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Abstract

This review focuses on the calculation of infinite nuclear matter response functions using phe-

nomenological finite-range interactions, equipped or not with tensor terms. These include Gogny

and Nakada families, which are commonly used in the litterature. Because of the finite-range, the

main technical difficulty stems from the exchange terms of the particle-hole interaction. We first

present results based on the so-called Landau and Landau-like approximations of the particle-hole

interaction. Then, we review two methods which in principle provide numerically exact response

functions. The first one is based on a multipolar expansion of both the particle-hole interaction

and the particle-hole propagator and the second one consists in a continued fraction expansion

of the response function. The numerical precision can be pushed to any degree of accuracy, but

it is actually shown that two or three terms suffice to get converged results. Finally, we apply

the formalism to the determination of possible finite-size instabilities induced by a finite-range

interaction.

1 Introduction

The study of quantum systems having a large or even infinite number of fermions is of interest in
many physical situations, involving fields as diverse as quantum chemistry, atomic physics, condensed
matter, nuclear physics or astrophysics. For instance, liquid 3He or conduction electrons in metals
are familiar examples of such systems in condensed matter [1, 2, 3, 4, 5, 6]. In nuclear physics, the
concept of infinite nuclear matter as an homogeneous medium made of interacting nucleons is broadly
used, because of its relative simplicity and related to the suppression of the boundaries. This idealized
system is nevertheless connected to the physics of the inner part of atomic nuclei and also of some
regions of compact stars [7, 8, 9, 10]. For these reasons, it is a very useful testing ground for various
theories.

A usual way to get information about a physical system is by means of its response to an external
probe [1, 2]. Some well-known examples among many of physical phenomena that require the knowledge
of the response functions are the transition strengths, the inelastic cross-sections, the electron scattering
by nuclei [11], the propagation of neutrinos in nuclear matter [12] and finite nuclei [13] or the study of
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vibrational modes in finite nuclei [14, 15, 16] and neutron stars (NS) [17, 18, 19]. When the interaction
with the probe is small enough, the response of the system can be calculated in the linear approximation,
also known as Random Phase Approximation (RPA) for historical reasons. Its basic ingredients are the
particle-hole (ph) interaction and the ph Green’s function, whose poles represent the energies of excited
states [5]. It is worth mentioning at this stage that, due to surface effects and long-range correlations
by instance, response functions can be very different in infinite matter and finite nuclei. However, the
objective of this review is not to examine these differences but to concentrate on the description of the
different approximations used to calculate response functions in an infinite medium and to use them
for several specific purposes as detailed below.

Two main approaches are introduced to get response functions in a non-relativistic frame: either by
starting from a bare two-body nucleon-nucleon (NN) interaction, with the possible addition of three-
body forces, or by using a phenomenological NN interaction. In the first approach, the many-body
problem is treated as exactly as possible, using a variety of methods such as Monte-Carlo simula-
tions [20], Coupled-Cluster [21], similarity Renormalisation Group [22], self-consistent Green’s func-
tion [23] or the Brueckner-Hartree-Fock method [24, 25, 26]. In the second approach, a mean-field
approximation [27, 28] is used with an interaction whose parameters are adjusted so as to describe
selected observables of finite nuclei and some bulk properties of nuclear matter as well. This second
approach is the subject of the present review.

Several important informations about nuclear matter can be obtained by analysing the resulting
response function. For instance, its singularities at zero energy can be related to a phase transition such
as the spinodal one [29] or to instabilities such as the pion condensation [30, 31] or the ferromagnetic
transition in neutron stars [32]. Moreover, if these instabilities appear at density values around the
saturation density, ρ0, they can affect the description of finite nuclei properties. This connection between
singularities in the infinite medium and instabilities in atomic nuclei has been investigated in Refs. [33,
34, 35, 36]. It has been shown that the appearance of such singularities at densities lower than ≃ 1.3ρ0
(with ρ0 the saturation density) may affect the convergence of the calculations in finite nuclei [37, 38].
To avoid such a problem, the response functions of nuclear matter are currently included into the fitting
protocol used to adjust new interactions [33, 39, 40, 41].

Historically, phenomenological nuclear interactions have been limited to central, spin-orbit and
density-dependent terms. However, in recent years, the importance of the tensor term has been stressed.
Indeed, the bare nucleon-nucleon interaction contains an important tensor part, necessary to repro-
duce not only the phase shifts of the nucleon-nucleon scattering, but also the quadrupole moment of
the deuteron. Several groups have worked on the introduction of a tensor term in effective interac-
tions and its impact on the ground state properties of finite nuclei has been discussed for example in
Refs. [42, 43, 44, 45].

Methods to get infinite nuclear matter response functions using the zero-range Skyrme interac-
tion [46] have been reviewed in Ref. [47]. The case of finite-range interactions is the subject of the
present review, concentrating on the Gogny [48, 49, 50] and the Nakada [51, 52] interactions. Although
these are not the only finite-range interactions available in the literature [53, 54], they are currently the
most commonly used to study finite nuclei at the mean field level [27, 50, 52].

The most difficult technical aspect in calculating response functions is related to the exchange term
of the ph-interaction. This difficulty is overcome if a zero-range interaction is used, and it is thus
convenient to briefly summarise some results obtained with the well-known family of zero-range Skyrme
interactions. We recall that the standard form of the Skyrme interaction, fixed by Vautherin and
Brink [55], contains central, spin-orbit and density-dependent terms only, with a quadratic momentum
dependence which simulates finite-range effects. It has been shown [56] that both its zero-range and its
simple momentum dependence allow one to get exact and relatively simple algebraic expressions for the
response functions and other related quantities. These results were originally presented for symmetric
nuclear matter (SNM), and afterwards extended to asymmetric nuclear matter and pure neutron matter
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(PNM) including the special case of charge-exchange operators [57, 58, 59, 60, 61]. They have been
applied to a variety of problems, including neutrino transport in neutron stars [62, 63]. The original
form of the Skyrme interaction [46] also contains other terms, namely zero-range tensor terms, which
are relevant for the spin and spin-isospin channels. However, apart from some exploratory studies [64],
these terms have been omitted in most calculations of finite nuclei in recent years, they have have
been included either perturbatively to existing central ones [65, 66, 67, 68], or with a complete refit
of the parameters [42, 43, 69, 70, 71]. Again, due to their zero-range and their particular momentum
dependence, it is possible to get the exact response functions, although the tensor terms make algebraic
expressions rather cumbersome. It has been shown [47] that the tensor interaction has a very strong
impact on the response functions for both spin channels due to spin-orbit coupling.

Skyrme interactions are reasonably well controlled around the saturation density ρ0 of SNM, for
moderate isospin asymmetries and zero temperature. However, it has a certain number of drawbacks.
For instance, most Skyrme parametrizations predict that the isospin asymmetry energy becomes nega-
tive when the density is increased [72, 73, 74, 75, 76, 77]. Consequently, the symmetric system would
be unstable at some density beyond the saturation one, preferring a largely asymmetric system made
by an excess of either protons or neutrons. Another type of instability refers to the magnetic properties
of neutron matter. Most Skyrme interactions predict that even in the absence of a magnetic field a
spontaneous magnetisation arises in pure neutron matter at some critical density [32, 78, 79]. Actually,
it has been shown [80] that any reasonable Skyrme parametrisation predicts instabilities of nuclear
matter beyond some critical density. Another inconvenient of zero-range interactions refers to pairing
properties. Indeed, it leads to ultraviolet divergency [81] that needs to be treated with either an ex-
plicit regularisation [82] or via a cutoff of the available phase space [83]. Moreover, the UNEDF-SciDAC
scientific collaboration [84] has investigated the role of the optimisation procedure on the quality and
predictive power of the standard Skyrme functional [85], concluding that there is no more room to
improve spectroscopic qualities by simply acting on the optimisation procedure [86]. To overcome this
inconvenient, higher order momenta terms [87] have been considered, namely N2LO and N3LO Skyrme
generalisations, which simulate finite-range effects [88, 89, 90]. Even if the response function formalism
is more complex in this case, it is still possible to obtain analytical results and to use them to avoid finite-
size instabilities during the adjustment of the parameters of the interaction [41, 91]. However, the use
of a limited number of momentum powers to simulate finite-range effects may restrict the applicability
of Skyrme-like interactions to describe the response functions at high values of the momentum transfer.
In principle, all above mentioned difficulties should be removed by using a finite-range interaction.

The simplest way to deal with the exchange term of the ph interaction is to consider the limit of
zero transferred momentum by placing the particle and hole momenta over the Fermi sphere. This is
named Landau approximation of the ph-interaction. In this case, the form of the ph interaction becomes
universal and it is possible to find analytical expressions for the response function [92]. Since q = 0 could
be a too strong approximation, some authors have tried to keep an explicit momentum dependence only
over the direct term and perform a Landau approximation for the exchange term [93]. Either meson-
exchange [31, 94] or effective [93] interactions have been used in this approach. A general method to
obtain response functions consists in using a partial wave expansion of both the ph interaction and the
RPA ph propagator [93]. This method leads to a system of coupled integro-differential equations that
need to be solved numerically. Its validity depends on the convergence of the expansion. For all the
considered interactions, a few multipoles suffice to get the converged response. As an alternative to the
multipolar expansion, some authors have investigated a method based on the continuous fraction (CF)
approximation to the RPA response function [95, 96, 97, 98, 99, 100]. In both cases, the exchange term
is treated exactly, and the calculations can be carried out up to any degree of accuracy. Actually, two
or three terms suffice to get converged results. The interest of the CF method is that the formalism is
the same for both infinite matter and finite nuclei. The CF convergence can be assessed by comparing
with the multipolar expansion for nuclear matter, and the results could be hopefully translated to finite
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nuclei.
The plan of this review is the following. In Sect. 2 we present the general formalism to calculate the

response function in an infinite nuclear system. The relevant quantities are defined, as the ph propagator,
the Bethe-Salpeter equation, and the response functions. In Sec. 3 we present the phenomenological
finite-range interactions considered in this review and the connection between finite- and zero-range
interactions. The simplest approximation to deal with the exchange term, using either a Landau or
a Landau-like ph interactions discussed in Sect. 4. Then we review the multipolar expansion method
in Sect. 5, and the continued fraction method in Sect. 6, to get the response function as two different
expansions. In Sect. 7 we review the use of the response function to detect finite-size instabilities
of phenomenological interactions. Finally, we give some concluding remarks in Sect. 8. Some useful
technical details and formulae are given in appendices.

2 Linear Response Formalism

In this section, we present a general description of the formalism used throughout this article to deter-
mine nuclear response functions and some related quantities. This formalism is based on the Green’s
function and it has been discussed in great details in several books and articles [1, 5, 101]. We summarise
it here, mainly to fix the notations and signal some interesting points. Since we shall only consider ho-
mogeneous systems, the proper definitions of the strength function and of any related quantities should
be understood as divided by a normalisation volume. To get the same quantities per nucleon one has
just to divide by the density. Along this paper we shall use units such that ~ and c are put to 1.

2.1 Linear response to an external spin-isospin perturbation

The strength function, also called dynamical structure function or dynamical form factor, is commonly
the accessible experimental quantity to describe the response of a system to an external probe. It is
defined as

S(q, ω) =
∑

n 6=0

|〈n|Q̂(q)|0〉|2δ(En0 − ~ω) , (1)

where ω and q are respectively the energy and momentum transferred by the probe. |n〉 and En are the
eigenstates and eigenvalues of the nuclear Hamiltonian (H|n〉 = En|n〉), and the sum over n includes
both discrete and continuum contributions. Finally, En0 ≡ En − E0 is the excitation energy and Q̂ is
a well-chosen operator that couples directly to the desired densities. Typically, experiments determine
integrals of S(q, ω) weighted with a kinematical factor associated with the probe. Therefore, all the
physical properties of the system are embodied into the above strength function.

We shall consider here density fluctuations in the spin-isospin channels (α) = (S, I) of symmetric
nuclear matter (SNM), excited by one-body operators of the type:

Q̂(α) =
∑

j

eiq·rjΘ̂
(α)
j , (2)

where the index j stands for the jth particle, and

Θ̂
(0,0)
j = 1̂ , Θ̂

(1,0)
j = σ̂j , Θ̂

(0,1)
j = τ̂ j , Θ̂

(1,1)
j = σ̂j τ̂ j , (3)

with σj and τ̂ j being the spin and isospin Pauli matrices. The spin-isospin channel (α) will be explicitly
indicated from now on and detailed for each specific system. When necessary, the spin and isospin
projections (M and Q respectively) will be also included in (α) = (S,M ; I,Q). Most of the formal
expressions deduced along this paper are also valid for PNM by simply changing the contents of symbol
(α) = (S,M ;n).
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If the interaction between the probe and the system is sufficiently weak, the change in the density
is proportional to the perturbation induced by the external probe. The factor is the response function,
also called dynamical susceptibility, which at first-order perturbation theory can be written as

χ(α)(q, ω) =
∑

n 6=0

{

|〈n|Q̂(α)|0〉|2
ω − En0 + iη

− |〈n|Q̂(α)|0〉|2
ω + En0 + iη

}

, (4)

where η is a positive quantity arbitrarily small associated with the adiabatic condition on the external
field. Using the relation

lim
η→0+

1

x− a+ iη
= P 1

x− a
− iπδ(x− a) , (5)

one can write the following connection between the strength function and the response function

S(α)(q, ω)− S(α)(q,−ω) = − 1

π
Imχ(α)(q, ω) . (6)

At zero temperature, the system is initially in the ground state, and the sole possible effect of the probe
is to excite the system, so that ω ≥ 0. In that case S(α)(q,−ω) is identically zero and we have

S(α)(q, ω) = − 1

π
Imχ(α)(q, ω) . (7)

However, at finite temperature it is possible to transfer energy from the system to the probe, so that
negative values of ω are admissible. We refer the reader to Refs. [1, 102, 47] for details about the
formalism to get response functions at finite temperature. A more detailed discussion on the properties
of the strength function for a system of fermions can be found for example in Refs.[1, 4, 5]. We recall
that the strength function (7) is per unit volume, and has units MeV−1 fm−3. If one is interested in the
strength per nucleon, one must divide (7) by the density and the strength function has units of MeV−1.

For simplicity, we consider that the ground state can be approximated by a Slater determinant, as it
happens when we use the mean-field or Hartree-Fock (HF) approximation (the subindex HF will be used
to denote functions calculated in this approximation). The ground state is thus a sequence of states
filled up to the Fermi energy εF and empty above. Since the action of the external probe on the system
(or mathematically of the operator Q̂) is to excite the fermions of the system by promoting them in
particle states, we shall use the RPA (see [1] for a detailed discussion on this approximation) expressed
in terms of ph propagators, whose momentum average will provide the RPA response function. In
practice, the steps we will follow are: i) calculate the ph propagator in the mean-field approximation,
ii) determine the ph matrix elements of the residual interaction, and iii) write the Bethe-Salpeter (BS)
equation for the RPA propagator. The main difficulty to solve exactly that equation stems from the
exchange terms of the ph interaction. We shall discuss different approximations employed to deal with
such a problem.

2.2 Particle-hole propagators and linear response

We give now a schematic description of the method used to obtain an expression of the strength function
defined by Eq. (7). An example will be presented in the case of a simple residual interaction at the
end of the section. For the sake of simplicity, we first consider a system with only one Fermi surface
(as in SNM or in non polarised PNM), so that the isospin index is omitted. In this case, the retarded
propagator GHF of a non-interacting ph pair can thus be expressed as

GHF (k,q, ω) =
n(k)− n(q+ k)

ω + ε(k)− ε(q+ k) + iη
, (8)
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where n(k) is the Fermi-Dirac occupation number, which reduces to the step function θ(kF − k) at zero
temperature, and ε(k) is the single-particle energy

ε(k) =
k2

2m
+ U(k) , (9)

U being the mean field. Actually, a parabolic approximation to the mean field is currently employed
by most authors, so that the HF propagator has actually the same form as the free propagator when
replacing the nucleon mass with the effective mass at the Fermi surface deduced from the mean field,
that is

ε(k)− ε(k+ q) → ~
2

2m∗ (k
2 − (k+ q)2) . (10)

The validity of this approximation will be discussed in Sect. 3.5.
The response function is then obtained as

χHF (q, ω) = nd

∫

d3k

(2π)3
GHF (k,q, ω) , (11)

where nd is the degeneracy factor (nd = 4 for SNM and nd = 2 for PNM). The function χHF (q, ω) is
usually called the Lindhardt function [104], although strictly speaking the latter refers to the response
of a free fermion gas instead of a system of fermions in a mean field. Furthermore, this expression
corresponds to the case where no spin or isospin flip occurs and the absence of the (α) index indicates
that the result is independent of the spin-isospin channel.

If we now consider the presence of a residual interaction acting between particle and holes, corre-
lations are taken into account through the correlated ph propagator which is obtained by solving the
Bethe-Salpeter equation [2]

G
(α)
RPA(k1,q, ω) = GHF (k1,q, ω)

+ GHF (k1,q, ω)
∑

(α′)

∫

d3k2

(2π)3
V

(α,α′)
ph (q,k1,k2)G

(α′)
RPA(k2,q, ω) , (12)

where V
(α,α′)
ph (q,k1,k2) is the residual interaction matrix element which describes the ph excitations of

the system built on a mean-field (Hartree-Fock) ground state. The ph residual interaction links two ph
pairs with quantum numbers (α) and (α′), and hole momenta k1 and k2, respectively. Integrating over
k1 gives the RPA response function

χ
(α)
RPA(q, ω) = nd

∫

d3k

(2π)3
G

(α)
RPA(k,q, ω) . (13)

At zero temperature, 0 ≤ k ≤ kF and it is possible to set limits on the available energy space of all
possible 1p1h excitations. When a momentum q is transferred to a particle with momentum k in the
Fermi sea, the excitation energy can be written as ω = (k+q)2/2m∗− k2/2m∗, assuming the parabolic
approximation to the mean field. This energy depends on the relative angle between k and q, but it lies
inside the shaded region of Fig. 1. The dotted line corresponds to the value q2/2m∗ (particle initially
at rest). This region of 1p1h excitations is the one considered in this review for all RPA calculations.

2.3 The ph interaction

Within the RPA, the excitations of the system result from the residual ph interaction. In the theory of
Fermi liquids, the matrix elements of this ph interaction can be easily obtained by the second functional
derivative with respect to non-diagonal densities taken at the Hartree-Fock solution [2]

〈a′,b′|Vph|a,b〉 =
δ2E[ρ]

δρ̂(a′, a)δρ̂(b′,b)

∣

∣

∣

∣

HF

(14)
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Figure 1: Domain of allowed excitation energies associated with a particle-hole excitation.
For illustration, calculations have been done at kF=1.33 fm−1 and m∗/m=1. The dotted
line inside this region corresponds to the value q2/2m∗. See text for details.

Figure 2: Diagrammatic representation of the particle-hole interaction.

where the symbol a is a shorthand notation for (xa, σa, τa), that is the spatial coordinates xa and the
spin and isospin variables σa and τa. In general, the resulting two-body matrix elements depend on four-
momenta at most. However, because of momentum conservation there are actually three independent
momenta. Following [56], we choose them as the initial (final) momentum k1(k2) of the holes and the
external momentum transfer q in the following way: k′

a = k1 + q, ka = k1, k
′
b = k2, and kb = k2 + q

as illustrated in Fig. 2. Finally, the matrix elements in the spin-isospin space of the ph interaction may
be written as

〈q+ k1,k2;α|Vph|k1,q+ k2;α
′〉 = V

(α,α′)
ph (q,k1,k2) , (15)

as anticipated in Eq. (12). From Fig. 2, we see that the ph interaction is the sum of a direct contribution,
which only depends on the transferred momentum q, and an exchange one, which depends on the relative
momentum k12 ≡ k1 − k2.

