In Physiological and Biotechnological Aspects of Extremophiles; Salwan, R., Sharma, V., Eds.; Elsevier: New York, NY,
USA, 2019.

35. Bryant, F.O.; Wiegel, J.; Ljungdahl, L.G. Purification and Properties of Primary and Secondary Alcohol Dehydrogenases from
Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 1988, 54, 460–465. [CrossRef] [PubMed]

36. Hitschler, L.; Kuntz, M.; Langschied, F.; Basen, M. Thermoanaerobacter species differ in their potential to reduce organic acids to
their corresponding alcohols. Appl. Microbiol. Biotechnol. 2018, 102, 8465–8476. [CrossRef] [PubMed]

37. Scully, S.M.; Brown, A.; Ross, A.B.; Orlygsson, J. Biotransformation of organic acids to their corresponding alcohols by Ther-
moanaerobacter pseudoethanolicus. Anaerobe 2019, 57, 28–31. [CrossRef] [PubMed]

38. Scully, S.M.; Orlygsson, J. Branched-chain amino acid catabolism of Thermoanaerobacter strain AK85 and the influence of culture
conditions on branched-chain alcohol formation. Amino Acids 2019, 51, 1039–1054. [CrossRef] [PubMed]

39. Scully, S.M. Amino Acid and Related Catabolism of Thermoanaerobacter species. Ph.D. Thesis, University of Iceland, Reykjavík,
Iceland, 2019.

40. Magano, J.; Dunetz, J.R. Large-scale carbonyl reductions in the pharmaceutical industry. Org. Process Res. Dev. 2012, 16, 1156–1184.
[CrossRef]

41. Venkitasubramanian, P.; Daniels, L.; Rosazza, J.P.N. Biocatalytic Reduction of Carboxylic Acids: Mechanism and Applications. In
Biocatalysis in the Pharmaceutical and Biotechnology Industries; Patel, R.N., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 425–440.

42. Napora-Wijata, K.; Strohmeier, G.A.; Winkler, M. Biocatalytic reduction of carboxylic acids. Biotechnol. J. 2014, 9, 822–843.
[CrossRef]

43. Finnigan, W.; Gough, B.; Adams, J.P.; Littlechild, J.A.; Harmer, N.J.; Thomas, A.; Cromar, H.; Snajdrova, R. Characterization of
Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. ChemCatChem 2016, 9, 1005–1017. [CrossRef]

44. White, H.; Strobl, G.; Feicht, R.; Simon, H. Carboxylic acid reductase: A new tungsten enzyme catalyses the reduction of
non-activated carboxylic acids to aldehydes. Eur. J. Biochem. 1989, 184, 89–96. [CrossRef]

45. Isom, C.E.; Nanny, M.A.; Tanner, R.S. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the
solventogenic acetogen “Clostridium ragsdalei”. J. Ind. Microbiol. Biotechnol. 2015, 42, 29–38. [CrossRef]

46. Perez, J.M.; Richter, H.; Loftus, S.E.; Angenent, L.T. Biocatalytic reduction of short-chain carboxylic acids into their corresponding
alcohols with syngas fermentation. Biotechnol. Bioeng. 2013, 110, 1066–1077. [CrossRef]

47. Huber, C.; Skopan, H.; Feicht, R.; White, H.; Simon, H. Pterin cofactor, substrate specificity, and observations on the kinetics of the
reversible tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum—Preparative reductions of a series of
carboxylates to alcohols. Arch. Microbiol. 1995, 164, 110–118. [CrossRef]

48. Scully, S.M.; Orlygsson, J. Branched-chain amino acid catabolism of Thermoanaerobacter pseudoethanolicus reveals potential route to
branched-chain alcohol formation. Extremophiles 2020, 24, 121–133. [CrossRef] [PubMed]

49. Fardeau, M.; Faudon, C.; Cayol, J. Effect of thiosulphate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter
finnii and a Thermoanaerobacter sp. isolated from oil field water. Res. Microbiol. 1996, 147, 159–165. [CrossRef]

50. Chades, T.; Scully, S.M.; Ingvadottir, E.M.; Orlygsson, J. Fermentation of Mannitol Extracts From Brown Macro Algae by
Thermophilic Clostridia. Front. Microbiol. 2018, 9, 1931. [CrossRef]

51. Hungate, R.E. A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology; Norris, J.R., Ribbons, Eds.;
Academic Press: New York, NY, USA, 1969; pp. 117–132.

