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Abstract

In this brief review, we start by clarifying the crucial differences between three different protocols of

quantum channel discrimination. In some recent literature, there has been confusion between the

protocols of quantum illumination [1, 2], quantum reading [3], and a scheme of communication

within a discrete-variable quantum computer [4].While all these protocols are based on themodel of

quantum channel discrimination, they have completely different applications and features, which is

the reasonwhy they have different names and should not be naively confused.We also discuss the

notion of quantum reading capacity [5] of an ensemble of quantum channels, clarifying how this is

easily extended to an adaptive formulation and discussing themathematical conditions underwhich it

can be connected to the different notion of dense coding capacity [6] of a quantum channel.

1. Introduction

The protocols of quantum illumination [1, 2], quantum reading [3], and the communication of quantum

computation [4] can all be represented as schemes of quantum channel discrimination (QCD). Recall thatQCD

is a very general problemwhere an ensemble of quantum channels is prepared in a black box.One is allowed to

probe the input of the box by preparing a suitable quantum state, and to detect the output of the box by applying

a suitable quantummeasurement. The aim is understandwhich channel from the ensemble is present in

the box.

Despite being interpreted as schemes ofQCD, all protocolsmentioned above have different aims and

features, which is the reasonwhy they should not be naively confused onewith the other. In particular, the

scheme of [4] is about communication between registers of a quantum computer, clearly not ‘quantum reading’

of a classical/digitalmemory, nor ‘quantum illumination’ of a remote target.With these two protocols, it only

shares the basic connectionwithQCD.

Quantum illumination usesQCD tomodel a problemof target detection in bright noise environments,

while quantum reading usesQCD tomodel a digitalmemory and the associated storage/readout of classical

information.Most importantly, both these protocols show ‘quantum advantage’ in their respective tasks over

classical strategies. For this reason, they are ‘quantum’ protocols.Wewill re-iterate this point in themanuscript.

We briefly review these protocols in sections 2–4 and provide clarifications in section 4.1. Then, in section 5

we consider the notion of quantum reading capacity [5] and its immediate and implicit extension to adaptive

protocols. In section 6, we discuss the (adaptive)notion of dense coding capacity [6] and describe the precise

mathematical conditions under which this capacity can be connected to a quantum reading capacity. Section 7

is for conclusions.

2.Quantum illumination

Quantum illumination [1, 2] (see also [7–24]) is the use of input quantum resources (such as entanglement) and

output quantummeasurements to enhance the detection of a remote low-reflectivity object in a bright thermal-

noise environment. It can be represented as aQCDproblem, because the presence or absence of the target can be

associatedwith the binary discrimination of two channels, one including a partial reflection from the target and
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the other one being a completely thermalizing channel (replacing the inputwith the state of the environment).

Here one can show that, despite initial entanglement is lost in the sender-receiver path, the benefits of quantum

illumination still survive in the forms of output correlations. These allow one to enhance the sensitivity of

detecting the presence of the target-object with respect to the use of classical sources of light (in particular

separable states in theDVversion of the protocol [1], andmixtures of coherent states in theCVversion [2]). It is

called ‘quantum’ illumination because it proves a quantumadvantage with respect to classical strategies under

the same conditions (e.g., the samemean number of input photons).

3.Quantum reading

Quantum reading [3] (see also [25–41]) is the use of input quantum resources (such as entanglement) and

output quantummeasurements to enhance the retrieval of classical information stored in the cells of an optical

memory. In its basic binary formulation, it can be represented as aQCDproblemwhere the discrimination is

between two quantum channels associatedwith two different reflectivities of amemory cell (used to encode a bit

of information).We therefore have two bosonicGaussian channels, generally characterized by different values

of loss (and thermal noise), that encode a classical bit.

Contrary to quantum illumination, the scheme is in the very near range, typically workswith high

reflectivities, and also allows one to use codewords to encode information in blocks ofmany cells (so that

quantum reading capacities can be defined).Most importantly, the use of quantum resources (e.g.

entanglement) allows one to enhance the data readout in terms of bits per cell with respect to the use of classical

strategies (in particular the use of coherent states or theirmixtures). It is called ‘quantum’ reading because it

proves a quantum advantage with respect to classical strategies using the same amount of energy (mean number

of photons).

