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On quantum reading, quantum illumination, and other notions

Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, UK

In this brief review, we start by clarifying the crucial differences between three different protocols
of quantum channel discrimination. In some recent literature, there has been confusion between
the protocols of quantum illumination [1, 2], quantum reading [3], and a scheme of communication
within a discrete-variable quantum computer [4]. While all these protocols are based on the model
of quantum channel discrimination, they have completely different applications and features, which
is the reason why they have different names and should not be naively confused. We also discuss the
notion of quantum reading capacity [5] of an ensemble of quantum channels, clarifying how this is
easily extended to an adaptive formulation and discussing the mathematical conditions under which
it can be connected to the different notion of dense coding capacity [6] of a quantum channel.

I. INTRODUCTION

The protocols of quantum illumination [1, 2], quantum
reading [3], and the communication of quantum compu-
tation [4] can all be represented as schemes of quantum
channel discrimination (QCD). Recall that QCD is a very
general problem where an ensemble of quantum chan-
nels is prepared in a black box. One is allowed to probe
the input of the box by preparing a suitable quantum
state, and to detect the output of the box by applying a
suitable quantum measurement. The aim is understand
which channel from the ensemble is present in the box.
Despite being interpreted as schemes of QCD, all pro-

tocols mentioned above have different aims and features,
which is the reason why they should not be naively con-
fused one with the other. In particular, the scheme of
Ref. [4] is about communication between registers of a
quantum computer, clearly not “quantum reading” of a
classical/digital memory, nor “quantum illumination” of
a remote target. With these two protocols, it only shares
the basic connection with QCD.
Quantum illumination uses QCD to model a problem

of target detection in bright noise environments, while
quantum reading uses QCD to model a digital memory
and the associated storage/readout of classical informa-
tion. Most importantly, both these protocols show ‘quan-
tum advantage’ in their respective tasks over classical
strategies. For this reason, they are ‘quantum’ protocols.
We will re-iterate this point in the manuscript.
We briefly review these protocols in Secs. II-IV and

provide clarifications in Sec. IVA. Then, in Sec. V we
consider the notion of quantum reading capacity [5] and
its immediate and implicit extension to adaptive proto-
cols. In Sec. VI, we discuss the (adaptive) notion of dense
coding capacity [6] and describe the precise mathematical
conditions under which this capacity can be connected to
a quantum reading capacity. Sec. VII is for conclusions.

II. QUANTUM ILLUMINATION

Quantum illumination [1, 2] (see also [7–24]) is the
use of input quantum resources (such as entanglement)

and output quantum measurements to enhance the de-
tection of a remote low-reflectivity object in a bright
thermal-noise environment. It can be represented as a
QCD problem, because the presence or absence of the
target can be associated with the binary discrimination
of two channels, one including a partial reflection from
the target and the other one being a completely thermal-
izing channel (replacing the input with the state of the
environment). Here one can show that, despite initial
entanglement is lost in the sender-receiver path, the ben-
efits of quantum illumination still survive in the forms of
output correlations. These allow one to enhance the sen-
sitivity of detecting the presence of the target-object with
respect to the use of classical sources of light (in particu-
lar separable states in the DV version of the protocol [1],
and mixtures of coherent states in the CV version [2]).
It is called “quantum” illumination because it proves a
quantum advantage with respect to classical strategies
under the same conditions (e.g., the same mean number
of input photons).

III. QUANTUM READING

Quantum reading [3] (see also [25–41]) is the use of in-
put quantum resources (such as entanglement) and out-
put quantum measurements to enhance the retrieval of
classical information stored in the cells of an optical mem-
ory. In its basic binary formulation, it can be represented
as a QCD problem where the discrimination is between
two quantum channels associated with two different re-
flectivities of a memory cell (used to encode a bit of infor-
mation). We therefore have two bosonic Gaussian chan-
nels, generally characterized by different values of loss
(and thermal noise), that encode a classical bit.

