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A B S T R A C T   

Eulerian-Eulerian computational fluid dynamic (CFD) models allow the prediction of complex and large-scale 
industrial multiphase gas–liquid bubbly flows with a relatively limited computational load. However, the 
interfacial transfer processes are entirely modelled, with closure relations that often dictate the accuracy of the 
entire model. Numerous sets of closures have been developed, often optimized over few experimental data sets 
and achieving remarkable accuracy that, however, becomes difficult to replicate outside of the range of the 
selected data. This makes a reliable comparison of available model capabilities difficult and obstructs their 
further development. In this paper, the CFD models developed at the University of Leeds and the Helmholtz- 
Zentrum Dresden-Rossendorf are benchmarked against a large database of bubbly flows in vertical pipes. The 
research groups adopt a similar modelling strategy, aimed at identifying a single universal set of widely appli-
cable closures. The main focus of the paper is interfacial momentum transfer, which essentially governs the void 
fraction distribution in the flow, and turbulence modelling closures. To focus on these aspects, the validation 
database is limited to experiments with a monodispersed bubble diameter distribution. Overall, the models prove 
to be reliable and robust and can be applied with confidence over the range of parameters tested. Areas are 
identified where further development is needed, such as the modelling of bubble-induced turbulence and the 
near-wall region, as well as the best features of both models to be combined in a future harmonized model. A 
benchmark is also established and is available for the testing of other models. Similar exercises are encouraged to 
support the confident application of multiphase CFD models, together with the definition of a set of experiments 
accepted community-wide for model benchmarking.   

1. Introduction 

Bubbly flows are widespread in a multitude of multiphase flow en-
gineering applications and industrial fields, such as nuclear thermal 
hydraulics and chemical and process engineering equipment. In bubbly 
boiling flows, extremely high heat transfer coefficients are reached and 
the dispersion of small bubbles in a background liquid phase is often 
employed when high rates of heat and mass transfer are needed between 
two or more fluids (Risso, 2018). On the other hand, the interaction 
between the dispersed bubbles and the continuous liquid at the interface 
between them makes the hydrodynamics of bubbly flows complex and 
challenging. Bubbly flows are normally polydispersed, with multiple 
bubbles of sometimes largely different sizes that breakup by interacting 
with the surrounding liquid and, when the bubble concentration in-
creases, frequently collide and coalesce with their neighbours (Lucas 
et al., 2010). As a consequence, the density of the interfacial area, the 
major driver of the desired heat and mass transfer processes, is 

continuously altered. Empirical correlations and simplified one- 
dimensional models are not equipped to capture such physics that oc-
curs at the bubble scale, as they can only correlate with values of 
averaged or bulk parameters (Woldesemayat and Ghajar, 2007; Vasa-
vada et al., 2009). Therefore, they have limited accuracy and normally 
struggle when applied outside the specific range of parameters for which 
they were developed. In view of this, research has more recently focused 
on three-dimensional, time-dependent computational fluid dynamic 
(CFD) methods (Yao and Morel, 2004; Yeoh and Tu, 2006; Hosokawa 
and Tomiyama, 2009; Dabiri and Tryggvason, 2015; Rzehak et al., 2015; 
Colombo and Fairweather, 2016b; Santarelli and Fröhlich, 2016; Mim-
ouni et al., 2017; Feng and Bolotnov, 2018; Liao et al., 2018; Lubchenko 
et al., 2018). These are best equipped to account for the many local 
phenomena at the bubble scale that impact the macroscopic behaviour 
of the flow, and provide reliable numerical tools that are much needed to 
underpin improved bubbly flow understanding as well as efficient in-
dustrial equipment design and process optimization. 

* Corresponding author. 
E-mail address: m.colombo@leeds.ac.uk (M. Colombo).  

Contents lists available at ScienceDirect 

Nuclear Engineering and Design 

journal homepage: www.elsevier.com/locate/nucengdes 

https://doi.org/10.1016/j.nucengdes.2021.111075 
Received 25 August 2020; Received in revised form 11 December 2020; Accepted 11 January 2021   

mailto:m.colombo@leeds.ac.uk
www.sciencedirect.com/science/journal/00295493
https://www.elsevier.com/locate/nucengdes
https://doi.org/10.1016/j.nucengdes.2021.111075
https://doi.org/10.1016/j.nucengdes.2021.111075
https://doi.org/10.1016/j.nucengdes.2021.111075
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nucengdes.2021.111075&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Nuclear Engineering and Design 375 (2021) 111075

2

For bubbly flows of practical relevance, where large-scale, complex 
geometries with hundreds of thousands or millions of bubbles are 
involved, multifluid Eulerian-Eulerian models are the preferred choice 
(Yao and Morel, 2004; Yeoh and Tu, 2006; Hosokawa and Tomiyama, 
2009; Liao et al., 2015, 2018; Rzehak et al., 2015, 2017; Colombo and 
Fairweather, 2016a, 2016b; Mimouni et al., 2017; Lubchenko et al., 
2018). Although the continuous increase in computational resources has 
favoured the development of interface resolving approaches where all 
the interfacial and flow scales are resolved, these remain mainly con-
strained to much fewer bubbles in simplified flow conditions (Dabiri and 
Tryggvason, 2015; Santarelli and Frohlich, 2015; Santarelli and 
Fröhlich, 2016; Feng and Bolotnov, 2017, 2018). In contrast, in multi-
fluid models, physical processes at the bubble scale are not resolved and 
only the spatial and temporal distribution of the averaged (over small 
volumes) phase concentration is known. A set of conservation equations 
is solved for each phase and coupling between the phases is achieved 
with closure relations that model the unresolved exchanges of mass, 
momentum and energy at the interface (Ishii and Hibiki, 2006; Pros-
peretti and Tryggvason, 2007; Yeoh and Tu, 2010). It is not surprising 
that most of the research undertaken using these approaches has focused 
on the development of more accurate and physically based versions of 
these closures, given their impact on the accuracy of the overall model. 

Of considerable importance are the interfacial forces used to model the 
momentum interfacial exchange and how continuous liquid and bubble 
velocities and spatial distributions mutually interact (Colombo and Fair-
weather, 2015; Rzehak et al., 2017; Liao et al., 2018; Lubchenko et al., 
2018). This interaction is modelled with a number of forces that reproduce 
different physical effects. The drag force models the opposition of the 
surrounding liquid to bubble motion by interfacial shear. A well-known 
effect in closed ducts, modelled with the lift force, is the force on the 
bubble in the direction perpendicular to a wall, and the main fluid motion, 
induced by the gradient in the same direction in the fluid velocity (Auton, 
1987; Tomiyama et al., 2002b). Lift forces considerably alter the bubble 
spatial distribution, by pushing small, relatively spherical bubbles towards 
regions of higher relative velocity, e.g. to the wall in upward vertical 
flows. For larger, deformed bubbles, driven by the altered fluid circulation 
around the bubble surface, the lift force acts in the opposite direction 
(Lucas and Tomiyama, 2011). In air–water bubbly flows, experimental 
evidence suggests that at atmospheric conditions this change in direction 
occurs for bubble diameters between 5 and 6 mm (Tomiyama et al., 
2002b) and, with small bubbles, vertical pipe flows exhibit a peculiar 
wall-peaked void fraction distribution (Liu and Bankoff, 1993a, 1993b; 
Lucas et al., 2005; Hosokawa and Tomiyama, 2009). In multifluid models, 
this peak has generally been predicted with a linear superposition of the 
lift force and an additional repulsive wall force that, at a sufficiently small 
distance from the wall, prevents bubbles moving closer to it (Antal et al., 
1991; Hosokawa et al., 2002; Rzehak et al., 2012). Over the years, 
numerous lift and wall force formulations have been developed, often 
optimized over a limited amount of data (Hibiki and Ishii, 2007). 
Although good predictive accuracy is often achieved over the range of the 
data selected, extension to other conditions has proven difficult. For 
example, agreement with data has been reported for values of the lift 
coefficient ranging from 0.01 (Wang et al., 1987; Yeoh and Tu, 2006) to 
0.5 (Mimouni et al., 2010). This, and the multiple combinations of 
different closure models, clearly impacts the general applicability of 
multifluid models and complicates any genuine assessment of their overall 
accuracy (Lucas et al., 2016; Podowski, 2018). At the same time, it ob-
structs the community from reaching agreement over the best model 
available and the most pressing developments needed. 

An additional open and active area of research is the development of 
modelling closures for multiphase turbulence in Reynolds-averaged 
Navier-Stokes CFD approaches. In this regard, modelling still often re-
lies on the eddy viscosity assumption (Yao and Morel, 2004; Rzehak 
et al., 2017; Sugrue et al., 2017; Liao et al., 2018). More recently, 
however, driven by the desire to move beyond the limitations of Bous-
sinesq’s assumption, well-documented for single-phase flows 

(Benhamadouche, 2018), progress has been made in the development 
and application of second-moment Reynolds stress closures (Lopez de 
Bertodano et al., 1990; Colombo and Fairweather, 2015, 2020; Mimouni 
et al., 2017; Parekh and Rzehak, 2018). Recent studies suggest that such 
closures can account for additional influences of turbulence, and its 
modelling, on the dispersed phase distribution (Ullrich et al., 2014; 
Santarelli and Frohlich, 2015; Colombo and Fairweather, 2019). Spe-
cific to bubbly flows, and the subject of numerous studies, is the 
modelling of the bubble-induced contribution to the continuous phase 
turbulence. This is often modelled based on the conversion of energy 
from drag to turbulence kinetic energy in bubble wakes (Troshko and 
Hassan, 2001; Rzehak and Krepper, 2013; Colombo and Fairweather, 
2015). Continuous advances are being achieved in this area, including 
specific implementations for Reynolds stress closures (Ma et al., 2017, 
2020; Parekh and Rzehak, 2018; Magolan and Baglietto, 2019; Colombo 
and Fairweather, 2020). 

