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TRANSLATIONAL RELEVANCE 46 

To assess the utility of microbiome profiles for national-scale colorectal cancer (CRC) screening, we assessed 2,252 47 

routinely processed NHS Bowel Cancer Screening Programme guaiac faecal occult blood test (gFOBT) samples.  We 48 

generated four microbiome-based random forest classification models, each showing potential to improve accuracy. 49 

Two distinguished either CRC or neoplasm (CRC or adenoma) from gFOBT blood-negative samples (equivalent to first-50 

tier screening). Two distinguished CRC or neoplasm from samples that had tested positive for blood by gFOBT, with 51 

participants referred for colonoscopy, but at colonoscopy no-lesion was found (second-tier screening to rule out gFOBT 52 

false positives). Each model remained robust to validation and when restricted to fifteen taxa, raising the possibility of 53 

an inexpensive qPCR-test. The models performed favourably compared with existing microbiome studies, FIT and 54 

Cologuard. These results suggest that microbiome analysis could be integrated into national CRC screening to improve 55 

accuracy and reduce the number of unnecessary screening colonoscopies.  56 

  57 
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ABSTRACT 58 

Purpose  59 

There is potential for faecal microbiome profiling to improve CRC screening. This has been demonstrated by research 60 

studies, but it has not been quantified at scale using samples collected and processed routinely by a national screening 61 

programme. 62 

Experimental Design 63 

Between 2016-2019, the largest of the NHS Bowel Cancer Screening Programme (NHSBCSP) hubs prospectively 64 

collected processed gFOBT with subsequent colonoscopy-outcomes: blood-negative (n=491 (22%)); CRC (n=430 65 

(19%)); adenoma (n=665 (30%)); colonoscopy-normal (n=300 (13%)); non-neoplastic (n=366 (16%)). Samples were 66 

transported and stored at room temperature. DNA underwent 16S rRNA gene V4 amplicon sequencing. Taxonomic 67 

profiling was performed to provide features for classification via random forests (RFs). 68 

Results  69 

Samples provided 16S amplicon-based microbial profiles, which confirmed previously described CRC-microbiome 70 

associations. Microbiome-based RF models showed potential as a first-tier screen, distinguishing CRC or neoplasm 71 

(CRC or adenoma) from blood-negative with AUC 0.86 (0.82-0.89) and AUC 0.78 (0.74-0.82), respectively. Microbiome-72 

based models also showed potential as a second-tier screen, distinguishing from among gFOBT blood-positive samples, 73 

CRC or neoplasm from colonoscopy-normal with AUC 0.79 (0.74-0.83) and AUC 0.73 (0.68-0.77), respectively. Models 74 

remained robust when restricted to fifteen taxa, and performed similarly during external validation with metagenomic 75 

datasets. 76 

Conclusions 77 

Microbiome features can be assessed using gFOBT samples collected and processed routinely by a national CRC 78 

screening programme to improve accuracy as a first or second-tier screen. The models required as few as fifteen taxa, 79 

raising the potential of an inexpensive qPCR test. This could reduce the number of colonoscopies in countries that use 80 

faecal occult blood test screening.  81 

  82 
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INTRODUCTION 83 

Globally, CRC is the third most common cause of cancer deaths.1 Screening reduces mortality by detecting 84 

asymptomatic adenomas or early-stage CRC.2 Countries have adopted different screening approaches. In England, the 85 

NHS Bowel Cancer Screening Programme (NHSBCSP) tests for occult faecal blood; if detected, participants are referred 86 

for colonoscopy. Until June 2019, the NHSBCSP used the guaiac faecal occult blood test (gFOBT). Specificity is limited, 87 

with only 40% of screening colonoscopies detecting adenoma and 10% CRC;3 4 this represents a significant cost, 88 

resource, and patient burden.  89 

Research suggests that faecal microbiome analysis may serve as an improvement or adjunct to current CRC screening.5 90 

However, previous studies have not yet bridged the gap between pre-clinical, basic scientific discovery and the 91 

population-scale necessary for translation to a national screening programme. These limitations were outlined in a 92 

systematic review: many had small numbers of participants (the largest had 490, of which 120 were CRC patients); 93 

many collected samples in a manner incompatible with national screening (refrigerated/frozen samples); some used 94 

post-colonoscopy samples (bowel preparation alters the microbiome); and few had the opportunity to externally 95 

validate their models.5 96 

We aimed to quantify the utility of integrating microbiome analysis into a national CRC screening programme by 97 

analysing microbiome features from large numbers of routinely processed NHSBCSP gFOBT samples. Technical studies 98 

have shown that it is possible to measure a subset of clinically-relevant microbiome features from gFOBT stored at 99 

room temperature.6-13 Two studies have analysed large numbers of bowel-preparation naïve individuals, but neither 100 

