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Abstract

Polygenic scores are increasingly powerful predictors of educational achievement. It is

unclear, however, how sets of polygenic scores, which partly capture environmental effects,

perform jointly with sets of environmental measures, which are themselves heritable, in pre-

diction models of educational achievement. Here, for the first time, we systematically investi-

gate gene-environment correlation (rGE) and interaction (GxE) in the joint analysis of

multiple genome-wide polygenic scores (GPS) and multiple environmental measures as

they predict tested educational achievement (EA). We predict EA in a representative sample

of 7,026 16-year-olds, with 20 GPS for psychiatric, cognitive and anthropometric traits, and

13 environments (including life events, home environment, and SES) measured earlier in

life. Environmental and GPS predictors were modelled, separately and jointly, in penalized

regression models with out-of-sample comparisons of prediction accuracy, considering the

implications that their interplay had on model performance. Jointly modelling multiple GPS

and environmental factors significantly improved prediction of EA, with cognitive-related

GPS adding unique independent information beyond SES, home environment and life

events. We found evidence for rGE underlying variation in EA (rGE = .38; 95% CIs = .30,

.45). We estimated that 40% (95% CIs = 31%, 50%) of the polygenic scores effects on EA

were mediated by environmental effects, and in turn that 18% (95% CIs = 12%, 25%) of

environmental effects were accounted for by the polygenic model, indicating genetic con-

founding. Lastly, we did not find evidence that GxE effects significantly contributed to multi-

variable prediction. Our multivariable polygenic and environmental prediction model

suggests widespread rGE and unsystematic GxE contributions to EA in adolescence.

Author summary

Our study investigates the complex interplay between genetic and environmental contri-

butions underlying educational achievement (EA). Polygenic scores are becoming

increasingly powerful predictors of EA. While emerging evidence indicates that polygenic
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scores are not pure measures of genetic predisposition, previous quantitative genetics

findings indicate that measures of the environment are themselves heritable. In this regard

it is unclear how such measures of individual predisposition jointly combine to predict

EA. We investigate this question in a representative UK sample of 7,026 16-year-olds

where we provide substantive results on gene-environment correlation and interaction

underlying variation in EA. We show that polygenic score and environmental prediction

models of EA overlap substantially. Polygenic scores effects on EA are partly accounted

for by their correlation with environmental effects; similarly, environmental effects on EA

are linked to polygenic scores effects. Nonetheless, jointly considering polygenic scores

and measured environments significantly improves prediction of EA. We also find that,

although correlation between polygenic scores and measured environments is substantial,

interactions between them do not play a significant role in the prediction of EA. Our find-

ings have relevance for genomic and environmental prediction models alike, as they show

the way in which individuals’ genetic predispositions and environmental effects are inter-

twined. This suggests that both genetic and environmental effects must be taken into

account in prediction models of complex behavioral traits such as EA.

Introduction

Education is compulsory in nearly all countries because it provides children with the skills,

such as literacy and numeracy, that are essential for successfully participating in society.

How well children perform at school, indicated by their educational achievement (EA; not

to be confused with educational attainment, which is a measure of years spent in education),

predicts many important life outcomes, especially further education and occupational status

[1]. Quantitative genetic research based on twin studies showed that EA is 60% heritable

throughout the school years [2, 3]. These studies also suggested that about 20% of the vari-

ance of EA and other learning-related traits can be ascribed to shared environmental fac-

tors, for example growing up in the same family and going to the same school. However, the

picture became more complicated with the discovery that ostensible measures of the envi-

ronment associated with educational achievement showed genetic influence–most notably,

parents’ educational attainment, socio-economic status (SES) and aspects of the home envi-

ronment [4].

Quantitative genetic theory distinguishes two types of interplay between genetic and envi-

ronmental effects, genotype-environment correlation (rGE) and genotype-environment inter-

action (GxE) [5]. rGE occurs when an individual’s genotype covaries with environmental

exposures. There are three types of rGE: passive, active and evocative. Passive rGE results from

the inheritance of both genetic propensities and environments linked to parental genotypes.

That is, individuals inherit from parents a genetic predisposition to a particular trait, but

parental genotypes are also associated with rearing environments that, in turn, increase the

likelihood of developing a particular trait. For example, individuals with stronger genetic pre-

dispositions to educational attainment tend to grow up in higher socioeconomic status families

[6]. Evocative rGE happens when individuals’ genetic propensities evoke a response from the

surrounding environment; for example children’s predisposition to higher food intake might

elicit restrictive food behaviors from their parents [7]. Active rGE results from individuals

actively selecting environments that are linked to their genetic propensity; for example, indi-

viduals with a higher genetic predisposition to educational attainment tend to migrate to eco-

nomically prosperous regions that offer greater educational opportunities [8].
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GxE, on the other hand, refers to genetic moderation of environmental effects. That is,

when the effects of environmental exposures on phenotypes depend on individuals’ genotypes.

Equivalently, environmentally moderated genetic effects occur when genetic effects on a phe-

notype depend on environmental exposures. Importantly, however, rGE may confound GxE

effects [9]. For example, if a genetic predisposition for a particular trait is found in a particular

environment, it is difficult to know whether this represents rGE between the trait and the envi-

ronment or true GxE. This picture becomes even more complicated when we consider that

environments are themselves heritable [4].