In response to the multiplication of modelling closures, researchers 
at the Helmholtz - Zentrum Dresden - Rossendorf (HZDR) have proposed 
their baseline closure strategy (Rzehak et al., 2015; Liao et al., 2018; 
Lucas et al., 2020). A default modelling setup is established, including 
closure relations for all the relevant physical processes in bubbly flows. 
The model is then systematically validated over a continuously 
increasing experimental database, and a specific closure is modified only 
if it improves the overall prediction of the entire database, to the benefit 
of the robustness of the model, even if at the expense of a slight decrease 
in accuracy over specific experiments (Lucas et al., 2016). This strategy, 
including validation over large databases of experimental measure-
ments, has been embraced at the University of Leeds (UoL), where the 
same principles were adopted in CFD multifluid model development 
(Colombo and Fairweather, 2015, 2020). 

In this paper, the models from HZDR and UoL are systematically 
benchmarked blindly against each other over a large range of adiabatic 
bubbly pipe flow experiments. The paper is specifically focused on the 
interfacial momentum closure framework, and the multiphase and bubble- 
induced turbulence modelling employed. If present, a population balance 
model influences the model’s overall accuracy and the assessment of other 
closures, the accuracy of which will also depend on the accuracy of the 
average bubble diameter prediction from the population balance. For this 
reason, experiments where a monodispersed bubble diameter distribution 
was measured are selected for comparison purposes. In these flows, the 
bubble population can be effectively approximated with a fixed average 
bubble diameter taken from the experimental measurements, without the 
need for a population balance. The work aims at systematically identifying 
the level of confidence and overall accuracy that can be expected when 
applying these models over the range of flows tested. Equivalent exercises, 
extending over a similarly large database, are difficult to find in the litera-
ture, and the present work also establishes a benchmark that is available for 
other models to be tested against. The strengths and weaknesses of each 
model are identified, with the aim of establishing a path towards a future 
harmonized best possible model as well as pointing out areas where further 
joint developments will be beneficial. 

2. Computational fluid dynamics model 

The CFD models are based on the multifluid Eulerian-Eulerian 
method (Prosperetti and Tryggvason, 2007; Yeoh and Tu, 2010). The 
flows considered are adiabatic, and a set of averaged continuity and 
momentum equations is solved for each phase: 

∂
∂t
(αkρk)+

∂
∂xi

(
αkρkUi,k

)
= 0 (1)  

∂
∂t
(
αkρkUi,k

)
+

∂
∂xj

(
αkρkUi,kUj,k

)
= − αk

∂
∂xi

p+
∂

∂xj

[
αk

(
τij,k

+ τRe
ij,k

) ]
+αkρkgi +Mi,k (2) 
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In the above equations, p is the pressure, common to both phases, 
and Uk, αk and ρk are the velocity, volume fraction, and density of phase 
k, respectively. In the following, we will use the indices c and d to denote 
continuous liquid and dispersed gas, but we will often refer only to α to 
identify the void fraction of the gas phase. Indices i and j denote Car-
tesian coordinates. g is the gravitational acceleration and τk and τRe

k the 
laminar and turbulent stress tensors, respectively. The term Mk is the 
interfacial momentum transfer source and models the interfacial mo-
mentum transfer between the phases with a set of closure relations that 
account for the different forces that act on the bubbles. The closures 
employed are commonly used in the modelling of bubbly flows, 
although in a multitude of combinations and often with modified co-
efficients, and both the HZDR and UoL momentum transfer modelling 
frameworks have been systematically validated in numerous recent 
publications (Colombo and Fairweather, 2015, 2019, 2020; Rzehak 
et al., 2015; Liao et al., 2018; Lucas et al., 2020). 

2.1. Interfacial forces 

In the HZDR model the drag force, lift force, wall force, turbulent 
dispersion force and virtual mass are all considered: 

Mc = − Md = Fdrag +Flif t +Fwall +Ftd +Fvm (3) 

In the UoL model, only the drag, lift and turbulent dispersion forces 
are modelled. The wall force is neglected since wall-peaked void fraction 
profiles have been predicted without it when a Reynolds stress turbu-
lence model with wall resolution capabilities is employed (Colombo and 
Fairweather, 2019, 2020), and due to recently reported drawbacks in 
the theoretical foundations of some wall force models (Lubchenko et al., 
2018). The absence of the wall force is one of the two major differences 
between the two overall models, together with the multiphase turbu-
lence modelling approach employed (more details are given in the tur-
bulence modelling section). Also the virtual mass force is neglected in 
the UoL model but, for the steady fully-developed flows considered in 
this work, no significant impact is expected from its neglecting. 

The drag force models the resistance exerted by the surrounding 
liquid on the bubble motion, and the corresponding momentum source 
to the liquid phase is given by: 

Fdrag =
3
4

CD

dB
αρc|Ur |Ur (4) 

In Eq. (4), Ur = Ud− Uc is the relative velocity between the bubbles 
and the liquid and dB the average bubble diameter. The drag coefficient 
CD needs to be calculated with a specific model and, at HZDR, the model 
of Ishii and Zuber (1979) is employed, where CD is expressed as a 
function of the bubble Reynolds number Re (Re = |Ur|dB/νmol

c , where νmol
c 

is the liquid kinematic viscosity) and the Eötvös number Eo (Eo =

Δρgd2
B/σ, where Δρ is the density difference and σ the surface tension): 

CD = max
(
CD,sphere,min

(
CD,ellipse,CD,cap

) )
(5)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

CD,sphere =
24
Re
(
1 + 0.1Re0.75)

CD,ellipse =
2
3
̅̅̅̅̅̅
Eo

√

CD,cap =
8
3

(6) 

At UoL, the drag coefficient is instead calculated from the model of 
Tomiyama et al. (2002a), which also accounts for the effect of the 
bubble aspect ratio E: 

CD =
8
3

Eo
E2/3

(
1 − E2

)− 1Eo + 16E4/3
F− 2 (7) 

In the above equation, F is also a function of the bubble aspect ratio 
(Tomiyama et al., 2002a). E is determined from the following expression 

(Hosokawa and Tomiyama, 2009): 

E = max
[

1.0 − 0.35
yw

dB
,E0

]

(8) 

In Eq. (8), derived to reproduce experimental evidence of an aspect 
ratio close to 1 near solid walls (Hosokawa and Tomiyama, 2009), yw is 
the distance from the wall and the reference aspect ratio E0 is calculated 
from the model of Welleck et al. (1966). The presence of neighbour 
bubbles altering the velocity field and the drag coefficient experienced 
by a bubble at high bubble concentration is tentatively accounted for 
with an additional correction factor (Hosokawa and Tomiyama, 2009): 

CD = CD,0(1 − α)− 0.5 (9) 

As mentioned in the introduction, in a shear flow the lift force ex-
presses the force experienced by the bubble in the direction perpen-
dicular to the main fluid motion (Auton, 1987): 

Flif t = CLαρcUr × (∇× Uc) (10) 

For a spherical bubble, the lift coefficient CL is positive and the 
bubble travels in the direction of lower liquid velocity. Instead, for large 
deformed bubbles, CL becomes negative. The HZDR model employs the 
correlation of Tomiyama et al. (2002b), derived from the experimental 
observation of single air bubbles rising in a glycerol-water solution: 
⎧
⎨

⎩

CL = min[0.288tanh(0.121Re), f (Eo⊥) ] Eo⊥ < 4
CL = f (Eo⊥) 4 < Eo⊥ < 10
CL = − 0.27 Eo⊥ > 10

(11) 

where Eo⊥ is the Eötvös number based on the maximum horizontal 
dimension of the bubble as the characteristic length and 
f(Eo⊥) = 0.00105 Eo3

⊥ − 0.0159 Eo2
⊥ − 0.0204 Eo⊥ +0.474 . This 

maximum dimension is calculated from the Welleck et al. (1966) aspect 
ratio correlation. The correlation of Tomiyama et al. (2002b) predicts 
the change of sign in the lift coefficient for air bubbles in water at dB ~ 6 
mm in atmospheric conditions. 

In the UoL model, a constant value of CL0 = 0.10 is assumed, after 
improved accuracy was obtained with the model over a wide range of 
experiments with wall-peaked void profiles (Colombo and Fairweather, 
2015, 2020). However, the UoL approach employs a near-wall turbu-
lence model that requires fine mesh resolution near the wall (more de-
tails on the turbulence model are provided in the following section). 
Therefore, at a distance from the wall smaller than the bubble diameter, 
the lift coefficient is decreased to approach zero at the wall and avoid 
very high, unphysical values of the lift force in the very small cells 
adjacent to the wall (Shaver and Podowski, 2015): 

CL =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0

CL0

[

3
(

2
yw

dB
− 1
)2

− 2
(

2
yw

dB
− 1
)3
]

CL0

yw/dB < 0.5
0.5 ≤ yw/dB ≤ 1
yw/dB > 1

(12) 

When a bubble approaches a solid wall, it experiences an additional 
wall lift force, driven by the modification of the flow field around the 
bubble that prevents the bubble from moving further towards the wall. 
This force has been often modelled with an additional lateral wall force 
(Rzehak et al., 2012): 

Fwall = − CW αρc
2|Ur|

2

dB
nw (13) 

where nw is the vector normal to the wall pointing into the fluid. This 
force is only included in the HZDR model, where the wall coefficient is 
calculated using the model of Hosokawa et al. (2002), derived based on 
the trajectories of single bubbles in the range 2.2 ≤ Eo ≤ 22: 

CW = f (Eo)
(

dB

2yw

)2

(14) 
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where 

f (Eo) = 0.0217Eo (15) 

The turbulent dispersion force accounts for the effect of the turbulent 
fluctuations in the continuous phase on a bubble. In both models, the 
formulation of Burns et al. (2004), based on the Favre averaging of the 
drag force, is employed: 

Ftd =
3
4

CDαρc|Ur|

dB

νturb
c

σα

(
1
α+

1
1 − α

)

∇α (16) 

In Eq. (16), νturb
c is the turbulent kinematic viscosity of the continuous 

phase and σα the turbulent Prandtl number for the void fraction, taken 
equal to 1 in the UoL and 0.9 in the HZDR models. 