The two schemes of quantum illumination and quantum reading have a specific peculiarity (quantum

enhancement) that gives them the ‘quantumname’while, at the same time, it is clear that they are both

associatedwithQCD. Further discussions can be found in sectionV.H ‘Gaussian channel discrimination and

applications’ of theGaussian information review [42] and also in the recent review on photonic quantum

sensing [43].

4. Capacity of quantum computation

The scheme of [4] is about the communication capacity of quantum computation. Clearly, it is not about target

detection or optical storage, but rather communication between registers of a discrete-variable quantum

computer. In this scheme, there is a ‘memory’ register (M)where the sender encodes a classical variable i inN

pure quantum states ñ ái iM∣ ∣with some probability pi. Then, the receiver has a computation register (C) prepared

in some initial state r
C
0 . The initial state of the two registers is therefore the tensor-product

å rñ á Äp i i . 1
i

i M C
0∣ ∣ ( )

The two registers are then fed into a quantum computer, which applies the unitaryUi
ˆ onto registerC

conditionally on the value i of registerM. HereUi
ˆ represents a series of quantum gates which describes some

quantumalgorithm. For instance, imay be an integer, and the computational output r r= U U
C
i

i C i
0ˆ ˆ †

may be its
factorization according to Shor’s algorithm.

In general, for the input state as in equation (1), the quantum computer provides the output

å rñ á Äp i i . 2
i

i M C
i∣ ∣ ( )

The receivermeasures registerC so as to discriminate between the possible output states r
C
i , or equivalently

between the possible unitary operationsUi
ˆ . The optimal information accessible to the receiver is theHolevo

bound

= -I C i S C S C i: , 3( ) ( ) ( ∣ ) ( )

where S C( ) is the vonNeumann entropy of the reduced state ofC, and S C i( ∣ ) is the corresponding conditional

vonNeumann entropy. This is clearlymaximizedwhen pi is uniform and the states r
C
i are pure and orthogonal,

so that it takes themaximumvalue =I C i N: log2( ) .

By construction, it is clear that I C i:( ) represents the capacity of the quantum computation Ui{ ˆ }because it

tells you how good the quantum computer is in providing distinguishable output states (solutions) for different

inputs.When themaximum Nlog2 is achieved, itmeans that the quantum computation is perfect over the
entire input alphabet ofN letters.
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4.1. Clarifications onprotocols

Apart frombeing interpreted as a possible protocol ofQCD, the scheme of [4] is clearly different fromboth

quantum illumination and quantum reading.

• First of all, [4] is a communication scheme, where sender’s input alphabet is decoded by a receiver.More

specifically, it is spatial communication between two registers which ismediated by a quantum computation.

It is a two-register descriptionwhere the unitaries areUi
ˆ are not stored in the computational registerM but

rather applied in the dynamical process of the quantum computer (they are in fact control-unitaries). In this

regard it is clearly different from the static scenario where a classical variable is physically and stably stored

into a black box by an ensemble of channels (to describe presence/absence of a target, or the different

reflectivities of amemory cell). Thismeans that [4] is not about readout from storage.

• The input-output process is based on a single signal systemprocessed by a unitary. Today, we know that

unitary discrimination can be perfectly solved in a finite number of uses [44]. It is therefore different from

what happens in themore general discrimination of quantum channels, where perfect discrimination is not

guaranteed (atfinite energies) and the optimal statesmay require the use of idler systems, which are not sent

through the box but directly to the outputmeasurement in order to assist the entire process.

• The signal-idler structure, which ismissing in [4], is one of themain features for both quantum illumination

and quantum reading. The use of input entanglement and,more generally, quantum correlations, is themain

workingmechanismof these two protocols under completely general conditions of decoherence. As amatter

of fact, as already said above, the ‘quantum’name in ‘illumination’ and ‘reading’ exactly comes from the

comparison of a quantum resource at the input (entanglement)with respect to the use of classical input states

(separable states,mixtures of coherent states).