Research on GxE was rejuvenated when it became possible to include measured genetic

and environmental factors in statistical models. Hundreds of studies were published purport-

ing to show interactions between candidate genes and environmental measures as they predict

behavioural traits. For example, a seminal GxE study in the field [10] showed that carriers of

two copies of the short serotonine allele on the 5HTT gene exposed to adversity had an

increased the risk for depression compared to their genetic counterpart. However, GxE effects

such as these have a poor replication history [11, 12]. The main problem with this approach is

that it ignores the high polygenicity of complex traits, with a reductionist focus on single ‘can-

didate’ variants. This combined with typically small sample sizes, underpowered to detect the

very small effects that can be expected for GxE, led to a replication failure [13].

In complex traits, very few individual variants capture more than a tiny fraction of trait var-

iance [14]. Genome-wide polygenic scores (GPS) are the missing piece for investigating the

interplay between genes and environment because they can theoretically capture genetic influ-

ences up to the limit of SNP-based heritability, which is usually 25–50% of the total heritability

for behavioural traits. GPS are indices of an individual’s genetic propensity for a trait and are

typically derived as the sum of the total number of trait-associated alleles across the genome,

weighted by their respective association effect size estimated through genome-wide association

analysis [15]. A GPS derived from a genome-wide association study of educational attainment

(years of schooling) [16] predicts up to 15% of the variance of EA [17]. As more powerful GPS

become available, they have begun to be used widely in research on GxE [18–23] and rGE [7,

24–27].

Recently it has been possible to dissect the role of parental genetics on child achievement by

splitting the parental genome into transmitted alleles (indexing passive rGE) and non-trans-

mitted alleles (indexing environmentally transmitted parental genetic effects). The latter dem-

onstrated that parental genotypes are associated with the environment they provide for the

child [28, 29]. In fact, a growing body of evidence is showing the importance of considering

gene-environment correlation when assessing polygenic effects on trait variation [30, 31],

especially for educationally relevant traits. Paralleling previous findings from the quantitative

genetics literature, a key point is that environmental measures are themselves heritable and

GPS effects can be mediated by the environment, while environmental effects can be

accounted for by genetics (genetic confounding). In this sense, polygenic scores for cognitive

traits are not pure measures of genetic predisposition: their predictive power also captures

environmental effects. For the same reason, environmental measures are not pure measures of

the environment.

Rather than examining rGE and GxE for single polygenic scores and environmental mea-

sures, here we look at sets of GPS [32] and environmental measures. A multivariable approach

is especially warranted for EA because twin analyses show that the high heritability (60%) of

EA reflects many genetically influenced traits, including personality and behaviour problems

in addition to cognitive traits [33, 34]. Correspondingly, EA GPS is associated with a wide

range of traits, including psychiatric, anthropometric and behavioural traits [35]. Similarly,

environmental predictors of EA are also intercorrelated (e.g. SES and home environment).
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However, it is not yet clear how sets of polygenic scores, partly capturing environmental

effects, perform jointly with sets of environmental measures, which are themselves heritable,

and the effect that their interplay (rGE and GxE) might have on prediction.

Here for the first time we systematically investigate the interplay of GPS and environmental

measures in the multivariable prediction of tested educational achievement. We jointly analyse

multiple GPS and multiple environmental measures, considering the effect of their interplay in

hold-out set prediction. Specifically, we test the joint prediction of 20 well-powered GPS for

psychiatric, cognitive and anthropometric traits and 13 proximal and distal measured environ-

ments including life events, home environment and SES (see methods for descriptions of all

measures). First, we model polygenic scores (henceforth G model) and environmental mea-

sures (henceforth E model), separately and jointly (full model), to predict educational achieve-

ment in penalized regression models [36] with hold-out set tests of prediction accuracy.

Models are tuned using repeated cross-validation in 80% of the sample and tested in the

remaining 20% hold-out set. Penalized methods are especially warranted when dealing with

multiple correlated predictors as they can overcome problems of multicollinearity and overfit-

ting. To investigate the relative contributions of the employed predictors to the full model, we

carry out post-selection estimation [37] of partial regression coefficients, testing independent

effects of single GPS and environmental measures. Secondly, we separate direct from mediated

effects of the multivariable G and E models on EA and assess rGE defined in terms of the GPS

and environmental measures employed. Finally, we assess GxE using a hierarchical group-

lasso technique [38] to systematically discover two-way interactions between all GPS and envi-

ronmental measures, and test their improvement in prediction of EA.

Results

Joint modelling of GPS and environmental effects

In a first step we tested three models for association with EA: all genetic factors (polygenic

scores; G model), all environmental factors (measured environments; E model), and a joint

model of all factors (full model; G+E). The G+E model achieved the best hold-out sample pre-

diction compared to the G or E models considered separately. The full model predicted 36% of

the variance (95% CI = 30.4, 41.6) in EA (Fig 1 panel B, S2 Table), 6% more than the E model

(30.1%; 95% CI = 24.3, 35.6; S1 Fig) and up to 18% more compared to the G model alone

(18.3%; 95% CI = 12.7, 23.6; S2 Fig). Nested comparisons of the G+E model vs the G and E

models separately indicated that the difference in hold-out set prediction accuracy between

models (Fig 1 panel D, S2 Table) was significant for both the G+E model vs the E model

(median R2 diff = 5.9%; 95% CI = 2.8, 9.1) and the G+E model vs the G model (median R2

diff = 17.7%; 95% CI = 13.2, 22.3). This suggested the presence of genetic effects on EA not

mediated via environmental effects, and vice versa of environmental effects not accounted for

by the genetic effects. Next, we untangled the specific independent contributions of GPS and

measured environments to variation in EA.