performed microbiome analysis directly from screening samples; one study has performed preliminary analysis of 101 

screening faecal immunochemical test (FIT) samples, but did not determine diagnostic performance of the 102 

microbiome.14 15 16 To our knowledge, our study is the first to analyse microbiome features from large numbers of 103 

routinely processed gFOBT screening samples.  104 

To reflect the aims of the NHS Bowel Cancer Screening Programme, we explored the potential of microbiome-based RF 105 models to detect CRC alone, or to detect CRC and adenoma (a group we term ‘neoplasm’). We investigated the potential 106 

to use these microbiome-based RF models as a first-tier screen, equivalent to the use of gFOBT; we used gFOBT blood-107 

negative samples as the control group, as 98% of screening gFOBT yield a blood-negative result. Additionally, we 108 

explored the potential to use the microbiome-based RF models as a second-tier screen; a second-tier represents an 109 

opportunity to triage those samples with a blood-positive gFOBT result, in order to reduce the number of unnecessary 110 

screening colonoscopies. As a second-tier screen, we explored the potential of microbiome-based RF models to 111 

distinguish gFOBT blood-positive samples associated with CRC or neoplasm, from gFOBT blood-positive samples 112 

associated with a normal colonoscopy result. We used ‘colonoscopy-normal’ samples as the control group, as although 113 a proportion of screening colonoscopies yield a ‘non-neoplastic’ diagnosis (e.g. diverticulosis, non-dysplastic polyp), 114 

this is a heterogeneous group. We found that microbiome-based RF models show potential as a first-tier screen for the 115 

detection of CRC (AUC 0.86 (0.82-0.89)) or neoplasm (AUC 0.78 (0.74-0.82)), and as a second-tier screen, for the 116 

detection of CRC (AUC 0.79 (0.74-0.83)) or neoplasm (AUC 0.73 (0.68-0.77).  117 

 118 
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MATERIALS AND METHODS 119 

Study design and participants 120 

The NHSBCSP Southern Hub (Guildford, UK) prospectively collected a convenience series of routinely processed gFOBT 121 

October 2016-August 2019: this included all ‘blood-positive’ gFOBT (blue discolouration affecting five or six squares) 122 

processed by the Southern Hub (n=3700), and a random sample of ‘blood-negative’ (no blue discolouration) gFOBT 123 

(n=530). Of the samples collected, 3601 (85%) had complete basic clinical data recorded on the NHS Bowel Cancer 124 

Screening Programme database at the time of the final data extract. From this group, we selected samples to achieve 125 

sample sizes that were approximately equal across the different clinical groups (Fig.1, Supplementary_Methods).  126 

This enabled profiling of 2,252 samples: samples whereby haemoglobin was not detected i.e.‘blood-negative’(n=491 127 

(22%)) and ‘blood-positive’(n=1,761 (78%)). Blood-positive samples had the following colonoscopy-diagnoses: CRC 128 

(n=430 (19%)), adenoma (n=665 (30%)), colonoscopy-normal (n=300 (13%)), non-neoplastic condition (n=366 129 

(16%)). Whilst the composition of our overall study group does not reflect the composition of the NHS Bowel Cancer 130 

Screening Programme population (2% of gFOBT are blood-positive; 10% of screening colonoscopies reveal CRC, 40% 131 

adenoma and 50% reveal a normal colon or non-neoplastic condition), we required these respective sample numbers 132 

in order to adequately profile the CRC and neoplasm-associated microbiome and to train RF models.3 4 Test statistics 133 

that are affected by disease prevalence would be different in the NHS Bowel Cancer Screening Programme population, 134 

for example positive predictive value (PPV) would be lower.  135 

Samples were transported to the University of Leeds at room temperature, and stored at room temperature prior to 136 

DNA extraction. The NHSBCSP asks participants to record the date of faecal collection; this information was available 137 

for 2,167 samples. Of these, 1,363 recorded three consecutive days; 95 recorded a single date (implying a single stool), 138 

and maximum duration between collections was 16 days. Time between faecal collection and DNA extraction was 46-139 

706 days (median 374 days) (Supplementary_Methods). To determine whether prolonged storage at room 140 

temperature prior to DNA extraction altered results, a set of DNA extraction replicates was created. Three squares were 141 

dissected and combined to make a sample and, after a period of time (6-23 months), the alternate three squares were 142 

dissected and combined to make a replicate (n=26 pairs). For comparison, a set of ‘same-day’ DNA extraction replicates 143 

were created, whereby three squares of faecally-loaded card were dissected and combined to make a sample and, at 144 

the same time, the alternate three squares were dissected and combined to make a replicate (n=48 pairs).  145 