In the HZDR model, the virtual mass force Fvm is also accounted for, 
using a fixed virtual mass coefficient CVM equal to 0.5 (Rzehak et al., 
2017). 

2.2. Turbulence modelling 

To solve Eq. (2), the turbulent stress tensor τRe
k needs to be obtained 

from a turbulence model. Both HZDR and UoL model turbulence only in 
the continuous phase, HZDR using a two-equation model based on the 
eddy viscosity assumption: 

τRe
ij,c = 2

(
μmol

c + μturb
c

)
S −

2
3

ρckcδij (17) 

where S =
(
∇uc +(∇uc)

T )/2 is the strain rate tensor, μturb
c the tur-

bulent dynamic viscosity and kc the turbulence kinetic energy of the 
continuous phase. UoL in contrast employs a Reynolds stress model that 
directly models the individual turbulent stress components by solving a 
transport equation for each: 

τRe
ij,c = − ρcuiuj (18) 

Both models are detailed below. Consideration of only the contin-
uous phase turbulence is justified since in bubbly flows the dispersed 
phase has a much lower density and turbulent stresses are much higher 
in the continuous phase (Gosman et al., 1992; Rzehak and Krepper, 
2013; Colombo and Fairweather, 2015). Therefore, in the UoL model the 
dispersed phase turbulence is derived from the continuous phase tur-
bulence field, directly relating the turbulent viscosities of the two 
phases: 

μturb
d =

ρd

ρc
C2

t μturb
c (19) 

where Ct is a constant assumed equal to 1 (Behzadi et al., 2004). In 
the HZDR model, instead, a laminar flow is assumed for the dispersed 
phase, i.e. τRe

ij,d = 0 with negligible effects expected on the results (Rzehak 
and Krepper, 2013). 

2.2.1. HZDR turbulence model 
The HZDR model adopts the two-equation k-ω SST model, which 

combines the advantages of the k-ω model near the wall and the k-ε 
formulation away from it (Menter, 2009). The model solves an equation 
for the turbulence kinetic energy k and the turbulence frequencyω: 

∂
∂t
((1 − α)ρck ) +

∂
∂xj

(
(1 − α)ρcUj,ck

)
=

∂
∂xj

(

(1 − α)
(
μmol

c + σ− 1
k μturb

c

) ∂k
∂xj

)

+(1 − α)(P − Cμρcωk) + SBI
k

(20)  

∂
∂t
((1 − α)ρcω ) +

∂
∂xj

(
(1 − α)ρcUj,cω

)
=

∂
∂xj

(

(1 − α)
(
μmol

c + σ− 1
ω μturb

c

) ∂ω
∂xj

)

+(1 − α)
(

CωP
ρcP
μturb

c
− CωDρcω2

)

+ (1 − α)(1 − F1)σ− 1
ω2

2ρL

ω
∂k
∂xj

∂ω
∂xj

+ SBI
ω

(21) 

together with standard k-ε model equations, where ε is the rate of 
dissipation of turbulence kinetic energy. 

The combination of the k-ω and k-ε models is achieved by a blending 
function, which is explicitly prescribed in terms of the wall distance as: 

This blending function is also used to interpolate the model constants 
Cμ,CωP,CωD, σ− 1

k and σ− 1
ω between the corresponding values of the k-ω 

model (index ‘1’) and k-ε model (index ‘2’). The usual values of the 
above constants for single-phase flows are applied as summarized in 
Table 1 at the end of the section. The production term for the shear- 
induced turbulence: 

P = min
(
2μturb

c S : ∇uc, 10Cμρcωk
)

(23) 

includes a limiter to prevent the build-up of turbulence kinetic en-
ergy in stagnation zones. Since bubble-induced turbulence effects are 
included in k and ω due to the respective source terms SBI

k and SBI
ω dis-

cussed below, the turbulent viscosity is evaluated from the standard 
relation of the SST model: 

μturb
c =

ρck
max

(
ω,CγF2

̅̅̅̅̅̅̅̅̅̅̅̅
2S : S

√ ) (24) 

which includes a limiter with a second blending function: 

F2 = tanh

[(

max
(

2
̅̅̅
k

√

Cμωyw
,
500μmol

c

ρcωy2
w

))2 ]

(25) 

and a further model constant Cγ = 1/0.31. In addition, a turbulent 
wall function is applied, as described in detail, for example, by Rzehak 
and Kriebitzsch (2015). 

2.2.2. UoL turbulence model 
In the UoL model, turbulence is modelled with an elliptic-blending 

Reynolds stress model (EB-RSM) (Manceau and Hanjalic, 2002; Man-
ceau, 2015) that has near-wall resolution capabilities. The model solves 
an equation for each turbulent stress − uiuj = τRe

ij /ρcand the turbulence 
energy dissipation rate ε: 

∂
∂t
(
(1 − α)ρcuiuj

)
+

∂
∂xj

(
(1 − α)ρcUj,cuiuj

)

=
∂

∂xl

[

(1 − α)
(

μmol
c + ρc

Cs

σk
Tulum

)
∂uiuj

∂xm

]

+ (1 − α)ρc
(
Pij + Φij − εij

)

+ (1 − α)SBI
ij

(26) 

F1 = tanh

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝min

⎛

⎜
⎜
⎝max

( ̅̅̅
k

√

Cμωyw
,
500μmol

c

ρωy2
w

)

,
4σ− 1

ω2 ρck

y2
wmax

(

2σ− 1
ω2

ρc
ω

∂k
∂xj

∂ω
∂xj
, 1.0⋅10− 10

)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

4 ⎤

⎥
⎥
⎦ (22)   
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Here, Pij is the production of turbulence due to shear, with Pij =

−

[

uiuk
∂Uj
∂xk

+ujuk
∂Ui
∂xk

]

. The turbulence dissipation rate ε is assumed 

isotropic in the bulk of the flow away from the wall, but in the near wall 
region it becomes a tensor, εij, as defined below. Φij is the pressure-strain 
correlation, which mainly redistributes the turbulence kinetic energy 
between the normal stress components. It is modelled following the SSG 
model of Speziale et al. (1991). The turbulent timescale T is equal to 

max

(

k
ε,CT

νmol1/2
c
ε1/2

)

and the coefficient C’
ε1 = Cε1

[
1+A1

(
1 − α3

EB
) ]

P
ε. In Eqs. 

(18) and (19), SBI are the source terms for the bubble-induced contri-
bution to the continuous phase turbulence. 

In the elliptic-blending model, the correct near-wall behaviour of the 
turbulent stresses is achieved by blending a near-wall formulation with 
the SSG model in the bulk flow region, avoiding the need for any wall 
function (Manceau and Hanjalic, 2002; Manceau, 2015). Near the wall, 
the pressure-strain is modelled as: 

Φw
ij = − 5

ε
k

[

uiuknjnk + ujuknink −
1
2
ukulnknl

(
ninj + δij

)
]

(28) 

In the previous equation, ni are the components of the wall-normal 
unit vector. Blending from the near-wall behaviour to the bulk flow 
region model for the pressure-strain and the turbulence dissipation rate 
is achieved with a relaxation function αEB that is obtained by solving an 
elliptic relaxation equation (Manceau, 2015): 

αEB − L2∇2αEB = 1 (29)  

Φij =
(
1 − α3

EB

)
Φw

ij +α3
EBΦh

ij (30)  

εij =
(
1 − α3

EB

) uiuj

k
ε+ 2

3
α

3

EB
εδij (31) 

In Eq. (29), L is the turbulence length scale given by L =

Clmax

(

Cη
νmol3/4

c
ε1/4 , k3/2

ε

)

. When required, such as in Eq. (19) to estimate the 

turbulence in the dispersed phase, the turbulent viscosity is calculated 
with the usual single-phase relation: 

μturb
c = ρcCμ

k2

ε (32) 

Values of the numerous constants employed in the model are sum-
marized in Table 1. 

2.2.3. Bubble-induced turbulence modelling 
A significant challenge in multiphase turbulence modelling is how to 

properly model the portion of the continuous phase turbulence gener-
ated by the bubbles, normally referred to as bubble-induced turbulence. 
Both the HZDR and UoL models include source terms for bubble-induced 
turbulence kinetic energy and dissipation rate in the turbulence model 
equations. 