Best-model and coefficient estimation

The best G+E model selected via 10-fold repeated (100 repeats; Fig 1 panel A) cross-validation

in the training set included 24 predictors, 14 of which were GPS (blue) while 10 were environ-

ments (orange) (Fig 1, panel C). Of these top EA-increasing variables were SES in early life, fol-

lowed by the GPS for educational attainment (EA3 GPS) and the GPS for intelligence (IQ3

GPS), while the top trait decreasing variable was chaos at home at age 12. In terms of coeffi-

cient estimation, partial regression coefficients in post-selection inference analyses (Fig 2 and

S3 Table) showed that EA3 GPS (β = 0.13; 95% CI = 0.09, 0.17; p = 8.45E-7) and IQ3 GPS (β =
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0.12; 95% CI = 0.08, 0.15; p = 1.33E-7) remained significant in the model after adjusting for

the other predictors. SES was by far the most powerful predictor in the conditional model (β =
0.37; 95% CI = 0.34, 0.40; p = 2.30E-60). Other environmental exposures that remained signifi-

cant were ‘chaos at home’ at age 12 (β = -0.14; 95% CI = -0.17, -0.12; p = 3.93E-15) and two life

events experienced in the past year (all trait decreasing), including ‘moving to a new school’ (β
= -0.07; 95% CI -0.10, -0.04; p = 2E-5) and ‘involved with drugs’ (β = -0.06; 95% CI -0.09,

-0.03; p = 2E-3). SES, EA3 GPS, IQ3 GPS and ‘chaos at home’ were significant in all three mod-

els (i.e. naive, hold-out and conditional).

Fig 1. Multivariable prediction of educational achievement. Panel A = repeated 10-fold cross validation in training set, for the
environmental (E), multi-polygenic score (G), joint (G+E), and interaction (G�E) prediction models. Panel B = Hold-out set prediction of
EA for best models obtained via repeated cross validation in training set. Error bars are 95% bootstrapped confidence intervals. Panel C = G
+E model used in hold-out set prediction. Figure shows variables selected via repeated cross-validation in the training set, and relative
importance. Panel D = Comparison of prediction accuracy for models tested as bootstrapped R2 difference between nested models in the
hold-out set. Distributions represent independent (non-mediated) genetic effects (G+E−E), environmental effects (G+E−G), and G�E
effects (G�E–G+E).Note. PGS = polygenic scores, ENV = Environmental measures. ASD = Autism SpectrumDisorder, BIP = Bipolar
Disorder, BMI = Body Mass Index, EA3 = Educational Attainment, IQ3 = Intelligence, OCD = Obsessive Compulsive Disorder,
PTSD = Post-Traumatic Stress Disorder, SCZ = Schizophrenia.

https://doi.org/10.1371/journal.pgen.1009153.g001
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rGE and mediated environmental vs GPS effects

S2 Table shows prediction model estimates for all models considered, as well as nested com-

parisons of hold-out set prediction accuracy (R2) for the full model vs. E and the full model vs.

G. We tested the correlation between the EA predicted values from the G model (Gea) and the

E model (Eea) in the hold-out-set. This was r = 0.38 (95% CIs = 0.30, 0.45), indicating the

extent of overlapping information between the G and E models in hold-out set prediction or,

in other words, of rGE (as defined by the variables employed) underlying variation in EA.

Then we proceeded to test the extent to which G and E effects on EA were reciprocally medi-

ated (see methods). S4 Table shows results of mediation analyses. We found evidence for

environmentally mediated genetic effects (indirect path: β = 0.17; bootstrapped 95% CI 0.13,

0.21) and genetically mediated environmental effects (indirect path: β = 0.10; bootstrapped

Fig 2. Relative contributions of model selected variables for the G+Emodel in the prediction of educational achievement. Figure shows partial regression
coefficients, and 95% CIs around estimates. Naive = partial regression coefficients frommultiple regression of selected variables in Training set; Hold-out = partial
regression coefficients of selected variables in the hold-out set; Conditional = partial regression coefficients of training set for selected variables estimated with a
conditional probability from a truncated distribution (see methods section).Note. ASD = Autism SpectrumDisorder, ADHD = Attention-Deficit Hyperactivity
Disorder, BIP = Bipolar Disorder, EA3 = Educational Attainment, IQ3 = Intelligence, MDD =Major Depressive Disorder, SWB = Subjective Well-Being,
OCD = Obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, Risk PC1 = First Principal Component of Risky behaviors, SCZ = Schizophrenia.

https://doi.org/10.1371/journal.pgen.1009153.g002
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95% CI 0.06, 0.14). The effects of Gea on EA (β = 0.43; bootstrapped 95% CIs = 0.36, 0.50) were

reduced by 40% after introduction of the Eeamediator in the model (β = 0.26; bootstrapped

95% CIs = 0.19, 0.33); these effects can be interpreted as the direct G model contributions to

EA not accounted for by the E model. In other words, 40% of G effects on EA were explained

by environmental mediation. Similarly, the direct Eea effects on EA (β = 0.55; bootstrapped

95% CIs = 0.50, 0.60) were subject to a reduction of 18% (β = 0.45; bootstrapped 95%

CIs = 0.39, 0.51) after introduction of Gea as a mediator in the model, indicating partial genetic

mediation of environmental effects (i.e. genetic confounding).