One can thus recast the previous expression as

V
(α,α′)
ph (q,k1,k2) = V

(α,α′)
D (q) + V

(α,α′)
E (k12) . (16)

The phenomenological interactions considered here contain an explicit density-dependent part, but it is
worth noticing that this part only contributes to the direct term. Actually, the exchange term represents
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Figure 3: Diagrammatic representation of the Bethe-Salpeter equation for the response
function restricted to the direct term.

the main difficulty in solving the Bethe-Salpeter equation. When treated in some approximation so that
its k12 dependence simplifies, the resolution of Eq. (12) becomes feasible. For instance, assuming no k12

dependence at all, and the direct term diagonal in the spin-isospin space, one can immediately solve
the BS equation so that response function takes the simple form

χ
(α)
RPA(q, ω) =

χHF (q, ω)

1− V
(α)
D (q)χHF (q, ω)

. (17)

This is the so-called ring approximation, diagrammatically represented in Fig. 3. As a matter of
terminology, it is worth keeping in mind that in condensed matter textbooks, such an approximation is
indicated as “RPA”, whereas “extended RPA” refers to what it is called here RPA, that is, including
the full residual interaction.

Some general properties of the RPA response function can be deduced from Eq. (17). The residual
interaction not only modifies the distribution strength, but it can also give rise to excitations outside the
energy domain illustrated in Fig. 1 where Imχ

(α)
RPA(q, ω) = 0. Indeed, the response has a pole when the

denominator of Eq. (17) vanishes: 1− V
(α)
ph χHF = 0. This defines a particular collective excitation [1],

also called zero sound, for historical reasons [105]. Increasing the value of q, the excitation energy
eventually crosses the upper ph edge and the excitation is absorbed into the continuum.

In the case of a standard Skyrme interaction the strategy for obtaining the response function is
very simple [56, 106, 107, 108, 47]. In momentum space, the ph interaction can be written as a
polynomial form in the relative hole momenta, containing only terms of the form 1 , k2

i , kiY1,µ(k̂i), and

k1Y1,µ(k̂1)k2Y1,µ′(k̂2). The idea is thus to multiply the Bethe-Salpeter equation Eq. (12) with appropriate
monomials in ki and integrate over momentum, thus obtaining a closed set of algebraic equations for
the momentum averages of the ph propagator 〈G(α)

RPA〉, 〈k2G
(α)
RPA〉, 〈kY 0

1 G
(α)
RPA〉, 〈k2|Y 1

1 |2G
(α)
RPA〉 and

〈k2|Y 0
1 |2G

(α)
RPA〉. Depending on the ph interaction, one can therefore obtain either a single equation or a

set of equations coupling the different spin-isospin channels. In principle the system can be analytically
solved, although for some systems and/or excitation operators, the expressions are cumbersome and
the numerical approach is preferable.

It is worth mentioning that an essential assumption used to solve algebraically the Bethe-Salpeter
equation is that the momentum dependence of the single particle states is given by Eq. (9), i.e. there
is no explicit momentum dependence in the effective mass m∗. This is the case for a standard Skyrme
interaction, but it is no longer true when dealing with Skyrme N2LO or N3LO interactions or in
general finite-range interactions. Taking explicitly into account the full momentum dependence of the
effective mass would require solving the problem numerically from the start. The problem has been
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discussed in Ref [91] for the Skyrme N2LO interaction: by evaluating m∗ at the Fermi momentum and
thus removing the explicit momentum dependence of the effective mass it is then possible to find an
analytical expression for the response function. By doing that, a violation has been observed for the
energy weighted sum rule of at most 10% for large values of the transferred momentum (≃ 2kF ). We
will come back to this point in Sect. 3.5.

3 Phenomenological finite-range interactions

There are two popular types of finite-range interactions being currently used to describe nuclear struc-
ture, namely Gogny [48] and Nakada [51] interactions. Both types can be cast in the following general
form

V (r1, r2) = VC(r1, r2) + VDD(r1, r2) + VSO(r1, r2) + VT (r1, r2) , (18)

which is a sum of central, density-dependent, spin-orbit and tensor terms. A formal difference between
these interactions lies in the finite-range form factor, consisting of a superposition of either Gaussians
or Yukawians, respectively. In both cases, the density-dependent term is a zero-range interaction of the
same form as the Skyrme interaction.

Gogny’s interaction was originally conceived to describe pairing correlations using the same central
interaction for both particle-particle (pp) and ph channels, thus avoiding the introduction of two sepa-
rated potentials as required when dealing with the Skyrme interaction. It is a purely phenomenological
interaction containing a central part, made as a superposition of two Gaussians, plus a density-dependent
and a spin-orbit term both similar to those present in the Skyrme interaction. The parameters are fitted
so as to reproduce selected (pseudo)-observables in both finite nuclei and nuclear matter as well. Nowa-
days, it is currently used to describe many aspects of nuclear structure at the Hartee-Fock-Bogoliubov
(HFB) level, or even beyond mean field [109]. The merits and drawbacks of this interaction have been
reviewed in Refs. [110, 111, 50].

Nakada interaction is a semi-realistic one, actually based on the so-called Michigan three range
Yukawa (M3Y) interaction [112]. Originally, the M3Y interaction was conceived for inelastic nucleon-
nucleus scattering studies, and its parameters were fitted to G-matrix results derived from realistic
interactions. However, it provides unsatisfactory results in finite nuclei, particularly for saturation and
spin-orbit splittings. It was then generalized by Nakada [51], starting from a M3Y parametrisation which
fits the G-matrix obtained from the Paris-potential [113]. It includes finite-range central, spin-orbit and
tensor terms plus a Skyrme-like density-dependent term. Some of its parameters were fitted to nuclear
structure data, while keeping others unchanged. In particular, the long range part of the interaction
has been kept, so that the main features of the one pion exchange potential (OPEP) are asymptotically
fulfilled. Afterwards, improving the fit of nuclear observables has resulted in the construction of several
parameterisations. A recent review of this interaction can be found in Ref. [52]. In the following we
discuss in more detail the structure of each of these terms for both interactions.

For both families, the general residual ph interaction matrix elements is written as a sum

V
(α,α′)
ph (k1, k2, q) = V

(α,α′)
C ph + V

(α,α′)
DDph + V

(α,α′)
SO ph + V

(α,α′)
T ph (19)

of central, density dependent, spin-orbit and tensor parts respectively.

9



3.1 Gogny interaction

The various contributions to Eq. (18) for the Gogny interaction read

VC(r1, r2) =
∑

i=1,2

(Wi +BiPσ −HiPτ −MiPσPτ ) e
−r212/µ

2
i , (20)

VDD(r1, r2) = t3 (1 + x3Pσ) ρ
γδ(r1 − r2) , (21)

VSO(r1, r2) = iW0(k
′ ∧ k) · (σ1 + σ2)δ(r1 − r2) . (22)

Pσ, Pτ are the standard spin and isospin exchange operators. The values of µi are fixed beforehand to
simulate short- and long-range terms, typically between 0.5 and 0.8 fm for the shorter and 1-1.2 fm for
the longer. The sum over range indices will be omitted in the following to alleviate the notations. The
density power γ is also fixed, usually to the value 1/3. The remaining parameters are adjusted on some
selected properties of finite nuclei and SNM according to the adopted fitting protocol [49, 114, 115].

Originally, no tensor terms were considered. However, some authors have recently investigated the
possibility of equipping the Gogny interaction with a finite-range tensor. In Ref. [116] a finite-range
Gaussian tensor isospin term was added to the D1S interaction, with a full refit of the parameters, leading
to the so-called GT2 interaction. However, the resulting parametrisation lead to strong instabilities in
the infinite medium [100], thus making the interaction not suitable for calculations in atomic nuclei. In
Refs. [117, 118], an isospin tensor term was perturbatively added to D1S and D1M interactions. It was
taken from the Argonne AV18 interaction [119], with a regularisation factor. The resulting interactions
were labelled D1ST and D1MT. Later on, the same authors [120, 121] used a Gaussian tensor form as
suggested in Ref. [122]

VT (r1, r2) = (VT1 + VT2Pτ ) e
− 1

4
r212µ

2

ST (r̂12) , (23)

where ST is the usual tensor operator

ST (r̂12) = 3(σ1 · r̂12)(σ2 · r̂12)− (σ1 · σ2) . (24)

Again, it was introduced perturbatively by simultaneously adjusting the spin-orbit and the tensor
terms on the shell structure of selected nuclei, without touching the central part terms. Some stable
parameterisations, labelled D1ST2a and D1ST2b, suitable for systematic calculations in atomic nuclei
have been obtained.

Finally, it is worth mentioning that in Ref. [123] a finite-range version of the density-dependent term
has been suggested. This new density dependent term has the form

VDD,fr(r1, r2) = (W3 +B3Pσ −H3Pτ −M3PσPτ )
e−r212/µ

2
3

(µ3

√
π)3

ρα(r1) + ρα(r2)

2
. (25)

The main reason was to improve the reproduction of the four spin/isospin channels of the equation
of state (see next section). The resulting parametrisation is called D2, but, to our knowledge, no
systematic calculations have been implemented with this parametrization.

3.1.1 Mean field

In the Hartree-Fock approach, it is possible to find an analytical solution for ground state properties of
infinite matter. For instance, in Fig. 4, the equation of state (EoS) is plotted as a function of the density
for SNM with D1S [49], D1N [114], D1M [115], D1M* [124] and D2 [123] interactions. As a comparison,
on the same figure are also displayed the Brueckner-Hartree-Fock (BHF) results [125], based on the
Argonne AV14 nuclear interaction plus the Urbana model for the three-body interaction.

We see that the various interactions have a quite similar behaviour up to twice the saturation density,
then the results tend to differ. For completeness, we report in Tab. 1 other relevant properties of selected
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Figure 4: EoS in SNM for the various Gogny interactions. The squares correspond to BHF calculations.
Taken from Ref. [126].

Gogny parametrizations around saturation density ρ0 as the energy per particle at saturation E/A|0,
the compressibility K0 and the symmetry energy J . We refer the reader to Ref. [127] for a more detailed
discussion on the SNM properties of Gogny interactions.

m∗/m ρ0 [fm−3] E/A|0 [MeV] K0 [MeV] J [MeV]
D1M* 0.746 0.165 -16.06 225.4 30.25
D1M 0.747 0.165 -16.02 225.0 28.55
D1N 0.747 0.161 -15.96 225.6 29.60
D1S 0.697 0.163 -16.01 202.9 31.13
D2 0.738 0.163 -16.00 209.3 31.13

Table 1: SNM properties as predicted by selected Gogny parametrizations. Adapted from Ref. [124].

In Fig. 5, we illustrate the spin-isospin decomposition of the SNM EoS [37] for the Gogny parametriza-
tions of Tab. 1 together with the BHF results [125]. It is worth noting that in a recent article [128],
it has been suggested that there is no need to impose a strict constraint on the saturation point in
SNM, namely ρ0 and E/A|0, to have a good reproduction of finite nuclei. While all Gogny and Nakada
interactions (see also Tab. 4) available in the literature show very little variation on these SNM param-
eters [127], the Skyrme interactions present a much larger variability on these parameters, but keeping
a reasonable reproduction of properties of finite nuclei [129]. As already mentioned, the D2 interaction
has been equipped with the finite-range density-dependent term given in Eq. (25) to improve on the
reproduction of the (S,T) channels as compared to BHF results. We can see that the agreement between
mean-field and BHF results is thus better than the other parametrizations, but restricted to densities
below ≃ 1.5 the saturation density.

To improve the agreement at higher values of the density, the inclusion of a third Gaussian to the
original Gogny interaction has been suggested in Ref. [130]. Up to now, no parametrization with three
gaussians which takes into account finite nuclei constraints has been obtained yet: the interaction G3,
based on D1S, has been adjusted only on infinite matter. However, the inclusion of a third gaussian
seems to contain the extra required flexibility and one can observe in Fig. 5 a much better agreement
with realistic BHF results. See discussion in Ref. [126].

Only the central and density-dependent terms are tested in the (S, T ) decomposition of the EoS since
at the mean field level, neither the tensor nor the spin-orbit contribute [131]. However, as discussed in
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Figure 5: Spin/Isospin decomposition of the EoS for various Gogny interactions. The dots correspond
to BHF calculations. Adapted from Ref. [126].

Refs. [132, 126], it is possible to test these non-central terms as well, by inspecting the following partial
wave decomposition of the total EoS

E

A
=

3

5

~
2

2m
k2
F +

∑

JLS

V
(

2S+1LJ

)

, (26)

where ~J = ~L + ~S is the total angular momentum, ~L is the orbital angular momentum and ~S is the
total spin of a pair of particles. To better disentangle the effects related to spin-orbit and tensor, in
Ref. [126] the energy difference of some specific partial waves was considered

δP =
1

3
V
(

3P1

)

− V
(

3P0

)

, (27)

δD =
1

5
V
(

3D2

)

− 1

7
V
(

3D3

)

, (28)

δF =
1

7
V
(

3F3

)

− 1

9
V
(

3F4

)

. (29)

In principle, some other combinations are possible, but they are contaminated by extra parity mixing
which is absent in the HF formalism. The behaviour of these energy differences is displayed in Fig. 6
for BHF calculations and some of the Gogny parametrizations considered in the previous section. Since
there is no tensor in these parametrizations, the contribution is identically zero for δD and δF , the spin-
orbit term giving a non zero contribution to δP only. Therefore, the parametrization D1ST2a [118] which
contains a tensor has also been included. However, we see in Fig. 6 that this tensor term, introduced
perturbatively via an adjustment on some selected properties of spherical nuclei gives the wrong sign
in infinite matter when compared to BHF calculations.

As discussed in Ref. [133], it is thus not clear whether the constraints on the tensor coming from
finite nuclei are compatible with the ones coming from ab initio calculations. However it is neither clear
if such a difference is relevant and has any impact on calculations of properties of finite nuclei. More
investigation in this direction is clearly required before drawing strong conclusions.
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Figure 6: Difference of partial waves for BHF results (dots) and some Gogny parametrizations (lines).
Taken from Ref. [126].

3.1.2 ph interaction

The different terms entering Eq. (19) read

V
(α,α′)
C ph = δα,α′

{

D(α)FC(q) + E(α)FC(k12)
}

, (30)

V
(α,α′)
DDph = δα,α′R(α) , (31)

V
(α,α′)
SO ph = qX(I)

{

M ′(k12)
1
M ′δS′,1δS,0 +M(k12)

1
−MδS,1δS′,0

}

δI,I′δQ,Q′ , (32)

V
(α,α′)
T ph = δS,1δS′,1δI,I′δQ,Q′

{

D
(I)
T FT (q)q

2 [3δM,0δM ′,0 − δM,M ′ ]

+E
(I)
T FT (k12)

[

3(−1)M(k12)
1
−M(k12)

1
M ′ − k2

12δM,M ′

]

}

, (33)

where (k12)
1
M is a rank-1 tensor defined as (k12)

1
M =

√

4π
3

(

k1Y1M(k̂1)− k2Y1M(k̂2)
)

, Y1M being the

usual spherical harmonic. The coefficients D(α), E(α), R(α) are combinations of the central and density-
dependent parameters, given in Tab. 2 for both SNM and PNM. The coefficients X(I), D

(I)
T , E

(I)
T are

combinations of the non-central parameters. They only depend on the isospin index, and their ex-
pressions are given in Tab. 3. The notation D and E refers to the direct and exchange contributions
in each case. As the Gogny spin-orbit interaction is zero-range, both contributions merge in a single
combination X(I). The functions FC,T corresponds to the Fourier transform of the radial functions,
whose expressions are

FC(k) = e−k2µ2/4 , (34)

FT (k) =
1

4k5

(

6πErf

(

kµ

2

)

−
√
πkµ(6 + k2µ2)e−k2µ2/4

)

. (35)

For completeness, we also give the ph interaction for the extra D2 finite-range density-dependent
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SNM (S, I) D(S,I) E(S,I) R(S,I)

(0,0) π3/2µ3(4W + 2B − 2H −M) π3/2µ3(−W − 2B + 2H + 4M) 3
2
(γ + 1)(γ + 2)t3ρ

γ

(0,1) −π3/2µ3(2H +M) −π3/2µ3(W + 2B) −(1 + 2x3)t3ρ
γ

(1,0) π3/2µ3(2B −M) π3/2µ3(−W + 2H) −(1− 2x3)t3ρ
γ

(1,1) −π3/2µ3M −π3/2µ3W −t3ρ
γ

PNM (S) D(S;n) E(S;n) R(S;n)

(0) π3/2µ3(2W +B − 2H −M) π3/2µ3(−W − 2B +H + 2M) 1
2
(γ + 1)(γ + 2)(1− x3)t3ρ

γ

(1) π3/2µ3(B −M) π3/2µ3(−W +H) −(1− x3)t3ρ
γ

Table 2: Contributions from the direct, exchange and density dependent terms (30, 31) to the Gogny
ph matrix elements.

SNM (I) X(I) D
(I)
T E

(I)
T

(0) −3W0 −8π(2VT1 + VT2) 8π(VT1 + 2VT2)
(1) −W0 −8πVT2 8πVT1

PNM X(n) D
(n)
T E

(n)
T

−2W0 −8π(VT1 + VT2) 8π(VT1 + VT2)

Table 3: Contributions from the non-central terms (32, 33) to the Gogny ph matrix elements.

term

V
(α,α′)
DD,fr ph = ργD

(α)
3

∫

dreiqrG(r)− ργE
(α)
3

∫

dreik12rG(r)

+ γργD
(0,0)
3

∫

dr(1 + eiqr)G(r)

− γργD
(0,0)
3

∫

dr
3j1(kF r)

kF r
G(r)

1

2

(

e−ik1r + e−ik2r
)

(1 + eiqr)

+
1

2
γ(γ − 1)D

(0,0)
3

∫

drG(r)− 1

2
γ(γ − 1)E

(0,0)
3

∫

drG(r)

(

3j1(kF r)

kF r

)2

, (36)

where we used G(r) = e−r2/µ23

π3/2µ3
3
to simplify the notation and j1 is the standard spherical Bessel function.

The coefficients D
(α)
3 , E

(α)
3 are given by the same combinations of Tab. 2 for the central terms, but

using the parameters of the density-dependent interaction.

One can see in Eq. (32) that the spin-orbit interaction mixes both S = 0 and 1 channels. The tensor
interaction instead acts on the S = 1 channel, as shown in Eq. (33), However, due the coupling induced
by the spin-orbit interaction, it has also effects in the S = 0 channels. Finally, notice also that the
matrix elements of the ph interaction are diagonal in the isospin, which justifies the isospin convention
used here to simultaneously deal with both SNM and PNM. These comments applies of course to any
ph interaction with the general structure given in Eq. (19).
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3.2 Nakada interaction

The various contributions to the Nakada interaction read

VC(r1, r2) =
∑

i=1,3

(

t
(SE)
i PSE + t

(TE)
i PTE + t

(SO)
i PSO + t

(TO)
i PTO

) e−µir12

µir12
, (37)

VSO(r1, r2) =
∑

i=1,2

(

t
(LSE)
i PTE + t

(LSO)
i PTO

) e−µir12

µir12
(r12 ∧ p12) · (s1 + s2) , (38)

VT (r1, r2) =
∑

i=1,2

(

t
(TNE)
i PTE + t

(TNO)
i PTO

) e−µir12

µir12
r212ST (r̂12) , (39)

where the projectors on the different singlet-triplet spin and odd-even space pair states are given by

PSE =
1

4
(1− P σ)(1 + P τ ) , PTE =

1

4
(1 + P σ)(1− P τ ) , (40)

PSO =
1

4
(1− P σ)(1− P τ ) , PTO =

1

4
(1 + P σ)(1 + P τ ) . (41)

ST (r12) is the tensor operator defined in Eq. (24) and si = σi/2. The Nakada interaction contains three
different ranges in the central part, each of them corresponding to a specific meson mass (790, 490 and
140 MeV respectively). The third Yukawian, corresponding to the longest range, has been adjusted on
matrix elements of the one pion-exchange potential (OPEP) and has been kept unchanged in all existing
parametrizations. Also notice that the Nakada interaction contains finite-range form factors in all terms
apart from the density-dependent one. In the first M3Y-P1 and M3Y-P2 parameterisations [51], this
term was identical to the standard Skyrme one, but later on it was rewritten [134] as the sum of two
zero-range terms, one for each even channel, as

VDD(r1, r2) =
[

t(SE)
ρ PSEρ

γ(SE)

+ t(TE)
ρ PTEρ

γ(TE)
]

δ(r12) . (42)

Following discussion done in Ref. [135], the presence of a density dependent term is important to obtain
reasonable properties of infinite matter at saturation and a reasonable value for the effective mass [136].
The parameters in the triplet-even (TE) channels of the density dependent term have been adjusted to
obtain a value of the nuclear incompressibility close to the accepted values [129], the singlet-even (SE)
channel gives little contribution to K0 and it is then adjusted to reproduce pairing properties of PNM.