Data was extracted from the NHSBCSP database: age, sex, screening-round, episode-outcome, and for blood-positive 146 

gFOBT: diagnosis (normal, adenoma (low, intermediate or high-risk)17, CRC, non-neoplastic condition), and lesion 147 

location. In cases of more than one lesion, only the most advanced was recorded. Data is based on information collected 148 

and quality assured by Public Health England (PHE) Population Screening Programmes. Access to the data was 149 

facilitated by the PHE Office for Data Release. 150 

The screening age is 60-74 inclusive. People aged over 74 can self-refer to the programme. The study cohort contained 151 

35 older participants (ages 75-89) and one younger participant (aged 59, one week before their birthday). 152 

A power calculation was performed using the R package pwr (based on a variance-stabilised linear model) using effect 153 

sizes from the Human Microbiome Project with Bonferroni correction.18 Assuming 900 samples with 50 thousand 154 
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reads/sample, we anticipated power 0.95 to detect a 0.055-unit difference in common taxa (0.003 relative abundance), 155 

and a 0.022-unit difference in rare taxa (0.0004 relative abundance). 156 

Ethical approval: Tyne & Wear South REC(IRAS:188007; REC:16/NE/0210), BCSP Research Committee(BCSPID_160), 157 

Office for Data Release(ODR1617_126). Patients and the public were not involved in the study design but have since 158 

been involved in the study and will be involved in the dissemination of results. 159 

 160 

Laboratory methods 161 

From each developed gFOBT (Hema Screen, Immunostics, Inc), three alternate squares of faecally-loaded card were 162 

dissected and processed as a combined sample. This approach subsamples a larger volume of stool, ensuring adequate 163 

material even from thinly-smeared cards, and leaves three residual squares for alternative analysis or extraction 164 

replicates. DNA was extracted using a modified version of the QIAamp DNA Mini Kit protocol (Qiagen, Germany) 165 

(detailed in Supplementary_Methods). DNA extraction was performed in batches of up to 24 samples; to limit batch 166 

effects, batches were designed to contain samples representing the different clinical groups. Library preparation was 167 

according to the Earth Microbiome Project (EMP) 16S Illumina Amplicon methodology with single PCR reactions of 168 

20ng DNA/sample and additional indexes to increase multiplexing capacity.19 Samples were pooled and sequenced 169 

across two runs, each comprising one lane of an Illumina HiSeq3000, for 2x150bp sequencing, with a 10bp single index 170 

read.  171 

 172 

Bioinformatic and statistical analysis 173 

During quality control, 16 samples had fewer than 10,000 reads and were removed from analysis. With these samples 174 

removed, read count/sample was 14,635-555,465 (median 123,265).  175 

Reads were stripped of adaptors using cutadapt and trimmed to maximum 145bp.20 Pairs were merged, denoised and 176 

representative sequences chosen using DADA2.21 Further processing was conducted in QIIME2 (version 2019.4).22 177 

Differences of Shannon index were assessed by Kruskal-Wallis test. Taxa were assigned by the QIIME2 feature classifier 178 

using the BLAST+ algorithm23 24 using the SILVA version 132 99% similarity database.25 Principle coordinate analysis 179 

(PCoA) of Bray-Curtis distances was performed. Further analysis was performed using R (version 3.5.1). Differences in 180 

beta diversity were assessed by PERMANOVA analysis of Bray-Curtis distances using Adonis.26 Differences in beta 181 

diversity between sample groups were further explored by PERMANOVA analysis of Bray-Curtis distances performed 182 

using the beta-group-significance function within QIIME2.27 Taxa differing significantly between groups were obtained 183 

using LEfSe (Linear discriminant analysis Effect Size).28 184 

Random Forest (RF) models and AUC were generated using randomForest and pROC.29-31 For the neoplasm models, 185 

the neoplasm group contained an approximately equal number of randomly selected low, intermediate and high-risk 186 

adenomas and CRC. Alternate samples were assigned to test or validation models (Supplementary_Table.3); when 187 

used, total sample sets were also bootstrapped by randomForest during training. Each forest was built with 1,000 trees. 188 

Mtry was determined based on the lowest out-of-bag error. 95% confidence intervals for the receiver operating 189 
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characteristic (ROC) curves and AUC were created using 2,000 stratified bootstrap replicates. AUC were compared 190 

using roc.test, using the method of DeLong.32 Confusion matrices were created using the predict function of 191 

randomForest using the default vote proportion cutoff of 50%.   192 

Taxa were compared to nine CRC faecal metagenomic datasets 33-40, processed using MetaPhlAn version 3.0.41 42 43 The 193 

majority of the datasets have been comprehensively profiled in two recent meta-analyses. 33 34 Datasets were collapsed 194 

to genus-level for comparison. The Thomas_c34 and Yachida35 datasets were merged as they originated from the same 195 

cohort. RF models were built as above, using taxa present in all datasets. For within-dataset comparisons, each study 196 