GxE effects and multivariable prediction

We finally tested all possible two-way interactions jointly modelled by means of a hierarchical

group lasso procedure using glinternet. Out of the possible 528 two-way interactions between

all study variables (i.e. interactions between and within sets of GPS and environmental mea-

sures), 32 two-way interactions were detected by the hierarchical group-lasso technique (glin-

ternet, S5 Table), 15 of which were GxE interactions. Fig 3 depicts an interaction network

from the trained glinternet model (10-fold cross validation). Hold-out set prediction accuracy

was only slightly improved (R2 = 36.4%; 95% CI = 29.7, 41.1) over the joint G and E model (R2

= 36.1%; 95% CI = 30.4, 41.6). We then introduced the 15 GxE interactions found in the full

elastic net model (S3 Fig) to test whether they improved the prediction of EA over the full

model that had only considered additive effects of GPS and environmental measures. There

was no improvement in hold-out set prediction accuracy (R2 = 36.1%; 95% CI = 30.5, 41.8),

and the difference in prediction with the G+E model was not significant (median R2

diff = 0.1%; 95% CI = -1.2, 1.3). S2 Table shows fit statistics for the glinternet and elastic net

models. S5 Table reports GxE interactions detected by the hierarchical lasso model.

Discussion

We tested the joint prediction accuracy of sets of multiple environmental measures and poly-

genic scores in prediction models of educational achievement and considered the effect of

their interplay on model performance. Three main findings emerged from our analyses. First,

the joint modelling of multiple GPS and related environmental exposures improved the pre-

diction of EA, consistent with theory [39]. Second, paralleling previous quantitative genetic

findings, we found consistent evidence of rGE effects underlying variation in EA (rGE = 0.38;

95% CIs = 0.30, 0.48), with a substantial proportion of polygenic score effects mediated by the

environmental effects (40%), and evidence for genetic confounding (18%). Lastly, we did not

find evidence that GxE effects jointly contributed to the prediction of EA.

Our multivariable GPS model alone predicted 18.3% of the variance in EA. Integration of

multiple polygenic scores in the same model can be expected to increase as sample size in

genome-wide association studies (GWAS) increases [40]. Here we constructed GPS in lasso-

sum [41] based on previous observations that lassosum tends to perform better than more con-

ventional approaches [17, 41] for educationally relevant traits. However, other methods for

GPS construction can be expected to yield similar results when considering multivariable GPS

penalized approaches, with performance of the relative approaches likely to converge as accu-

racy of GWAS estimates increases.

Previous work [16] showed that the predictive accuracy of EA3 provides unique informa-

tion beyond correlated demographics and distal control variables such as income and parental

educational attainment. Here we extend this observation to multiple polygenic scores within a

prediction framework, as well as multiple measured environments, including proximal mea-

sures of home environment and life events. Furthermore, we take this a step further by
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formally testing trait associations of the relative polygenic scores and environmental measures

when jointly considered in the same model.

Of interest were the relative contributions of the single GPS to the best model selected via

repeated cross-validation in the training set. In post-selection inference analyses, IQ3 and EA3

were the only GPS independently associated with variation in EA after adjusting for measured

environments and polygenic scores. This indicated that both these GPS contributed unique

predictive information beyond other related, proxy environmental predictors (e.g. SES, paren-

tal educational attainment), and polygenic scores (e.g. household income GPS). Similarly, we

found that several environments were independently predictive of EA. The best predictor was

early life SES, a composite of parental educational attainment, employment status and mater-

nal age at first birth. Life events and chaos at home were also significant contributors to the

model, with negative independent effects on EA. Polygenic scores, however, improved the pre-

diction of EA on top of the environment with a 20% increase in accuracy (from 30% to 36%).

It is noteworthy that EA3 and IQ3 GPS were both significant in post-selection inference mod-

els after adjusting for SES, home environment and proximal environmental effects, all of

which also tag genetic variance partly overlapping with that captured by the GPS. This sug-

gested that cognitive-relevant GPS independently captured variation beyond environmental

Fig 3. Interaction network of glinternet model. Note. Edges width represent interactions weights. E =
Environmental measure, G = Genome-wide polygenic score. Polygenic scores acronyms: ASD = Autism Spectrum
Disorder, ADHD = Attention-Deficit Hyperactivity Disorder, BIP = Bipolar Disorder, EA3 = Educational Attainment,
IQ3 = Intelligence, Income = household income, MDD =Major Depressive Disorder, SWB = SubjectiveWell-Being,
OCD = Obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, Risk PC1 = First Principal
Component of Risky behaviors, SCZ = Schizophrenia.

https://doi.org/10.1371/journal.pgen.1009153.g003
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variables and variance due to rGE in our model. While this was important to understand the

model composition, it should be highlighted that these estimates are dependent on variables

included in analyses, and can be expected to change as other variables are considered in the

model (see below).