Finally, we notice that in Ref. [137] a density dependent term is also added to enrich the spin-orbit
one. We will not consider such a case here. Again, to simplify the notation, the sum over range indices,
as well as the indices themselves, will be omitted.

3.2.1 Mean field

We start by briefly summarising infinite matter properties obtained using some selected Nakada pa-
rameterisations. As an example, the main SNM quantities obtained with them are given in Tab. 4 and
in Fig. 7, we plot the corresponding equations of state in SNM as well as the BHF results [125]. As for
the Gogny case, the different parametrizations provide roughly the same features of SNM. This is due
to a fine tuning of the bulk part (the only part that contributes to SNM) except for the long-range part
which is kept unchanged.

The spin/isospin decomposition of the EoS is also displayed in Fig. 8 for the various Nakada in-
teractions. As compared to Gogny results displayed in Fig. 5, one can notice that on average the
reproduction of the BHF results is more satisfactory. Most likely the presence of three ranges provides
more flexibility to better reproduce the (S, T ) channels.
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Figure 7: EoS in SNM for the various Nakada interactions. The squares correspond to BHF calculations.
Taken from Ref. [126].

m∗/m ρ0 [fm−3] E/A|ρ=ρ0
[MeV] K0 [MeV] J [MeV]

M3Y-P2 [51] 0.652 0.162 -16.14 220.4 30.61
M3Y-P3 [135] 0.658 0.162 -16.51 245.8 29.75
M3Y-P4 [135] 0.665 0.162 -16.13 235.3 28.71
M3Y-P5 [135] 0.629 0.162 -16.12 235.6 29.59
M3Y-P6 [138] 0.596 0.162 -16.24 239.7 32.14
M3Y-P7 [138] 0.589 0.162 -16.22 254.7 31.74

Table 4: SNM properties as predicted by selected Nakada interaction
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Figure 8: Spin/isospin decomposition of the EoS for various Nakada interactions. Same symbols as in
Fig. 7. Adapted from Ref. [126].

The differences δP , δD and δF , introduced in Eqs. (27-29), are displayed in Fig. 9. Contrary to the
Gogny case, the spin-orbit and the tensor both contribute to the P,D and F waves since the spin-orbit
has now a finite-range. We first notice that the tensor contribution of the Nakada interaction is weaker
than a realistic tensor, but has the correct sign, contrary to the Gogny case. The tensor terms of M3Y-
P3, P5, P6 and P7 are identical, while they have been switched off in M3Y-P4 and have a considerable
reduced strength in M3Y-P2. Indeed, we can see on Fig. 9 that M3Y-P3, P5, P6 and P7 give the same
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results and that M3Y-P2 and M3Y-P4 roughly coincide (and correspond to the contribution of the
spin-orbit alone).
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Figure 9: Difference of partial waves for BHF results (dots) and Nakada interactions (lines). Taken
from Ref. [126].

3.2.2 ph interaction

The ph interaction as defined in Eq. (15) read

V
(α,α′)
C ph = δα,α′

{

D(α)FC(q) + E(α)FC(k12)
}

, (43)

V
(α,α′)
DDph = δα,α′R(α) , (44)

V
(α,α′)
SO ph = qδI,I′δQ,Q′

{

D
(I)
SOFSO(q) + E

(I)
SOFSO(k12)

}

{

M ′(k12)
1
M ′δS′,1δS,0 +M(k12)

1
−MδS,1δS′,0

}

, (45)

V
(α,α′)
Tph = δS,1δS′,1δQ,Q′

{

D
(I)
T FT (q)q

2 [3δM,0δM ′,0 − δM,M ′ ]

+E
(I)
T FT (k12)

[

3(−1)M(k12)
1
−M(k12)

1
M ′ − k2

12δM,M ′

]

}

. (46)

The notation is similar to that given for Gogny interaction, except that the Nakada spin-orbit
term is finite-range and consequently, there are now distinct direct and exchange contributions. The
coefficients D(α), E(α), and R(α) are combinations of the central parameters, and are given in Tab. 5 for
both SNM and PNM. Notice that in Tab. 5, we provide the expressions of the ph interaction for the
density dependent term given in Eq. (42). If the Gogny-like density dependent is used, the expressions

can be taken from Tab. 2. The coefficients D
(I)
SO, E

(I)
SO, D

(I)
T and E

(I)
T are combinations of the non-central

parameters and are given in Tab. 6. As for Gogny, a sum over range indices is to be understood.
The functions FC , FSO, FTN are obtained via a Fourier transform and they read

FC(q) =
1

q2 + µ2
, (47)

FSO(q) =
2

µ(q2 + µ2)2
, (48)

FT (q) =
8

µ(q2 + µ2)3
. (49)
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SNM (S, I) D(S,I) E(S,I) R(S,I)

(0,0) π
µ
(3t(SE) + t(SO) + 3t(TE) + 9t(TO)) π

µ
(3t(SE) − t(SO) + 3t(TE) − 9t(TO)) +3

4
(γ(SE) + 1)(γ(SE) + 2)t

(SE)
ρ ργ

(SE)

+3
4
(γ(TE) + 1)(γ(TE) + 2)t

(TE)
ρ ργ

(TE)

(0,1) π
µ
(t(SE) − t(SO) − 3t(TE) + 3t(TO)) π

µ
(t(SE) + t(SO) − 3t(TE) − 3t(TO)) 1

2
t
(SE)
ρ ργ

(SE) − 3
2
t
(TE)
ρ ργ

(TE)

(1,0) π
µ
(−3t(SE) − t(SO) + t(TE) + 3t(TO)) π

µ
(−3t(SE) + t(SO) + t(TE) − 3t(TO)) −3

2
t
(SE)
ρ ργ

(SE)
+ 1

2
t
(TE)
ρ ργ

(TE)

(1,1) π
µ
(−t(SE) + t(SO) − t(TE) + t(TO)) π

µ
(−t(SE) − t(SO) − t(TE) − t(TO)) −1

2
t
(SE)
ρ ργ

(SE) − 1
2
t
(TE)
ρ ργ

(TE)

PNM (S) D(S;n) E(S;n) R(S;n)

(0) 2π
µ
(t(SE) + 3t(TO)) 2π

µ
(t(SE) − 3t(TO)) 1

2
(γ(SE) + 1)(γ(SE) + 2)t

(SE)
ρ ργ

(SE)

(1) 2π
µ
(−t(SE) + t(TO)) −2π

µ
(t(SE) + t(TO)) −t

(SE)
ρ ργ

(SE)

Table 5: Contributions from the direct, exchange and density dependent terms to the ph matrix elements
for the central terms of the Nakada interaction.

SNM (I) D
(I)
SO E

(I)
SO D

(I)
T E

(I)
T

(0) π
2
(t(LSE) + 3t(LSO)) π

2
(−t(LSE) + 3t(LSO)) −4π(t(TNE) + 3t(TNO)) 4π(−t(TNE) + 3t(TNO))

(1) π
2
(−t(LSE) + t(LSO)) π

2
(t(LSE) + t(LSO)) −4π(−t(TNE) + t(TNO)) 4π(t(TNE) + t(TNO))

PNM D
(n)
SO E

(n)
SO D

(n)
T E

(n)
T

πt(LSO) πt(LSO) −8πt(TNO) 8πt(TNO)

Table 6: Coefficients entering the Nakada non-central parts of the ph interaction

3.3 Comparing the tensor interactions

The difference between the Gogny and Nakada tensor has previously been illustrated in Figs. 6-9,
by performing a partial wave decomposition of the EoS. It is now interesting to compare the radial
parts of the tensor interactions. In Fig. 10 the Fourier transform of the radial form factors are plotted
for three typical effective interactions, namely Gogny D1ST2a and D1ST2b [120] and Nakada M3Y-
P5 [135]. The Gogny-like tensor contains two parameters, which have been fitted to the energy difference
between the 1f5/2 and 1f7/2 single particle neutron states in 48Ca, and to the energy of the first 0−

state in the 16O nucleus. The parameters have been adjusted together with the spin-orbit term [139],
but leaving unchanged the parameters of the central term. Nakada tensor parameters are first fitted
to the microscopic interaction, and then multiplied by a reduction factor fixed so as to reproduce the
single-particle level ordering for 208Pb.

Although a realistic interaction, fitted to properties of NN scattering, is not reliable for using in a
Hartree-Fock approach, it is however interesting to compare the general trend of these phenomenological
tensor interactions with the tensor part of the Argonne AV18 interaction [119]. In Fig. 10 one can see
that both isoscalar and isovector AV18 tensor terms are attractive. Instead, the effective interactions
are repulsive in the isoscalar tensor channel, except for a small attraction presented by M3Y-P5 for
q < 1 fm−1. The fact that Nakada tensor is a readjustment of a realistic interactions is reflected in the
figure as being closer to AV18.

The intensity of the radial part is also very different for the different interactions, in particular we
observe that the Nakada interaction is reasonable close to the AV18 result in the isovector channel,
while the two Gogny interactions lead to ≈ 50% stronger intensity.

In view of the results presented in the following, it is very instructive to analyse in more detail
the isoscalar channel: we observe that the Nakada tensor is very weak in this channel, even weaker
than the one given by the AV18 interaction. On the contrary the Gogny tensor leads to a very strong
intensity, even larger (in absolute scale) than the one observed in the isovector channel. The apparent
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Figure 10: Tensor isoscalar (upper panel) and isovector (lower panel) of Gogny interactions D1ST2a and
D1ST2b, and Nakada M3Y-P5, compared with the analogous terms of the realistic AV18 interaction.
Taken from Ref. [120].

discrepancy between the AV18 tensor and the Gogny one was also discussed in Ref. [133] by comparing
the partial wave decomposition of the EoS with the one obtained using ab-initio methods. For a more
detail comparison between the two types of tensor, one can also inspect the corresponding Landau
parameters as illustrated in Tab. 10.

At present a systematic analysis of the impact of finite-range tensor on nuclear observables as done
for the case of Skyrme interactions [43, 68, 140, 141, 142] is still missing. It is thus not possible to
conclude which is the most adapted form of tensor to be used in this case of finite-range interactions
and more importantly its strength.

3.4 Connection with zero-range interactions

It is interesting to analyse the zero-range limit of the finite-range interactions considered in this review.
Following the original Skyrme idea [46], it has been shown in Ref. [126] how it is possible to expand
in momentum space any finite-range interaction and truncate such an expansion at a given order. By
considering only second order, one recovers the form of the standard Skyrme interaction [143] and
by considering the higher order momenta one obtains new zero-range interactions named NℓLO, with
ℓ = 2, 3, . . . [89]. Furthermore, by means of a partial-wave decomposition of the EoS of SNM [91] of
a finite-range interaction, one observes that the main contributions to the ground state arise from S-
and P- waves, thus proving that the Skyrme interaction is able with its simplicity to grasp the main
physical features of a more complex finite-range NN interaction. To get an insight on the convergence
properties of the partial-wave decomposition in Eq. (26), in Fig. 11 are compared the exact EoS of SNM
and the one obtained by truncating it at various partial waves for interactions D1S and M3Y-P2.

It can be seen that up to densities≃ 2ρ0, the S, P and D partial waves give a satisfactory convergence.
When the F wave is included, two different scenarios emerge. In the case of Gogny interaction, a full
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Figure 11: EoS in SNM for the complete interaction (solid line with dots) and sum of different partial
waves (lines). Taken from Ref. [126].

convergence is reached even at higher densities, but the convergence is not yet totally reached in the
Nakada case. This result is related to the relatively short range character of Gogny ranges as compared
to the Nakada ones. However, we can safely claim that the contributions up to D wave provide a very
good approximation up to 2 times the saturation density. Following this idea, D waves have been added
to the original Skyrme interaction [91, 88, 90, 53, 144, 132, 145] and a parametrisation at order N2LO,
suitable for calculations in finite nuclei [41], has been obtained. Generally speaking, this D wave (and
even F wave) terms can be generated by a momentum expansion of Gogny, M3Y or any finite-range
interactions up to the sixth order. Such an expansion definitely shows that the resulting series matches
exactly with the extended N3LO Skyrme interaction derived in Refs. [89, 146]. The standard Skyrme
interaction reads

VC(r1, r2) = t0(1 + x0Pσ)δ(r) +
1

2
t1(1 + x1Pσ)

[

k
′2δ(r)+)δ(r)k2

]

+ t2(1 + x2Pσ) [k
′ · δ(r)k] ,(50)

VDD(r1, r2) =
1

6
t3 (1 + x3Pσ) ρ

γδ(r1 − r2) , (51)

VSO(r1, r2) = iW0(σ1 + σ2) · [k′ ∧ δ(r)k] . (52)

By investigating the various terms, we clearly recognise the original S and P wave contributions of
Ref. [46]. Some parameterisations include also a zero-range tensor term of the form

VT (r1, r2) =
1

2
teTe(k

′,k) +
1

2
toTo(k

′,k) . (53)

The tensor operators Te and To, are respectively even and odd under parity transformations and are
defined in the appendix B.4. In Tab. 7, we give as an illustration the Skyrme parameters in terms
of Gogny and Nakada ones when these finite-range interactions are expanded up to second order in
momenta. No density-dependent term appear at this stage as it is originated from a three-body interac-
tion term [55]. In practice it is added by hand phenomenologically. It has been shown in Ref. [90] that
the terms of finite-range spin-orbit expansion are not gauge-invariant, apart from the first one, which
represents the standard Skyrme spin-orbit term. Therefore, the finite-range spin-orbit interaction seems
to be in conflict with the local continuity equation.

It should be stressed that the Skyrme parameters deduced in this way from a finite-range interaction
only contain a part of these interactions. As a consequence, the resulting Skyrme interaction cannot
produce reliable results. Only for the t0 parameter one obtains values similar to those currently found
in a genuine Skyrme interaction, whose parameters are directly adjusted to experimental data.
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Skyrme Gogny Nakada

t0 π3/2µ3(W +M) 2π
µ3 (t

(SE) + t(TE))

t0x0 π3/2µ3(B +H) 2π
µ3 (−t(SE) + t(TE))

t1 −1
2
π3/2µ5(W +M) −4π

µ5 (t
(SE) + t(TE))

t1x1 −1
2
π3/2µ5(B +H) 4π

µ5 (t
(SE) − t(TE))

t2
1
2
π3/2µ5(W −M) 4π

µ5 (t
(SO) + t(TO))

t2x2
1
2
π3/2µ5(B −H) 4π

µ5 (−t(SO) + t(TO))

Wo Wo − π
µ5 t

(LSO)

te
π
√
π

5
µ5(V1 + V2) −64π

µ7 t
(TNE)

to
π
√
π

5
µ5(−V1 + V2)

64π
µ7 t

(TNO)

Table 7: Skyrme parameters deduced from the momentum expansion of Gogny and Nakada interactions.
A sum over the ranges is to be understood.

Since the focus of this review is on finite-range interactions, we refer the reader to Ref [129] for
a detailed discussion on SNM properties of zero-range (Skyrme) interactions, and to Ref. [35] for the
response functions in infinite nuclear matter. We provide here only the expression of the matrix elements
of the Skyrme ph interaction since, as stated above, it can be formally seen as a special limit case. It
will be used explicitly to test the methodology developed in the next sections to determine finite-range
response functions. One obtains

V
(α,α′)
C;DDph = δα,α′

(

W
(α)
1 (q) +W

(α)
2 (k1 − k2)

2
)

, (54)

V
(α,α′)
SO ph = qX(I)

{

M ′(k12)
1
M ′δS′,1δS,0 +M(k12)

1
−MδS,1δS′,0

}

δI,I′δQ,Q′ , (55)

V
(α,α′)
T ph = δS,1δS′,1δI,I′δQ,Q′

{

Z
(I)
1 q2 (3δM,0δM ′,0 − δM,M ′)

+Z
(I)
2

[

3(−)M(k12)
1
−M(k12)

1
M ′ − k2

12δM,M ′

]

}

. (56)

The various coefficients entering the above equations are given in Tabs. 8 and 9, for both SNM and
PNM.

SNM (S, I) W
(S,I)
1 W

(S,I)
2

(0,0) 3t0 +
1
4
(γ + 1)(γ + 2)t3ρ

γ + 3
4
t1q

2 − 1
4
(5 + 4x2)t2q

2 3
4
t1 +

1
4
(5 + 4x2)t2

(0,1) −(1 + 2x0)t0 − 1
6
(1 + 2x3)t3ρ

γ − 1
4
(1 + 2x1)t1q

2 − 1
4
(1 + 2x2)t2q

2 −1
4
(1 + 2x1)t1 +

1
4
(1 + 2x2)t2

(1,0) −(1− 2x0)t0 − 1
6
(1− 2x3)t3ρ

γ − 1
4
(1− 2x1)t1q

2 − 1
4
(1 + 2x2)t2q

2 −1
4
(1− 2x1)t1 +

1
4
(1 + 2x2)t2

(1,1) −t0 − 1
6
t3ρ

γ − 1
4
t1q

2 − 1
4
t2q

2 −1
4
t1 +

1
4
t2

PNM (S) W
(S;n)
1 W

(S;n)
2

(0) (1− x0)t0 +
1
12
(γ + 1)(γ + 2)(1− x3)t3ρ

γ + 1
4
(1− x1)t1q

2 − 1
4
(1 + x2)t2q

2 1
4
(1− x1)t1 +

3
4
(1 + x2)t2

(1) −(1− x0)t0 − 1
6
(1− x3)t3ρ

γ − 1
4
(1− x1)t1q

2 − 1
4
(1 + x2)t2q

2 −1
4
(1− x1)t1 +

1
4
(1 + x2)t2

Table 8: Coefficients of the Skyrme ph interaction in the various spin/isospin channels

3.5 Approximations to the effective mass and the response function

We now turn to the approximation to the mean field mentioned in Sect. 2.2. The denominator of the HF
propagator (8) contains the difference ε(k)− ε(q+ k), where ε(k) = ~

2

2m
k2 + U(k) is the single-particle
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SNM (I) X(I) Z
(I)
1 Z

(I)
2

(0) −3W0
1
2
(te − 3to)

1
2
(te + 3to)

(1) −W0 −1
2
(te + to) −1

2
(te − to)

PNM X(n) Z
(n)
1 Z

(n)
2

−2W0 −to to

Table 9: Coefficients entering the non-central parts of the Skyrme ph interaction

energy, U being the HF mean-field. The effective mass is defined as

m

m∗ = 1 +
m

~2

1

k

∂U(k)

∂k
. (57)

We remind that the effective mass is in general renormalized by non-mean-field effects [103, 5], which are
not considered in the present review. In the case of a Skyrme interaction, the momentum dependence of
the mean field is quadratic, and it can be absorbed into the kinetic energy through a constant effective
mass. However, in the case of a finite-range interaction one has to deal with an effective mass m∗(k)
depending on the momentum k. Such a momentum dependence has been analysed in Ref. [127] for a set
of Gogny-like interactions and several isospin asymmetries. The results are shown in Fig. 12, and include
interactions D1 [49] and D250, D260, D280, and D300 [147], besides those previously encountered.

One can see that the behaviour of m∗(k) as a function of k is rather disparate. In some cases, the
effective mass steadily increases, saturating at m∗ ≃ m at large momenta. In other cases, m∗(k) has
a maximum (a minimum in one case), and then goes to the limit value of the bare mass. In all cases,
defining an approximate constant effective mass is restricted to small values of k only.