The bubble-induced turbulence kinetic energy production is derived 
from the approximation that the energy lost by the bubbles due to the 
drag force, Fdrag, is converted into turbulence kinetic energy in their 
wakes (Rzehak and Krepper, 2013): 

SBI
k = CBI

k Fdrag⋅Ur (33) 

The numerical factor CBI
k is set to unity for the HZDR model, 

following the original proposal of Rzehak and Krepper (2013). In the 
UoL model, a lower coefficient CBI

k = 0.25 is introduced after the 
improved agreement obtained with the model over a wide range of 
bubbly flows (Colombo and Fairweather, 2015). Moreover in the UoL 
approach, for use with the Reynolds stress model, the source, once 
calculated, is divided between the three normal stresses, with a larger 
portion assigned to the axial stress along the direction of the mean flow: 

SBI
ij =

⎡

⎣
1.0 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.5

⎤

⎦SBI
k (34) 

The source of turbulence energy dissipation rate is obtained from the 
turbulence kinetic energy source divided by a bubble-induced 

Table 1 
Summary of the coefficients employed in the turbulence models.  

HZDR Cμ  CωP  CωD  σ− 1
k  σ− 1

ω  CBI
k  

k-ω model (index ‘1′) 0.09 0.5532 0.075 0.85034 2.0 1.0 
k-ε model (index ‘2′) 0.09 0.4463 0.0828 1.0 0.85616 1.0  

UoL Cμ  Cε  A1  Cε1  Cε2  CT  Cl  Cη  σε  CBI
k  CBI

ε  

EB-RSM 0.09 0.21 0.115 1.44 1.83 6.0 0.133 80.0 1.15 0.25 1.0  

Table 2 
Summary of modelling closures.  

Sub-model HZDR UoL 

Drag force Ishii and Zuber (1979) Tomiyama et al. (2002a), aspect ratio from Hosokawa and Tomiyama (2009) 
Shear lift force Tomiyama et al. (2002b) CL = 0.10, with near-wall cut-off from Shaver and Podowski (2015)  
Wall force Hosokawa et al. (2002) Neglected 
Turbulent dispersion force Burns et al. (2004) Burns et al. (2004) 
Virtual mass force CVM = 0.5  Neglected 
Base turbulence model k-ω SST (Menter, 2009) RSM SSG (Speziale et al., 1991) 
Bubble-induced turbulence Rzehak and Krepper (2013) Rzehak and Krepper (2013) with 0.25 coefficient in k source 
Liquid-phase wall model Single-phase wall function Elliptic Blending (Manceau, 2015) 
Gas-phase wall model Free-slip No-slip  

∂
∂t
((1 − α)ρcε )+

∂
∂xj

(
(1 − α)ρcUj,cε

)
=

∂
∂xl

[

ρc(1 − α)Cε

σε
Tulum

∂ε
∂xm

]

+(1 − α)μmol
c

∂2ε
∂xk∂xk

+(1 − α)ρc
(C’ε1P − Cε2ε)

T
+(1 − α)SBI

ε (27)   
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turbulence timescale τBI: 

SBI
ε =

CBI
ε

τBI
S

BI

k
(35) 

The bubble-induced turbulence timescale is modelled as in Rzehak 
and Krepper (2013) using the length scale of the bubble and the velocity 
scale of the continuous phase turbulence τBI = dB

k0.5. The CBI
ε coefficient is 

taken equal to 1. For use with the ω -equation, the turbulence dissipation 
rate source is converted into an equivalent ω-source in the HZDR model. 
A summary of the modelling closures employed in both models is pro-
vided in Table 2. 

2.3. Numerical solution method 

The HZDR model was solved in ANSYS CFX (ANSYS, 2019). In 
ANSYS CFX, the Navier-Stokes equations are solved with a control vol-
ume based finite-element discretization. In the present work, the 
advection terms are discretized using the high resolution scheme pro-
posed in Barth and Jespersen (1989), while the solution is advanced in 
time with a second-order backward Euler scheme. The gas fraction 
coupling was achieved using the coupled solver option, and other details 
regarding the discretization of the diffusion and pressure gradient terms 
as well as the solution strategy are detailed in ANSYS (2019). Simula-
tions were run in time until steady-state conditions were reached and 
this was evaluated by checking that values of velocity, void fraction and 
turbulence quantities showed variations in time of under 1% with 
respect to their mean values. In the experiments, measurements were 
taken at a sufficient distance from the inlet to avoid any flow develop-
ment or inlet effects. Similarly, in the simulations results were recorded 
at the same distance from the inlet, sufficient for the velocity and void 
distributions to reach fully-developed conditions. At the wall, the no-slip 
boundary condition was imposed on the liquid phase, with the velocity 
in the first near-wall cell imposed using the single-phase wall law for a 
smooth wall. The free-slip boundary condition was instead imposed at 
the wall for the gas phase. At the inlet, the velocity of the phases and the 
void fraction were imposed based on the experimental measurements 
(adjusted if required, as will be discussed in the experimental data 
section). The average bubble diameter was kept fixed and was also taken 
from the experimental measurements. In this way, the development of 
the bubble diameter distribution before the measurement point, and any 
effect on it of the bubble injection method, can be neglected. A fixed 
pressure was imposed at the outlet section. Only a narrow axisymmetric 
section of each pipe was simulated and a mesh independence study 
ensured that grid independent solutions were achieved, and the distance 
from the wall of the first grid point was sufficient to ensure the validity 
of the law of the wall. 

The UoL model was solved with STAR-CCM+ (CD-adapco, 2016). In 
STAR-CCM+, conservation equations are solved using a finite volume 
discretization. In this work, the second-order upwind scheme was used 

to discretize velocity, volume fraction, turbulence stresses and turbu-
lence dissipation rate convective terms. The time derivative was dis-
cretized with a second-order implicit scheme and a multiphase extension 
of the SIMPLE algorithm (Patankar and Spalding, 1972) was used to 
solve the pressure–velocity coupling. Boundary conditions exactly 
matched those employed in the HZDR model, expect that the no-slip 
condition at the wall was also imposed on the gas velocity. For the EB- 
RSM model, at the wall a zero value was imposed on the turbulent 
stresses and the relaxation function αEB, and for the turbulence dissi-
pation rate the asymptotic limit ε = 2νmol

c
(
k/yw

)

yw→0 was employed 
(Manceau, 2015). Clearly, inlet values of velocities and void fraction, 
and the fixed bubble diameters, were equal to those used for the HZDR 
model. Water and air properties were taken at a temperature of 25 ◦C 
and a pressure of 1 bar. A 1/4 section of each pipe was simulated and a 
sensitivity study ensured that mesh independent solutions were 
achieved. 

For both models, sensitivity studies were performed by looking at 
changes in the water and air velocity, void fraction, turbulence kinetic 
energy, Reynolds stresses and turbulence frequency (or dissipation rate) 
radial profiles as a function of the mesh refinement. Mesh independence 
was considered achieved when negligible changes (of the order of 1–2% 
or lower) were observed with a further refinement of the mesh. The 
meshes employed are summarized in Table 3, where the total number of 
elements, the mesh elements in the radial and axial directions and their 
respective refinements are included. Meshes of the order of 104 were 
sufficient for the HZDR model (6800–31,520), while at least 105 ele-
ments were necessary for the UoL model (220,800–2,553,600). Even 
though the larger number of elements was partially due to the quarter 
pipe geometry employed, the UoL model still requires 5–10 times more 
elements for the same geometry, with an associated increase of 
computational time, due to the wall refinement requirements of the EB- 
RSM. 

3. Experimental data 

Over the years, numerous experimental studies have addressed the 
behaviour of bubbly flows in pipes. The database built for this work 
includes 16 experiments taken from the studies of Hosokawa and 
Tomiyama (2009), Liu (1998), Lucas et al. (2005) in the MTLoop fa-
cility, built and operated at HZDR over the last few decades, and Liu and 
Bankoff (1993a). As discussed previously in the introduction, experi-
ments were selected with wall-peaked void fraction distributions that 
could be sufficiently-well predicted using a monodispersed bubble dis-
tribution with a fixed value of the average bubble diameter. This 
allowed the study to focus exclusively on interfacial momentum transfer 
and multiphase turbulence closures, without considering changes in the 
bubble diameter distribution induced by breakup and coalescence. A 
summary of the experimental conditions and the averaged values 
employed in the CFD simulations is provided in Table 4. 

In Hosokawa and Tomiyama (2009), measurements were taken in a 
vertical upward air–water bubbly flow at atmospheric pressure and 
temperature in a pipe of inside diameter 25 mm. Radial profiles of gas 
volume fraction, liquid and gas velocity and liquid turbulence kinetic 
energy were measured using laser Doppler velocimetry and shadow-
graphy at an axial location L/D = 68. Bubble concentration, size and 
shape were reconstructed from stereoscopic images obtained with two 
high-speed cameras. The average measured bubble diameter was used in 
the CFD simulations, and the superficial velocities and averaged values 
of the void fraction over the pipe cross-section were imposed as the inlet 
conditions. 

Liu (1998) studied vertical upward air–water bubbly flows in a pipe 
of inside diameter 57.2 mm, at atmospheric pressure and a temperature 
of 26 ◦C. A dual resistivity probe and a single hot film anemometry probe 
were used to measure radial profiles of the liquid velocity and turbu-
lence intensity, the gas volume fraction and the average bubble diameter 

Table 3 
Parameters of the meshes employed for the simulations, including the total 
number of mesh elements N, the number of elements in the axial and radial 
directions Nz and Nr and the refinement in the axial and radial direction nz and 
nr. For HZDR, total number refers to a narrow axisymmetric section. For UoL, 
total numbers refer to a 1/4 section of the pipe, and the range is provided as a 
min – max range.  