A central finding of the current study emerged when we separated direct and indirect

effects of the GPS and environmental models by statistically testing for rGE. We found signifi-

cant G mediation of the prediction of EA by the E model. This is in line with several quantita-

tive genetics findings [42–44]. However, since it would be unreasonable to assume a causal

effect of E on G (i.e. E does not change DNA sequence), in the sense employed here G acts as

a ‘confounder’–in causal modelling parlance, ‘third variable confounding’–of E effects on EA

(E G! EA). That is, because our G model is associated with both the E model and EA, it

partly induces an association between the E model and EA in addition to the independent

effects of E on EA. This rGE effect explained 18% of the E effects on EA.

Different types of genetic confounding have been described in detail elsewhere [45].

Conversely, we also found evidence of environmental mediation of the G model effects on

EA. The E model explained 40% of the GPS model effects on EA. This result is also in line with

previous research in quantitative genetics [27–29, 46]. A growing body of evidence points to

the rGE conclusion that genetic effects on cognitive trait variation are partly environmentally

mediated [25], which is likely to be due to passive rGE. Passive rGE emerges because parents

create a family environment that corresponds to their genotypes and, by extension, also corre-

lates with the genotypes of their offspring. As previously described, alternative mechanisms

include evocative and active rGE effects. As noted elsewhere [26] these possibilities are not

mutually exclusive. However, in order to disentangle these rGE effects, different study designs

are needed, for example, looking within families at the effects of maternal and paternal non-

transmitted genotypes on child outcomes. Disentangling the different underlying mechanisms

to the predicted variance in this regard is an issue for future studies, but out of the scope of the

present investigation.

Previous work [30] has shown that prediction of educational achievement by EA3 GPS con-

sistently decreases within-family, suggesting that passive gene-environment correlation

explains part of the predictive power of EA3. Here we show that reciprocal indirect effects

between multivariable E and G models explain a substantial proportion of variation of their

total effects on EA. These results provide converging evidence with recent research looking at

rGE underlying parenting and children educational attainment [27, 47]. Both genetic con-

founding and environmental mediation are important factors to take into account in the pre-

diction of EA.

Lastly, we applied a hierarchical group-lasso model (glinternet) to automatically detect two-

way interactions. This model helped us to identify GxE effects that show strong hierarchy,

which would have otherwise been difficult to detect due to the great multiple-testing burden

relative to the sample size of the present study. Furthermore, since glinternet performs shrink-

age and grouping before testing for interaction effects, this enabled discovery of interactions

that would have been confounded by strong main effects of correlated predictors. In other

words, because the coefficients of main effects have been regularized (that is shrunk, see Meth-

ods), their fit is reduced, which facilitates the discovery of interaction effects [38]. However,

neither the glinternet model including all discovered pairwise interactions, nor the elastic net

model including two-way GxE effects, significantly improved hold-out set prediction over the

G+E model. One possible explanation for this finding is that GxE effects are typically very

small, and that the trade-off between true effect and variance introduced in the model, signal

to noise ratio, was too small. It might be that even if two-way GxE effects were relevant the

noise incurred in fitting their coefficients may outweigh the improvement in accuracy that
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they bring to the model. In this regard we note that in repeated cross-validation in the training

set the model performance of both the elastic net based GxE model, and the glinternet model

was substantially increased compared to the G+E model. Application of this method in larger

datasets, or using different phenotypes with different genetic architectures, might be fruitful

for hypothesis-free GxE discovery as well as for prediction.

This study must be considered in light of a few limitations. First, our results are subject to

the constraint that we performed an apriori selection on variables to be employed in our analy-

ses. For example, we modelled exposures that are typically defined as environmental; however,

many other variables can be argued to capture EA relevant environmental influences. In this

regard estimates for non-mediated genetic effects for the model presently tested are likely

upper-bounds, in the sense that if we were to include more E variables predictive of the out-

come EA, the polygenic score contributions independent of E would either stay the same or

decrease. Likewise, we included a broad range of polygenic scores that are currently available

as the most predictive for cognitive, psychiatric and anthropometric traits. However, polygenic

scores predictive power is in part a function of GWAS sample size [40], therefore as more pow-

erful GWAS become available these prediction estimates are expected to increase. This in turn

suggests that the contributions of the G model are likely to be on the lower bound compared

to future polygenic score work in this area.

We note that the environmental variables employed in the models jointly represent only a

noisy proxy for the true EA relevant environmental effects, just as the multi-polygenic scores

model is a noisy proxy for the true additive genetic predisposition to EA. As such, estimates

derived from mediation analyses will imprecisely capture the extent to which E and G models

are reciprocally mediated.

Finally, we focused here on EA but predictive models of other complex traits are likely to

yield different results, because EA shows comparatively great shared environmental influences

[30]. This suggests that rGE is likely to be stronger for EA than for other behavioural traits,

such as personality traits and social-emotional competencies. Regarding our analytical

approach, we focused on GxE interactions that obeyed strong hierarchy as identified by the

group lasso technique. Future studies could relax this assumption and include interactions

where one of the main effect sizes is not significant, as well as higher order interactions.