Contrary to quantum illumination, the scheme is in the
very near range, typically works with high reflectivities,
and also allows one to use codewords to encode informa-
tion in blocks of many cells (so that quantum reading
capacities can be defined). Most importantly, the use
of quantum resources (e.g. entanglement) allows one to
enhance the data readout in terms of bits per cell with
respect to the use of classical strategies (in particular
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the use of coherent states or their mixtures). It is called
“quantum” reading because it proves a quantum advan-
tage with respect to classical strategies using the same
amount of energy (mean number of photons).
The two schemes of quantum illumination and quan-

tum reading have a specific peculiarity (quantum en-
hancement) that gives them the “quantum name” while,
at the same time, it is clear that they are both asso-
ciated with QCD. Further discussions can be found in
Section V.H “Gaussian channel discrimination and appli-
cations” of the Gaussian information review [42] and also
in the recent review on photonic quantum sensing [43].

IV. CAPACITY OF QUANTUM

COMPUTATION

The scheme of Ref. [4] is about the communication ca-
pacity of quantum computation. Clearly, it is not about
target detection or optical storage, but rather communi-
cation between registers of a discrete-variable quantum
computer. In this scheme, there is a “memory” register
(M) where the sender encodes a classical variable i in
N pure quantum states |i⟩M ⟨i| with some probability pi.
Then, the receiver has a computation register (C) pre-
pared in some initial state ρ0C . The initial state of the
two registers is therefore the tensor-product

∑

i

pi |i⟩M ⟨i| ⊗ ρ0C . (1)

The two registers are then fed into a quantum computer,
which applies the unitary Ûi onto register C conditionally
on the value i of registerM . Here Ûi represents a series of
quantum gates which describes some quantum algorithm.
For instance, i may be an integer, and the computational

output ρiC = Ûiρ
0

CÛ
†
i may be its factorization according

to Shor’s algorithm.
In general, for the input state as in Eq. (1), the quan-

tum computer provides the output
∑

i

pi |i⟩M ⟨i| ⊗ ρiC . (2)

The receiver measures register C so as to discriminate
between the possible output states ρiC , or equivalently

between the possible unitary operations Ûi. The optimal
information accessible to the receiver is the Holevo bound

I(C : i) = S(C)− S(C|i), (3)

where S(C) is the von Neumann entropy of the reduced
state of C, and S(C|i) is the corresponding conditional
von Neumann entropy. This is clearly maximized when
pi is uniform and the states ρiC are pure and orthogonal,
so that it takes the maximum value I(C : i) = log

2
N .

By construction, it is clear that I(C : i) represents

the capacity of the quantum computation {Ûi} because
it tells you how good the quantum computer is in provid-
ing distinguishable output states (solutions) for different

inputs. When the maximum log
2
N is achieved, it means

that the quantum computation is perfect over the entire
input alphabet of N letters.

A. Clarifications on protocols

Apart from being interpreted as a possible protocol of
QCD, the scheme of Ref. [4] is clearly different from both
quantum illumination and quantum reading.

• First of all, Ref. [4] is a communication scheme,
where sender’s input alphabet is decoded by a re-
ceiver. More specifically, it is spatial communica-
tion between two registers which is mediated by a
quantum computation. It is a two-register descrip-
tion where the unitaries are Ûi are not stored in
the computational register M but rather applied
in the dynamical process of the quantum computer
(they are in fact control-unitaries). In this regard
it is clearly different from the static scenario where
a classical variable is physically and stably stored
into a black box by an ensemble of channels (to de-
scribe presence/absence of a target, or the different
reflectivities of a memory cell). This means that
Ref. [4] is not about readout from storage.

• The input-output process is based on a single sig-
nal system processed by a unitary. Today, we know
that unitary discrimination can be perfectly solved
in a finite number of uses [44]. It is therefore
different from what happens in the more general
discrimination of quantum channels, where perfect
discrimination is not guaranteed (at finite energies)
and the optimal states may require the use of idler
systems, which are not sent through the box but di-
rectly to the output measurement in order to assist
the entire process.

• The signal-idler structure, which is missing in
Ref. [4], is one of the main features for both quan-
tum illumination and quantum reading. The use
of input entanglement and, more generally, quan-
tum correlations, is the main working mechanism of
these two protocols under completely general condi-
tions of decoherence. As a matter of fact, as already
said above, the “quantum” name in “illumination”
and “reading” exactly comes from the comparison
of a quantum resource at the input (entanglement)
with respect to the use of classical input states (sep-
arable states, mixtures of coherent states).

