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Abstract

In this brief review, we start by clarifying the crucial differences between three different protocols of
quantum channel discrimination. In some recent literature, there has been confusion between the
protocols of quantum illumination [1, 2], quantum reading [3], and a scheme of communication
within a discrete-variable quantum computer [4]. While all these protocols are based on the model of
quantum channel discrimination, they have completely different applications and features, which is
the reason why they have different names and should not be naively confused. We also discuss the
notion of quantum reading capacity [5] of an ensemble of quantum channels, clarifying how this is
easily extended to an adaptive formulation and discussing the mathematical conditions under which it
can be connected to the different notion of dense coding capacity [6] of a quantum channel.

1. Introduction

The protocols of quantum illumination [1, 2], quantum reading [3], and the communication of quantum
computation [4] can all be represented as schemes of quantum channel discrimination (QCD). Recall that QCD
is avery general problem where an ensemble of quantum channels is prepared in a black box. One is allowed to
probe the input of the box by preparing a suitable quantum state, and to detect the output of the box by applying
asuitable quantum measurement. The aim is understand which channel from the ensemble is present in

the box.

Despite being interpreted as schemes of QCD, all protocols mentioned above have different aims and
features, which is the reason why they should not be naively confused one with the other. In particular, the
scheme of [4] is about communication between registers of a quantum computer, clearly not ‘quantum reading’
of a classical /digital memory, nor ‘quantum illumination’ of a remote target. With these two protocols, it only
shares the basic connection with QCD.

Quantum illumination uses QCD to model a problem of target detection in bright noise environments,
while quantum reading uses QCD to model a digital memory and the associated storage/readout of classical
information. Most importantly, both these protocols show ‘quantum advantage’ in their respective tasks over
classical strategies. For this reason, they are ‘quantum’ protocols. We will re-iterate this point in the manuscript.

We briefly review these protocols in sections 2—4 and provide clarifications in section 4.1. Then, in section 5
we consider the notion of quantum reading capacity [5] and its immediate and implicit extension to adaptive
protocols. In section 6, we discuss the (adaptive) notion of dense coding capacity [6] and describe the precise
mathematical conditions under which this capacity can be connected to a quantum reading capacity. Section 7
is for conclusions.

2. Quantum illumination

Quantum illumination [1, 2] (see also [7—-24]) is the use of input quantum resources (such as entanglement) and
output quantum measurements to enhance the detection of a remote low-reflectivity object in a bright thermal-
noise environment. It can be represented as a QCD problem, because the presence or absence of the target can be
associated with the binary discrimination of two channels, one including a partial reflection from the target and
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the other one being a completely thermalizing channel (replacing the input with the state of the environment).
Here one can show that, despite initial entanglement is lost in the sender-receiver path, the benefits of quantum
illumination still survive in the forms of output correlations. These allow one to enhance the sensitivity of
detecting the presence of the target-object with respect to the use of classical sources of light (in particular
separable states in the DV version of the protocol [ 1], and mixtures of coherent states in the CV version [2]). It is
called ‘quantum’ illumination because it proves a quantum advantage with respect to classical strategies under
the same conditions (e.g., the same mean number of input photons).

3. Quantum reading

Quantum reading [3] (see also [25—41]) is the use of input quantum resources (such as entanglement) and
output quantum measurements to enhance the retrieval of classical information stored in the cells of an optical
memory. In its basic binary formulation, it can be represented as a QCD problem where the discrimination is
between two quantum channels associated with two different reflectivities of a memory cell (used to encode a bit
of information). We therefore have two bosonic Gaussian channels, generally characterized by different values
ofloss (and thermal noise), that encode a classical bit.

Contrary to quantum illumination, the scheme is in the very near range, typically works with high
reflectivities, and also allows one to use codewords to encode information in blocks of many cells (so that
quantum reading capacities can be defined). Most importantly, the use of quantum resources (e.g.
entanglement) allows one to enhance the data readout in terms of bits per cell with respect to the use of classical
strategies (in particular the use of coherent states or their mixtures). Itis called ‘quantum’ reading because it
proves a quantum advantage with respect to classical strategies using the same amount of energy (mean number
of photons).

The two schemes of quantum illumination and quantum reading have a specific peculiarity (quantum
enhancement) that gives them the ‘quantum name’ while, at the same time, it is clear that they are both
associated with QCD. Further discussions can be found in section V.H ‘Gaussian channel discrimination and
applications’ of the Gaussian information review [42] and also in the recent review on photonic quantum
sensing [43].

4. Capacity of quantum computation

The scheme of [4] is about the communication capacity of quantum computation. Clearly, it is not about target
detection or optical storage, but rather communication between registers of a discrete-variable quantum
computer. In this scheme, thereisa ‘memory’ register (M) where the sender encodes a classical variable iin N
pure quantum states |i)ys (i| with some probability p;. Then, the receiver has a computation register (C) prepared
in some initial state poc. The initial state of the two registers is therefore the tensor-product

>0 i (il ® pe. M

The two registers are then fed into a quantum computer, which applies the unitary Uj onto register C
conditionally on the value i of register M. Here Uj represents a series of quantum gates which describes some
quantum 'algorithm.. For instance, may be an integer, and the computational output pic = pg UJ may be its
factorization according to Shor’s algorithm.