Finally, although it is a strength of our study that we used measured environmental exposures,

we note that methods for inferring GxE without measured environmental data are emerging

that have reported GxE for some complex traits [48]. The extent to which these effects are sys-

tematic, stable, and generalizable to EA remains to be determined.

As large multidimensional biobank datasets become increasingly available, the integration

of multi-omics data with multiple environmental measures will become more common in pre-

diction modelling. Here, we provide an indication of the effects of integrating multiple GPS

and environmental measures in prediction models of EA and the effect that their interplay has

on prediction accuracy in a population cohort of adolescents. In conclusion, we found consis-

tent evidence for rGE in prediction models of EA that systematically tested the interplay

between polygenic scores and measured environments within a hypothesis-free multivariable

prediction framework. When integrating multiple GPS and environmental measures, their

interplay must be taken into account. Separate effects of environmental and polygenic scores

cannot just be assumed to add up because pervasive rGE affects prediction.
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Material andmethods

Sample

We test our models using data from 16 year olds from the UK Twin Early Development Study

[TEDS; 49], a large longitudinal study involving 16,810 pairs of twins born in England and

Wales between 1994–1996, with DNA data available for 10,346 individuals (including 3,320

dizygotic twin pairs and 7,026 unrelated individuals, all of European ancestry). Genotypes for

the 10,346 individuals were processed with stringent quality control procedures followed by

SNP imputation using the Haplotype Reference Consortium (release 1.1) reference panels.

Current analyses were limited to the genotyped sample, and we retained only one individual at

random from sibling pairs. Following imputation, we excluded variants with minor allele fre-

quency<0.5%, Hardy-Weinberg equilibrium p-values of<1 × 10−5. To ease computational

demands, we selected variants with an info score of 1, resulting in 515,000 SNPs used for analy-

sis (see S1 Methods for a full description of quality control and imputation procedures).

Ethics statement

Ethical approval for TEDS has been provided by the King’s College London Ethics Committee

(reference: PNM/09/10–104). Written parental consent was obtained before data collection.

Measures

Dependent measure. Educational achievement was measured as the self-reported mean

grade of three core subjects (English, math and science) scored by the individuals at age 16 in

their standardized UK General Certificate of Secondary Education (GCSE) exams.

EA was operationalized as the mean grade of the three compulsory subjects, with results

coded from 4 (G, or lowest grade) to 11 (A+, or highest grade). These self-report measures are

highly replicable and show high genetic and phenotypic correlations with teacher scores [50].

The variable distribution was slightly negatively skewed (similar to the national average) and

subject to a rank based inverse normal transformation to approximate a normal distribution.

Environmental measures. Socio economic status: SES at recruitment (mean children

age = 18 months) was calculated as the mean composite score of five standardized measures

including mother and father qualification levels ranging from 1 = ‘no qualifications’ to 8 =

‘postgraduate qualification’, mother and father employment status [51], and mother’s age at

birth of first child.

Chaos at home: as a measure of home environment a shortened version of the Confusion,

Hubbub and Order Scale [52] was used to measure children’s perception of chaos in the family

environment at age 12. Children rated the extent to which they agree (range: ‘not true’, ‘quite

true’ or ‘very true’) to six items: ‘I have a regular bedtime routine’ (reversed coded), ‘You can’t

hear yourself think in our home’, ‘It’s a real zoo in our home’, ‘We are usually able to stay on

top of things’ (reversed coded), ‘There is usually a television turned on somewhere in our

home’ and ‘The atmosphere in our house is calm’ (reverse coded). The Chaos score was com-

puted as the mean of the rated items.

Life events: Self-reported life events experienced in the past year were measured (at age 16)

using a shortened version of the Coddington life events [53]. Individuals had to report on 20

items that might have happened in the past year, by responding yes (coded as 1) if the event

had happened or no (coded as 0) if it didn’t happen. Items included stochastic, proximal events

such as “death of a close friend or relative”, “being hospitalized”, as well as family-wide events

e.g. “loss of a parent job”, “decrease in parental income”. When considering prediction of edu-

cational achievement, educationally relevant items were removed from the models (i.e. “failing
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exam” and “outstanding achievement”). Items being endorsed by fewer than 100 people were

discarded from analyses. A total of 11 life events were retained in analyses. All items were con-

sidered separately in prediction models (i.e. they were not aggregated in a scale). S1 Table

reports descriptive statistics for variables employed in this study, separately by training and

hold-out sets.

Genome-wide polygenic scores (GPS). GPS for 20 cognitive, anthropometric and

psychopathological traits were constructed using Lassosum [41]. Lassosum is a penalized

regression approach applied to GWAS summary statistics. In Lassosum we try to minimize the

following loss function:

yTy þ ð1� sÞbTXref
TXrefb� 2b

Trþ sbT
bþ 2lkbk

1

ð1Þ

Where y is a vector of the phenotype, X is the matrix of genotypes, such that Xref
T Xref is a

matrix of correlations between SNPs, the LD matrix. r denotes the correlation between SNPs

and the phenotype, r = XTy. The subscript ref in Xref
T Xref indicates that SNPs employed to

obtain the LDmatrix (based on a reference panel, see below) will generally not correspond to

SNPs used to infer the correlation with the phenotype.