Mesh N Nz Nr nz [m] nr [m] 

H – HZDR 6800 400 17 0.005 0.00078 
H – UoL 220,800 800 26 0.0025 0.00072–3.9 10− 5 

L – HZDR 31,520 788 40 0.0051 0.00073 
L – UoL 2,553,600 1600 64 0.0025 0.00072–1.5 10− 5 

MT – HZDR 9472 296 32 0.011 0.00083 
MT – UoL 900,000 1000 50 0.00325 0.0009–1.7 10− 5 

LB – HZDR 16,000 400 40 0.007 0.00049 
LB – UoL 410,550 850 38 0.0033 0.00097–1.8 10− 5  
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at L/D = 60. From integration of the void fraction radial profiles, 
averaged values were obtained and imposed at the inlet in the CFD 
simulations. The averaged void fractions were also used to correct the 
value of the air superficial velocity to achieve the correct flux of air 
through the pipe cross-section at the measurement position. 

The MTLoop facility (Lucas et al., 2005) was built at HZDR and 
employed to study the development of upward vertical flows of air and 
water in a pipe of inside diameter 51.2 mm using the wire-mesh sensor 
technique. Radial profiles of the gas average velocity and volume frac-
tion, and the bubble size distribution, were measured at different heights 
from the inlet up to L/D = 60, at atmospheric pressure and 30̊C tem-
perature. Measurements with a bubble size distribution almost constant 
along the axial direction were selected, and average bubble diameter 
and void fraction from the last measuring station used to setup the CFD 
simulations. The average void fraction was also used to adjust the 
nominal value of the gas superficial velocity. 

Liu and Bankoff (1993a) studied upward air–water bubbly flows in a 
vertical pipe of inside diameter 38 mm at atmospheric pressure and 
temperature conditions. Measurements were taken at L/D = 36, and the 
liquid velocity was measured using one- and two-dimensional hot-film 
anemometer probes, while void fraction and bubble velocity and fre-
quency were obtained using an electrical resistivity probe. The mea-
surements cover a large range of flow conditions and include radial 
profiles of liquid and gas velocities, turbulence levels, void fraction and 
bubble diameter. Provided values of superficial velocities and average 
void fraction, and bubble diameter, were used to setup the CFD 
simulations. 

4. Results and discussion 

4.1. Hosokawa and Tomiyama (2009) 

Predictions of the Hosokawa and Tomiyama (2009) experiments are 
summarized in Fig. 1 (for cases H11 and H12) and Fig. 2 (for cases H21 
and H22). For these experiments, measurements are available for liquid 
velocity, relative velocity (between the bubbles and the liquid), void 
fraction and turbulence kinetic energy (although not shown here, data 
are also available for the individual normal turbulent stresses). Here, 
and in all the following figures, comparisons are made against radial 
profiles of the physical quantities measured as a function of the non- 
dimensionalized (by the pipe radius) radial distance from the pipe 
centreline, with 0 being the pipe centreline and 1 the pipe wall. Given 
that all the experiments considered are for air bubbles in water, the 
subscripts w and a will be used in the following to identify the two 
phases. 

Good agreement is achieved by both models for the liquid mean 
velocity profiles as shown in parts (a) and (e) of Figs. 1 and 2. The UoL 

model, with the near-wall refinement required by the EB-RSM model, 
matches almost exactly the liquid velocity decrease near the wall. Away 
from the wall, in contrast, it is the HZDR model that provides the best 
prediction, showing a remarkable accuracy in the centre of the pipe for 
all four experiments, with an average relative error of 3% and always 
lower than 4.5%. The UoL model consistently overestimates the liquid 
velocity away from the wall, even though the discrepancy is always less 
than 10% and 7.5% on average. The reason for this is found in the 
relative velocity plots, in Figs. 1(b) and (f) and 2(b) and (f). Near the 
wall, the UoL model predicts well the decrease in the relative velocity, 
induced by the higher drag of the more spherically shaped bubbles in 
this region, which is only partially captured by the HZDR model. 
However, outside the near-wall region, and despite the low spatial res-
olution of the measurements in the centre of the pipe, the UoL model 
tends to underpredict the relative velocity, with the HZDR approach 
found to be in better agreement with data. A lower relative velocity is 
induced by a higher drag coefficient. Therefore, the mentioned over-
estimation of the liquid velocity by the UoL model can be explained with 
the excessive drag from the bubbles to the liquid predicted by the drag 
model employed. 

Both models provide robust predictions of the void fraction distri-
bution shown in parts (c) and (g) of Figs. 1 and 2, with marked wall- 
peaked radial void fraction profiles and a lower void fraction concen-
tration in the centre of the pipe. Notable discrepancies with data are 
found in the pipe centre in experiment H12 which has the lowest liquid 
velocity and the highest void fraction. In these conditions, larger bub-
bles (H12 has indeed the largest average bubble diameter of the four 
experiments) may form and migrate towards the pipe centre, increasing 
the void fraction there. The UoL model, which uses a constant positive 
value of the lift coefficient, is unable to capture this behaviour. In the 
HZDR model, the Tomiyama et al. (2002b) correlation predicts the 
change in the sign of the lift coefficient. However, this happens at dB ≈

5.8 mm and, until dB≈ 4.25 mm (the measured averaged bubble diam-
eter was dB = 4.1 mm), the model returns an almost constant positive lift 
coefficient equal to 0.28. Therefore, the HZDR model, in the present 
“monodispersed” configuration, is also unable to entirely capture the 
void fraction profile in H12. 

The UoL model, despite not using any wall force, and avoiding all the 
related uncertainties, shows good predictions of the void peak position 
and magnitude, the latter being predicted with an average relative error 
of 20%. In a turbulent flow, the radial turbulent stress is not constant 
and induces a radial pressure gradient that shows a minimum around the 
location of the void peak. This gradient in the stress, which is properly 
resolved by the Reynolds stress turbulence model, contributes to the 
lateral void fraction distribution by pushing bubbles towards the mini-
mum pressure region. From this minimum, the pressure increases again 
towards the wall and this increase, predicted by the EB-RSM near-wall 

Table 4 
Summary of the experimental conditions studied.  

Case D[m] jw[ms− 1] ja[ms− 1] Uw[ms− 1] Ua[ms− 1] α[ − ] dB[m]

H11  0.0250  0.5  0.018  0.513  0.720  0.025  0.00321 
H12  0.0250  0.5  0.025  0.521  0.610  0.041  0.00425 
H21  0.0250  1.0  0.020  1.015  1.33  0.015  0.00352 
H22  0.0250  1.0  0.036  1.033  1.125  0.032  0.00366 
L11A  0.0572  0.5  0.12  0.59  0.789  0.152  0.00294 
L21C  0.0572  1.0  0.13  1.106  1.354  0.096  0.00422 
L21B  0.0572  1.0  0.14  1.119  1.321  0.106  0.00303 
L22A  0.0572  1.0  0.22  1.186  1.401  0.157  0.00389 
MT039  0.0512  0.405  0.0111  0.413  0.587  0.0189  0.0049 
MT041  0.0512  1.0167  0.0115  1.027  1.15  0.01  0.0049 
MT061  0.0512  0.4050  0.0309  0.426  0.614  0.0503  0.0052 
MT063  0.0512  1.0167  0.0316  1.044  1.197  0.0264  0.0052 
LB16  0.0380  0.753  0.067  0.803  1.077  0.0622  0.00274 
LB17  0.0380  0.753  0.112  0.845  1.027  0.1091  0.00307 
LB30  0.0380  1.087  0.067  1.141  1.416  0.0473  0.00239 
LB31  0.0380  1.087  0.112  1.173  1.520  0.0737  0.00292  
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Fig. 1. Predictions of radial profiles of water velocity (a, e), relative velocity (b, f), void fraction (c, g) and turbulence kinetic energy (d, h) compared against 
experiments H11 and H12 from Hosokawa and Tomiyama (2009): (□) experiment; (− − ) UoL; (•••) HZDR. 
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Fig. 2. Predictions of radial profiles of water velocity (a, e), relative velocity (b, f), void fraction (c, g) and turbulence kinetic energy (d, h) compared against 
experiments H21 and H22 from Hosokawa and Tomiyama (2009): (□) experiment; (− − ) UoL; (•••) HZDR. 
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model, is sufficient to predict the void peak in the simulations without 
any additional wall force (Colombo and Fairweather, 2019, 2020). 
Reasonable accuracy for the void fraction peak is also shown by the 
HZDR model, although the model tends to predict an excessive bubble 
accumulation near the wall, visible in the somewhat overpredicted peak 
magnitude in Figs. 1 and 2. Nevertheless, it has also to be pointed out 
that the relative error on the peak may be affected by uncertainty related 
to the discrete nature of experimental measurements. Therefore, the 
highest value measured may not be exactly the peak value, and this can 
also contribute to explaining why the models tend, here and in the 
following experiments, to predict a higher peak. 

Lastly, Figs. 1(d) and (h) and 2(d) and (h) show the turbulence ki-
netic energy. Very good and similar agreement is found for cases H21 
and H22 (Fig. 2(d) and (h)), where the maximum relative error on the 
centreline is 25% for the UoL model in H22. These cases have the highest 
liquid velocity and a very low void fraction concentration in the pipe 
centre where, therefore, the turbulence production is mainly shear- 
driven. In contrast, cases H11 and H12, with a smaller decrease of the 
turbulence kinetic energy away from the wall, show a more significant 
contribution of the bubble-induced turbulence and more evident dif-
ferences between the models and the experiments. The HZDR model 
better predicts case H11 while the UoL approach is superior for case 
H12, although neither is particularly accurate for the latter, with errors 
as high as 50%. In the wall region, the EB-RSM in the UoL model re-
produces well the behaviour of the turbulence kinetic energy and its 
near-wall peak. 