In general, for the input state as in equation (1), the quantum computer provides the output

2P liw (il @ @

The receiver measures register Cso as to discriminate between the possible output states pic, or equivalently

between the possible unitary operations Uj. The optimal information accessible to the receiver is the Holevo
bound

1(C: i) = S(C) — S(Cli), 3)

where S(C) is the von Neumann entropy of the reduced state of C, and S(Cli) is the corresponding conditional
von Neumann entropy. This is clearly maximized when p; is uniform and the states ,oiC are pure and orthogonal,
so that it takes the maximum value I (C: i) = log, N.

By construction, it is clear that I (C: i) represents the capacity of the quantum computation { U;} because it
tells you how good the quantum computer is in providing distinguishable output states (solutions) for different
inputs. When the maximum log, N is achieved, it means that the quantum computation is perfect over the
entire input alphabet of Nletters.
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4.1. Clarifications on protocols
Apart from being interpreted as a possible protocol of QCD, the scheme of [4] is clearly different from both
quantum illumination and quantum reading.

+ Firstofall, [4] is a communication scheme, where sender’s input alphabet is decoded by a receiver. More
specifically, it is spatial communication between two registers which is mediated by a quantum computation.
It is a two-register description where the unitaries are Uj are not stored in the computational register M but
rather applied in the dynamical process of the quantum computer (they are in fact control-unitaries). In this
regard it is clearly different from the static scenario where a classical variable is physically and stably stored
into a black box by an ensemble of channels (to describe presence/absence of a target, or the different
reflectivities of a memory cell). This means that [4] is not about readout from storage.

+ Theinput-output process is based on a single signal system processed by a unitary. Today, we know that
unitary discrimination can be perfectly solved in a finite number of uses [44]. It is therefore different from
what happens in the more general discrimination of quantum channels, where perfect discrimination is not
guaranteed (at finite energies) and the optimal states may require the use of idler systems, which are not sent
through the box but directly to the output measurement in order to assist the entire process.

+ Thesignal-idler structure, which is missing in [4], is one of the main features for both quantum illumination
and quantum reading. The use of input entanglement and, more generally, quantum correlations, is the main
working mechanism of these two protocols under completely general conditions of decoherence. As a matter
of fact, as already said above, the ‘quantum’ name in ‘illumination’ and ‘reading’ exactly comes from the
comparison of a quantum resource at the input (entanglement) with respect to the use of classical input states
(separable states, mixtures of coherent states).

+ The communication scheme of [4] is only for a discrete-variable Hilbert space. The most important setting for
both quantum illumination and quantum reading is bosonic. Quantum illumination provides the possible
working mechanism of alidar (in the optical case) and a radar (in the microwave case). The main setting for
quantum reading is also bosonic and at the optical frequencies, which is the relevant physical regime in optical
storage.

5. Quantum reading capacity

In this section and the next one, we discuss the two different notions of quantum reading capacity and dense
coding capacity. First we discuss how quantum reading capacity of an ensemble of quantum channels is
implicitly and immediately extended to an adaptive formulation. Then, we clarify the mathematical conditions
under which the (adaptive) dense coding capacity of a quantum channel can be reduced to the (adaptive)
quantum reading capacity of a corresponding ensemble of encoding channels.

In 2011, the notion of quantum reading capacity was introduced [5]. One considers a memory where each
cell encodes a classical label x by means of a quantum channel &, chosen with some marginal probability p,. In
the basic readout strategy, each cell can be identically and independently probed by a quantum state p which
records the classical information x into the output state p,. See also figure 1(a). More generally, the encoder can
use classical codewords, so that a message xj,...,x, is written in a block of cells. Given a marginal ensemble of
outputs { p, }, areader can retrieve at most the Holevo information  ({ o }). What the encoder candois to
optimize over the marginal probability p,, while the decoder can optimize over the choice of the input state p.
Thus, for a memory cell described by the marginal channel ensemble { £, }, we can write the following (one-shot)
quantum reading capacity

GH&D = nplixx({px})- 4)

Because quantum reading is ultimately a problem of QCD, its formulation automatically extends to an
adaptive version using the tools of [45]. In fact, following the adaptive formulation of QCD [45], one can
immediately extend the protocol in figure 1(a) where the optimization over the input state is replaced by an
optimization over interleaved quantum operations (QOs). Therefore, the combination of [5] and [45] directly
provides the most general (adaptive) definition of quantum reading, together with the associated notion of
adaptive quantum reading capacity C ({&,}).

The next ingredient from [45] is the notion of joint teleportation-covariance. An ensemble of channels { £, }
is jointly tele-covariant if, for any Pauli unitary Uy, we may write

3
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(a) Quantum reading capacity (b) Dense coding capacity

Figure 1. Setting of the quantum reading capacity (a) compared to the setting of the dense coding capacity (b). Quantum operations
(QOs) are added in the adaptive versions of the protocols.