In the equation λ controls the L1 penalty (L1 norm, [54]). The notation ||β||1 describes the
L1 norm of a coefficient vector β, defined as ||β||1 = ∑|β|, while s is another tuning parameter

controlling the L2 penalty (|β|2, the sum of the squared betas). Here s has the additional con-

straint of being between 0 and 1. When λ = 0 and s = 1 the problem becomes unconstrained.

Tuning parameters, λ and s, are chosen in the validation step (this is akin to optimization

that can be performed in p-value thresholding methods). We used our training set to perform

parameter tuning optimizing (with respect to R2) polygenic scores against EA. LD was

accounted for via a reference panel, here the same as the training set sample, and estimation of

LD blocks was performed using LD regions defined in [55].

We employed the most powerful and publicly available GWAS summary statistics for cog-

nitive, psychopathology and anthropometric traits. We created cognitive and educationally

relevant polygenic scores for educational attainment [16], intelligence [56], and income [57].

We also created polygenic scores for mental health-related traits: autism spectrum disorder

[58], major depressive disorder [MDD; 59], bipolar disorder [BIP; 60], schizophrenia [SCZ;

61], attention deficit hyperactivity disorder [ADHD; 62], obsessive compulsive disorder

[OCD; 63], anorexia nervosa [AN; 64], post-traumatic stress disorder [PTSD; 65], broad

depression [66], mood swings [67], subjective well-being [68], neuroticism [69], irritability

[67], insomnia [70], and risk taking [71]. Finally, we created polygenic scores for height and

BMI [72]. S6 Table reports information on these summary statistics, while S7 Table reports

parameter tunings for the lassosum GPS.

Analyses

All variables were first regressed on age, sex, 10 genetic principal components and genotyping

chip. The obtained standardized residuals were used in all subsequent analyses.

Penalised regression. We fit elastic net regularization [73] models for EA. Elastic Net

minimizes the residual sum of squares (RSS) subject to the L1 penalty, consisting of the sum of

the absolute coefficients, which introduce sparsity allowing for parameters selection, and the

L2 penalty, consisting of the sum of the squared coefficients, which allows for parameters

shrinkage [73].

Elastic net tries to minimise the following loss function:

ky � X0bk
2

þ lða�jbj
1

þ ð1� aÞ
�
jbj

2

Þ ð2Þ
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where ||y–X’β||2 is the residual sum of squares, |β|2 is the sum of the squared betas (the L2 pen-

alty), and |β|1 is the sum of the absolute betas (the L1 penalty).

Here X’ is an nxp (‘n’ observations and ‘p’ predictors) matrix of polygenic scores, environ-

mental predictors or a combination of both (see below). α determines the mixing of penalties,

where the first parameter introduces sparsity while the second shrinks correlated predictors

towards each other. λ is a tuning parameter that control the effect of the penalty terms over the

regression coefficients. When α = 1 the solution is equivalent to a LASSO regression, while

when α = 0 the solutions is equivalent to a Ridge regression. For every αmultiple λ exists, and
the optimal combination of tuning parameters is determined by cross-validation, here a

10-fold cross-validation repeated 100 times. For every model tested we split the sample into an

independent training set (80%) and a hold-out set (20%). In the training set we perform

10-fold repeated cross-validation to select the model that minimises the Root Mean Square

Error (RMSE)–that is the tuning parameter for which the cross-validation error is the smallest.

The model performance is then assessed by the variance explained (R2) in the hold-out test set.

The hold-out set R2 was calculated as 1-SSE
SST

(SSE = sum of squared errors, SST = sum of square

total).

Bootstrapping. For every model tested we sampled with replacement from the data (1000

times) to calculate bootstrapped confidence intervals for the hold-out set prediction accuracy

(R2). Rows of data for resampling included the phenotype under study and the predictors

according to the model tested: either polygenic scores, environmental predictors or a combina-

tion of both. For each bootstrap sample drawn we calculated the hold-out set R2, and we took

the difference in R2 between nested models. This procedure yielded a distribution of R2 for

each model tested and a distribution of R2 differences (ΔR2) for each pairwise comparison. We

then calculated 95% confidence levels as the 2.5th and 97.5th percentiles of these distributions.

For nested comparisons, if the interval didn’t contain 0 we concluded that the pairwise model

ΔR2 was significantly different from 0 with a α level of .05.

Post selection inference. For every model tested we conducted statistical inference of

models coefficients after selection of most informative predictors performed by Elastic Net,

that is effect sizes, p-values and confidence levels around the prediction estimates.