• The communication scheme of [4] is only for a discrete-variableHilbert space. Themost important setting for

both quantum illumination and quantum reading is bosonic. Quantum illumination provides the possible

workingmechanismof a lidar (in the optical case) and a radar (in themicrowave case). Themain setting for

quantum reading is also bosonic and at the optical frequencies, which is the relevant physical regime in optical

storage.

5.Quantum reading capacity

In this section and the next one, we discuss the two different notions of quantum reading capacity and dense

coding capacity. First we discuss howquantum reading capacity of an ensemble of quantum channels is

implicitly and immediately extended to an adaptive formulation. Then, we clarify themathematical conditions

underwhich the (adaptive) dense coding capacity of a quantum channel can be reduced to the (adaptive)

quantum reading capacity of a corresponding ensemble of encoding channels.

In 2011, the notion of quantum reading capacity was introduced [5]. One considers amemorywhere each

cell encodes a classical label x bymeans of a quantum channel x chosenwith somemarginal probability px. In

the basic readout strategy, each cell can be identically and independently probed by a quantum state ρwhich

records the classical information x into the output state rx. See alsofigure 1(a).More generally, the encoder can

use classical codewords, so that amessage ¼x x, , n1 is written in a block of cells. Given amarginal ensemble of

outputs rx{ }, a reader can retrieve atmost theHolevo information c rx({ }).What the encoder can do is to

optimize over themarginal probability px, while the decoder can optimize over the choice of the input state ρ.

Thus, for amemory cell described by themarginal channel ensemble x{ }, we canwrite the following (one-shot)

quantum reading capacity

c r=
r

C max . 4x
p

x1
, x

({ }) ({ }) ( )

Because quantum reading is ultimately a problemofQCD, its formulation automatically extends to an

adaptive version using the tools of [45]. In fact, following the adaptive formulation ofQCD [45], one can

immediately extend the protocol infigure 1(a)where the optimization over the input state is replaced by an

optimization over interleaved quantumoperations (QOs). Therefore, the combination of [5] and [45]directly

provides themost general (adaptive) definition of quantum reading, together with the associated notion of

adaptive quantum reading capacity C x({ }).

The next ingredient from [45] is the notion of joint teleportation-covariance. An ensemble of channels x{ }

is jointly tele-covariant if, for any Pauli unitaryUk, wemaywrite

3
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r r= U U V V , 5x k k k x k( ) ( ) ( )† †

for generally-different unitariesVk. Recall that this is a stronger condition than the simple teleportation

covariance [46–48]. In fact, we need to assure that the output unitaryVk does not depend on the classical label x,

so that the property of equation (5)holds jointly for any x in the ensemble. For instance, this condition is true

for ensembles of erasure channels or ensembles ofHolevo-Werner channels [49–53]. In the specific case where

=V Uk k holds for any k, we say that x{ } is jointly Pauli-covariant. For instance this is the case for ensembles of

Pauli channels (such as depolarizing or dephasing channels). However, this stronger condition is not true for

erasure channels, Holevo-Werner channels and others.

Because of equation (5), we can then use the teleportation protocol as a universal operation to simulate all

the channels x in the ensemble by using their Choimatrices rx
as program states. As a result, for amemory cell

made by jointly tele-covariant channels, we can use channel simulation and collapse all theQOs in the protocol,

following exactly the procedure of [45]. It is immediate to see that this leads to the bound

c r C max . 6x
p

x

x
({ }) ({ }) ( )

Since a possible strategy is to usemaximally-entangled states to read each cell, we have that the bound is also

achievable and, therefore,

c r= C max . 7x
p

x

x
({ }) ({ }) ( )

6.Dense coding capacity

Let us now clarify the relations between quantum reading capacity and dense coding capacity defined in [6]. As

we can see from figure 1(a), the quantum reading capacity is defined over an ensemble of quantum channels

x{ }, read by assuming an identity channel before and after thememory cells. This is a different situation from

the dense coding capacity which is defined over a single quantum channel  used back and forth byAlice and
Bob, andwhere the classical information is encoded by applying Pauli unitaries  U Ux x x() ≔ () †.