The momentum dependence of the effective mass implies some numerical complications in calculating
the HF response function, in particular in the determination of the poles. This is the reason why a
parabolic approximation of the mean field is largely used. However, instead of using the simple Taylor
expansion U(k) ≃ U(0) + (∂U(k)/∂k2)k=0 k2, which is only valid for small values of k, it was shown in
Ref. [148] that the approximation

U(k) ≃ U(0) +

(

∂U(k)

∂k2

)

k=kF

k2 , (58)

or using the value of the effective mass at the Fermi surface, reasonably reproduces the mean field for
values of k up to ≃ 2kF . The analysis of Ref. [148] was based on the specific D1 interaction, but the
conclusion seems to hold in general. Since the kinetic energy dominates at high values of the momenta,
we must consider directly the single-particle energy difference ε(k)− ε(q + k). It is plotted in Fig. 13
for three values of u = k̂ · q̂ at the transferred momentum q = kF . The plot is limited to the integration
domain k fixed by the numerator of Eq. (8). One can therefore see that this approximation works also
well for D1S interaction and even better for M3Y-P7.

It should be stressed that the interest of such an approximation is neither for the mean field nor
for the effective mass, but merely concerns the resulting HF response itself. We thus plot the real and
imaginary parts of the HF response in Fig. 14 at two values of the transferred momentum (q = kF and
1.5kF ) for interactions D1 and M3Y-P2. One can see that using the effective mass m∗(kF ) produces
some differences as compared with the exact response, resulting in a redistribution to the high energy
region. To better quantify it, we consider the sum rules

Mn(q, ρ) =
1

πρ

∫ ∞

0

ωnImχHF (q, ω)dω . (59)
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Figure 12: Effective masses of neutrons (triangles) and protons (cercles) as a function of momentum
for six different isospin asymmetries, calculated for several Gogny-like interactions. Symmetric nuclear
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Figure 13: ε(q+k)−ε(k) calculated exactly (solid lines) and with the parabolic approximation (dashed
lines) for interactions D1S and M3Y-P7 for three values of u = k̂·q̂ at the transferred momentum q = kF .

In Fig. 15 are compared the exact and approximate HF sum rules with n = −1, 0, 1 for interactions
D1 and M3Y-P2. We see that the parabolic approximation (dashed lines) reproduces very nicely the
exact M−1(q, ρ) and M0(q, ρ) sum rules (solid lines), while a sizeable deviation for M1 beyond q ≈ 2kF
is observed. Concerning the M1 sum rule, this kind of observation has already appeared in an extension
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m∗(k) ≃ m∗(kF ) (light lines). Solid and dashed lines refer to imaginary and real parts respectively.

of the Skyrme potential called N2LO [91]. It was concluded that the applicability of the model is
questionable when the discrepancy is too important (≃ 10%). From Fig. 15 we can draw an important
conclusion which will be used in Sect. 7, where unphysical instabilities of finite-range interactions are
discussed in terms of the strengths functions at zero energy. Since such strengths are proportional to
the RPA M−1(q, ρ) sum rule, we can expect the parabolic approximation provide reasonably results in
that respect.
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Figure 15: Hartree Fock energy weighted sum rules at saturation density calculated exactly (solid lines)
and with the approximation m∗(k) ≃ m∗(kF ) (dashed lines). See text for details.

All in all, the parabolic approximation is reasonably accurate for values of the transferred momentum
q smaller than ≃ 2kF . In Ref. [98] a “bi-parabolic” approximation was suggested for higher values of
q. The idea is to fit separately the particle and the hole parts of the mean field involved in the HF
propagator (8), restricting the fit to the range of momenta actually involved in the integration to get the
HF response. Such an approach was used for calculations of the quasi-elastic nuclear response. We are
not going to enter into more details, because this specific approximation has been applied to situations
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where the values of the transferred momentum are significantly higher than those currently explored by
the works reviewed here, which are all based on the single parabolic approximation.

4 Landau approximations to the ph interaction

The Landau’s theory [149, 150, 151, 3, 101, 152, 153] encompasses the basic properties of Fermi liq-
uids. In this approach, the excitations of a strongly interacting normal Fermi system are described in
terms of weakly interacting quasiparticles -or ph excitations- which are long-lived only near the Fermi
surface. The quasiparticle interaction is solely characterized by a set of Landau parameters. In liquid
helium, some of these parameters can be obtained directly from experiment, because they are related
to macroscopic quantities such as the effective mass at the Fermi surface or the incompressibility mod-
ulus. In nuclear matter, these quantities are only indirectly deduced and the parameters are calculated
from phenomenological or realistic interactions. In the latter case a variety of microscopic methods
have been employed such as BHF [154, 155, 156], renormalization group [157] and chiral effective-
field theory [158, 159, 160]. Interestingly, it has been shown that some parameters constrain pairing
properties [161, 162].

Landau’s theory provides a simple method largely used to calculate response functions of nuclear
matter and in some cases, finite nuclei as well [163]. The response to an external perturbation is
obtained by solving the linearized Boltzmann transport equation in the so-called Landau limit, which
consists in taking q → 0, but keeping the quotient ω/q fixed. The response functions depend only on
the dimensionless variable ω/(vF q), where vF is the Fermi velocity. As an illustrative example, one
can quote Gogny and Padjen [164] who calculated the SNM response function in the Landau limit
with parameters derived from the Gogny parameterization D1 [48]. In this section we shall present
the response functions obtained by solving the Bethe-Salpeter equation using a generic Landau ph
interaction.

4.1 Landau parameters

In the limit (q → 0), the particles are restricted to be at the surface of their respective Fermi sphere
(|k1| = |k2| = kF ) so that the interaction only depends on the relative angle θ between vectors k1 and
k2. The standard form of the SNM nuclear ph interaction in the Landau limit is then given as

VLandau = f(θ) + f ′(θ)(τ 1 · τ 2) + g(θ)(σ1 · σ2) + g′(θ)(τ 1 · τ 2) (σ1 · σ2)

+ [h(θ) + h′(θ) (τ 1 · τ 2)]
k2
12

k2
F

ST (k̂12). (60)

Although the factor k2
12/k

2
F in the tensor term must be properly written as 2(1 − cos θ), we keep this

form for the time being and postpone the discussion of this term. Since a spin-orbit ph interaction,
either zero or finite-range, is proportional to the transferred momentum [126], it gives no contribution in
the Landau limit. The great advantage of a description à la Landau is that all the expressions obtained
from this interaction are completely general. The set of usual Landau functions [165, 166, 167, 168, 169]
f, f ′, g, g′ then represent the central ph interaction in the spin-isospin ph spaces (0, 0), (0, 1), (1, 0) and
(1, 1) respectively, while h and h′ correspond to the tensor part in the spin S = 1 and isospin spaces
I = 0, 1, respectively. As a short notation for these functions, we shall write them as f (α)(θ) for the
central components and h(α)(θ) for the tensor ones. Since the isospin matrix elements of Eq. (60) do
not depend on the isospin projection Q, the spin-isospin label α will actually stand for = (S,M, I). We
note that the same notation can be also used for PNM, in which case the symbol α refers only to the
spin indices (S,M ;n).
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Such functions are expanded in terms of Legendre polynomials

f (α)(θ) =
∑

ℓ

f
(α)
ℓ Pℓ(cos θ) , (61)

h(α)(θ) =
∑

ℓ

h
(α)
ℓ Pℓ(cos θ) , (62)

and the coefficients are called Landau parameters. The matrix elements of the ph interaction to be
plugged into the Bethe-Salpeter equation Eq. (12) can therefore be written as

V
(α,α′)
ph /nd = δα,α′

∑

ℓ

f
(α)
ℓ Pℓ(cos θ) + δS,1δS,S′δI,I′

∑

ℓ

h
(α)
ℓ Pℓ(cos θ)S

(M,M ′)
T (k̂1, k̂2) , (63)

where nd is the degeneracy number, coming from the calculation of the matrix elements in the spin-
isospin spaces, and

S
(M,M ′)
T (k̂1, k̂2) = 3(−)M

(

k̂12

)(1)

−M

(

k̂12

)(1)

M ′

− 2 (1− cos θ) δM,M ′ . (64)

Introducing the density of states at the Fermi surface N(0) = nd m
∗kF/(2π

2), one usually defines

dimensionless Landau parameters as F
(α)
ℓ ≡ N(0)f

α)
ℓ which provide dimensionless measures of the

strength of the ph interaction on the Fermi surface. The stability of the spherical Fermi surface against
small deformations can then be expressed in terms of some inequalities for the dimensionless Landau
parameters [165], as we shall discuss later on.

Let us now come back to the tensor term. It has been written in Eq. (60) following the conventional
definition [165, 170]. However, some authors [171, 172, 173, 158] have defined it without the factor
k2
12/k

2
F because it leads to a faster convergence [171], in the sense that the absolute value of parameters

hℓ, h
′
ℓ decreases as ℓ increases. Although the physical information contained in the ph interaction

is the same in both cases, the Landau parameters are different, because of the extra 2(1 − cos θ)
factor entering the conventional definition. Both sets of parameters are actually connected through a
recurrence relation [171, 174]. The form (60) is the most usually considered, and it is well adapted to
the method we will discuss later on to calculate the response function. We thus consider only this form
in the following.

However, Eq. (60) does not include the most general ph interaction. Indeed, as Schwenk and
Friman [172] have pointed out, in the many-body medium the presence of the Fermi sea defines a
preferred frame. Thus, two more non-central components must be included in the ph interaction that
explicitly depend on the center-of-mass momentum P̂12. These have the form

K12(P̂12) = 3(P̂12 · σ1)(P̂12 · σ2)− (σ1 · σ2) , (65)

A12(k̂12, P̂12) = (σ1 · P̂12)(σ2 · k̂12)− (σ1 · k̂12)(σ2 · P̂12) , (66)

which are designed as center-of-mass tensor and cross-vector interactions, respectively. The latter arises
at second order in perturbation theory from the coupling of spin-orbit terms in the free-space interac-
tion with any other non-spin-orbit term [158]. Consequently, and with the same provisos previously
mentioned concerning the k2

12/k
2
F factor, one should add to Eq. (63) the terms

δS,1δS,S′δI,I′
∑

ℓ

[

k
(α)
ℓ KM.M ′

T (k̂1, k̂2) + l
(α)
ℓ AM,M ′

T (k̂1, k̂2)
]

Pℓ(cos θ) , (67)

where kℓ, lℓ are new Landau parameters related to these interactions, and where we have defined

KM.M ′

T (k̂1, k̂2) = 3(−)M(k12)
(1)
−M(k12)

(1)
M ′ − 2(1 + cos θ)δM,M ′ , (68)

AM,M ′

T (k̂1, k̂2) =
8π

3

[

Y ∗
1,M(k̂1)Y1,M ′(k̂2)− Y1,M ′(k̂1)Y

∗
1,M(k̂2)

]

. (69)
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For completeness, we mention that other non-central terms have been considered by Fujita and
Quader [169] in a study of electron systems and heavy fermions. These new terms were deduced from
a general ph interaction invariant under a combined rotation in spin and orbital spaces. But as far as
we know, no attempt to study such terms in nuclear systems has been made.
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Figure 16: Left panel (a): central PNM Landau parameters Fℓ and Gℓ associated with the chiral
nuclear force at the cutoff scale Λ = 450 MeV as a function of the density of the system. Right panel
(b): same but for the non-central Landau parameters Hℓ, Kℓ and Lℓ. Black circles, red squares and
blue diamonds correspond to multipoles ℓ = 0, 1, 2, respectively. Dashed lines and open symbols refer
to results obtained when only two-body interactions are included, while solid lines and symbols refer to
the full two- and three-body interactions. Taken from Ref. [174].

As an example of microscopic results, let’s consider now the Landau parameters calculated in the
the framework of chiral effective-field theory [158, 159, 160]. The calculations include the first and
second-order perturbative contributions from two-body forces as well as the leading term from the chiral
three-nucleon force. It was found that such a scheme lead to a good description of the bulk equilibrium
properties of SNM, including the compressibility modulus and the symmetry energy. The same scheme
was also employed to obtain the PNM Landau parameters in a large range of density values in Ref. [174].
The results depend on the value of the momentum-space cutoff in the chiral nuclear interaction, but it
was checked that the qualitative features of the response functions are insensitive to the cutoff value.
In Fig. 16 are displayed the dimensionless Landau parameters as a function of the density for a cutoff
value Λ = 450 MeV. One can see that non-central parameters are of the same order of magnitude as
the central ones. Therefore, based on their absolute magnitude alone, it is not possible to discard them
when calculating the response functions.

4.1.1 Response functions

The method for obtaining the RPA response functions with the ph interaction given by Eqs. (63) and
(67) has been discussed in [175, 47] and we recall it here briefly. The first step is to understand how
the ph interaction depends on k̂1 and k̂2. Let us, for instance, consider the central components. They
depend on Legendre polynomials Pℓ(cos θ), that is, some linear combinations of (k̂1 · k̂2)

n. In turn, these
powers are represented by combinations of the products

Y ∗
1,µ1

(k̂1) . . . Y
∗
1,µn

(k̂1)Y1,µ1(k̂2) . . . Y1,µn(k̂2) .

Similarly, the tensor components additionally contain terms like

Y ∗
1,M(k̂1)Y1,M ′(k̂1), Y

∗
1,M(k̂1)Y1,M ′(k̂2), Y

∗
1,M(k̂2)Y1,M ′(k̂1), Y

∗
1,M(k̂2)Y1,M ′(k̂2), . . .
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Taking the momentum average of the Bethe-Salpeter equation in Eq. (12), the response function ap-
pears, by definition, in the left hand side. One then realises immediately that this momentum average
〈G(α)

RPA〉 is coupled to other averages of the ph propagator containing a number of spherical harmonics

〈Y1,µ1(k̂2) . . . Y1,µn(k̂2)G
(α)
RPA〉. Therefore, one multiplies the BS equations by these products of spherical

harmonics and integrates over the momenta thus getting a new equation for each of these averages,
until one ends up with a closed system of coupled linear equations for these unknown functions. The
coefficients depend only on the Landau parameters and some momentum averages of the HF propagator,
which can be determined separately.

As an example, let us restrict the ph interaction to its central components with ℓ = 0, 1, 2. In this
case the BS equations can be solved in a simple way and the response function can be written as

χ
(α)
RPA(q, ω) =

χHF (q, ω)

1−W (α) χHF (q, ω)
, (70)

where

W (α) = f
(α)
0 − 1

2
f
(α)
2 + ν2

f
(α)
1 +

(

27
8
ν2 + 3

10
F

(α)
1

)

f
(α)
2

(

1 + 1
3
F

(α)
1

)(

1 + 1
8

[

−9ν2 + 12
5

]

F
(α)
2

) , (71)

where ν = ωm∗/(qkF ) is a dimensionless quantity. The inclusion of tensor components lead to a more
complex algebraic system, for which one gets too cumbersome expressions in the general case. However,
it is relatively easy to obtain an analytical expression in the limit q = 0 and ω = 0, that is, to the static
susceptibility. This susceptibility is important in the sense that it is a thermodynamical quantity and
can be derived from numerical methods. It was given in Ref. [176] for the ph interaction in Eq. (63),
and generalized in Ref. [174] to include the non-central terms of Eq. (67). For SNM and the S = 1
channel, it has been written as

χHF (0, 0)

χ
(M,I)
RPA (0, 0)

= 1 +G
(I)
0 − T1

T2

, (72)

with

T1 = 2

(

H
(I)
0 − 2

3
H

(I)
1 +

1

5
H

(I)
2 +K

(I)
0 +

2

3
K

(I)
1 +

1

5
K

(I)
2

)2

(73)

T2 = 1 +
1

5
G

(I)
2 − 7

15
H

(I)
1 +

2

5
H

(I)
2 − 3

35
H

(I)
3

+
7

35
K

(I)
1 +

2

5
K

(I)
2 +

3

35
K

(I)
3 +

2

5
L
(I)
1 − 6

35
L
(I)
3 . (74)

Notice that this expression is independent of the spin projection M , i.e. the spin susceptibility is
identical for the longitudinal (M = 0) and the transverse (M = 1) channels. Obviously, it reduces to
the familiar spin susceptibility of a Fermi liquid when no tensor terms are considered. These formulae
are also valid for PNM, by replacing G

(I)
ℓ , H

(I)
ℓ ... with the corresponding PNM parameters and in the

S = 0 channel, by replacing G
(I)
ℓ with F

(I)
ℓ and dropping the tensor parameters. It is worth noticing

that Olsson et al. [171] have also deduced the static susceptibility by solving the usual Landau equation,
instead of the method based on the BS equation for the propagator. These authors included the non-
central terms of Eq.(67), but without the prefactor k2

12/k
2
F in the definition of the tensor operators.

Both results are in agreement, but the parameters Lℓ entered as an infinite sum. If the prefactor was
included instead, the contribution of Landau parameters with ℓ > 3 would have canceled out exactly,
as pointed out in Ref. [176].

In Fig. 17, is plotted the PNM static spin susceptibility as a function of density, as obtained with the
Landau parameters of Fig.16. To discern the importance of the tensor parameters, the spin susceptibility

28



0 0.04 0.08 0.12 0.16 0.2 0.24

ρ [fm
-3

]

0

0.5

1

1.5

2

2.5

3

χ
(α

) R
P

A
/χ

F
R

E
E

S=0
S=1 
S=1 (K

l
=L

l
=0)

S=1 (H
l
=K

l
=L

l
=0)

Figure 17: Static spin susceptibility of PNM from the chiral nuclear potential for Λ = 450 MeV as a
function of the density. Taken from Ref. [174].

has also been calculated by dropping them or keeping only Hℓ. One can deduce that the tensor
contribution is negligible as compared to the contribution of the G0 term. Actually, as signalled in
Ref. [174], there is an approximate cancellation between the combination of parameters Hℓ and Kℓ

which results in T1 ≃ 0. It follows that the non-central terms play almost no role in the static spin
susceptibility.
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Figure 18: PNM strength function at kF = 1.68 fm−3 and q/kF = 0.5 in the S = 1 channel calculated
at lmax = 3 with and without the different contributions of the tensor terms. Adapted from Ref. [174]

The PNM strength functions based on the Landau parameters given in Fig. 16 are displayed in
Fig. 18 as a function of energy for kF = 1.68 fm−3 and q/kF = 0.5. The ph interaction includes up to
ℓ = 3 parameters. The HF response is also plotted as a reference. To see the effect of non-central terms,
calculations have been performed in three additional cases, by ignoring Lℓ, both Lℓ and Kℓ and all of
them. One can see that the contribution of tensor terms Lℓ and Kℓ is negligible in both M = 0 and
1 channels, while the term Hℓ reduces the peak of the response and slightly shifts its position towards
lower energies. In conclusion, the new non-central terms can be safely ignored. This is confirmed by
Fig. 19 where the same curves are depicted but with a higher transferred momentum.
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Figure 19: Same as Fig.18 for q/kF = 1 (left panel) and q/kF = 1.5 (right panel)

4.1.2 Landau parameters from Gogny and Nakada interactions

For a given effective two-body interaction taken in the Landau limit, it is always possible to cast the
ph interaction in the form of Eq. (60). The interaction has thus a universal form and it is completely
characterised by the Landau parameters Fℓ, Gℓ, Hℓ (the parameters Lℓ and Kℓ will be neglected in
the following). Explicit expressions of Landau parameters for Gogny and Nakada interactions have
been done in Ref. [47]. In Tab. 10, we thus report their values at saturation density for M3Y-P2 and
D1MT interactions. Notice that the latter is a modified version of D1M [115] with a tensor term added
perturbatively.

Table 10: Landau parameters in SNM and PNM at density ρ = 0.16 fm−3 for D1MT and M3Y-P2
interactions.