E(UpU)) = Vix(p) V], 5)

for generally-different unitaries V;. Recall that this is a stronger condition than the simple teleportation
covariance [46—48]. In fact, we need to assure that the output unitary V; does not depend on the classical label x,
so that the property of equation (5) holds jointly for any £, in the ensemble. For instance, this condition is true
for ensembles of erasure channels or ensembles of Holevo-Werner channels [49-53]. In the specific case where
Vi = Uy holds for any k, we say that { £, } is jointly Pauli-covariant. For instance this is the case for ensembles of
Pauli channels (such as depolarizing or dephasing channels). However, this stronger condition is not true for
erasure channels, Holevo-Werner channels and others.

Because of equation (5), we can then use the teleportation protocol as a universal operation to simulate all
the channels £ in the ensemble by using their Choi matrices p,_as program states. As a result, for a memory cell
made by jointly tele-covariant channels, we can use channel simulation and collapse all the QOs in the protocol,
following exactly the procedure of [45]. It is immediate to see that this leads to the bound

CH{&D < mPaXX({ng})- (6)
Since a possible strategy is to use maximally-entangled states to read each cell, we have that the bound is also
achievable and, therefore,

C({&) = rr;axx({pgx})- (7)

6. Dense coding capacity

Let us now clarify the relations between quantum reading capacity and dense coding capacity defined in [6]. As
we can see from figure 1(a), the quantum reading capacity is defined over an ensemble of quantum channels
{&,}, read by assuming an identity channel before and after the memory cells. This is a different situation from
the dense coding capacity which is defined over a single quantum channel £ used back and forth by Alice and
Bob, and where the classical information is encoded by applying Pauli unitaries () = Uy () Ul .

In the dense coding protocol, a bipartite input state p is prepared by Alice. One system is retained by her,
while the other system is sent to Bob through the quantum channel £. Bob applies a Pauli unitary I/, and sends
the system back through the same channel £. Overall the transmitted system undergoes the composition of
channels &, := Eold,0&, which generates the bipartite output state p, := 7 ® £,(p). See figure 1(b).

By optimizing over the input state p and the probability p, of the Pauli encoder U, one can write the
(one-shot) dense coding capacity of the channel £ as

G(&) = mixx({f)x}), (8)
poby

where { p, } is the ensemble of output states. Even though this formula has the same RHS as in equation (4), it is
related to a completely different quantity, since it refers to the capacity defined for a single channel £.

In the adaptive version of the protocol considered in [6], Alice has also the freedom to apply the most general
QOs on the two systems, both during transmission and upon receipt of these systems. Considering these
interleaved QOs { A;}, we can define a corresponding (adaptive) dense coding capacity C(€) for the channel £.
See [6] for more details.

Now it comes another crucial difference with respect to the quantum reading capacity. Instead of joint tele-
covariance, here we need the stronger condition of joint Pauli-covariance. In fact, because of the specific
structure Eold, o of dense coding, we need to be sure that channel £ is covariant with respect to the Pauli

4
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operators Uy. In this way, we can swap Uy through the entire chain &, := £olf, o0&, i.e., we can write
E(Uy pU,;r ) = Ur&(p) U,j . If this is possible, then we can simulate &, with their Choi matrices and write
C(&) = maxx({pg}). ©

In general, this procedure cannot be done if the channel £ is tele-covariant but not Pauli-covariant. Given a
Pauli unitary at the input of this type of channel &, the output unitary is non-Pauli and could not commute (or
anticommute) with Bob’s Pauli encoders, which means that we cannot exploit the basic property that allows us
to write equation (9). It is clear that the formula in equation (9) is proven under different (stronger) conditions
than those valid for the quantum reading capacity of equation (7). The lack of these crucial properties in the
derivation of equation (7) means that such equation is not sufficient to imply equation (9), which is therefore a
new result proven in [6].

To further discuss this point, assume that we compress the scheme in figure 1(b) into the scheme of
figure 1(a), so that we interpret the dense coding capacity of £ as the quantum reading capacity of the ensemble
{&}, where &, := Eold0€. Then we must be careful not to lose the property of Pauli covariance. In other words,
equation (7) can be written for dense coding if &, are jointly Pauli-covariant, which means that the channel £ in
the decomposition &, := Eold.0€ must be Pauli-covariant. From this point of view, a contribution of the present
work is to show and fully clarify the strong conditions under which the (adaptive) dense coding capacity of a
channel can be reduced to the (adaptive) quantum reading capacity of an ensemble of encoding channels.

7. Conclusion

In this brief review paper we have discussed various protocols based on the model of quantum channel
discrimination (a primitive notion in many areas of quantum information theory). In particular, we have
discussed and compared quantum illumination [1, 2], quantum reading [3], and the communication capacity of
quantum computation [4]. These are schemes with different aims and features, not be naively confused one with
the other. Then, we have discussed the notions of quantum reading capacity [5] (of an ensemble of quantum
channels) and dense coding capacity [6] (of a quantum channel), clarifying their crucial differences and the
mathematical conditions under which they can be connected. Specifically, this connection is possible under the
condition of joint Pauli-covariance, not to be confused with joint teleportation covariance or other weaker
conditions.
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