• The communication scheme of Ref. [4] is only for
a discrete-variable Hilbert space. The most im-
portant setting for both quantum illumination and
quantum reading is bosonic. Quantum illumination
provides the possible working mechanism of a lidar
(in the optical case) and a radar (in the microwave
case). The main setting for quantum reading is also
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bosonic and at the optical frequencies, which is the
relevant physical regime in optical storage.

V. QUANTUM READING CAPACITY

In this section and the next one, we discuss the two
different notions of quantum reading capacity and dense
coding capacity. First we discuss how quantum reading
capacity of an ensemble of quantum channels is implic-
itly and immediately extended to an adaptive formula-
tion. Then, we clarify the mathematical conditions under
which the (adaptive) dense coding capacity of a quan-
tum channel can be reduced to the (adaptive) quantum
reading capacity of a corresponding ensemble of encoding
channels.
In 2011, the notion of quantum reading capacity was

introduced [5]. One considers a memory where each cell
encodes a classical label x by means of a quantum chan-
nel Ex chosen with some marginal probability px. In the
basic readout strategy, each cell can be identically and in-
dependently probed by a quantum state ρ which records
the classical information x into the output state ρx. See
also Fig. 1(a). More generally, the encoder can use clas-
sical codewords, so that a message x1, . . . , xn is written
in a block of cells. Given a marginal ensemble of outputs
{ρx}, a reader can retrieve at most the Holevo informa-
tion χ({ρx}). What the encoder can do is to optimize
over the marginal probability px, while the decoder can
optimize over the choice of the input state ρ. Thus, for
a memory cell described by the marginal channel ensem-
ble {Ex}, we can write the following (one-shot) quantum
reading capacity

C1({Ex}) = max
ρ,px

χ({ρx}). (4)

Because quantum reading is ultimately a problem of
QCD, its formulation automatically extends to an adap-
tive version using the tools of Ref. [45]. In fact, following
the adaptive formulation of QCD [45], one can immedi-
ately extend the protocol in Fig. 1(a) where the optimiza-
tion over the input state is replaced by an optimization
over interleaved quantum operations (QOs). Therefore,
the combination of Refs. [5] and [45] directly provides the
most general (adaptive) definition of quantum reading,
together with the associated notion of adaptive quantum
reading capacity C({Ex}).
The next ingredient from Ref. [45] is the notion of joint

teleportation-covariance. An ensemble of channels {Ex}
is jointly tele-covariant if, for any Pauli unitary Uk, we
may write

Ex(UkρU
†
k) = VkEx(ρ)V

†
k , (5)

for generally-different unitaries Vk. Recall that this is
a stronger condition than the simple teleportation co-
variance [46–48]. In fact, we need to assure that the
output unitary Vk does not depend on the classical la-
bel x, so that the property of Eq. (5) holds jointly for
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FIG. 1: Setting of the quantum reading capacity (a) compared
to the setting of the dense coding capacity (b). Quantum
operations (QOs) are added in the adaptive versions of the
protocols.

any Ex in the ensemble. For instance, this condition
is true for ensembles of erasure channels or ensembles
of Holevo-Werner channels [49–53]. In the specific case
where Vk = Uk holds for any k, we say that {Ex} is jointly
Pauli-covariant. For instance this is the case for ensem-
bles of Pauli channels (such as depolarizing or dephasing
channels). However, this stronger condition is not true
for erasure channels, Holevo-Werner channels and others.
Because of Eq. (5), we can then use the teleportation

protocol as a universal operation to simulate all the chan-
nels Ex in the ensemble by using their Choi matrices ρEx

as program states. As a result, for a memory cell made by
jointly tele-covariant channels, we can use channel simu-
lation and collapse all the QOs in the protocol, following
exactly the procedure of Ref. [45]. It is immediate to see
that this leads to the bound

C({Ex}) ≤ max
px

χ({ρEx
}). (6)

Since a possible strategy is to use maximally-entangled
states to read each cell, we have that the bound is also
achievable and, therefore,

C({Ex}) = max
px

χ({ρEx
}). (7)

VI. DENSE CODING CAPACITY

Let us now clarify the relations between quantum read-
ing capacity and dense coding capacity defined in Ref. [6].
As we can see from Fig. 1(a), the quantum reading ca-
pacity is defined over an ensemble of quantum channels
{Ex}, read by assuming an identity channel before and
after the memory cells. This is a different situation from
the dense coding capacity which is defined over a single
quantum channel E used back and forth by Alice and
Bob, and where the classical information is encoded by
applying Pauli unitaries Ux() := Ux()U

†
x.