was randomly split 20 times into equal sized training and validation sets, and mean AUC recorded. For the leave-one-197 

dataset-out (LODO), models were built using all but one dataset, and validated on the missing dataset. For each 198 

test/validation pair of cohorts, confusion matrices were created using the predict function of randomForest using the 199 

default vote proportion cutoff of 50%.  Sensitivity was calculated as the proportion of CRC samples called as CRC within 200 

the validation dataset, based on the test dataset RF model. Specificity was calculated as the proportion of control 201 

samples called as control. For the self-validation comparisons, the mean sensitivity and specificity of the 20 repetitions 202 

was recorded.  203 

To compare our gFOBT-derived biomarker with microbial taxonomic biomarkers from existing datasets, we used the 204 

genus-summarised profiles to calculate a single, meta-analysed biomarker. This used the 'metafor' R package with a 205 

random effects model incorporating standardised mean differences from these taxonomic profiles and sample sizes 206 

from all ten datasets (including either gFOBT CRC vs blood-negative or CRC vs colonoscopy-normal). 207 

Data is available: PRJEB37635 (http://www.ebi.ac.uk/ena/data/view/PRJEB37635). 208 

 209 

Role of the funding source 210 

The funders had no role in study design, data collection, analysis, interpretation, or writing. The corresponding author 211 

had full access to all the data and final responsibility for the decision to submit for publication. 212 

 213 

RESULTS 214 

Summary of population characteristics and microbiome profiling 215 

We profiled the faecal microbiomes of 2,252 NHSBCSP participants using gFOBT samples, confirming that NHSBCSP 216 

gFOBT contained adequate material for V4 16S rRNA gene amplicon sequencing. Samples retained after quality control 217 

represented phenotypes of blood-negative gFOBT (n=491 (22%)) and blood-positive (n=1761 (78%)). The blood-218 

positive samples were grouped according to subsequent colonoscopy diagnosis: CRC (n=430 (19%)), adenoma (n=665 219 

(30%)), colonoscopy-normal (n=300 (13%)), non-neoplastic diagnosis (n=366 (16%))(Table.1). The male 220 

preponderance of CRC and adenoma samples (67% and 65%) likely reflects the male-preponderance of colorectal 221 

neoplasia;44 in later analysis we show that sex has minimal effect on overall microbiome structure.  222 
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Of the CRC samples, lesion data was available for 359/430 (83%), corresponding to 378 colorectal cancers (342 (95%) 223 

samples resulted in a single colorectal cancer being detected at colonoscopy; 17 (5%) samples resulted in more than 224 

one synchronous colorectal cancer being detected at colonoscopy). Where type was recorded (n=298 (79%)), the 225 

majority were adenocarcinoma (n=297 (99%)); and one rectal tumour was a squamous cell carcinoma (<1%). Where 226 

grade was recorded (n=253 (67%)), the majority were well/moderately differentiated (n=224 (89%)); 29 (11%) were 227 

poorly differentiated. The commonest tumour location was sigmoid/rectum (Table.2). Unfortunately, tumour stage 228 

was not available. Of the non-neoplastic samples, lesion data was available for 333/366 (91%). Many had more than 229 

one diagnosis, the commonest being ‘diverticulosis’ (Supplementary_Methods). 230 

Table 1. Table of participant characteristics. 231 

 

Clinical group 

Mean 

age (SD) 

Number of samples 

Total Male (%) Female (%) 

gFOBT blood-negative  67.0 (4.5) 491 (22%) 205 (42%) 286 (58%) 

gFOBT blood-positive, with the following diagnosis at colonoscopy: 

        CRC  68.1 (5.0) 430 (19%) 289 (67%) 141 (33%) 

        Adenoma  66.3 (4.7) 665 (30%) 432 (65%) 233 (35%) 

        Normal colonoscopy  66.6 (4.3) 300 (13%) 155 (52%) 145 (48%) 

        Non-neoplastic diagnosis  66.7 (4.7) 366 (16%) 188 (51%) 178 (49%) 

Table 2. Table of CRC locations. 232 

CRC tumour location Number 

Ileum 1 (<1%) 

Caecum 43 (11%) 

Ascending colon 40 (11%) 

Hepatic flexure 21 (6%) 

Transverse colon 32 (8%) 

Splenic flexure 15 (4%) 

Descending colon 12 (3%) 

Sigmoid 90 (24%) 

Recto-sigmoid 27 (7%) 

Rectum 96 (25%) 

Anus 1 (<1%) 

Pairs of technical DNA extraction replicates extracted after prolonged storage had similar microbiome structures, 233 equivalent to ‘same-day’ DNA extraction replicates, confirming that time until DNA extraction has minimal effect on 234 

results (Supplementary_Fig.1). 235 

 236 
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Gut microbiome profiles of the NHSBCSP cohort 237 