4.2. Liu (1998) 

Compared to Hosokawa and Tomiyama (2009), data from Liu (1998) 
were measured in a larger pipe and at significantly higher void fractions. 
Measurements of liquid velocity and void fraction are available and 
comparisons with CFD predictions are provided in Fig. 3, together with 
the turbulence kinetic energy, estimated from the axial turbulent normal 
stress measurements assuming its value is two times that of the radial 
and angular normal stresses, as always observed in pipe flows outside of 
the near-wall region (Rzehak and Krepper, 2013; Colombo and Fair-
weather, 2015). 

Velocity profiles, as a consequence of the higher void fraction and the 
still marked near-wall peak (Fig. 3(b), (e), (h) and (k)), are considerably 
flatter than observed previously. Overall, good predictions are still ob-
tained, with average relative errors on the centreline of 5.6% for the UoL 
and 4.2% for the HZDR models. The CFD models have a tendency to 
predict flatter profiles with respect to the experiments, in particular for 
cases L11A (Fig. 3(a)) and L21C (Fig. 3(g)). This is likely due, at the high 
void fractions considered, to larger bubbles travelling in the centre of the 
pipe that are not captured by the models in the present configuration. 
The UoL model even predicts a slight peak at the wall in the velocity 
profile, which is likely caused by the excessive drag from the air bubbles 
predicted with the Tomiyama et al. (2002a) model. Near the wall, the 
calculated velocity gradients are much steeper than the measured ones. 
Both models remain in reasonable agreement with data, although the 
HZDR model predicts the water velocity slightly better. It is possible 
that, despite the finer resolution of the EB-RSM, the model, still based on 
a single-phase formulation, does not capture some two-phase effects 
induced by the high void fraction. Another possible reason is the free- 
slip condition imposed on the air bubbles in the HZDR model, which 
may trigger higher air and water velocities near the wall. For a more 
precise assessment, and any future developments, availability of 
detailed measurements in the near-wall boundary layer is a priority. 

Predictions of the void fraction remain robust, although both models 
have a tendency to overpredict the near-wall peak. The UoL model has 
the best agreement with data, and maintains good accuracy for both the 
peak magnitude and position. On the other hand, the HZDR model once 
again shows a tendency to predict an excessive accumulation of void 
near the wall. The wall force model from Hosokawa et al. (2002) is 

employed in the latter, which has been proven to have a greater impact 
than other formulations that assume a linear decrease of the wall force 
with distance from the wall (Rzehak et al., 2012). However, its effect can 
still be too weak, contributing to the overestimated accumulation of 
bubbles near the wall. In the pipe centre, both models demonstrate 
remarkable accuracy and maximum deviations from the data are limited 
to a few percent, with the exception of L21C in Fig. 3(h). This case, 
similarly to H12 for Hosokawa and Tomiyama (2009), has the highest 
average bubble diameter in the group, and is the only one where this is 
greater than 4 mm (dB = 4.22 mm). Therefore, it is again plausible that 
in this case larger bubbles flow in the centre of the pipe which are not 
resolved in the simulations. For the other three experiments, the void 
fraction on the centreline is predicted with an average relative error of 
10.8% by the UoL and 7.2% by the HZDR models. 

The largest discrepancies are again found in the turbulence kinetic 
energy comparisons, confirming the complexity of predicting turbulence 
in flows that contain a contribution from the bubbles. The two models 
differ only by a coefficient, introduced in the UoL model to limit the 
turbulence kinetic energy source. Therefore, the HZDR model always 
returns the highest turbulence kinetic energy between the two models. 
With respect to the experiments, mixed results are obtained, with the 
HZDR model better in L21C (Fig. 3(i)), the UoL model in L21B (Fig. 3(f)) 
and neither able to properly predict L11A (Fig. 3(c)) and L22A (Fig. 3 
(l)). On the centreline, the relative error varies from less than to 2% for 
the UoL model in L21B to values as high as 50–100%. This suggests 
further developments are needed, specifically improving on the constant 
coefficients employed in the bubble-induced source. In the near-wall 
region, the EB-RSM is more accurate, although less clearly than in the 
case of the Hosokawa and Tomiyama (2009) experiments. In L11A 
(Fig. 3(c)) and L22A (Fig. 3(l)), the UoL model is closer to the experi-
mental peak in the turbulence kinetic energy. However, in one of the two 
other cases where the HZDR model performs better in this respect (L21B, 
Fig. 3(f)), this seems to be more a consequence of a general over-
prediction of k across the entire pipe. Still, as observed for the water 
velocity, the more limited improvement at high void fractions suggests 
that there are relevant two-phase effects that the present EB-RSM single- 
phase based formulation is still not able to capture. 

4.3. MTLoop 

With the MTLoop experiment (Lucas et al., 2005), the focus is back to 
low void fraction cases, but in a larger pipe than used by Hosokawa and 
Tomiyama (2009). Comparisons against the four experiments for air 
velocity and void fraction profiles can be found in Fig. 4. 

Largely, predictions of the air velocity are in very good agreement 
with the experiments (Fig. 4(a), (c), (e) and (g)), with average relative 
errors on the centreline lower than 2.5% for both models. Results from 
the UoL model are always lower than for the HZDR model, and always 
on the lower side of the measurements, confirming the excessive drag 
(slightly in this case) that results in lower relative velocities. Near the 
wall, the HZDR model is in line with the experiments, while the UoL 
model bubble velocity reduces excessively approaching the wall. Again, 
the HZDR approach employs a free slip boundary condition, whilst no 
slip is imposed in the UoL model. Therefore, the free slip boundary 
condition appears to be most appropriate for the gas phase. 

Good agreement is found for the void fraction, both in terms of the 
peak near the wall and in the pipe centre (Fig. 4(b), (d), (f) and (h)). The 
UoL model predictions confirm their previously observed accuracy, in 
particular for the void peak, which is predicted with an average relative 
error of 20%. For the HZDR model, the only experiment where the 
previously noted tendency to overpredict bubble accumulation at the 
wall is of a noticeable extent is MT041 (Fig. 4(d)). The underprediction 
of data in the pipe centre for case MT063 (Fig. 4(h)) is most probably due 
to the already discussed presence of larger bubbles in the central region, 
with the average measured bubble diameter being 5.2 mm for this case. 
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Fig. 3. Predictions of radial profiles of water velocity (a, d, g, j), void fraction (b, e, h, k), and turbulence kinetic energy (c, f, i, l) compared against experiments from 
Liu (1998): (□) experiment; (− − ) UoL; (•••) HZDR. 
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Fig. 4. Predictions of radial profiles of air velocity (a, c, e, g) and void fraction (b, d, f, h) compared against experiments from MTLoop (Lucas et al., 2005): (□) 
experiment; (− − ) UoL; (•••) HZDR. 
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Fig. 5. Predictions of radial profiles of water velocity (a, d, g, j), air velocity (b, e, h, k) and void fraction (c, f, i, l) compared against experiments from Liu and 
Bankoff (1993a): (□) experiment; (− − ) UoL; (•••) HZDR. 
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Fig. 6. Predictions of radial profiles of r.m.s. of the water velocity fluctuations (a, c, e, g) and water Reynolds shear stress (b, d, f, h) compared against experiments 
from Liu and Bankoff (1993a). (a, c, e, g): (□) experiment, uw,zr.m.s.; (○) experiment, uw,rr.m.s.; (-) UoL, uw,zr.m.s.; (− − ) UoL uw,rr.m.s.; (•••) HZDR. (b, d, f, h): (□) 
experiment; (− − ) UoL.; (•••) HZDR. 
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4.4. Liu and Bankoff (1993a) 

Last to be discussed are the experiments from Liu and Bankoff 
(1993a). These are most similar to those of Liu (1998) in terms of void 
fraction, but were performed in a smaller diameter pipe. Results for the 
liquid and air velocity, as well as void fraction, are provided in Fig. 5, 
and those for turbulence quantities in Fig. 6. 

Fig. 5 further confirms previous findings, particularly those from the 
cases of Liu (1998). Calculated velocity profiles, although generally in 
agreement (average relative errors on the centerline between 5% and 
6% for the water and 7% for the air), are flatter than their experimental 
counterparts when the void fraction in the pipe centre is high, such as for 
experiments LB16 and LB17 (Fig. 5(a) and (d)). Drag in the UoL model is 
excessive, given that the air velocity is lower than for the HZDR model 
and the experiments, even when the corresponding water velocity is 
higher (LB30 and LB31, Fig. 5(h) and (k)); in these experiments, where 
the void fraction in the pipe centre is very low, flat velocity profiles are 
not obtained. In experiment LB17 (Fig. 5(d)), this causes the water ve-
locity to peak near the wall, sometimes also found in the results of Fig. 3. 
In experiments LB30 and LB31, both models underpredict the air ve-
locity in the pipe centre, although the experimental relative velocity 
values are substantially higher (greater than0.3 ms− 1) than those 
observed in all other experiments considered. Similar high values have 
only been reported for bubbles of smaller diameter rising in ultra- 
purified water which points to some undetected uncertainties in the 
measurements as a plausible cause for the noted discrepancies (Krie-
bitzsch and Rzehak, 2016). Near the wall, it is confirmed that some of 
the advantages of the EB-RSM, due to a combination of two-phase effects 
in the liquid phase turbulent wall function and the no-slip condition for 
the gas phase, are lost at high void fraction, with the HZDR model 
performing better for this dataset, although some spikes in the air ve-
locity near the wall require further verification. 

The void fraction shows an overall good agreement. Between the two 
models, the UoL model still shows the best agreement. For cases LB30 
and LB31 (Fig. 5(i) and (l)), the UoL model still overpredicts the peak 
magnitude, but always returns the correct peak location. In the pipe 
centre, no significant differences with experimental data are apparent. 