In the dense coding protocol, a bipartite input state
ρ is prepared by Alice. One system is retained by her,
while the other system is sent to Bob through the quan-
tum channel E . Bob applies a Pauli unitary Ux and sends
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the system back through the same channel E . Overall the
transmitted system undergoes the composition of chan-
nels Ex := E ◦Ux◦E , which generates the bipartite output
state ρx := I ⊗ Ex(ρ). See Fig. 1(b).
By optimizing over the input state ρ and the prob-

ability px of the Pauli encoder Ux, one can write the
(one-shot) dense coding capacity of the channel E as

C1(E) = max
ρ,px

χ({ρx}), (8)

where {ρx} is the ensemble of output states. Even though
this formula has the same RHS as in Eq. (4), it is related
to a completely different quantity, since it refers to the
capacity defined for a single channel E .
In the adaptive version of the protocol considered in

Ref. [6], Alice has also the freedom to apply the most gen-
eral QOs on the two systems, both during transmission
and upon receipt of these systems. Considering these in-
terleaved QOs {Λi}, we can define a corresponding (adap-
tive) dense coding capacity C(E) for the channel E . See
Ref. [6] for more details.
Now it comes another crucial difference with respect

to the quantum reading capacity. Instead of joint tele-
covariance, here we need the stronger condition of joint
Pauli-covariance. In fact, because of the specific struc-
ture E ◦ Ux ◦ E of dense coding, we need to be sure
that channel E is covariant with respect to the Pauli
operators Uk. In this way, we can swap Uk through
the entire chain Ex := E ◦ Ux ◦ E , i.e., we can write

Ex(UkρU
†
k) = UkEx(ρ)U

†
k . If this is possible, then we

can simulate Ex with their Choi matrices and write

C(E) = max
px

χ({ρEx
}). (9)

In general, this procedure cannot be done if the channel
E is tele-covariant but not Pauli-covariant. Given a Pauli
unitary at the input of this type of channel E , the output
unitary is non-Pauli and could not commute (or anticom-
mute) with Bob’s Pauli encoders, which means that we
cannot exploit the basic property that allows us to write
Eq. (9). It is clear that the formula in Eq. (9) is proven
under different (stronger) conditions than those valid for
the quantum reading capacity of Eq. (7). The lack of

these crucial properties in the derivation of Eq. (7) means
that such equation is not sufficient to imply Eq. (9),
which is therefore a new result proven in Ref. [6].

To further discuss this point, assume that we compress
the scheme in Fig. 1(b) into the scheme of Fig. 1(a), so
that we interpret the dense coding capacity of E as the
quantum reading capacity of the ensemble {Ex}, where
Ex := E ◦ Ux ◦ E . Then we must be careful not to lose
the property of Pauli covariance. In other words, Eq. (7)
can be written for dense coding if Ex are jointly Pauli-
covariant, which means that the channel E in the decom-
position Ex := E ◦ Ux ◦ E must be Pauli-covariant. From
this point of view, a contribution of the present work is to
show and fully clarify the strong conditions under which
the (adaptive) dense coding capacity of a channel can be
reduced to the (adaptive) quantum reading capacity of
an ensemble of encoding channels.

VII. CONCLUSION

In this brief review paper we have discussed various
protocols based on the model of quantum channel dis-
crimination (a primitive notion in many areas of quantum
information theory). In particular, we have discussed and
compared quantum illumination [1, 2], quantum read-
ing [3], and the communication capacity of quantum com-
putation [4]. These are schemes with different aims and
features, not be naively confused one with the other.
Then, we have discussed the notions of quantum read-
ing capacity [5] (of an ensemble of quantum channels)
and dense coding capacity [6] (of a quantum channel),
clarifying their crucial differences and the mathematical
conditions under which they can be connected. Specifi-
cally, this connection is possible under the condition of
joint Pauli-covariance, not to be confused with joint tele-
portation covariance or other weaker conditions.
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