While the amount of biomass and resolution of amplicon-based taxonomic profiling from these samples was limited, it 238 

was more than sufficient to establish overall faecal microbiome structure, as well as to subsequently classify by 239 

phenotype. As expected, microbial structure was dominated by a gradient trade-off between Bacteroidetes versus 240 

Firmicutes phylum members, with beta diversity minimally influenced by clinical group (~1% variation in microbiome 241 

structure, by Bray-Curtis PERMANOVA), and even less by sex and age (Supplementary_Table.1&Fig.2). Microbiome 242 

structure differed significantly between individual clinical groups by Bray-Curtis PERMANOVA 243 

(Supplementary_Table.2). Similarly, alpha diversity was significantly higher in blood-negative and CRC samples, 244 

although with very small effect size difference between groups (Kruskal-Wallis p = 4.50 x 10-245 

25)(Supplementary_Table.3&Fig.2). This suggested a combination of both global and taxon-specific differences in the 246 

microbiome during CRC, in agreement with previous studies.45 247 

We thus went on to identify specific taxa that were significantly enriched/depleted between clinical groups, which 248 

proved to include CRC-microbiome associations described in the existing literature. Both inflammation-associated and 249 

oral microbes were enriched, such as Escherichia-Shigella, Peptostreptococcus, Porphyromonas, Fusobacterium and 250 

Parvimonas (Supplementary_Fig.3). Interestingly, 43 taxa were significantly enriched and 43 depleted in the blood-251 

negative group compared with the blood-positive colonoscopy-normal group. Existing studies usually compare CRC to 252 

either healthy volunteers (equivalent to the blood-negative group) or controls with a normal colonoscopy; it is rare for 253 

both groups to be available within a study. Thus, notably, choice of control group was shown to affect which taxa were 254 

CRC-enriched relative to controls (Supplementary_Fig.3). Of the CRC-enriched taxa, seven featured in both 255 

comparisons (including Porphyromonas, Parvimonas and Peptostreptococcus), and of the CRC-depleted taxa, only one 256 

featured in both comparisons (Anaerotruncus). An inverse association with CRC was shown for 25 taxa between the 257 

two choices of control group (including Fusobacterium and Escherichia-Shigella). These findings indicate that choice of 258 

control group can have an important bearing on results, and suggest that certain taxa (especially typically oral taxa e.g. 259 

Porphyromonas, Parvimonas and Peptostreptococcus) may have an association with CRC that is independent of the 260 

presence of faecal-blood (at least at the level detectable by gFOBT), whereas others (Fusobacterium and Escherichia-261 

Shigella) may not. 262 

 263 

Microbiome analysis of NHSBCSP samples has the potential to improve CRC screening 264 

To determine whether microbiome profiles from NHSBCSP gFOBT samples could improve screening accuracy, we 265 

created random forest (RF) classifiers using relative abundances of genera (Fig.1). Whilst LEfSe indicates taxa which 266 

are significantly enriched or depleted between groups, RF classifiers identify taxa which have predictive associations.28 267 

29 30 We assessed four models, the first two of which investigated whether microbiome analysis could be used as a first-268 

tier screen - that is, to distinguish CRC or neoplasm from blood-negative gFOBT. Based on a randomly selected 50% 269 

training-validation split, CRC outcomes were separated from blood-negative gFOBTs (“CRC vs blood-negative”) with 270 

AUC 0.86 (0.82-0.89)(Supplementary_Table.4-6). The second model distinguished neoplasm (a group comprising an 271 

approximately equal ratio of CRC, low, intermediate and high-risk adenoma) from blood-negative gFOBTs (“Neoplasm 272 
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vs blood-negative”) with AUC 0.78 (0.74-0.82)(Supplementary_Table.5&6). Neither model showed a significant 273 

difference between AUCs of the test or validation sets (Supplementary_Table.5). 274 

The next two models assessed whether microbiome profiles could distinguish, strictly among the blood-positive 275 

samples, CRC or neoplasm from subsequently colonoscopy-normal samples (i.e. a second-tier screen, to identify gFOBT 276 

false positives). As expected, these more biologically similar outcomes were more difficult to differentiate, but were 277 

still accessible via microbiome measures. The third model distinguished CRC from colonoscopy-normal gFOBT (“CRC 278 

vs colonoscopy-normal”) with AUC 0.79 (0.74-0.83)(Supplementary_Table.5&6&Fig.4). The last model 279 

differentiated neoplasms from colonoscopy-normal gFOBT (“Neoplasm vs colonoscopy-normal”) with AUC 0.73 (0.68-280 

0.77)(Supplementary_Table.5&6&Fig.4). Again, neither model showed a significant difference between AUCs of the 281 

test or validation sets (Supplementary_Table.5). 282 

All of the models performed significantly better than models generated for comparison which used age and sex. 283 