Turbulence measurements are available for the streamwise and the 
radial root mean square (r.m.s.) of the velocity fluctuations and the 
Reynolds shear stress (Fig. 6(a), (c), (e) and (g)). Having been calculated 
from the isotropic assumption, the r.m.s. values predicted by the HZDR 
model are always between the two sets of experimental values. For LB16 
and LB17, where bubble-induced turbulence is significant, the HZDR 
model performs best, while the UoL model underpredicts the turbulence 
levels. This trend is more marked than in previous cases, where incon-
clusive results were found. The UoL model also shows smaller differ-
ences between the streamwise and radial components than found in the 
experiments, possibly confirming some recent findings that the major 
contribution from the bubble-induced turbulence source should act in 
the streamwise direction (du Cluzeau et al., 2019; Ma et al., 2020). In 
LB30 and LB31, where the void fraction in the pipe centre is low and 
turbulence dominated by the shear contribution, predictions are in close 
agreement with measurements. 

At high void fraction, both models are unable to predict the Reynolds 
shear stress except for in the very near-wall region. However, it has to be 
remarked that, although the velocity profiles for LB16 and LB17 look 
flatter than for typical single-phase flow behaviour, the shear stresses 
instead are far from flat and appear more similar to their single-phase 
counterparts. Therefore, additional testing is recommended in this 
area. Unfortunately, however, Reynolds shear stress measurements are 
rarely available from bubbly flow experiments, and additional data is 
highly desirable. In cases LB30 and LB31 (Fig. 6(f) and (h)), the UoL 
model is in reasonably good agreement with data, and predicts well 
measurements from r/R = 0.5–0.6 towards the pipe centre. The eddy 
viscosity assumption employed in the HZDR model, in contrast, remains 
inaccurate in this region. In these experiments, the closest 

measurements are still at a considerable distance from the wall. How-
ever, it is worth noting that the UoL model shows in all cases good 
agreement with the measurement point closest to the wall. 

5. Conclusions 

The accuracy of modelling closures for interfacial momentum 
transfer and multiphase turbulence employed and developed at the 
Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of 
Leeds (UoL), embodied in overall Eulerian-Eulerian computational fluid 
dynamic models of two-phase flows, has been assessed against experi-
mental data for monodispersed bubbly pipe flows. Overall, both models 
demonstrate robustness and accuracy over the wide range of operating 
conditions considered, and can be employed with a considerable degree 
of confidence up to averaged void fractions of 10% or even higher, 
provided that the flow still exhibits a distinctive monodispersed 
behaviour. In the range 10%–20% void fraction, additional modelling 
such as a population balance model is necessary when the flow starts 
exhibiting polydispersed features with larger bubbles flowing in the 
centre of the pipe. 

Velocity profiles were generally well-predicted, with average rela-
tive errors on the centreline of 6.5% (UoL) and 4.3% (HZDR) for the 
water and 4.8% for the air, and more than 90% of the data were pre-
dicted with a relative error lower than 10%. The HZDR drag model (Ishii 
and Zuber, 1979) is slightly more accurate than that of UoL (Tomiyama 
et al., 2002a), which underpredicts the relative velocity, impacting both 
liquid and gas velocity profiles. However, the capability of the latter to 
account for the bubble aspect ratio increase near the wall should be 
maintained in future models. Comparisons also show that the free slip 
boundary condition at the wall has to be imposed on the gas phase rather 
than the no slip condition. 

The wall-peaked void fraction profiles, typical of these flows, were 
successfully and consistently predicted. However, the lift-wall force 
combination of the HZDR model tends to overpredict bubble accumu-
lation at the wall, while the UoL model shows consistency in predicting 
the peak position and magnitude, even without a wall force term. 
Overall, the average relative error on the peak magnitude is 25%. 
Additional wall effects, and a non-constant lift coefficient, will however 
certainly be necessary to predict polydispersed flows or laminar condi-
tions. On the centreline, it is more difficult to provide accurate figures 
for the void fraction, given that some values of the void fraction are 
extremely low (minimum deviations result in high relative errors) and 
some experiments were affected by the presence of large bubbles. 
However, considering only the experiment with a value of the void 
fraction higher than 0.005, and excluding those not showing mono-
dispersed features (H12, L21C and MT63), the average relative error is 
26% for the UoL and 29% for the HZDR models. 

Bubble-induced turbulence is the area in need of major development, 
with none of the models employed being consistently accurate. On the 
centreline, the relative error for the turbulence kinetic energy can be as 
low as 2%, but is below 50% for only half of the data. It is also the area 
where more new findings and additional physical understanding were 
made available in recent publications (Ma et al., 2017, 2020; Magolan 
et al., 2017; du Cluzeau et al., 2019; Magolan and Baglietto, 2019). 
Improvement of the current formulations, which are limited to a drag 
force contribution multiplied by a constant modulation coefficient, is the 
most urgent need, with HZDR already having done relevant work in this 
area (Ma et al., 2017; Liao et al., 2019). 

Overall, the Reynolds stress turbulence closure introduces the addi-
tional effect of a radial pressure gradient, from which models that are of 
general applicability should benefit. The development and use of near- 
wall treatments should be encouraged, given the improved accuracy 
achievable for velocity and turbulence quantities. At high void fraction, 
however, two-phase specific models, in place of the mostly single-phase 
formulations currently available, are required, in the absence of which 
any advantage over high-Reynolds number treatments is not 
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guaranteed. 
Building on the present results, future efforts will also aim at a 

harmonized best possible model that will include near-wall and turbu-
lence modelling from UoL and the HZDR momentum exchange closure 
framework. The latter demonstrated better overall performance and is 
already equipped to predict the change of sign in the lift force and 
extend the model to polydispersed flows. The coupled model accuracy 
will be re-evaluated and sensitivity studies to quantify the impact on the 
overall accuracy of any change in each closure will be necessary, to focus 
better future development efforts. 

Finally, the availability of more detailed experimental data, such as 
measurements with high resolution in the near-wall region, individual 
components of the Reynolds stress tensor, and resolved polydispersity of 
the bubble size distribution, needs to be improved to support the further 
development of these models. In addition, further works of this kind, as 
well as the identification of proven sets of measurements accepted 
community-wide, over which models can be quantitatively bench-
marked and judged, will support the confidence in, and increased 
applicability of, multiphase CFD models. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The University of Leeds gratefully acknowledge the financial support 
of the EPSRC under grants EP/R021805/1, Can modern CFD models 
reliably predict DNB for nuclear power applications?, EP/R045194, 
Computational modeling for nuclear reactor thermal hydraulics, and 
EP/S019871/1, Toward comprehensive multiphase flow modeling for 
nuclear reactor thermal hydraulics. 

References 

ANSYS, 2019. ANSYS CFX-solver theory guide release 19.3. ANSYS Inc. 
Antal, S.P., Lahey, R.T., Flaherty, J.E., 1991. Analysis of phase distribution in fully 

developed laminar bubbly two-phase flow. Int. J. Multiphase Flow 17, 635–652. 
Auton, T.R., 1987. The lift force on a spherical body in a rotational flow. J. Fluid. Mech. 

183, 199–218. 
Barth, T., Jespersen, D., 1989. The design and application of upwind schemes on 

unstructured meshes. 27th Aerospace Sciences Meeting. 
Behzadi, A., Issa, R.I., Rusche, H., 2004. Modelling of dispersed bubble and droplet flow 

at high phase fractions. Chem. Eng. Sci. 59, 759–770. 
Benhamadouche, S., 2018. On the use of (U)RANS and LES approaches for turbulent 

incompressible single phase flows in nuclear engineering applications. Nucl. Eng. 
Des. 312, 2–11. 

Burns, A.D., Frank, T., Hamill, I., Shi, J.M., 2004. The Favre averaged drag model for 
turbulent dispersion in Eulerian multi-phase flows. 5th International Conference on 
Multiphase Flows. 

STAR-CCM+® Version 10.04 User Guide. 
Colombo, M., Fairweather, M., 2015. Multiphase turbulence in bubbly flows: RANS 

simulations. Int. J. Multiphase Flow 77, 222–243. 
Colombo, M., Fairweather, M., 2016a. Accuracy of Eulerian-Eulerian, two-fluid CFD 

boiling models of subcooled boiling flows. Int. J. Heat Mass. Tran. 103, 28–44. 
Colombo, M., Fairweather, M., 2016b. RANS simulation of bubble coalescence and 

break-up in bubbly two-phase flows. Chem. Eng. Sci. 146, 207–225. 
Colombo, M., Fairweather, M., 2019. Influence of multiphase turbulence modelling on 

interfacial momentum transfer in two-fluid Eulerian-Eulerian CFD models of bubbly 
flows. Chem. Eng. Sci. 195, 968–984. 

Colombo, M., Fairweather, M., 2020. Multi-fluid computational fluid dynamic 
predictions of turbulent bubbly flows using an elliptic-blending Reynolds stress 
turbulence closure. Front. Energy Res. 8, 44. 

Dabiri, S., Tryggvason, G., 2015. Heat transfer in turbulent bubbly flow in vertical 
channel. Chem. Eng. Sci. 122, 106–113. 

du Cluzeau, A., Bois, G., Toutant, A., 2019. Analysis and modelling of Reynolds stresses 
in turbuent bubbly up-flows from direct numerical simulations. J. Fluid Mech. 866, 
132–168. 

Feng, J., Bolotnov, I.A., 2017. Evaluation of bubble-induced turbulence using direct 
numerical simulation. Int. J. Multiphase Flow 93, 92–107. 

Feng, J., Bolotnov, I.A., 2018. Effect of the wall presence on the bubble interfacial forces 
in a shear flow field. Int. J. Multiphase Flow 99, 73–85. 