Gogny D1MT [118]
SNM PNM

ℓ Fℓ F ′
ℓ Gℓ G′

ℓ Hℓ H ′
ℓ F

(n)
ℓ G

(n)
ℓ H

(n)
ℓ

0 -0.310 0.724 -0.037 0.731 0.306 -0.102 -0.560 0.465 0.136
1 -0.756 0.397 -0.348 0.624 0.587 -0.196 -0.690 0.029 0.300
2 -0.293 0.615 0.471 -0.237 0.557 -0.185 0.283 0.226 0.328
3 -0.055 0.130 0.108 -0.060 - - 0.120 0.077 -

M3Y-P2 [51]
SNM PNM

ℓ Fℓ F ′
ℓ Gℓ G′

ℓ Hℓ H ′
ℓ F

(n)
ℓ G

(n)
ℓ H

(n)
ℓ

0 -0.383 0.620 0.112 1.010 0.043 -0.015 -0.564 0.830 0.026
1 -1.039 0.632 0.272 0.200 0.063 -0.019 -0.362 0.391 0.047
2 -0.433 0.243 0.161 0.040 0.047 -0.013 -0.174 0.223 0.044
3 -0.208 0.094 0.077 -0.002 - - -0.106 0.0972 -

Landau parameters have a physical meaning and can therefore be related to some observables at
saturation, such as the compressibility or the density of states, via very simple linear relations. It
is thus possible to compare the parameters directly. First, we observe that the Fℓ parameters have
roughly the same order of magnitude and sign. This is due to the fact that both interactions have
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been constrained using properties of non-polarised matter. A different conclusion stands for the Gℓ

parameters that are linked to spin properties which have not been constrained. One observes much
stronger differences in that case. A possible way to better constrain these terms would be to use spin-
isospin excitations as discussed in Refs. [177, 178, 179]. This is important since these terms may play a
minor role in determining the ground state properties of atomic nuclei, but they may play a major role
in determining the structure of the excited spectrum. Similar conclusions hold for the Hℓ terms, where
one observes significant differences.

The Landau parameters should satisfy certain conditions deduced from Pauli principle constraints
on the forward scattering amplitude associated to the motion of a ph pair. For instance, they should
satisfy the following sum rule [101, 180]

∑

ℓ

{

Fℓ

1 + Fℓ/(2ℓ+ 1)
+

F ′
ℓ

1 + F ′
ℓ/(2ℓ+ 1)

+
Gℓ

1 +Gℓ/(2ℓ+ 1)
+

G′
ℓ

1 +G′
ℓ/(2ℓ+ 1)

}

= 0 , (75)

which is independent on the tensor parameters.

Table 11: Forward scattering sum rule calculated in SNM at density ρ = 0.16 fm−3 for several interac-
tions. The two figures under AV14 and Reid correspond to two different approximations.

M3Y-P2 M3Y-P6 D1MT D1S D1N AV14 [155] Reid [155]
Eq. (75) -0.474 -0.901 0.368 -0.416 0.193 0.662 / -0.041 0.664 / -0.176

In Table 11 are shown the values obtained for this sum rule from several of the interactions discussed
in this paper. We have verified that for ℓ > 3 the convergence of this sum rule has been reached for
all these interactions. One can see that the equality (75) is only approximately satisfied, depending
on the specific interaction. As a comparison, we also display the results obtained in a Brueckner-
Bethe-Goldstone theory with AV14 and Reid interactions, whose parameters have been calculated in
Ref. [155]. The two figures in the last columns correspond to two different approximations used in the
calculation. The sum rule is neither exactly satisfied in these calculations. All in all, this reflects the
fact that the values of the parameters are not precisely known, since they depend on details of the bare
interaction, including or not ∆ excitations [154], many-body effects and some approximations intrinsic
to the specific calculation.

As already mentioned, another important information we can extract by observing Landau param-
eters, concerns the stability of the Fermi surface against small deformations. This stability can be
expressed in terms of general inequalities satisfied by Landau parameters. These inequalities impose a
stringent test for the bare or phenomenological interactions used to calculate the Landau parameters.
For instance, the central parameters must satisfy [101]

F
(α)
ℓ > −(2ℓ+ 1) . (76)

As shown in Ref. [165], the inclusion of tensor components in the ph interaction produces a coupling
between the spin-dependent parts, that is, G(I) terms become coupled toH(I) ones. Compact expressions
can be obtained considering states with good ph angular momentum J , so that the potential part of
the free energy for a given J is a 2 × 2 matrix with ℓ, ℓ′ values J ± 1. In that case, the stability
criterion is given by the condition that these matrices have positive eigenvalues [141]. When ℓ = ℓ′, the
matrices are diagonal, and one gets a single stability criterion for each possible value of J . We collect
here the resulting stability criteria for the lower possible values of ℓ and J . The first diagonal matrices
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Figure 20: (Color online). Instability inequalities of Eqs. (77-82) for the singlet isospin channel as a
function of density for symmetric nuclear matter obtained for the finite-range interactions: (a) M3Y-P2,
(b) Gogny D1S and (c) Gogny D1M. Solid, dashed and dotted lines all with empty circles correspond
to ℓ = 1, J = 0−, 1−, 2− respectively. Solid, dashed and dotted lines all with full diamonds correspond
to ℓ = 2, J = 1+, 2+, 3+. The effects of the tensor force are included in all cases. Taken from Ref. [176].

correspond to the values ℓ = 1, ℓ′ = 1, and one gets
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for J = 0−, 1− and 2−, respectively. The diagonal ℓ = 2, ℓ′ = 2 case gives
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for J = 1+, 2+ and 3+, respectively. Obviously, when all tensor parameters are put to zero, one recovers
the familiar stability conditions G

(I)
ℓ > −(2ℓ+ 1).

In Fig. 20, we show the density dependence of the diagonal stability conditions in the isoscalar
channel, corresponding to ℓ = 1, for J = 0−, 1−, 2−, Eqs. (77-79) and to ℓ = 2 for J = 1+, 2+, 3+,
Eqs. (80-82) for SNM. Figure 20(a) shows the results for M3Y-P2 parametrization and Figs. 20(b) and
20(c) correspond to D1S and D1M parametrizations, respectively, supplemented with a tensor force
as discussed in Ref. [120]. The stability conditions ℓ = 1 are well respected for all interactions in the
density range considered in the figure. However, the ℓ = 2 stability condition has a negative slope as
a function of density. In particular for D1M and for ℓ = 2, J = 0− (empty circles joined by solid line),
there is a signal of an instability with a critical density close to ρ = 0.4 fm−3. It is worth mentioning
that in the case of the isovector channel the stability conditions are all well respected in the range of
densities explored. See Ref. [176] for a more detailed discussion.
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4.1.3 RPA response function

The RPA response function using a Landau ph interaction as given by Eq. (63) has been calculated
in Ref. [92]. The resulting BS equation is solved using the same symbolic procedure described in the
previous section. The main difference is that one requires intermediate integrals of the form αi(q, ω) =
〈cosi θGHF 〉, whose expressions are given in Ref. [92]. In Fig. 21, we present strength functions for
PNM at density ρ = 0.16 fm−3 and q = 0.5kF using D1MT and M3Y-P6. Although in the Landau
limit the S = 0 and S = 1 are not coupled together, we still presents the results in this channel for
completeness. Since we deal with finite-range interactions, the number of partial waves and thus the
number of Landau parameter is infinite. Hopefully not all of them contribute equally to the response
functions. In Fig. 21, the calculations are thus performed as a function of the maximum number of
partial waves included in the calculation: we clearly see that in all channels, the convergence is achieved
for ℓmax = 2. It is interesting to observe that the major discrepancy between the two families of curves
is obtained for the S = 1 channel. This is not surprising since it is usually the least constrained during
the optimisation procedure.
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Figure 21: Strength functions in pure neutron matter for interactions M3Y-P6 and D1MT at density
ρ = 0.16 fm−3 and q = 0.5kF . The HF strengths are also plotted (dots) as a reference. Adapted from
Ref. [175].

In order to have an insight of the quality of the Landau approach, it is interesting to compare these
results with the numerically exact strengths which are presented in Sec. 5. For instance, we show in
Fig. 22 the strength function obtained with Landau parameters and ℓmax = 2 with the complete response
function for two values of the transferred momentum q. Since in the Landau limit, the spin-orbit term
is exactly zero, there is no coupling between the S=0 and S=1 channel and as such we just illustrate
the differences in the S=1 channel where the tensor acts. We observe that for low values of transferred
momentum, the response functions obtained used the full response or the Landau approximation are
essentially on top of each other. The agreement breaks down by increasing the transferred momentum
and for q = kF we observe some differences especially in the isovector channel.

4.2 Beyond Landau approximation

The strict Landau limit means q = 0, and consequently the response functions deduced in the previous
subsection should be applied only to small transferred momenta. A possible way to overcome this
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issue, but keeping the simplicity of the calculation, has been suggested in Ref. [93]. The idea is to

keep the full q-dependence of the direct term V
(α,α′)
D (q) of the ph interaction Eq. (16) and make the

Landau approximation on the exchange term V
(α,α′)
E (k1 − k2) only. In other words, the hole momenta

are restricted to the Fermi surface so that the ph interaction only depends on q and cos θ, where θ
is the angle between vectors k̂1 and k̂2. In Ref. [93] this approach was dubbed LAFET, for Landau
Approximation For Exchange Term. It is worth noticing that, from a somehow different perspective,
a similar ph interaction has also been employed long ago in studies about pion propagation in nuclear
matter [181]. We shall briefly describe first this approach concerning pions in nuclear matter and then
show that LAFET can be somehow considered as a generalisation of it.

4.2.1 Pionic modes and spin-isospin responses

Spin-isospin excitations are the ideal arena to observe pionic effects in nuclei [94, 182]. Migdal [183]
suggested the possibility of a pion condensation in nuclear matter. The effect was predicted for densities
typical of neutron stars, that is much higher that the nuclear saturation density, so that it is not expected
to occur in ordinary nuclei. However, some authors [184, 185, 186] suggested that precursor phenomena
could be seen in nuclei as a pole in the pion propagator at energies close to zero. In particular, the
authors of Ref. [187] proposed investigating to the nuclear response functions in the different spin-isospin
channels as a possible source of evidence of the precursor phenomena.

The ph interaction usually used to obtain these responses is given by the exchange of pion and rho
mesons, which acts on the longitudinal and transverse channels, respectively. Shorter range effects are
simulated by adding a phenomenological contact interaction of intensity g′:

Vph =
f 2
π

m2
π

{

(σ1 · q)(σ2 · q)
ω2 − q2 −m2

π

Γ2
π + Cρ

(σ1 ∧ q)(σ2 ∧ q)

ω2 − q2 −m2
ρ

Γ2
ρ + g′(σ1 · σ2)

}

(τ 1 · τ 2) , (83)

where Cρ = (f 2
ρ/m

2
ρ) (m

2
π/f

2
π) and

Γπ,ρ =
Λ2

π,ρ −m2
π,ρ

Λ2
π,ρ − ω2 + q2

(84)
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Figure 23: The longitudinal (dashed line) and transverse (continuous line) strengths at q = 1.3 fm−1.
The HF strength function with m∗ = m is also shown for comparison (dot-dashed line). Adapted from
Ref. [187].

are the monopole factors of the πN , ρN vertex. The zero-range term corresponds formally to the
Landau parameter g′0, whose value was adjusted to G′

0 ≃ 0.6− 0.7. A monopole form factor is usually
also included in the first two terms.

The precursor phenomena of pion condensation could appear around the so-called quasi-elastic peak.
The authors of Ref. [187] observed that the longitudinal response is softened and enhanced with respect
to the free Fermi gas, while the transverse response is quenched and hardened. In Fig. 23 are displayed
their results for the strength function per nucleon at q = 1.3 fm−1, using the pion-exchange interaction
of Eq. (83) with g′ = 0.7. These findings were confirmed later on by ab initio calculations of these
responses [188], whose strengths are however pushed to higher energies.

Some authors [189] have also considered an empirical q-dependence on parameter g′. Tensor effects
were also discussed by adding an empirical zero-range interaction h′ST (k̂12)(τ 1 · τ 2), whose intensity is
related to the Landau parameter h′

0. Some debates emerged on the physical origin of these parameters.
For instance, Dickhoff [190] argued against a short-range origin of them, stating instead that they are
simply related to the exchange terms. The question has also been raised whether these parameters are
universal or if one should consider different parameters corresponding to the NN , Nπ,... interactions.
Spin-isospin response functions have also been used recently with great success to reproduce experimen-
tal data of T2K (see [191, 192]) and others ([193, 194, 195]). In these calculations, the well-established
phenomenology of pion, rho and delta degrees of freedom has again been used together with a g’ pa-
rameter and a local density approximation. A very important part of the success of these calculations
lies in the fact that they include explicitly the effect of np-nh excitations [196] whose importance has
also been highlighted in an other context [197].

These topics are far from the scope of the present work, and we refer the interested reader to Ref. [198]
for a general discussion about them. Our aim is simply to stress that the finite-range ph interaction
employed in these works contains the direct term plus a monopole (ℓ = 0) Landau parameter pertinent
to the specific spin-isospin mode and allows to obtain the response functions in the ring approximation.
In fact, Landau parameters with ℓ > 0 can also be easily included in this method, thus relating g′ to
the exchange term as suggested by Dickhoff. This is precisely the viewpoint we are going to discuss
now.

4.2.2 Landau approximation for exchange term

Let us first consider a ph interaction restricted to its central and density-dependent terms, that is
Eqs. (30-31) or (43-44). As already done in the Landau approximation, it can be expanded on a series
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of Legendre polynomials as

V
(α,α′)
LAFET = δα,α′nd

∑

ℓ

f
(α)
ℓ Pℓ(cos θ) , (85)

where

ndf
(α)
ℓ = δℓ,0

{

D(α)FC(q) +R(α)
}

+ E(α)JC
ℓ , (86)

with

JC
ℓ =

2ℓ+ 1

2

∫ 1

−1

dxFC

(

√

2k2
F (1− x)

)

Pℓ(x) . (87)

As the direct term only contributes to the ℓ = 0 term, this means that we are dealing with a generalized
Landau parameter f

(α)
0 (q) depending on q. Actually, such a generalisation has been employed in the

calculation of the response function of liquid 3He and related issues [199, 200, 56, 201, 202].
For the Gogny interaction, with FC given in Eq. (34), the functions JC

ℓ are obtained from the
recurrence relation

JC
ℓ+1 =

2ℓ+ 3

z2

{

z2

2ℓ− 1
JC
ℓ−1 − 2JC

ℓ

}

, (88)

with z = kFµ, and

JC
0 =

1

z2

[

1− e−z2
]

, (89)

JC
1 =

3

z2

[(

1− 2

z2

)

+

(

1 +
2

z2

)

e−z2
]

. (90)

Similarly, for the Nakada interaction, the function FC is given in Eq. (47) and the recurrence relation
for the functions JC

ℓ is

JC
ℓ+1 =

2ℓ+ 3

ℓ+ 1

1

2z2

{

(1 + 2z2)JC
ℓ − ℓ

2ℓ− 1
2z2JC

ℓ−1

}

, (91)

with z = kF/µ, and

JC
0 =

1

4µ2z2
ln(1 + 4z2) (92)

JC
1 =

3

8µ2z2
{

−4z2 + (1 + 2z2) ln(1 + 4z2)
}

. (93)

Keep in mind that an implicit sum over the ranges should be understood in these formulae for both
types of interaction.

In Fig. 24, are displayed the LAFET strength functions at saturation density, based on interactions
D1S and M3Y-P2 (only central part). For comparison, the (converged) Landau and HF strengths are
also displayed. The solid curves in all (S, T ) panels correspond to the numerically exact results which
are discussed in Sect. 5. LAFET and Landau results include up to ℓ = 3. Since at small transferred
momentum, the differences between LAFET and Landau approximation are small, the value q = kF has
been chosen in these figures. One can see that, with the exception of channel (1,0), LAFET strengths
differ significatively from the Landau ones. Actually, LAFET results are closer to the exact ones, in
particular for the (0, 0) channel. Hence, the LAFET is indeed a very simple extension of the Landau
approximation at momentum transfers where the latter does not give reliable results. In principle, one
does not expect reliable LAFET results for higher values of q. However, LAFET can be useful for
extensive calculations when the numerical effort required by exact calculations becomes heavy.
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Figure 24: Strength functions SS,T (q, ω) (dashed lines) of D1S interaction and M3Y-P2 interaction
(central term only) for q/kF = 1 at saturation density. For comparison are also plotted the Landau
(dot-dashed lines, the HF (dotted lines) and the numerically converged (solid lines) strengths. Adapted
from Ref. [93].

5 A multipolar expansion

We present now a general method to solve directly the Bethe-Salpeter equation in the three-dimensional
momentum space, proposed in Ref. [93]. It consists in expanding the Green’s functions and the ph
interaction on a complete basis of spherical harmonics, thus transforming Eq. (12) into a set of coupled
integral equations on the momentum modulus variable. The interest is that this is an exact method, with
no approximations, provided the expansion is pushed up to the required degree of precision/convergence.

5.1 The method

The multipolar expansion of the HF Green’s function is simple because it has no dependence on the
azimuthal angle ϕ1 of the vector k1, so that only the M = 0 component appears in the expansion:

GHF (q, ω,k1) =
∑

L

GHF
L (q, ω, k1)YL0(k̂1) . (94)

In Ref. [93] a ph-interaction containing only central and density-dependent components was considered
to illustrate the method. In that case, the exchange term depends on the modulus |k1−k2| and therefore
its expansion is as follows

V
(α,α′)
C;DD ph(q,k1,k2) = δ(α, α′)

∑

LM

V
(α)
L (q, k1, k2)Y

∗
LM(k̂1)YLM(k̂2) . (95)

Inserting these multipolar expansions onto the Bethe-Salpeter equation (12) one immediately verifies
that the expansion of the RPA Green’s function only contains M = 0 components

G(α)(q, ω,k1) =
∑

L

G
(α)
L (q, ω, k1)YL0(k̂1) . (96)

When the ph-interaction includes non-central terms, M 6= 0 components appear in the matrix
elements of both the ph interaction and the RPA Green’s function. Their multipolar expansions are
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thus generalized as

V
(α,α′)
ph (k1,k2) =

∑

L,M,L′,M ′

F
(α,α′)
LM ;L′M ′(k1, k2)YLM(k̂1)Y

∗
L′M ′(k̂2) , (97)

and
G(α)(q, ω,k1) =

∑

L

G
(α)
LM(q, ω, k1)YLM(k̂1) . (98)

Replacing the different pieces of the initial Bethe-Salpeter equation with their multipolar expansion
and integrating over the angles (θ1, φ1) one gets the following system of coupled integral equations for
the RPA multipoles

G
(α)
ℓm (q, ω, k1) = GHF

ℓ (q, ω, k1)δm,0 +
∑

L,L′,ℓ′,m′

GHF
L (q, ω, k1)

ℓ̂L̂L̂′
√
4π

(

ℓ L L′

0 0 0

)(

ℓ L L′

−m 0 m

)

∫

∑

α′

dk2k
2
2

(2π)3
F

(α,α′)
L′m;ℓ′m′(k1, k2)(−1)mG

(α′)
ℓ′m′(q, ω, k2) , (99)

where

F
(α,α′)
LM ;L′M ′(k1, k2, q) =

∫

dk̂1dk̂2Y
∗
LM(k̂1)YL′M ′(k̂2)V

(α,α′)
ph (k1,k2, q) , (100)

and we used 3j coefficients and the standard notation Ĵ =
√
2J + 1. The complete expressions of these

matrix elements are given in Appendix B for Skyrme, Gogny and Nakada interactions. The central
and density-dependent terms of the interaction led to diagonal matrix elements in the indices α, L,M .
Including spin-orbit and tensor terms lead to non-diagonal components, in particular there are the
couplings L = L′ ± 1 and L = L′ ± 2

Finally, the response function is given by the momentum integral

χ(α)(q, ω) =

√
4π

(2π)3
nd

∫

G
(α)
00 (q, ω, k) k

2dk , (101)

so that only the ℓ = 0 multipole of the RPA Green’s function is required. However, one has to solve
the full system of coupled equations, because the interaction couples different multipoles. In practice, a
complete calculation implies the choice of a cutoff value ℓmax for the summations on angular momenta
and a grid of points in momentum space to transform the integrals into discrete sums. The system (99)
can be finally solved by using a matrix inversion whose size is typically 1800 x 1800.