Combining age and sex with relative abundances of genera led to a small improvement in AUC for three of the models 284 

(Supplementary_Table.5). Model performance remained similar after restricting the models to a small number of 285 

taxa, mimicking what might be possible by qPCR; for all four models, AUC increased as the number of taxa increased 286 

up to fifteen, after which the AUC approximately stabilised (Fig.2,Supplementary_Table.5&Fig.4). Interestingly, the 287 

fifteen most important taxa for the "CRC vs blood-negative" and "CRC vs colonoscopy-normal" models featured eight 288 

of the same taxa, including Fusobacterium, Peptostreptococcus, Parvimonas, Gemella, Odoribacter and Faecalibacterium, 289 

and three taxa (Faecalibacterium, Akkermansia and Escherichia-Shigella) were shared between the “Neoplasm vs blood-290 

negative” and “Neoplasm vs colonoscopy-normal” models (Supplementary_Fig.4). Several of the same taxa appeared 291 

in the fifteen taxa most important to the “CRC vs blood-negative” and “Neoplasm vs blood-negative”, and “CRC vs 292 

colonoscopy-normal” and “Neoplasm vs colonoscopy-normal” models respectively (Supplementary_Fig.4). 293 

Finally, we compared the performance of these 16S-based RF models to similar models using existing faecal shotgun 294 

metagenomic datasets (Fig.2,Supplementary_Fig.5).33-40 As the majority of these existing studies had only profiled 295 

CRC, we restricted the comparison to the two CRC RF models. Within-study cross-validation of the “CRC vs blood-296 

negative” model produced an AUC of 0.86, which compared favourably with the AUCs of the external datasets (range 297 

0.59-0.95)(Fig.2, Supplementary_Fig.5). Between-study performance of the model also fell within the range of 298 

performances of the models built using the external datasets, and the majority of the most important taxa paralleled 299 

those of the external studies, indicating a degree of generalisability. The “CRC vs. colonoscopy-normal” model had a 300 

within-study cross-validation AUC that was within the range of the models built using external datasets, but between-301 

study validation performance was lower (Fig.2, Supplementary_Fig.5). Taxa which were of highest importance to the 302 

model were shared by many of the models built using external datasets, indicating both their potential underlying 303 

biological importance and their ability to be consistently detected by a variety of assays. 304 

For completeness, we also explored the ability of microbial RF models to detect adenoma. Performance was generally 305 

comparable; models distinguished CRC from adenoma with AUC 0.71 (0.66-0.76), adenoma from colonoscopy-normal 306 

with AUC 0.72 (0.67-0.77) and adenoma from blood-negative with AUC 0.84 (0.80-0.87) (Supplementary_Table.7-307 

10). The taxa of greatest importance to the RF models included several ‘CRC-associated’ taxa. Lastly, we investigated 308 the performance of bacteria RF models using a ‘colonoscopy-control’ group, comprising an approximately equal ratio 309 
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of non-neoplastic and colonoscopy-normal samples (Supplementary_Table.7-10). CRC was detected with an AUC 310 

0.76 (0.72-0.80), similar to the RF model which used colonoscopy-normal samples alone as the control group. However, 311 

the models designed to detect adenoma and neoplasm performed inferiorly compared with RF models built using 312 

colonoscopy-normal samples alone. This could reflect the heterogeneous nature of the non-neoplastic group, or greater 313 

microbiome similarity between the adenoma and non-neoplastic groups. 314 

 315 

DISCUSSION 316 

To our knowledge, this is the first study to profile the microbiome of large numbers of CRC screening samples, collected 317 

and processed routinely by a national screening programme, and to demonstrate the potential of microbiome analysis 318 

as an accurate adjunct to early screening. We profiled the faecal microbiome of 2,252 processed NHSBCSP gFOBT 319 

samples, representing blood-negative results, colonoscopy-normal outcomes, CRC, adenomas and non-neoplastic 320 

diagnoses. Using random forest models as a simple classification method, microbiome taxonomic profiles were able to 321 

serve as accurate first and second-tier screens, the former separating CRC/neoplasm from blood-negative results, and 322 

the latter separating CRC/neoplasm from normal-colonoscopy results. All four microbiome-based models performed 323 

significantly better than models built using the only clinical data available - age and sex - and were robust to hold-out 324 

validation and in comparison to external data. 325 

As a baseline for translational applications, the first-tier “CRC vs blood-negative” model performed similarly to existing 326 

screening methods. This includes those that rely on low-dimensional or high-dimensional biomarkers. For example, a 327 

meta-analysis of FIT and a separate study of FIT for CRC screening reported an AUC for the detection of CRC as high as 328 