In the dense coding protocol, a bipartite input state ρ is prepared byAlice. One system is retained by her,

while the other system is sent to Bob through the quantum channel  . Bob applies a Pauli unitary x and sends

the systemback through the same channel  . Overall the transmitted systemundergoes the composition of

channels    x x≔ ◦ ◦ , which generates the bipartite output state r rÄ x x≔ ( ). See figure 1(b).

By optimizing over the input state ρ and the probability px of the Pauli encoder x , one canwrite the

(one-shot) dense coding capacity of the channel  as
c r=

r
C max , 8

p
x1

, x

( ) ({ }) ( )

where rx{ } is the ensemble of output states. Even though this formula has the sameRHS as in equation (4), it is
related to a completely different quantity, since it refers to the capacity defined for a single channel  .

In the adaptive version of the protocol considered in [6], Alice has also the freedom to apply themost general

QOs on the two systems, both during transmission and upon receipt of these systems. Considering these

interleavedQOs Li{ }, we can define a corresponding (adaptive) dense coding capacity C ( ) for the channel  .
See [6]formore details.

Now it comes another crucial difference with respect to the quantum reading capacity. Instead of joint tele-

covariance, herewe need the stronger condition of joint Pauli-covariance. In fact, because of the specific
structure   x◦ ◦ of dense coding, we need to be sure that channel  is covariant with respect to the Pauli

Figure 1. Setting of the quantum reading capacity(a) compared to the setting of the dense coding capacity(b). Quantumoperations
(QOs) are added in the adaptive versions of the protocols.
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operatorsUk. In this way, we can swapUk through the entire chain    x x≔ ◦ ◦ , i.e., we canwrite

r r= U U U Ux k k k x k( ) ( )† †. If this is possible, thenwe can simulate x with their Choimatrices andwrite

c r= C max . 9
p

x

x
( ) ({ }) ( )

In general, this procedure cannot be done if the channel  is tele-covariant but not Pauli-covariant. Given a
Pauli unitary at the input of this type of channel  , the output unitary is non-Pauli and could not commute (or

anticommute)with Bob’s Pauli encoders, whichmeans that we cannot exploit the basic property that allows us

towrite equation (9). It is clear that the formula in equation (9) is proven under different (stronger) conditions

than those valid for the quantum reading capacity of equation (7). The lack of these crucial properties in the

derivation of equation (7)means that such equation is not sufficient to imply equation (9), which is therefore a

new result proven in [6].

To further discuss this point, assume that we compress the scheme infigure 1(b) into the scheme of

figure 1(a), so that we interpret the dense coding capacity of  as the quantum reading capacity of the ensemble

x{ }, where    x x≔ ◦ ◦ . Thenwemust be careful not to lose the property of Pauli covariance. In other words,

equation (7) can bewritten for dense coding if x are jointly Pauli-covariant, whichmeans that the channel  in
the decomposition    x x≔ ◦ ◦ must be Pauli-covariant. From this point of view, a contribution of the present

work is to show and fully clarify the strong conditions underwhich the (adaptive) dense coding capacity of a

channel can be reduced to the (adaptive) quantum reading capacity of an ensemble of encoding channels.

7. Conclusion

In this brief review paper we have discussed various protocols based on themodel of quantum channel

discrimination (a primitive notion inmany areas of quantum information theory). In particular, we have

discussed and compared quantum illumination [1, 2], quantum reading [3], and the communication capacity of

quantum computation [4]. These are schemeswith different aims and features, not be naively confused onewith

the other. Then, we have discussed the notions of quantum reading capacity [5] (of an ensemble of quantum

channels) and dense coding capacity [6] (of a quantum channel), clarifying their crucial differences and the

mathematical conditions under which they can be connected. Specifically, this connection is possible under the

condition of joint Pauli-covariance, not to be confusedwith joint teleportation covariance or other weaker

conditions.
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