We mention here two useful tests for the numerical matrix inversion, both based on a zero-range ph
interaction. The first consists in using a Skyrme interaction, which has only three possible values for
ℓ = 0, 1 and 2, the latter entering only if a tensor interaction is included. The response function can be
analytically obtained if non-central interaction terms are excluded, while a relatively simple numerical
procedure has to be applied otherwise. The second test is based on the Landau approximation of a
finite-range interaction, since we can limit the number of multipoles up to a precise order. The response
function can be obtained as explained in Sect. 4.1.3. In both cases, one has an independent way to
obtain the response function. See Ref. [47] for the details.

5.2 Convergence

The convergence of the method depends on the values of the interaction matrix elements (100) in the
momentum space (q, k1, k2). This issue was analysed in Ref. [106] for the case of an interaction with
only central and density-dependent terms, by defining the dimensionless functions

Ṽ α,α
ℓ,C (q, k1, k2) =

2ℓ+ 1

4π

m∗kF
2π2

F
(α,α)
ℓ0;ℓ0 (k1, k2, q) , (102)
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which, for the values q = 0, k1 = kF , k2 = kF gives the familiar dimensionless Landau parameters.
In Fig. 25 are plotted the ℓ = 0 functions at saturation density in the plane (k1/kF , k2/kF ) of hole
momenta, for two values of the transferred momentum q, namely 0.1kF and kF . The spin-isospin
channel is (0, 0) and the interaction is D1S. One can appreciate that both surfaces simply differ by an
overall translation. This can be understood from a glance at the explicit expressions of the multipoles
given in Appendix B. Indeed, the q-dependence enters as an additive term, independent of k1 and k2,
which for the interaction considered produces an overall repulsion. The ℓ 6= 0 functions are instead
independent of q, and they become smaller as the value of ℓ is increased, as is displayed in Fig. 26 for
the same D1S interaction at saturation density. Therefore, the convergence of this expansion does not
depend on the value of q. The M3Y-P2 interaction shows a similar global behaviour, as displayed in
Fig. 27 for the values ℓ = 0, 1, 2 and zero transferred momentum.

Figure 25: The dimensionless function Ṽ 0,0
0,C(q, k1, k2) of the Gogny D1S interaction as defined in Eq. (102)

as a function of the momenta k1/kF and k2/kF at ρ = ρ0. Left and right panels are for q = 0.1kF and
q = kF , respectively. Taken from Ref. [106].

Figure 26: The dimensionless functions Ṽ 0,0
L,C(q, k1, k2) of the Gogny D1S interaction as defined in

Eq. (102) as a function of the momenta k1/kF and k2/kF at ρ = ρ0. The left panel represents the
case L = 1 and the right one L = 2. Taken from Ref. [106].

Although the figures refer to the (0, 0) channel, one gets similar results for the other (S, I) channels.
In conclusion, one has to introduce a cutoff Lmax to solve Eq. (99) and the previous figures suggest
that a relatively small value of Lmax will suffice to obtain converged results, as far as non-central terms
are ignored in the ph-interaction. We will show now that including such terms does not dramatically
modify the convergence rate.

5.3 Results

In Fig. 28 are displayed the strength functions calculated for different values of the cutoff parameter Lmax

with interaction D1S, which contains a spin-orbit component, and interaction M3Y-P6, which contains
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Figure 27: The dimensionless functions Ṽ 0,0
L,C(q, k1, k2) of the Nakada M3Y-P2 interaction as defined in

Eq. (102) as a function of the momenta k1/kF and k2/kF at ρ = ρ0. The left panel represents the case
L = 0, the central panel L = 1 and the right one L = 2. The transferred momentum is q = 0 in all
cases.

spin-orbit and tensor components. This choice allows one to draw some conclusions independent of the
radial form factor and the ranges. The calculations have been done at saturation density ρ = ρ0 and
transferred momentum q/kF = 1.
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Figure 28: Strength functions for the channels (S,M, I) at ρ = ρ0 and transferred momentum q/kF = 1
for Nakada M3Y-P6 interaction (upper panels) and Gogny D1S (lower panel) as a function of the cutoff
in the multipole expansion. The dots represent the HF response. See text for details.

We can notice that in the spin-isospin channel (0, 0, 0), both interactions produce quite similar
strength functions. In each isospin channels (1,M, I) the M -strengths calculated with D1S interaction
are very close one to each other (I = 0) or barely distinguishable (I = 1). These differences are solely
due to the spin-orbit term of the interaction. In contrast, the strength functions in these channels are
clearly different in the case of interaction M3Y-P6, due to its tensor component. We clearly see that
for both interactions, Lmax = 2 is sufficient to achieve an excellent convergence even in presence of an
explicit tensor term. This confirms the findings that we have previously discussed.
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To discern the importance of tensor interactions on the strength functions, we compare the results
obtained with all the Nakada interactions in Fig. 29, and with various Gogny interactions equipped
with a tensor in Fig. 30. The strengths are calculated at saturation density and q/kF = 1.

It is interesting to notice that all S = 0 strength functions are quite similar, while the S = 1 channel
shows more variety, due to the difference in tensor strength adopted in the different interactions. In
particular we recognise that the strengths in channels (1,M, I) obtained with interactions M3Y-P2 and
M3Y-P4 are nearly the same for M = 0 and 1, and the same value of I. On the contrary, the other
interactions produce very strong differences in the S = 1 channels. This can be seen by the strong
separation of different M -channels and especially for I = 1. Of particular interest is to compare the
results obtained with the D1ST2a, b and c, since they all have the same central term. The differences
observed in the response function arise basically from the tensor term, and less importantly from the
modified spin-orbit term. In the isospin I = 1 channels one can also observe that, as compared with
the HF strength, the longitudinal (M = 0) and transverse (M = 1) strengths are reminiscent of the
results of Ref. [187] displayed in Fig. 23.
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Figure 29: Strength function for the channels (S,M, I) calculated with the various Nakada interactions
at saturation density and q/kF = 1.

For all the considered interactions, the multipolar expansion provides converged results with Lmax =
2 at saturation density. This small value of Lmax seems to be specific to the short-range nuclear
interactions. Indeed, the same multipolar expansion method has been employed in Ref. [203] to calculate
the response functions of a two-component dipolar Fermi gas using a (long-range) magnetic dipolar
interaction, in the Landau scheme. The convergence required no less than ten multipoles in some
channels. Keeping in mind that Nakada interactions include a range corresponding to a pion exchange,
one thus understand that in Fig. 28 Lmax = 2 and 3 results are on top of each other in the case of a
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Figure 30: Strength function for the channels (S,M, I) calculated with the various Gogny interactions
plus tensor at saturation density and for q/kF = 1.

Gogny interaction, while they are very close but still distinguishable in the case of a Nakada interaction.

6 Continued fraction approximation

All the previous approximations start from the GHF ph propagator of infinite matter, so that many
technical details are not directly transposable to finite nuclei. We discuss now another method to
properly deal with the exchange term, whose basic principles can be used in both infinite and finite
systems. The idea is to express the RPA response function as a continued fraction (CF), where the full
ph interaction appears in the form of multiple momentum averages weighted with GHF . Formally, the
response function is exact at infinite CF order, but obviously a truncated expansion should be done
for practical uses. Calculations in infinite nuclear matter allow one to determine the convergence of
the expansion, which can also be assessed by comparing with the results obtained with the previous
multipolar expansion method. We expect that the conclusions about the convergence in SNM are also
valid for CF calculations in finite nuclei.

Actually, the CF technique was first developed in a different context in Ref. [204], to solve the
Lippman Schwinger equation for the transition operator aiming at getting the optical potential. Later
on, the quasi-elastic electron scattering on 12C was analysed in Ref. [95] by calculating the Tamm-
Dancoff response function at the first CF order, and in Ref. [96] by calculating the RPA response
function at the same order. In both cases, the single-particle wave functions were obtained in a non
self-consistent way from a single-particle potential with no density-dependent term. The technique was
also employed to calculate the response function of nuclear matter using meson-exchange-type potentials
in Refs. [205, 206, 207, 208], by truncating the expansion at first order. The calculation was pushed
up to second order by De Pace [98]. A slightly different CF expansion was presented in Ref. [97], using
a semiclassical Thomas-Fermi scheme. More recently, another CF expansion was made in Ref. [99],
leading formally to the same results of Ref. [98] up to second order, and differing at next orders.
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6.1 The method

We start with the formalism developed in Refs. [98, 100], ignoring for the time being the non-central
components of the ph interaction. In that case, its matrix elements are diagonal in the spin-isospin
indices and we will omit them for the sake of clarity. Let us write it as

Vph/nd = VD(q) + VE(k12) , (103)

where VD includes the direct and density-dependent parts while VE is the exchange term. See Eqs. (30-
31) and (43-44).

The RPA response function is written as a CF-like expansion according to the pattern

χRPA =
χHF

1− A−
B

1− C −
D

1− . . .

. (104)

If the exchange term is dropped out, all quantities B,C . . . are equal to zero while A = VDχ
HF , thus

recovering the ring approximation to the response function. The point is to express A,B,C . . . when
the exchange term is included, and obtain the successive orders. To this end, let us go back to the
Bethe-Salpeter equation (12), and integrate it with respect to the momentum. One gets

〈GRPA〉 = 〈GHF 〉+ 〈GHFVphGRPA〉 , (105)

where the brackets is a short notation for integrations over chains of momenta as in the examples

〈GHF 〉 =

∫

dk1

(2π)3
GHF (k1,q, ω)

〈GHFVphG
HF 〉 =

∫

dk1

(2π)3
dk2

(2π)3
GHF (k1,q, ω) Vph(q,k1,k2) G

HF (k2,q, ω)

Formally, Eq. (105) can be solved iteratively thus providing a perturbatively expansion to χRPA. The
quantities A,B,C . . . of Eq. (104) are determined so as to reproduce at nth order the perturbative series
at the same order. To express the results given in Ref. [98] let us employ a more compact notation, by
defining the following quantities related to the exchange ph interaction

En =
〈GHFVEG

HF . . . VEG
HF 〉

〈GHF 〉n . (106)

Then, the first CF order is trivially obtained

A = (VD + E1)χ
HF . (107)

The second order was deduced in Ref. [98] by analysing the perturbative series, and is written as

B = (E2 − E2
1)

(

χHF
)2

. (108)

An heuristic derivation for the next order was also given in Ref. [98] as

C =
1

E2 − E2
1

(

E3 − E3
1 − 2E1E2

)

χHF . (109)

Notice that B and C, which corresponds to second and third orders respectively, involve only the
exchange part of the ph interaction. These expressions were generalized in Ref. [100] to include non-
central interactions.
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An alternative CF expansion was given in Ref. [99]. We present it here for a general ph interaction,

including non-central terms. The guiding idea is to define an effective interaction V
(α)
eff (q, ω) such that

the RPA response is written as

χ
(α)
RPA(q, ω) =

χHF (q, ω)

1− V
(α)
eff (q, ω)χHF (q, ω)

, (110)

that is, with the same form as in the ring approximation given in Eq. (17). The effective interaction is
written as a continued fraction expansion

V
(α)
eff =

V
(α)
1

1−
V

(α)
2 χHF

1−
V

(α)
3 χHF

1− . . .

. (111)

A comparison with the CF expansion (104) leads to the identification A = V1χ
HF , B = V1V2

(

χHF
)2
,

and C = V3

(

χHF
)3
. We will come back to these relations. The quantities V

(α)
i are obtained by

expanding both (111) and (110) and comparing order by order to the perturbative series for χ
(α)
RPA as

obtained from the Bethe-Salpeter equation (12)

χ
(α)
RPA = χHF + nd

∑

α′

〈GHFV
(α,α′)
ph GHF 〉+ nd

∑

α′,α′′

〈GHFV
(α,α′)
ph GHFV

(α′,α′′)
ph GHF 〉+ . . . (112)

The explicit expression for the first three terms are

V
(α)
1 = nd

∑

α′〈GHFV
(α,α′)
ph GHF 〉

(χHF )2
, (113)

V
(α)
2 = nd

∑

α′,α′′〈GHFV
(α,α′)
ph GHFV

(α′,α′′)
ph GHF 〉

V
(α)
1 (χHF )3

− V
(α)
1 , (114)

V
(α)
3 = nd

∑

α′,α′′,α′′′〈GHFV
(α,α′)
ph GHFV

(α′,α′′)
ph GHFV

(α′′,α′′′)
ph GHF 〉

V
(α)
1 V

(α)
2 (χHF )4

− (V
(α)
1 + V

(α)
2 )2

V
(α)
2

. (115)

The sums in the above equations only concern the non-central parts, because the central and density-

dependent parts of V
(α,α′)
ph are diagonal in the indices α and α′. The quantities GHF and χHF are

complex functions of q and ω, and so are the V
(α)
i and the effective interaction V

(α)
eff .

For a ph interaction of the form given in Eq. (103) one obtains

V1 = VD + E1 , (116)

V2 =
E2 − E2

1

VD + E1

, (117)

V3 =
E3 − E3

1

E2 − E2
1

+ VD − 2E1 −
E2 + E2

1

VD + E1

. (118)

As for the comparison with (104) one confirms the previous identifications A = V1χ
HF and B =

V1V2

(

χHF
)2
, so that the CF first and second orders coincide in both formalisms [98] and [99]. However,

the guess for C only includes the exchange term while V3 depends on both direct and exchange terms.
Concerning the spin-orbit, one can see from Eqs. (32) and (45) that a factor M (k12)

1
M is present

in the multiple momentum integrals entering Eqs. (113-115). Since GHF does not depend on the
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azimuthal angle ϕ, we conclude that the spin-orbit does not contribute to the first order term V
(α)
1 .

This argument does not apply to the tensor terms (see Eqs. 33 and 46) because it contains instead the
factor (k12)

1
−M (k12)

1
M ′ . The case M ′ = M leads to a non-vanishing contribution when integrating over

ϕ, so that the tensor does contribute to V
(α)
1 . At higher orders, there is a similar compensation for the

spin-orbit, which thus starts to contribute at second order. In other words, the coupling between S = 0
and 1 channels induced by the spin-orbit is a second order effect. The tensor term only acts on the
S = 1 channel, but it affects also the S = 0 channel because of the spin-orbit coupling, and thus the
effect of the tensor on the S = 0 channel is also second order.

6.2 Convergence

Two tests about the convergence of the CF expansion were analysed in Ref. [99]. The first one is in
the particular case of a ph interaction given by Eq. (63), but restricted to the first two central Landau

parameters ℓ = 0, 1. The calculation of the functions V
(α)
i given in Eqs. (113-115) is straightforward,

and the effective interaction turns out to be

V
(α)
eff = f

(α)
0 + f

(α)
1 ν2

{

1 +

(

−1

3
F

(α)
1

)

+

(

−1

3
F

(α)
1

)2

+

(

−1

3
F

(α)
1

)3

+ . . .

}

= f
(α)
0 +

f
(α)
1 ν2

1 + F
(α)
1 /3

(119)

We recall that ν = ωm∗/(qkF ). As shown in Sect. 4.1.1, this is precisely the effective interaction deduced

from Eq. (71) with Landau parameters ℓ = 0, 1. Typically, the value of these parameters is |F (α)
1 | ≤ 1

(see Tab. 10), thus guaranteeing the convergence, whose pace will depend on the specific interaction
and channel.

Figure 31: Real (solid line) and imaginary (dashed line) part of V1χ
HF (top row) and V2χ

HF (bottom
row) for D1 interaction at saturation density and q = 27MeV. The (S, T ) channels are shown in each
panel. Taken from Ref. [99].

The second test is numerical. One can have an idea of the convergence rate by comparing the
functions V1χ

HF and V2χ
HF , that is, first and second order. This is shown in Fig. 31 for the Gogny

interaction D1 at a momentum transfer q = 27MeV, roughly 0.1kF . Notice that the scale used to plot
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V2χ
HF is about a factor of ten larger than that of V1χ

HF . It can be seen that the imaginary parts of
V2χ

HF are close to zero for the four spin-isospin channels. The real parts are generally small compared
to 1, but the situation seems less favourable in the channel (S, T ) = (0, 0). From the behaviour shown
in this figure one can expect a rapid convergence of the calculated responses already at the level of V2,
although perhaps slower in the case of the (0, 0) channel.

6.3 Results

As an illustration, in Figs. 32 and 33 are displayed the RPA strength functions calculated with Gogny
D1 interaction at saturation density and for two values of the momentum transfer, at about kF/10 and
kF . In the same figures are plotted the converged strengths obtained in a multipolar expansion, which
provides the numerically exact results and are taken as benchmark. For comparison, the HF strength
is plotted as well. Notice the units: a factor of ~c is multiplying Eq. (7).

Figure 32: Strength functions calculated with D1 interaction at saturation density and momentum
transfer q = 27MeV. Thin lines: HF, dotted lines: first order CF, dashed lines: second order CF, open
diamonds: converged strength functions from the multipolar expansion. Taken from Ref. [99].

Figure 33: Same as Fig. 32 for q = 270MeV. Taken from Ref. [99].

One can see that for all channels except (0, 0), the CF expansion has already converged at first
order. For the (0, 0) channel it is necessary to include the second order to get a strength practically
superimposed to the benchmark ones. The (0, 0) exception is to be expected from the previous analysis
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of Fig. 31. Interestingly, the convergence is independent of the value of q, as no expansion in powers of
q has been done. Indeed, as it can be seen in Eq. (111) the CF convergence of the effective interaction
does not rely on q but on the functions Viχ

HF . Instead, as shown in Ref. [99], the convergence relies on
the value of the density, and it deteriorates as the density increases, particularly in the (0, 0) channel.

The convergence in each (S, T ) channel depends on the specific interaction employed, as shown in
Ref. [100], where the Gogny D1, D1S, D1N and D1M interactions were considered. These calculations
show that in the (1, 1) channel, the differences between CF first and second order are clearly evident for
interactions D1M and D1N, particularly in the high energy region. We mention here that, at variance
with Ref. [99], the authors of Ref. [100] looked for the presence of collective states in the discrete region
near or above the ph continuum. While interactions D1, D1S and D1M predict a collective state isospin
channel (S, 1) for each value of S, the interaction D1N only predicts a collective state in the (1,1)
channel. These states are found in both first and second orders. At q = 270MeV these collective states
enter into the continuum.

Figure 34: Strength functions per nucleon calculated with several Gogny interactions equipped with
a tensor component, at kF = 270MeV and momentum transfer q = 27MeV. Dashed lines: CF first
order, solid lines: CF second order, black dotted: HF strength. For comparison, the strength functions
calculated with aG-matrix nuclear interaction are also displayed in the last panel. Taken from Ref. [100].

We consider now the effect of tensor interaction in the strength functions. In Figs. 34 and 35 are
displayed the strength functions per particle calculated in Ref. [100] with several Gogny interactions
equipped with a tensor component, but ignoring the spin-orbit term. For comparison, the strength
functions calculated with an effective interaction [209] based on a G-matrix in nuclear matter derived
from a one-boson-exchange potential [210], are also displayed.

We discuss first the results obtained with interactions D1ST, D1STa,b,c, D1MT, and D1MTc. One
can see that the S = 0 strengths are all in qualitative agreement. Results at first and second orders
are very close both at q = 27MeV and 270MeV. A collective (0, 0, 1) state appears in the discrete
region at q = 27MeV. In both isospin channels, first and second order strengths are very close for all
interactions, thus indicating that the CF convergence has been reached. On the contrary, in the S = 1
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Figure 35: Same as Fig. 34 for q = 270MeV. Taken from Ref. [100].

channels, the differences between first and second order are clearly visible, very pronounced in some
cases, in contrast with the results obtained with central interactions. To this respect, one should keep
in mind that these Gogny parametrizations have a stronger tensor interaction as compared to Nakada
interactions or even the AV18 interaction (see Fig. 10). Therefore, for these interactions a CF third
order calculation is required to get more reliable results. Besides, including spin-orbit interaction is also
necessary to analyse the effect on the convergence due to the coupling with the S = 0 channel. We also
notice that a collective state in the discrete region is always present in the longitudinal (1, 0, 1) channel
at q = 27MeV. In the transverse (1, 1, 1) channel, the collective state can be in the continuum or in the
discrete region, depending on the interaction. At q = 270MeV all the strengths are qualitatively very
similar.