0.95.46 47 Separately, a trial of the FDA-approved Cologuard reached an AUC of 0.94 for the discrimination of CRC vs 329 ‘non-advanced neoplasia/lesser findings’, and with FIT an AUC of 0.89.48 Our microbiome-based “Neoplasm vs blood-330 negative” model again performed similarly (possibly superiorly) to existing methods (AUCs from the aforementioned 331 

studies of 0.72(FIT), 0.67(FIT) and 0.73(Cologuard)),47 48although differences in the composition of the case and 332 

control groups between the studies should be borne in mind. Importantly, in comparison with Cologuard, which 333 

requires whole stool and costs approximately $600/test, amplicon-based microbiome profiling requires very little 334 

biomaterial and would be easier to translate to a national screening programme. The fact that model performance 335 

required as few as fifteen taxa, in agreement with existing studies, raises the potential of a rapid qPCR-based test which 336 

could be integrated into a screening programme at low cost.34 49-52 Although we were not able to assess it in our study, 337 

it has been shown that microbiome-analysis is able to detect lesions missed by FIT, suggesting a potential role as an 338 

adjunct to FIT for the detection of non-bleeding CRC.53 339 

The second-tier models perhaps showed the greatest clinical potential, as they were able to identify CRC and neoplasms 340 

from among the blood-positive gFOBT cohort. Currently all NHSBCSP participants with a blood-positive gFOBT are 341 

referred for colonoscopy, yet 50% reveal a normal bowel or non-neoplastic condition. The high number of unnecessary 342 

colonoscopies carries associated risks and strains endoscopy capacity. There are limited examples of second-tier 343 

screens in the existing literature. A study from the NHSBCSP programme demonstrated second-tier performance for 344 

the detection of neoplasm by FIT with AUC 0.63, improved to 0.66 by incorporating screening data.54 A similar study 345 
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reported an equivalent AUC of 0.69 (FIT), improved to 0.76 by questionnaire-collected data.55 The advantage of a 346 

microbiome-based second-tier screen that could be performed using existing screening samples is that it would not 347 

require additional tests, nor would it place extra burden on screening participants, something which can potentially 348 

jeopardise screening uptake. 349 

Given that we profiled the microbiome directly from gFOBT screening samples, we were interested to compare the 350 

performance of our models with the existing microbiome literature, most of which has used shotgun metagenomics 351 

and/or frozen whole stool. Performance compared favourably: meta-analyses and a systematic review reported AUCs 352 

of 0.68-0.95 (detection of CRC), and AUCs of 0.59-0.94 (detection of neoplasm - many studies, like ours, report inferior 353 

detection of neoplasms compared with CRC, due to the reduced discriminatory power of microbiome-based models to 354 

detect adenomas34). 5 33 34 49 50 56-59  It is remarkable that our models performed so well in light of the fact that samples 355 

were prepared routinely by screening participants in their own homes (in the majority of instances over three days), 356 

transported through the routine post, stored at room temperature (for on average one year prior to DNA extraction), 357 

and the following variables, all of which affect the microbiome, were unknown: antibiotic/medication-use, diet, 358 

comorbidities, smoking status, and BMI.60 While this technical variability and missing information will unavoidably 359 

affect the precision of microbiome measurements feasible from gFOBT, and their applicability to general microbiome 360 

epidemiology, it is noteworthy that they do not impede gFOBT microbiome use for CRC screening. We further 361 

confirmed this in a quantitative manner, by comparing the performance of our CRC models with models built using 362 

nine external metagenomic datasets. Validation of the gFOBT-based models among studies showed similar 363 

performance and, interestingly, identification of many of the same discriminatory taxa.  364 

These taxa included those previously described as CRC-associated, including Fusobacterium, Escherichia-Shigella, 365 

Peptostreptococcus, Porphyromonas, Parvimonas, Alistipes, and Gemella, and those that have previously been shown to 366 

be inversely associated with CRC, including Faecalibacterium61 and Lactobacillus.49 Although we limited ourselves to 367 

analysis at the genus level for simplicity, these genera contain species which have been associated with CRC, including 368 

inflammation-associated and oral-taxa: Fusobacterium nucleatum,49 pks+Escherichia coli,62 Peptostreptococcus 369 

stomatis,36 Peptostreptococcus anaerobius,35 Porphyromonas asaccharolytica,49 Porphyromonas somerae,33 370 

Porphyromonas uenonis,33 Parvimonas micra,49 Alistipes finegoldii,49 and Gemella morbillorum.33 It is hypothesised that 371 

oral taxa may increase colonic mucosal permeability, allowing bacterial invasion, with resulting inflammation, and 372 

subsequent epithelial proliferation.63 64 65 Certain taxa have also been shown to be capable of inducing and/or 373 

promoting tumourigenesis: colibactin, produced by pks+Escherichia coli, is able to damage DNA,62 whilst Fusobacterium 374 

nucleatum promotes tumour proliferation and a pro-tumour inflammatory state.66 It was interesting that some (but 375 

not all) of these taxa remained CRC-enriched even in comparisons with the blood-positive colonoscopy-normal group, 376 

suggesting that certain CRC-microbiome associations may act independently of the presence of faecal blood.  377 