Gosman, A.D., Lekakou, C., Politis, S., Issa, R.I., Looney, M.K., 1992. Multidimensional 
modeling of turbulent two-phase flows in stirred vessels. AIChE J. 38, 1946–1956. 

Hibiki, T., Ishii, M., 2007. Lift force in bubbly flow systems. Chem. Eng. Sci. 62, 
6457–6474. 

Hosokawa, S., Tomiyama, A., 2009. Multi-fluid simulation of turbulent bubbly pipe flow. 
Chem. Eng. Sci. 64, 5308–5318. 

Hosokawa, S., Tomiyama, A., Misaki, S., Hamada, T., 2002. Lateral migration of single 
bubbles due to the presence of wall, ASME Joint U.S.-European Fluids Engineering 
Division Conference (FEDSM), Montreal, Canada. 

Ishii, M., Hibiki, T., 2006. Thermo-fluid dynamics of two-phase flow. Springer, New 
York, USA.  

Ishii, M., Zuber, N., 1979. Drag coefficient and relative velocity in bubbly, droplet or 
particulate flows. AIChE J. 25, 843–855. 

Kriebitzsch, S., Rzehak, R., 2016. Baseline model for bubbly flows: simulation of 
monodispersed flow in pipes of different diameters. Fluids 1, 29. 

Liao, Y., Ma, T., Krepper, E., Lucas, D., Frohlich, J., 2019. Application of a novel model 
for bubble-induced turbulence to bubbly flows in containers and vertical pipes. 
Chem. Eng. Sci. 202, 55–69. 

Liao, Y., Ma, T., Liu, L., Ziegenhein, T., Krepper, E., Lucas, D., 2018. Eulerian modelling 
of turbulent bubbly flow based on a baseline closure concept. Nucl. Eng. Des. 337, 
450–459. 

Liao, Y., Rzehak, R., Lucas, D., Krepper, E., 2015. Baseline closure model for dispersed 
bubbly flow: Bubble coalescence and breakup. Chem. Eng. Sci. 122, 336–349. 

Liu, T.J., 1998. The role of bubble size on liquid phase turbulent structure in two-phase 
bubbly flow, 3rd International Conference on Multiphase Flow (ICMF1998). Lyon, 
France.  

Liu, T.J., Bankoff, S.G., 1993a. Structure of air-water bubbly flow in a vertical pipe - I. 
Liquid mean velocity and turbulence measurements. Int. J. Heat Mass Tran. 36, 
1049–1060. 

Liu, T.J., Bankoff, S.G., 1993b. Structure of air-water bubbly flow in a vertical pipe - II. 
Void fraction, bubble velocity and bubble size distribution. Int. J. Heat Mass Tran. 
36, 1061–1072. 

Lopez de Bertodano, M., Lee, S.J., Lahey Jr., R.T., Drew, D.A., 1990. The prediction of 
two-phase turbulence and phase distribution phenomena using a Reynolds stress 
model. J. Fluid Eng. 112, 107–113. 

Lubchenko, N., Magolan, B., Sugrue, R., Baglietto, E., 2018. A more fundamental wall 
lubrication force from turbulent dispersion regularization for multiphase CFD 
applications. Int. J. Multiphase Flow 98, 36–44. 

Lucas, D., Beyer, M., Szalinski, L., Schutz, P., 2010. A new databse on the evolution of 
air-water flows along a large vertical pipe. Int. J. Therm. Sci. 49, 664–674. 

Lucas, D., Krepper, E., Liao, Y., Rzehak, R., Ziegenhein, T., 2020. General guideline for 
closure model development for gas-liquid flows in the multi-fluid framework. Nucl. 
Eng. Des. 357, 110396. 

Lucas, D., Krepper, E., Prasser, H.M., 2005. Development of co-current air-water flow in a 
vertical pipe. Int. J. Multiphase Flow 31, 1304–1328. 

Lucas, D., Rzehak, R., Krepper, E., Ziegenhein, T., Liao, Y., Kriebitzsch, S., 
Apanasevich, P., 2016. A strategy for the qualification of multi-fluid approaches for 
nuclear reactor safety. Nucl. Eng. Des. 299, 2–11. 

Lucas, D., Tomiyama, A., 2011. On the role of the lateral lift force in poly-dispersed 
bubbly flows. Int. J. Multiphase Flow. 37, 1178–1190. 

Ma, T., Lucas, D., Jakirlic, S., Frohlich, J., 2020. Progress in the second-moment closure 
for bubbly flow based on direct numerical simulation data. J. Fluid Mech. 883, A9. 

Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D., Frohlich, J., 2017. Direct numerical 
simulation-based Reynolds-averaged closure for bubble-induced turbulence. Phys. 
Rev. Fluids 2, 034301. 

Magolan, B., Baglietto, E., 2019. Assembling a bubble-induced turbulence model 
incorporating physcial understanding from DNS. Int. J. Multiphase Flow 116, 
185–202. 

Magolan, B., Baglietto, E., Brown, C., Bolotnov, I.A., Tryggvason, G., Lu, J., 2017. 
Multiphase turbulence mechanisms identification from consistent analysis of direct 
numerical simulation data. Nucl. Eng. Technol. 49, 1318–1325. 

Manceau, R., 2015. Recent progress in the development of the Elliptic Blending 
Reynolds-stress model. Int. J. Heat Fluid Fl. 51, 195–220. 

Manceau, R., Hanjalic, K., 2002. Elliptic blending model: A new near-wall Reynolds- 
stress turbulence closure. Phys. Fluids 14, 744–754. 

Menter, F.R., 2009. Review of the shear-stress transport turbulence model experience 
from an industrial perspective. Int. J. Comput. Fluid D 23, 305–316. 

Mimouni, S., Archambeau, F., Boucker, M., Lavieville, J., Morel, C., 2010. A second order 
turbulence model based on a Reynolds stress approach for two-phase boiling flows. 
Part 1: Application to the ASU-annular channel case. Nucl. Eng. Des. 240, 
2233–2243. 

Mimouni, S., Guingo, M., Lavieville, J., Merigoux, N., 2017. Combined evaluation of 
bubble dynamics, polydispersion model and turbulence modeling for adiabatic two- 
phase flow. Nucl. Eng. Des. 321, 57–68. 

Parekh, J., Rzehak, R., 2018. Euler-Euler multiphase CFD-simulation with full Reynolds 
stress model and anisotropic bubble-induced turbulence. Int. J. Multiphase Flow 99, 
231–245. 

Patankar, S.V., Spalding, D.B., 1972. A calculation procedure for heat, mass and 
momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Tran. 15, 
1787. 

Podowski, M.Z., 2018. Is reactor multiphase thermal-hydraulics a mature field of 
engineering science? Nucl. Eng. Des. 345, 196–208. 

Prosperetti, A., Tryggvason, G., 2007. Computational methods for multiphase flow. 
Cambridge University Press, Cambridge, United Kingdom.  

Risso, F., 2018. Agitation, mixing and transfers induced by bubbles. Annu. Rev. Fluid 
Mech. 50, 25–48. 

M. Colombo et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0029-5493(21)00027-3/h0010
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0010
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0015
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0015
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0020
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0020
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0025
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0025
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0030
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0030
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0030
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0035
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0035
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0035
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0045
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0045
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0050
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0050
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0055
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0055
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0060
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0060
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0060
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0065
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0065
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0065
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0070
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0070
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0075
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0075
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0075
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0080
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0080
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0085
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0085
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0090
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0090
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0095
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0095
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0100
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0100
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0110
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0110
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0115
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0115
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0120
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0120
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0125
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0125
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0125
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0130
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0130
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0130
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0135
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0135
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0140
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0140
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0140
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0145
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0145
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0145
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0150
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0150
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0150
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0155
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0155
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0155
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0160
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0160
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0160
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0165
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0165
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0170
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0170
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0170
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0175
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0175
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0180
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0180
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0180
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0185
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0185
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0190
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0190
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0195
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0195
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0195
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0200
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0200
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0200
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0205
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0205
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0205
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0210
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0210
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0215
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0215
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0220
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0220
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0225
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0225
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0225
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0225
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0230
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0230
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0230
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0235
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0235
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0235
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0240
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0240
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0240
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0245
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0245
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0250
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0250
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0255
http://refhub.elsevier.com/S0029-5493(21)00027-3/h0255


Nuclear Engineering and Design 375 (2021) 111075

17

Rzehak, R., Krepper, E., 2013. CFD modeling of bubble-induced turbulence. Int. J. 
Multiphase Flow 55, 138–155. 

Rzehak, R., Krepper, E., Liao, Y., Ziegenhein, T., Kriebitzsch, S., Lucas, D., 2015. Baseline 
model for the simulation of bubbly flows. Chem. Eng. Technol. 38, 1972–1978. 

Rzehak, R., Krepper, E., Lifante, C., 2012. Comparative study of of wall-force models for 
the simulation of bubbly flows. Nucl. Eng. Des. 253, 41–49. 

Rzehak, R., Kriebitzsch, S., 2015. Multiphase CFD-simulation of bubbly pipe flow: A code 
comparison. Int. J. Multiphase Flow 68, 135–152. 

Rzehak, R., Ziegenhein, T., Kriebitzsch, S., Krepper, E., Lucas, D., 2017. Unified 
modelling of bubbly flows in pipes, bubble columns, and airlift columns. Chem. Eng. 
Sci. 157, 147–158. 

Santarelli, C., Frohlich, J., 2015. Direct Numerical Simulations of spherical bubbles in 
vertical turbulent channel flow. Int. J. Multiphase Flow 75, 174–193. 
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