http://doi.org/10.1159/000321498
http://www.ncbi.nlm.nih.gov/pubmed/20924198
http://doi.org/10.1007/s10295-016-1896-6
http://www.ncbi.nlm.nih.gov/pubmed/28078513
http://doi.org/10.1128/AEM.68.4.1914-1918.2002
http://www.ncbi.nlm.nih.gov/pubmed/11916712
http://doi.org/10.1042/bj3160115
http://doi.org/10.1021/cs501457v
http://doi.org/10.1039/c1cy00160d
http://doi.org/10.1016/S0957-4166(03)00526-3
http://doi.org/10.1128/AEM.54.2.460-465.1988
http://www.ncbi.nlm.nih.gov/pubmed/16347559
http://doi.org/10.1007/s00253-018-9210-3
http://www.ncbi.nlm.nih.gov/pubmed/29987342
http://doi.org/10.1016/j.anaerobe.2019.03.004
http://www.ncbi.nlm.nih.gov/pubmed/30876932
http://doi.org/10.1007/s00726-019-02744-z
http://www.ncbi.nlm.nih.gov/pubmed/31134352
http://doi.org/10.1021/op2003826
http://doi.org/10.1002/biot.201400012
http://doi.org/10.1002/cctc.201601249
http://doi.org/10.1111/j.1432-1033.1989.tb14993.x
http://doi.org/10.1007/s10295-014-1543-z
http://doi.org/10.1002/bit.24786
http://doi.org/10.1007/BF02525316
http://doi.org/10.1007/s00792-019-01140-5
http://www.ncbi.nlm.nih.gov/pubmed/31654148
http://doi.org/10.1016/0923-2508(96)80215-4
http://doi.org/10.3389/fmicb.2018.01931


Microorganisms 2021, 9, 162 20 of 20

52. Miller, T.L.; Wolin, M.J. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol.
1974, 27, 985–987. [CrossRef]

53. Fibla, J.; Gonzhlez-Duarte, R. Colorimetric assay to determine alcohol dehydrogenase activity. J. Biochem. Biophys. Methods 1993,
26, 87–93. [CrossRef]

54. Orlygsson, J.; Baldursson, S.R.B. Phylogenetic and physiological studies of four hydrogen-producing thermoanareobes.
Icelandic Agric. Sci. 2007, 20, 93–105.

55. Copeland, R.A. Methods for Protein Analysis; Chapman & Hall: New York, NY, USA, 1994.
56. Akhtar, M.K.; Turner, N.J.; Jones, P.R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels

and chemical commodities. Proc. Natl. Acad. Sci. USA 2013, 110, 87–92. [CrossRef]
57. Liu, K.; Atiyeh, H.K.; Stevenson, B.S.; Tanner, R.S.; Wilkins, M.R.; Huhnke, R.L. Mixed culture syngas fermentation and conversion

of carboxylic acids into alcohols. Bioresour. Technol. 2014, 152, 337–346. [CrossRef]
58. Osburn, O.L. The Production of Butyl and Isopropyl Alcohols by Fermentative Processes. Ph.D. Thesis, Iowa State University,

Ames, IA, USA, 1934.
59. Scully, S.M.; Orlygsson, J. Biotransformation of carboxylic acids to alcohols: Characterization of Thermoanaerobacter strain AK152

and 1-propanol production via propionate reduction. Microorganisms 2020, 8, 945. [CrossRef]
60. Jessen, J.E.J.; Orlygsson, J. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a

hot spring in Iceland. J. Biomed. Biotechnol. 2012, 1869–1882. [CrossRef]
61. Brynjarsdottir, H.; Wawiernia, B.; Orlygsson, J. Ethanol production from sugars and complex biomass by Thermoanaerobacter AK5:

The effect of electron-scavenging systems on end-product formation. Energy Fuels 2012, 26, 4568–4574. [CrossRef]
62. Lamed, R.J.; Keinan, E.; Zeikus, J.G. Potential applications of an alcohol-aldehyde/ketone oxidoreductase from thermophilic

bacteria. Enzyme Microb. Technol. 1981, 3, 144–148. [CrossRef]
63. Zeikus, J.G.; Lamed, R.J. Preparation of a Novel NADP Linked Alcohol-Aldehyde/Ketone Oxidoreductase from Thermophilic

Anaerobic Bacteria for Analytical and Commercial Use. US Patent 4352885, 5 October 1982.
64. Ismaiel, A.A.; Zhu, C.X.; Colby, G.D.; Chen, J.S. Purification and characterization of a primary-secondary alcohol dehydrogenase

from two strains of Clostridium beijerinckii. J. Bacteriol. 1993, 175, 5097–5105. [CrossRef]
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