Consider now the results obtained with the GT2 interaction. The S = 0 strengths are qualitatively
similar to those obtained with the previous Gogny interaction, although in the (0, 0, 1) channel, first
and second order are much different. The first observation for the S = 1 strengths is the unphysical
results at first order with the GT2 interaction in (1, 1, 0) and (1, 0, 1) channels, with negative strengths.
At second order, the strengths for channels (1, 0, 0) and (1, 1, 1) practically vanishes at both values of q,
apart from the collective (1, 1, 1) state at the lower value of q. We will see in Sect. 7 that the unphysical
behaviour of interaction GT2 is also reflected in the study of finite-size instabilities.

Finally, concerning the results obtained with the G-matrix, one observes the marked difference in
the (0, 0, 0) channel as compared with those obtained with Gogny interactions. The authors of Ref. [100]
stressed that at q = 290, 390 and 480 MeV, the K+-nucleus quasi-elastic cross section [211], which is
largely dominated by the (0, 0, 0) channel, is succesfully reproduced with this G-matrix interaction.
Actually, an effective interaction should have the correct OPEP tail to describe inelastic scattering,
which is obviously not the case for the Gogny interaction. In that respect, we may hope that the
Nakada interactions give better results. For the other channels, the results given by the G-matrix and
the Gogny interactions are in a qualitative agreement.

48



7 Finite size instabilities

To conclude this review we consider two important applications related to possible finite-size instabilities
of phenomenological interactions, whose presence can be detected through the response functions. The
first one is connected to finite nuclei, the second one to the propagation of neutrinos in nuclear matter.

7.1 Finite nuclei

By means of the linear response theory, it is possible to identify the presence of zero-energy modes with
infinite strength [108, 212]. These modes can be associated with a physical instability as in the case
of the spinodal one in the channel (0,0,0). The spinodal instability [29] is associate with the liquid-gas
phase transition of the infinite medium and it plays a crucial role in the formation of non-homogeneous
phases in the crust of neutron stars [10]. Other instabilities may also appear, but if not associated with
any physical process, we call them spurious. As showed in Refs. [33, 34, 35, 37, 38, 86], these instabilities
may manifest in the calculations of properties of atomic nuclei, leading to non-converging results. To
avoid the problems of spurious finite-size instabilities, in Ref. [39, 41], a different optimisation procedure
was discussed by making use of explicit results coming from the RPA responses.

As an example, we illustrate in Fig. 36 the proton and neutron densities from an Hartree-Fock
calculation with the D1M, D1N and D1M∗ [124] Gogny interactions for 208Pb. With the D1M∗ interac-
tion, the calculations do not converge and lead to oscillations of the isovector density with very large
amplitude, as shown by the behaviour of the densities as the number of HF iterations is increased. For
D1M and D1N only the final densities are represented since the calculations are fully converged.

Figure 36: Neutron (in red) and proton (in blue) densities obtained from Hartree-Fock calculations for
208Pb, with the interactions D1M (top panel), D1N (central panel) and D1M∗ (bottom panel). Since
the interaction D1M∗ does not lead to a self-consistent convergent solution, different levels of red and
blue are used to plot the densities after different numbers of iterations as indicated in the figure. Taken
from Ref. [36].
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Such a behaviour has been also observed in Refs. [37, 34] for the case of Skyrme interactions and
it has been identified with the presence of spurious zero-energy modes in infinite nuclear matter at
densities close to saturation. Using Landau theory of Fermi liquid is it possible to identify all spurious
modes associated with zero transferred momentum [141, 176], but only thanks to RPA responses it is
also possible to identify the instabilities occurring at finite transferred momentum. This happens when

1/χ(α)(ω = 0, q, ρ) = 0 . (120)

By scanning all values of transferred momentum in a range q ≤ 4 fm−1, we identify the values of
the critical densities ρc at which Eq. (120) has a solution. The results are reported in the left panel
of Fig. 37. The same calculation was also performed in Ref. [36], using CF formalism, but ignoring
the spin-orbit ph interaction. Apart from the spinodal instability in the scalar-isoscalar channel, we
also observe another instability in the scalar-isovector channel close to the saturation density of the
system. A detailed analysis of finite size instabilities has been performed in Ref. [34] by using Skyrme
functionals. The authors have thus identified a simple criterion to establish if the presence of poles may
affect or not finite nuclei calculations. In particular, they observed that when an instability appears at
densities below 1.2 ρ0 a possible issue in the calculation of finite nuclei may manifest. This means that
at these densities, the HF ground state used for the current calculations is no more the true ground state
and the system will undergo a phase-transition. We stress that the findings of Ref. [34] for zero-range
interactions are confirmed in Ref. [36] for finite-range interactions.

In Ref. [213] a similar analysis of finite-size instabilities has been performed using a quasilocal
approximation to the HF energy density with finite-range force. The results confirm the findings of
Ref. [36], but also point toward a possible instability for the D1M interaction. By investigating the
right panel of Fig. 37, we observe that the D1M interaction has an isovector instability at ρc ≈ 1.26ρ0.
This is at the edge of the criterion developed in Ref. [34] and it may occur in some nuclei, due to shell
effects, the system may be able to explore these densities and thus develop an instability during an HF
calculation.
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Figure 37: Critical densities as a function of the transferred momentum for the D1M∗ (left panel) and
D1M (right panel) interaction for different spin isospin channels (S,M,I). The horizontal dot-dashed line
represents the saturation density ρ0. See text for details.

It is now interesting to explore the position of finite size instabilities for Gogny interactions as done
in Ref. [100]. In Fig. 38, we illustrate the position of the critical densities for D1S and D1N.

We observe that the D1S interaction does not present any finite-size instability around saturation
density, while D1N presents an instability in the scalar-isovector channel at ≈ 1.1ρ0. This value falls
within the criterion given in Ref. [34] and it means that potentially some finite-nuclei calculations may
fail when using this interaction [36]. The results obtained here using the full multipolar expansion
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Figure 38: Finite-size instabilities for the Gogny D1N (left) and D1S.

including central and spin-orbit term agrees nicely with the ones given in Ref. [100] and based on CF
approximation. It is interesting to note that the D1N fitting protocol includes explicit constraints on
Landau parameters [123], but these are not enough to prevent the appearance of finite-size instabilities.
As seen from Fig. 38, the presence of a range is not sufficient to remove such instabilities.

In Fig. 39, we illustrate the position of the instabilities in the various spin/isospin channels using the
CF approximation of Ref. [100]. The position of the instabilities have been rescaled for each interaction
to the corresponding value of the critical density ρ0 so to make more evident the possible violation of
the stability criterion given in Ref. [34].

Figure 39: Finite-size instabilities for various Gogny interactions including tensor terms. Taken from
Ref. [100].

Apart from the GT2 interaction that is clearly unstable, as seen in the anomalous behaviour of the
response function given in Fig. 35, all the other interactions present instabilities well above saturation
density. Since in these calculations there is no spin-orbit term, the instabilities observed in the S = 0
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channel only arise from the central term and thus they are not related to the presence of a tensor term
in the ph channel. Among the various Gogny-tensor interactions, only D1ST2b presents an instability
in the (1,0,1) channel that is quite close to the stability limit. In all cases, despite the presence of a
strong tensor term as discussed in Sec. 3.3, we can conclude that these parameterisations are most likely
stable.

In Fig. 40, we report the finite-size instabilities of the Nakada interaction. A quite remarkable result
is that the Nakada’s interactions are essentially free from instabilities up to ≈ 2ρ0, apart from the
physical spinodal instability. This is a very remarkable result since as shown above, it does not apply to
Gogny interactions. Such a result has been already discussed in Fig. 20 in the context of the instabilities
related to the deformation of the Fermi sphere using Landau parameters.

These results are remarkably different with the one obtained in the context of the tensor interactions
Tij [43]: in that case all interactions turned out to be unstable. The results of Fig. 40 clearly motivate a
much in depth analysis of the properties of the Nakada interaction before making any strong conclusion,
but this could be the effect of keeping the long range on the OPEP potential.
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Figure 40: Finite-size instabilities for various M3Y interactions
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7.2 Neutrino mean free path

The transport of neutrinos is an essential aspect of simulations in various astrophysical scenario as
supernovae, protoneutron stars and binary mergers of compact objects. The gravitational collapse
of massive stars at the end of their thermonuclear burning is believed to produce a core of hot and
dense matter in which most of the initial gravitational energy is stored in neutrinos [214]. Numerical
simulations of the subsequent evolution, leading to the formation of a neutron star [215, 216] , require
a reliable description of neutrino transport phenomena and in particular the neutrino mean free path
(NMFP) [217] of neutrinos crossing dense layers of stellar matter [218].

Following the seminal paper of Iwamoto and Pethick [217], the NMFP is obtained by integrating
the nuclear response function over an allowed phase space, dictated by the neutrino kinematic [62].

In Fig. 41, are presented the NMFP calculated including the effect of the residual ph-interaction
in the response function for several Skyrme BSk functionals [219]. The NMFP decreases quickly for
increasing values of incoming neutrino energy Eν . In the same figure, at density ρ = 0.16 fm−3 we
also report the results obtained using the correlated basis function formalism [220] calculated using the
Argonne v′6 two-body interaction plus the Urbana IX three-body term. See discussion in Ref. [221]
for more details. We observe that the NMFP obtained using phenomenological models are in good
agreement with the one obtained using ab-initio methods, apart from the BSk17 functional. In this
case we observe a much smaller NMFP that eventually drops to zero, thus leading to a trapping of
neutrinos within the star. The reason for such a behaviour is due to presence of finite size instabilities
in the spin channel around saturation density as shown in the left panel of. Fig. 42

At higher density ρ = 0.24 fm−3, we notice that the BSk18 functional leads to much smaller NMFP
compared to other functionals. By inspecting the right panel of Fig. 42, we notice again the appearance
of a finite-size instability at low values of transferred momentum.
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Figure 41: NMFP λRPA in PNM as a function of incident neutrino energy Eν for three values of the
density of the system and various Skyrme forces. Taken from Ref. [222].

A similar set of calculations have been performed in Ref. [223], but using finite-range interactions:
Gogny-D1P and M3Y-P1. In Fig. 43, is plotted the ratio of the total cross section (or equivalently the
ratio of mean free paths since σRPA/σHF = λRPA/λHF ) calculated using the RPA response function or
just taking into the effect of the interaction only at Hartree Fock level. The calculations are performed
in neutron star matter at β-equilibrium for a fixed value of the temperature T = 10 MeV and incident
neutrino energy Eν = 30 MeV by treating the exchange term with the Landau approximation.

The Skyrme interactions SGII [177] and SLy4 [224] display an enhancement of the cross-section in
the RPA with respect to the single HF calculation. This is the signal of a presence of a spin instability.
The SV interaction [225], which is stable against spin-excitations, still displays an enhancement by a
factor of 2 at 3ρsat.
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Figure 42: Critical densities ρc in PNM for the BSk17 (left panel) and BSk18 (right panel) Skyrme
functionals as a function of transferred momentum q. The horizontal dashed-dotted line represents
ρ = 0.16 fm−3. Adapted from Ref. [222].

The microscopical model based on the parametrisation of Pandharipande et al. [25, 226] (APR+CP)
predicts a reduction of the cross-section from RPA correlation of a factor of 3. See Ref. [223] for details.
The density-dependent Nakada interaction also predicts a reduction of the cross-section from RPA
correlations, but by a smaller factor (up to 40%). Very similar results are obtained for 8 different
M3Y interactions [223]. The results obtained with Gogny D1P lead to similar results, but with a less
pronounced reduction.
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Figure 43: RPA correction to the neutrino cross section for various models of the nuclear interaction
in neutron star matter in β-equilibrium and temperature T = 10 MeV and neutrino energy of Eν = 30
MeV. Adapted from Ref. [223].

At present, there are no calculation of NMFP with finite-range interaction that consider in full the
exchange term of the complete residual interaction, but by analysing the presence (absence) of finite-size
instabilities in Gogny (see Figs. 37-39) and Nakada (Figs. 40), we conclude that the Nakada interaction
is more suitable to perform this type of calculations since it would not lead to unphysical results with
trapped neutrinos.
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8 Concluding remarks

This review has focused on the methods for calculating the response function of symmetric nuclear
matter based on the two most common families of phenomenological finite-range interactions, namely
Gogny and Nakada. The core of the review has been the discussion of existing approximations and
methods to deal with the exchange part of the ph interaction with particular attention to the inclusion
of an explicit tensor term.

An analysis of some basic ground states properties of the infinite medium shows that all these
interactions give reasonable results in fair agreement with available ab initio calculations. This result is
of course expected since these properties essentially depend on the central part of the interaction and
are directly integrated in the fitting procedure. However, the situation is not so favorable when the
tensor terms are included. By performing the partial wave decomposition of the energy per particle, it
is possible to highlight an inconsistency between the sign of the tensor term added (perturbatively up
to now) to the Gogny interaction and the sign of ab initio one. Moreover, when compared to realistic
interactions, the tensor terms in Gogny interactions exhibit a huge discrepancy in magnitude as well.
The Nakada interaction, on the contrary, shows good agreement with partial waves determined with ab

initio calculations and the strength, although too weak, is in fair agreement when compared to realistic
interactions.

To obtain the response functions of the infinite medium, one has to solve the Bethe-Salpeter equa-
tions. The first ingredient of these equations is the ph propagator. It has been shown explicitly that
the usual parabolic approximation on the mean field is reliable up to q ≃ 2kF and therefore can be
used safely in that range for the results and applications presented in this review. The second impor-
tant ingredient is the ph interaction, whose exchange part constitutes the most difficult aspect of the
calculations. For such a reason, the core of the review has been devoted to the discussion of existing
approximations.

The Landau approximation is only reliable for very low-values of transferred momentum, but it gives
important informations on the system since the Landau parameters have a universal character. It is
thus important to compare their numerical values calculated from different interactions with the ones
produced using various ab-initio methods. The Landau parameters are linked to macroscopic properties
of the infinite medium such as compressibility, effective mass or spin susceptibility. Besides, they must
fulfill some general inequalities to guarantee the stability of the system. These inequalities satisfied
by Landau parameters must be taken into account at the very first stage of the fitting procedure, in
particular for the tensor part, which is known to produce unphysical instabilities at least for zero-range
interactions.

A possible way to improve the Landau approximation is to keep the explicit momentum dependence
on the direct term. In this way the response function calculated at higher momenta is in better
agreement with the complete response function. This can be useful for extensive calculations when the
exact calculations demand a heavy numerical effort.

A full treatment of the exchange term is necessary to obtain the exact response function. This
can achieved using either a multipolar expansion of the ph interaction and the RPA ph propagator or
a continued fraction expansion of the RPA response function. In both cases a truncation scheme is
required, but the existing calculations show that the convergence is very fast. Regarding the multipolar
expansion method, we have provided in the Appendix detailed expressions of the multipoles of the
different terms (central, density-dependent, spin-orbit and tensor) of the finite-range interactions since
they can also be used to perform finite-nuclei calculations [227, 228]. This expansion method is quite
general but is time-consuming. Regarding the continued fraction approach, the integrals of the interac-
tion convoluted with the ph propagator are calculated numerically from the start, but the presence of
an explicit spin-orbit term makes the calculation quite involved. The approach can be applied to finite
nuclei, presumably with a similar convergence rate.
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A detailed analysis of nuclear response functions at some characteristic value of the transferred
momentum sheds some light on the accuracy of all these approximations, and permits to highlight how
the presence of a tensor term can remarkably change the structure of the response functions. These
modifications can be connected to the ones observed for the transverse and longitudinal responses in
hadronic physics. In particular, we noticed that the strong Gogny tensor leads to a large separation
between these two modes, greater that the one observed in hadronic physics. As the Nakada tensor
is weaker, it leads to a smaller separation between these two modes and it looks more in qualitative
agreement with the results obtained with pionic response function.

By investigating the poles in the response functions, we have observed that essentially all Gogny
interactions with tensor are stable, apart from the GT2 interaction. This is an interesting result since,
it was shown in Ref [47] that all Skyrme interactions having a tensor term are unstable. However, up
to now the Gogny tensor has been added perturbatively, i.e. without refitting all the parameters of the
interaction, apart from the GT2 interaction which presents unstabilities in some spin-isospin channels.
All these results point towards the necessity of a more systematic analysis of finite-range tensor based on
the complete refit of the parameters in the same spirit of Refs [43, 229]. Considering Nakada interactions,
we have shown that all available parametrisation are essentially free from finite-size instabilities up to
2-3 times saturation density. This result makes Nakada interaction a very promising candidate to be
used for astrophysical calculations of other important properties [230] involving the nuclear response
function. A typical example is the neutrino mean free path in stellar medium [217, 62], which plays a
crucial role in the physics of supernovae and neutron stars. Indeed, as shown in Refs [212, 222], the
presence of a finite-size instability can dramatically change the NMFP by several order of magnitude,
thus having a major impact on transport properties of these systems.

In this review, we have limited the calculations of response functions to the RPA case. It is worth
mentioning that other many body methods have been developed to remove some of the approximations
used in the standard RPA case [5] as for example the Self-Consistent and renormalised RPA that
include higher correlations in matrix elements or the second RPA that includes two particle two holes
excitations. All these methods tend to improve on some aspects of the basic RPA, but usually at the
expense of a higher computational cost. We refer the reader to Ref. [231] for the most recent review on
these techniques.
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Appendix A Multipoles of the HF propagator

We present here the explicit expressions of the multipoles of the HF propagator GHF (q,k, ω) (see Eq. 8).
Since this propagator does not depend on the azimuthal angle, its multipoles are simply calculated as

GHF
ℓ (q, k1, ω) =

√

2ℓ+ 1

4π

∫

dk̂1GHF (q,k1, ω)Pℓ(cos θ1). (121)

For practical reasons, the integral is separated into its real and imaginary parts.
Consider first the case when the parabolic approximation of the mean field, given in Eq. (58), is

used to calculate the difference between single-particle energies entering the denominator of the HF
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propagator. In that case, the HF propagator has the same form as the free propagator with an effective
mass calculated at the Fermi surface. Defining the dimensionless quantities x = k1/kF , k = q/(2kF )
and ν = m∗ω/(qkF ), the imaginary part of (121) can be determined analytically with the result

ImGHF
ℓ (x, k, ν) = −2π2

√

2ℓ+ 1

4π

m∗

2k2
Fk

θ(x− |ν − k|)
x

Pℓ

(

ν − k

x

)

[

θ(1− x)− θ(1− x2 − 4kν)
]

. (122)

The real part, on the contrary, has to be determined numerically as

ReGHF
ℓ (x, k, ν) = 2π

√

2ℓ+ 1

4π

m∗

2k2
Fk

{

θ(1− x)

∫ 1

−1

du
Pℓ(u)

ν − k − xu
−

∫ 1

−1

duPℓ(u)
θ(1− x2 − 4kxu− 4k2)

ν − k − xu

}

.

(123)

For a finite-range potential, the effective mass depends explicitly on the momentum. For the two cases
of interest considered in this review (Gogny and Nakada), one obtains respectively

m

m∗
G(x)

= 1 +
2mC

(G)
E√

πaGk2
Fx

3
e−a2G(1+x)2/4

[

2 + xa2G + exa
2
G(xa2G − 2)

]

, (124)

m

m∗
N(x)

= 1 +
mC

(N)
E

πaNk2
Fx

3

[

−4xa2N + (1 + a2N(1 + x2)) log

(

1 + a2N(1 + x)2

1 + a2N(1− x)2

)]

, (125)

where aG = µkF , aN = kF/µ, C
(G)
E = 1

4
W+ 1

2
B− 1

2
H−M and C

(N)
E = 1

16
(−3t(SE)+t(SO)−3t(TE)+9t(TO)).

The effective mass at the Fermi surface is simply obtained from the above equations with x = 1.
One can see that both real and imaginary parts of the multipoles of the HF propagator are piece-wise

functions and contain poles. As an example, we show in Fig. 44 the components up to ℓ = 3 of the real
and imaginary parts for D1S with ρ = ρ0, q = kF and ω = 10 MeV.
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Figure 44: Multipole components of the Hartree-Fock propagator for D1S up to ℓ = 3 for ρ = ρ0, q = kF
and ω = 10 MeV: real (imaginary) parts are depicted on the left (right) panel.