Among this study's potential limitations, two stand out. The first is that participants in the blood-negative group did 378 

not undergo colonoscopy, as this would disrupt routine screening. As the sensitivity of gFOBT for CRC is estimated to 379 

be 50%, the blood-negative group may have included undiagnosed adenomas or CRC.67-69 However, because the 380 

incidence of CRC is low, the absolute number of undiagnosed CRC is predicted to have been small, with little effect on 381 

the performance of the RF models, except perhaps to have made the result more conservative. This leads to an arguably 382 
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minor, but still systematic, difference between these controls and a broader population: the specific models evaluated 383 

here will under-predict non-bleeding cancers and should be further generalised prior to application. The second is that 384 

the majority of the blood-negative samples were collected within a short time-frame at the beginning of the study. 385 

However, any effect due to prolonged storage prior to DNA extraction is likely to have been minimal, as DNA extraction 386 

replicates created after 6-23 months storage at room temperature demonstrated similar microbiome structures, 387 equivalent to ‘same-day’ DNA extraction replicates.  388 

In addition to the refinements that would be necessary to translate these results into a screening product, including 389 

investigation of sensitivity, consistency and cost-effectiveness analysis, future work aims to replicate the study using 390 

NHSBCSP FIT samples. The advantage of having performed the current study is that, should microbiome analysis of FIT 391 

(which collects a much smaller volume of faeces) not produce adequate accuracy, a gFOBT-based microbiome 392 

screening test could still be used as an adjunct to the NHSBCSP. We also plan to investigate whether screening accuracy 393 

could be improved further by the incorporation of additional clinical data, FIT concentration, and faecal mutation, 394 

bacterial virulence-factor or toxin testing.33 34 49 52 70 71 In conclusion, this study has confirmed that microbiome analysis 395 

can be performed on samples collected and processed routinely by a national CRC screening programme to improve 396 

accuracy. Models required as few as fifteen taxa, making this practical to implement as an inexpensive qPCR-based test. 397 

This could reduce the number of unnecessary colonoscopies in countries which use faecal occult blood test screening.  398 

 399 

  400 
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FIGURE LEGENDS 401 

Figure 1: Microbiome taxonomic profiling demonstrates potential to improve CRC screening accuracy. (A) 402 

Overview of the NHS Bowel Cancer Screening Programme (NHSBCSP) and the design of this study. Briefly, we used 16S 403 

amplicon-based microbiome profiling from routinely collected gFOBT specimens to supplement first-tier 404 

(CRC/neoplasm vs. blood-negative) or second-tier (CRC/neoplasm vs. colonoscopy-normal) opportunities for early 405 

cancer screening. (B) Microbiome profiles improve CRC or neoplasm classification versus blood-negative gFOBT 406 

samples (first-tier screening application) or blood-positive colonoscopy-normal samples (second-tier screening 407 

application) relative to purely clinical characteristics (age and sex). Classification used random forest (RF) models and 408 

shows the performance of the ‘total’ RF models bootstrapped from the total datasets. Shading represents the 95% 409 

CI. Clinical = RF models based on age & sex. Bacteria = RF models based on relative abundances of genera. Neoplasm = 410 

a group comprising an approximately equal ratio of CRC, low-risk adenoma, intermediate-risk adenoma and high-risk 411 

adenoma samples. 412 

 413 

Figure 2: Microbiome-based gFOBT CRC/neoplasm classification requires as few as 15 taxa and compares 414 

favourably with models built using external shotgun metagenomic datasets. (A) Genus-level bacteria only ‘total415 

’ RF classification models were built using an increasing number of taxa of decreasing RF importance score. Shading 416 

represents the 95% CI of the AUC. Neoplasm = a group comprising an approximately equal ratio of CRC, low-risk 417 

adenoma, intermediate-risk adenoma and high-risk adenoma samples. For each model, the AUC plateaus at 418 

approximately 15 taxa. (B) Performance of the amplicon-based “CRC vs blood-negative” total RF model compared 419 

to models built using external faecal shotgun metagenomic datasets. The matrix displays cross-prediction AUCs. LODO 420 

(leave-one-dataset-out) denotes AUC generated by training a model using all but the dataset of the associated column 421 

and testing it using the dataset of that column. Within-study and cross-study performance of the “CRC vs blood-422 negative” model falls within the range of performances of the external models, indicating a degree of generalisability. 423 

(C) Specific taxa prioritised by gFOBT amplicon-based regression models (at the genus level) are strikingly similar to 424 

genera prioritised from shotgun metagenomic taxonomic profiles in complementary populations. 425 

  426 
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