Post-selection inference [37] refers to the practice of attempting to accurately estimate pre-

diction coefficients after a model selection has been performed. If we fit the optimal model’s

selected predictors in a multiple regression model in the training set (that is where the selec-

tion has been performed) our confidence in the estimates will tend to be over-optimistic. On

the other hand, estimation of these parameters in a hold-out set would not be subject to this

problem. The hold-out set, however, will typically be smaller than the training set, leading to

wider confidence intervals. In addition, the results will be dependent on the random split (80–

20) performed. A third way is to calculate P-values conditional to the selection that has been

made in the training set. Briefly, after selection is performed, accurate estimation of a given

partial regression coefficient can be approximated by a truncated normal distribution:

bb � TNa;bðb; τ2Þ ð3Þ

With mean β, variance τ2 and boundaries of the truncated normal distribution (TN) ‘a’ and

‘b’ given by the data and the selection procedure, in this case the predictors, the active set (the

variables with non 0 coefficients selected by our model) and λ [37]. We refer elsewhere to a

thorough discussion of the topic [74], with a focus on lasso like approaches. Here we compare

results from the three procedures: the ‘naive’ estimation of partial regression coefficients in the

training set, estimation of coefficients in the hold-out set, and the conditional estimation of p-

values performed using the R package ‘SelecitveInference’ [75].
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rGE. We quantified rGE in two ways. First, the hold-out set predicted EA values from the

GPS (henceforth Gea) and environmental (henceforth Eea) models can be tested for correla-

tion. In this sense the covariance between these variables would be an indication of overlap-

ping information between E and G underlying EA, i.e. rG,E = cor(Gea,Eea).

Second, another way to quantify rGE is by modelling E and G effects in a mediation model

(Fig 4), considering the indirect effects of G on EA via E, and vice versa the indirect effects of E

on EA via G. We used the predicted EA values from the GPS and environmental models (i.e.

Gea and Eea) to test mediation models in the hold-out set. We fit a structural equation model

(SEM) in ‘lavaan’ [76] to test whether and to what extent E and G effects on EA were recipro-

cally mediated. Panel A (Fig 4) is a schematic representation of a mediation model, where βC
is the effect of a predictor X on an outcome Y, βa the effect of X on the mediator (M), and βb
the effect of M on Y after adjusting for X. βC’ corresponds to the effects of the predictor on the

outcome when controlling for the mediator (i.e. when the full equation is estimated). If the

effects are reduced (partial mediation) or are not different from 0 (full mediation) then there is

evidence for mediation. We quantify the proportion of the mediated effects as (βC- βC’) / βC
and test for significance of the indirect path using bootstrapping (with 1000 repetitions).

Fig 4 represent direct and indirect effects of the G model effects on EA mediated by E

(panel B), and of the E model effects on EAmediated by G (panel C). While panel B represents

a causal model where we estimate the environmentally mediated G effects on EA, panel C is a

statistical abstraction since it would be unreasonable to assume a causal relationship of E on G.

Here we model G as mediator to estimate the third variable confounding effects underlying

the relationship between E and EA, as mediating and confounding effects have been shown to

be equivalent in a linear context [77]. In other words, confounding and mediation effects are

statistically equivalent, such that they can both be estimated by mediation analysis, but concep-

tually distinct (77).

GxE. After fitting the joint GPS and environmental models, we apply a hierarchical lasso

procedure to automatically search the feature space for interactions, and retrain our models

introducing GxE interactions. With 33 predictors there is a total of 33(33–1)/2 = 528 possible

2-ways interactions. Testing all models separately would imply a multiple testing burden (e.g.

bonferroni correction .05/528 = 9E-5), in addition to the expected low signal to noise ratio for

GxE effects. Here we employ a hierarchical group lasso approach to automatically search for

two-way interactions, implemented in the R package ‘glinternet’ [38] (group-lasso interaction

network). Glinternet leverages group lasso, an extension of LASSO, to perform variable selec-

tion on groups of variables, dropping or retaining them in the model at the same time, to select

Fig 4. Panel A = schematic representation of mediation analysis; βC = effect of a predictor X on an outcome Y; βa = effect of X on a mediator (M); βb =
effect of M on Y after adjusting for X; βC’ = effect of X on Y after adjusting for M. Panel B = Directed acyclic graph (DAG) showing Eeamediated effects
of Gea on EA in the hold out-set; βge = causal path between Gea and Eea equivalent to rG,E; βeEA = direct independent Eea effects on EA; βgEA = total Gea

effects on EA. Panel C = DAG showing Geamediated effects on EA (genetic confounding, see methods and discussion); βeg = causal path between Eea and
Gea equivalent to rG,E; βgEA = direct independent Gea effects on EA; βeEA = total Eea effects on EA. Note. Blue paths represent G model effects, yellow paths
represent E model effects.

https://doi.org/10.1371/journal.pgen.1009153.g004
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interactions. As noted above, the L1 regularization produces sparsity. Glinternet uses a group

lasso for the variables and variable interactions, which introduces a strong hierarchy: an inter-

action between two variables can only be picked by the model if both variables are also selected

as main effects. That is, interactions between two predictors are not considered unless both

predictors have non-zero coefficients in the model. Once two-way interactions obeying strong

hierarchy were identified, we selected GxE interactions (i.e. GPS that interact with environ-

mental variables) and reintroduced them in our best elastic net models to test whether the

hold-out set prediction accuracy improved beyond the full (E+G) prediction model.
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(TIF)

S3 Fig. G�E model used in hold-out set prediction. Variables importance for the best G�E

model selected via repeated cross-validation in the training set.Note. For interactions the first
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Depressive Disorder, SWB = Subjective Well-Being, OCD = Obsessive Compulsive Disorder,

PTSD = Post-Traumatic Stress Disorder, SCZ = Schizophrenia.
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