We now turn now to the general case when no approximation on the mean field is made. Instead of
the variable ν we define ν̃ = mω/(qkF ), and obtain from Eq (121) the following expression

GHF
ℓ (q, ω, k1) =

√

2ℓ+ 1

4π

mπ

k2
Fk

∫ 1

−1

duPℓ(u)
θ(1− x)− θ(1− 4k2 − x2 − 4kxu)

ν̃ − k − Ũ(k, x, u)− xu+ iη
, (126)
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where we have defined Ũ(k, x, u) ≡ m
2k2F k

[U(k1 + q)− U(k1)]. The delta function related to the imagi-

nary part implies that the equality ν̃ − k− Ũ(k, x, u)− xu = 0 must be fulfilled. Let u0 be its solution.
Then the imaginary part can be written as

Im GHF
ℓ (q, ω, k1) = −

√

2ℓ+ 1

4π

mπ2

k2
Fk

Pℓ(u0)

|x+ (∂Ũ/∂u)u0 |
θ(1− |u0|)

{

θ(1− x)− θ(1− 4k2 − x2 − 4kxu0)

}

.

(127)

For a Gogny interaction, the derivative of Ũ reads

∂Ũ(k, x, u)

∂u
=

2mxC
(G)
E√

πµk3
FX

3
e−k2Fµ2(1+X)2/4

[

k2
Fµ

2X + 2 + ek
2
Fµ2X

(

k2
Fµ

2X − 2
)

]

, (128)

while for a Nakada interaction, the result is

∂Ũ(k, x, u)

∂u
= −mxC

(N)
E

πµk3
FX

3

[

4k2
FX +

(

k2
F (1 +X2) + µ2

)

log

[

k2
F (X − 1)2 + µ2

k2
F (X + 1)2 + µ2

]]

. (129)

In the above equations, X is a short-hand notation for X ≡
√
4k2 + 4kxu+ x2.

The real part has to be calculated numerically from the expression

ReGHF
ℓ (x, k, ν) = 2π

√

2ℓ+ 1

4π

m

2k2
Fk

{

θ(1− x)

∫ 1

−1

du
Pℓ(u)

ν̃ − k − Ũ(k, x, u)− xu

−
∫ 1

−1

duPℓ(u)
θ(1− x2 − 4kxu− 4k2)

ν̃ − k − Ũ(k, x, u)− xu

}

, (130)

which is similar to Eq. (123) with the replacements m∗ → m and ν → ν̃ − Ũ(k, x, u).
Considering the approximation of the effective mass or the more general case, the HF response

function is obtained by an integration of Im GHF
ℓ (q, ω, k1) over the k1 component. It is thus easy to

understand that the presence of poles requires a special treatment. As discussed in Ref. [106], the
simplest solution is to use a dense uniform mesh in k-space. The obvious problem is that a decent
accuracy requires a very dense mesh (≃ 200 points) and consequently the diagonalisation of a large
matrix to solve the integro-differential system.

Appendix B Multipolar expansion of the ph interactions

We present here the explicit expressions of the multipoles of the ph interaction as defined in Eq. (100).
Since a zero-range interaction can be used as a useful test for codes dealing with finite-range interactions,
we first show the results for a Skyrme interaction. Then, we give the results for the Gogny and Nakada
interactions separately since they differ not only in the radial form factor, but also in the spin-orbit
term. The tensor term will be discussed in a specific section.

B.1 Skyrme interaction

The ph matrix elements for Skyrme interaction have already been published in Refs. [56, 106]. These
results have been generalized to extensions of Skyrme interaction as N2LO and N3LO [90]. Here we
simply provide with the multipoles of the usual Skyrme interaction, which we write as the sum

F
(α,α′)
ℓm;ℓ′m′ = F

(α,α′)
ℓm;ℓ′m′;C+DD + F

(α,α′)
ℓm;ℓ′m′;SO , (131)
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where

F
(α,α′)
ℓm;ℓ′m′;C+DD = δℓℓ′δmm′δαα′

{

4π
[

W
(α)
1 +W

(α)
2 (k2

1 + k2
2)
]

δℓ,0 −
8π

3
W

(α)
2 k1k2δl,1

}

, (132)

F
(α,α′)
ℓm;ℓ′m′;SO = − 4π√

3
qW0 [3δI,0 + δI,1] δI,I′δQ,Q′ {M ′ [k1δℓ,1δm,M ′δℓ′,0δm′,0 + k2δℓ′,1δm′,−M ′δℓ,0δm,0] δS′,1δS,0

+M [k1δℓ,1δm,−Mδℓ′,0δm′,0 + k2δℓ′,1δm′,Mδℓ,0δm,0] δS,1δS′,0} .(133)

The coefficients W
(α)
1,2 are combinations of the Skyrme parameters, and are given in Tab. 8.

B.2 Gogny interaction

The multipoles corresponding to the central and density-dependent parts (see Eqs. (30) and (31)) are
written as

F
(α,α′)
ℓm;ℓ′m′;C(k1, k2) = δα,α′δℓ,ℓ′δm,m′

{

δℓ,04πD
(α)e−

1
4
q2µ2

+ 2πE(α)e−
1
4
(k21+k22)µ

2

I(ℓ)

}

, (134)

F
(α,α′)
ℓm;ℓ′m′;DD(k1, k2) = δα,α′δℓ,ℓ′δm,m′δℓ,04πR

(α) , (135)

while the multipoles of the spin-orbit part coincide with Eq. (133), since the interactions have the same
form. The coefficients D(α), E(α) have been given in Tab. 2. The functions I(ℓ) defined as

I(ℓ) =

∫ 1

−1

duPℓ(u)e
au , (136)

can be calculated from the recurrence relation

I(ℓ+ 1) = I(ℓ− 1)− 2ℓ+ 1

a
I(ℓ) , (137)

with

I(0) =
2

a
sinh a ,

I(1) =
2

a2
(a cosh a− sinh a) ,

where a = 1
2
k1k2µ

2.

B.3 Nakada interaction

The multipoles corresponding to the central and density-dependent parts (see Eqs. (43) and (44)) are
written as

F
(α,α′)
ℓm;ℓ′m′;C(k1, k2) = δα,α′δℓ,ℓ′δm,m′

{

δℓ,04πD
(α) 1

µ2 + q2
+ 2πE(α)J(ℓ)

}

, (138)

F
(α,α′)
ℓm;ℓ′m′;DD(k1, k2) = δα,α′δℓ,ℓ′δm,m′δℓ,04πR

(α) . (139)

The functions J(ℓ) defined as

J(ℓ) =

∫ 1

−1

Pℓ(x)

b− x
dx , (140)
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are calculated using the recurrence relation

J(ℓ+ 1) =
2ℓ+ 1

ℓ+ 1
b J(ℓ)− ℓ

ℓ+ 1
J(ℓ− 1) ,

where b = (µ2 + k2
1 + k2

2)/(2k1k2) and

J(0) = ln
b+ 1

b− 1
,

J(1) = −2 + b ln
b+ 1

b− 1
.

This kind of integrals will be encountered in the following, but with a different power in the denominator

Jn(ℓ) =

∫ 1

−1

Pℓ(x)

(b− x)n
dx. (141)

In that case, the use of the Legendre polynomials standard properties

(ℓ+ 1)Pℓ+1(x) = (2ℓ+ 1)xPℓ(x)− ℓPℓ−1(x) ,

P ′
ℓ+1(x)− P ′

ℓ−1(x) = (2ℓ+ 1)Pℓ(x) ,

will respectively lead to the following relations

Jn(ℓ+ 1) = −2ℓ+ 1

ℓ+ 1
Jn−1(ℓ) +

2ℓ+ 1

ℓ+ 1
b Jn(ℓ)−

ℓ

ℓ+ 1
Jn(ℓ− 1) ,

Jn(ℓ+ 1)− Jn(ℓ− 1) = −2ℓ+ 1

n− 1
Jn−1(ℓ) ,

which can be combined, when necessary, in

Jn(ℓ) =
Jn(ℓ− 1)

b
+

[

1− ℓ+ 1

n− 1

]

Jn−1(ℓ)

b
. (142)

Therefore, with J0(ℓ) ≡ J(ℓ), one can get the other integrals Jn>0(ℓ).
The multipoles of the finite-range spin-orbit term given in Eq. (45) have a more complex structure

and read

F
(α,α′)
ℓm;ℓ′m′;SO(k1, k2) = −4π2

√
3
q δI,I′δQ,Q′

[

−δI,0
(

t(LSE) + 3t(LSO)
)

+ δI,1
(

t(LSE) − t(LSO)
)]

FY,SO(q)

{M ′ [k1δℓ,1δm,M ′δℓ′,0δm′,0 + k2δℓ′,1δm′,−M ′δℓ,0δm,0] δS′,1δS,0

+M [k1δℓ,1δm,−Mδℓ′,0δm′,0 + k2δℓ′,1δm′,Mδℓ,0δm,0] δS,1δS′,0}
−πq δI,I′δQ,Q′

[

δI,0
(

t(LSE) − 3t(LSO)
)

− δI,1
(

t(LSE) + t(LSO)
)]

(k1FSO,ℓ′ − k2FSO,ℓ)

(−1)mℓ̂ℓ̂′
(

ℓ ℓ′ 1
0 0 0

)[

M ′
(

ℓ ℓ′ 1
−m m′ M ′

)

δS′,1δS,0 +M

(

ℓ ℓ′ 1
−m m′ −M

)

δS,1δS′,0

]

.

The functions FSO,ℓ(k1, k2) are defined by

FSO,ℓ =
4π

µ(2k1k2)2

∫ 1

−1

Pℓ(x)

(b− x)2
dx ≡ 4π

µ(2k1k2)2
J2(ℓ) , (143)

and hence satisfy the following recurrence relation (see Eq. (142))

FSO,ℓ =
FSO,ℓ−1

b
− 4π

µ(2k1k2)2
ℓJ(ℓ)

b
,

with

FSO,0(k1, k2) =
π

µ(k1k2)2
2

b2 − 1
.
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B.4 Tensor term

In this section, we present the multipoles defined in defined in Eq. (100) for both zero-range and
finite-range tensor term.

B.4.1 Zero-range interaction

For the Skyrme interaction, the tensor term is usually written as

VT =
1

2
teTe(k

′,k) +
1

2
toTo(k

′,k) , (144)

where Te and To, respectively even and odd under parity transformations, are defined as

Te(k
′,k) = 3(σ1 · k′)(σ2 · k′) + 3(σ1 · k)(σ2 · k)− (k′2 + k2)(σ1 · σ2), (145)

To(k
′,k) = 3(σ1 · k′)(σ2 · k) + 3(σ1 · k)(σ2 · k′)− 2(k′ · k)(σ1 · σ2). (146)

The ph matrix elements have already been published in Ref. [108], and the multipoles read

F
(α,α′)
ℓ′m′;ℓm;T = 2πδS,1δS′,1δI,I′δQ,Q′ [(te + 3to)δI,0 + (to − te)δI,1]

{

k1k2δℓ,1δℓ′,1

[

2

3
δm,m′δM,M ′ − δm,M ′δm′,M − (−1)M+M ′

δm,−Mδm′,−M ′

]

+
√
6
[

(−1)m
′

k2
1δℓ′,0δm′,0δℓ,2δm,M ′−M + (−1)mk2

2δℓ,0δm,0δℓ′,2δm′,M−M ′

]

(

1 1 2
−M M ′ M −M ′

)}

+2πq2δS,1δS′,1δI,I′δQ,Q′ [(te − 3to)δI,0 − (te + to)δI,1] [3δM,0δM ′,0 − δM,M ′ ] δℓ,0δℓ′,0δm,0δm′,0(147)

B.4.2 Finite-range interaction

Let us write a general finite-range tensor interaction as

VT = (V1 + V2Pτ )WT (r12)ST (r̂12). (148)

For the Gogny tensor interaction (23), we made the replacements V1 → VT1, V2 → VT2 and WT →
e−(r/µG)2 , while for the Nakada interaction (39) we have

VT1 → 1

2
(t(TNE) + tTN0) , (149)

VT2 → 1

2
(−t(TNE) + tTN0) , (150)

WT → e−µT r

µTr
r2. (151)

The ph matrix elements of (148) are written as

V
(α,α′)
T ph = −8πδS,1δS′,1δI,I′δQ,Q′

{

[δI,0 (2V1 + V2) + δI,1V2]FT (q)q
2 [3δM,0δM ′,0 − δM,M ′ ]

− [δI,0 (V1 + 2V2) + δI,1V1]FT (k12)
[

3(−1)M(k12)
1
−M(k12)

1
M ′ − k2

12δM,M ′

]}

(152)

where the function FT is a shorthand notation for FY,T , FG,T whose expressions are

FY,T (k) =
8

µY (k2 + µ2
Y )

3
, (153)

FG,T (k) =
1

4k5

(

6πErf

(

kµG

2

)

−
√
πkµG(6 + k2µ2

G)e
−k2µ2

G/4

)

. (154)

61



The final expression for the multipoles reads

F
(α,α′)
ℓ′m′;ℓm;T = −8πδS,1δS′,1δQ,Q′

{

[δI,0 (2V1 + V2) + δI,1V2] 4πFT (q)q
2 [3δM,0δM ′,0 − δM,M ′ ] δℓ,0δℓ′,0δm,0δm′,0

− [δI,0 (V1 + 2V2) + δI,1V1]Tℓm,ℓ′m′} ,

where Tℓm,ℓ′m′ is defined as

Tlm,l′m′ = 3k1k2 δM+m,M ′+m′

{

√

ℓ′(ℓ′ − 1)δℓ,ℓ′−2A
T
ℓ′−1

[

(−1)m−m′

(

1 ℓ′ − 1 ℓ′ − 2
M ′ m−M ′ −m

)(

1 ℓ′ − 1 ℓ′

−M M −m′ m′

)

+

(

1 ℓ′ − 1 ℓ′ − 2
−M M +m −m

)(

1 ℓ′ − 1 ℓ′

M ′ −m′ −M ′ m′

)]

+
√

(ℓ′ + 1)(ℓ′ + 2)δℓ,ℓ′+2A
T
ℓ′+1

[

(−1)m−m′

(

1 ℓ′ + 1 ℓ′

M ′ −m′ −M ′ m′

)(

1 ℓ′ + 1 ℓ′ + 2
−M M +m −m

)

+

(

1 ℓ′ + 1 ℓ′

−M M −m′ m′

)(

1 ℓ′ + 1 ℓ′ + 2
M ′ m−M ′ −m

)]

−δℓ,ℓ′ℓ
′AT

ℓ′−1

[

(−1)m−m′

(

1 ℓ′ − 1 ℓ′

−M M −m′ m′

)(

1 ℓ′ − 1 ℓ′

M ′ m−M ′ −m

)

+

(

1 ℓ′ − 1 ℓ′

−M M +m −m

)(

1 ℓ′ − 1 ℓ′

M ′ −m′ −M ′ m′

)]

−δℓ,ℓ′(ℓ
′ + 1)AT

ℓ′+1

[

(−1)m−m′

(

1 ℓ′ + 1 ℓ′

−M M −m′ m′

)(

1 ℓ′ + 1 ℓ′

M ′ m−M ′ −m

)

+

(

1 ℓ′ + 1 ℓ′

−M M +m −m

)(

1 ℓ′ + 1 ℓ′

M ′ −m′ −M ′ m′

)] }

+δM+m,M ′+m′

√
30 ℓ̂ℓ̂′(−1)M

′−m(AT
ℓ′k

2
1 + AT

ℓ k
2
2)

(

1 1 2
−M M ′ M −M ′

)(

ℓ′ ℓ 2
0 0 0

)(

ℓ′ ℓ 2
m′ −m m−m′

)

+δℓ,ℓ′δm,m′δM,M ′2k1k2

(

ℓ

2ℓ+ 1
AT

ℓ−1 +
ℓ+ 1

2ℓ+ 1
AT

ℓ+1

)

.

The coefficients AT
ℓ are defined as

AT
ℓ = 2π

∫ 1

−1

dxFT (
√

k2
1 + k2

2 − 2k1k2x)Pℓ(x) , (155)

where FT is given in Eqs. (153) and (154).
For Nakada interaction, they can be written as

AY,T
ℓ =

16π

µ(2k1k2)3
J3(ℓ) ,

where the function J3 is defined in Eq. (141). From Eq. (142) a useful recursion relation can be obtained
as

AY,T
ℓ =

AY,T
ℓ−1

b
− 16π

µ(2k1k2)3
(ℓ− 1)J2(ℓ)

2b
,

with

AY,T
0 =

π

µ(k1k2)3
4b

(b2 − 1)2
,
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where we used the abridged notation b =
µ2+k21+k22

2k1k2
.

For the Gogny interaction, we have not been able to obtain a closed form as the one obtained for
Nakada. We give the explicit expression for the first coefficients

π−3/2µ−5
G AG,T

0 =
e−a[a sinh(b) + b cosh(b)]

4b (b2 − a2)
+

√
πErf

(√
a− b

)

16b(a− b)3/2
−

√
πErf

(√
a+ b

)

16b(a+ b)3/2

π−3/2µ−5
G AG,T

1 =
e−a[a cosh(b) + b sinh(b)]

4b (b2 − a2)
−

√
π(2a− 3b)Erf

(√
a− b

)

16b2(a− b)3/2
+

√
π(2a+ 3b)Erf

(√
a+ b

)

16b2(a+ b)3/2

π−3/2µ−5
G AG,T

2 = −e−a[(6a2 + (a− 6)b2) sinh(b) + b3 cosh(b)]

4b3(a− b)(a+ b)

−
√
π (12a2 − 18ab+ 5b2) Erf

(√
a− b

)

16b3(a− b)3/2
+

√
π (12a2 + 18ab+ 5b2) Erf

(√
a+ b

)

16b3(a+ b)3/2

π−3/2µ−5
G AG,T

3 = −e−a[b (10a2 + (a− 10)b2) cosh(b) + (10a2(2a− 1) + 10(1− 2a)b2 + b4) sinh(b)]

4b4(a− b)(a+ b)

−
√
π (40a3 − 60a2b+ 12ab2 + 7b3) Erf

(√
a− b

)

16b4(a− b)3/2

+

√
π (40a3 + 60a2b+ 12ab2 − 7b3) Erf

(√
a+ b

)

16b4(a+ b)3/2

π−3/2µ−5
G AG,T

4 = −e−a[14a2 (4a2 − 2a+ 3) + (a− 6)b4 − 2(a(25a− 14) + 21)b2 sinh(b)]

4b5(a− b)(a+ b)

−e−a b [14a2(2a− 3) + 14(3− 2a)b2 + b4] cosh(b)

4b5(a− b)(a+ b)

−
√
π (112a4 − 168a3b+ 12a2b2 + 52ab3 − 9b4) Erf

(√
a− b

)

16b5(a− b)3/2

+

√
π (112a4 + 168a3b+ 12a2b2 − 52ab3 − 9b4) Erf

(√
a+ b

)

16b5(a+ b)3/2

π−3/2µ−5
G AG,T

5 = −e−a[18a2(6a− 4a2 + 8a3−15)−2(2a(27 + a(7 + 40a))−135)b2+ 4(25 + 4a)b4 + b6] sinh(b)

4b6(a− b)(a+ b)

−e−a b [18a2(15− 6a+ 4a2)− 2(135 + a(−54 + 31a))b2 + (−10 + a)b4] cosh(b)

4b6(a− b)(a+ b)

+

√
π (−288a5 + 432a4b+ 32a3b2 − 228a2b3 + 42ab4 + 11b5) Erf

(√
a− b

)

16b6(a− b)3/2

+

√
π (288a5 + 432a4b− 32a3b2 − 228a2b3 − 42ab4 + 11b5) Erf

(√
a+ b

)

16b6(a+ b)3/2
.

where we have defined a =
(k21+k22)µ

2
G

4
and b =

k1k2µ2
G

2
.
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[73] M. Centelles, X. Roca-Maza, X. Viñas, M. Warda, Phys. Rev. Lett. 102 (2009) 122502.

[74] J. Danielewicz, J. Lee, Int. J. Mod. Phys. E 18 (2009) 892.
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