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Abstract—This work addresses Autonomous Microgrids 

composed of Distributed Renewable Energy Sources (DRES). The 

interconnection of DRES forms a nonlinear system with coupled 

dynamics, unknown network parameters, and network topologies. 

The challenging features of DRES, such as: low inertia, large 

number, volatile production limits, and geographically wide 

distribution possess critical control design challenges for 

frequency regulation and Economic Dispatch (ED). Whereas the 

distributed control schemes proposed in contemporary research 

are either too slow to provide ED in the presence of fluctuating 

power demand or too restrictive in terms of network topology to 

have practical significance. Moreover, the control schemes are 

unable to handle the production constraints of DRES and lead to 

instability in the presence of volatile production limits. 

Considering the above, we propose Secondary Distributed Model 

Predictive Control providing fast and robust convergence. The 

control is proposed for generalized network topologies by 

employing a unique technique of creating a decoupled system. 

Where each DRES node forms an equivalent model of entire 

network. The constrained ED solution is derived and successfully 

achieved with the help of proposed Constrained Handling 

Algorithm. The Lyapunov stability of control is proved through 

terminal constraints. The performance of the proposed control is 

validated using an IEEE 14-Bus System. 

Index Terms—Distributed , Distributed Secondary Control, 

Economic Load Dispatch, Frequency Regulation, Microgrid. 

I.  INTRODUCTION 

he reliance of modern Power Systems on Distributed 

Renewable Energy Sources (DRES) has increased 

significantly, reducing fuel-based synchronous generation [1]. 

The shift from centralized to distributed generation has opened 

new operating regimes (such as, Microgrid) and control 

challenges [2]. The centralized control architecture originally 

designed for bulk generation is inappropriate for a rapidly 

increasing number of DRES, indicating an essential demand for 

flexible distributed control with plug and play capabilities [3]. 

Also, the segmentation of power systems into Microgrids (MG) 

composed of locally available DRES and storage elements 

constitutes a low inertia network, specifically during 

autonomous mode operation [4]. Moreover, the challenging 

features of DRES, such as: stochasticity, volatile production 

capacity, and geographically wide distribution, demands a fast-

convergent control for frequency regulation and production cost 

 
 

 

minimization. However, the interconnection of DRES forming 

an autonomous MG, results in a non-linear system with coupled 

dynamics [5]. The unknown network parameters and network 

topology together with fluctuating power demand poses a 

critical control design challenge. The proposed distributed 

control solutions in contemporary research works [5],[6],[7] are 

either too sluggish or based on impractical assumptions. This 

work proposes a Distributed Model Predictive Control (DMPC) 

based control solution effectively complying with the control 

requirements of autonomous MG. 

The power produced by DRES is either in the form of DC or 

high-speed/variable AC, requiring power electronic converters 

to interface the AC network [8]. Unlike synchronous generators 

with inherent synchronization capability, the DRES rely on 

their associated control for synchronization and power sharing 

[9]. The Figure 1 represents the DRES nodes with associated 

hierarchal control architecture and internode communication 

link [10], [11]. 
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Figure 1.   DRES Nodes with Hierarchal Control 

In Figure 1, the inner control of the inverter works on a faster 

time scale, providing gate pulses for the converter to produce 

the voltage of desired amplitude and frequency. The primary 

control is based on a droop control technique to provide the 

power sharing among the DRES nodes [12], [13]. The 

secondary control provides frequency regulation [14], while the 

tertiary control provides Economic Dispatch (ED) in the 

system. The modern research works often merge the tertiary 
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control into the secondary control, providing the frequency 

regulation and ED at same level [15]. The secondary and 

tertiary control can be centralized [16], as in traditional power 

system as well as distributed [17], [18]. However, distributed 

control has gained a lot of interest for an increasing number of 

DRES. Unlike centralized control requiring direct 

communication links with individual generating nodes, the 

distributed control is based on local peer to peer internode 

communication, thus facilitating plug and play operation [19]. 

Distributed Averaging Integral (DAI) based distributed 

control schemes were proposed in contemporary research to 

provide frequency regulation and proportional power sharing 

[20]. To reduce the cost of production the criteria for ED was 

developed in [5],[17] and successfully implemented with DAI. 

However, such a control possesses sluggish response in a low 

inertia MG. A Distributed Model Predictive Secondary Control 

based solution provides active frequency regulation and fast 

convergence for ED [7]. However, the control is designed on 

the assumption of known network parameters and is too 

restrictive in terms of network topology. Moreover, the control 

deals with the instantaneous phase of local and neighbouring 

nodes, making the technique difficult to implement. 

The above-mentioned contemporary control schemes are 

unable to handle the production constraints and assume 

sufficiently large production capacity for each DRES node. 

This assumption is not practical in the presence of heterogenous 

DRES with volatile production capacity. Moreover, under 

stressed network conditions, the violation of the maximum 

capacity limit would result in system instability. 

This paper proposes a Secondary Distributed Model 

Predictive Control (SDMPC) for frequency regulation and ED. 

The control overcomes the performance limitations of 

Distributed Model Predictive Secondary Control [7] and is 

proposed for a generalized network topology with unknown 

parameters. The control provides fast convergence and a 

mechanism to ensure consensus in the network in the presence 

of the production limitations of DRES.  

The foremost challenge in the design of the control scheme 

is to construct the state predictions in the presence of unknown 

parameters and coupled dynamics. For this purpose, each 

DRES node is assumed to be connected exclusively to a virtual-

node through a known virtual admittance, thus creating an 

equivalent of the entire network. The resulting equivalent 

model possesses decoupled dynamics with known parameters. 

The idea of a virtual-node is similar to the concept of an infinite-

bus in the power system. However, in contrast to an infinite-

bus, the phase of the virtual-node is updated in each iteration. 

The global equilibrium point of the network is based on 

frequency regulation and consensus to ED criteria. Moreover, 

the consensus point varies with fluctuations in the power 

demand in the system. So, to achieve fast convergence of the 

proposed control, this paper adopts a novel method for 

constructing the state errors. Unlike contemporary research 

works that use the Laplacian Matrix to construct the state error 

[6], [7], the proposed method is based on preserving the sum of 

power injections among the neighbouring nodes providing 

asymptotic convergence to a global equilibrium. The state 

errors are formed based on local and neighbouring nodes’ 
power injections, using the virtual-node as a reference. The 

proposed solution also provides a mechanism to handle the 

production constraints, since restricting the power injection in 

the optimisation problem results in an infeasible ED problem. 

The solution is devised by slightly manipulating the value of 

injected power before communicating to the neighbouring 

nodes. The major contributions of the paper are highlighted 

below. 

• The DMPC based secondary control for autonomous MG 

is proposed in this paper, that provides frequency 

regulation and fast convergence to ED-point in presence 

of fluctuating power demand. The control is proposed for 

generic network topologies with nonlinear coupled 

dynamics and unknown network admittance. 

• The paper introduces a decoupling technique that creates 

an equivalent of the network at each power-node. The 

technique overcomes the problem of unknown parameter 

and enables the construction of state predictions. 

• Considering a practical scenario of volatile power 

production limits of DRES, a constraint ED solution is 

derived. The Constraint Handling Algorithm is proposed 

to achieve the solution and overcome the infeasibility 

problem. 

• The stability of proposed control is achieved using 

equality based terminal constraints and using the total 

cost of network as Lyapunov Candidate Function. The 

performance of the proposed control is validated on an 

IEEE-14 Bus Test System and the results are compared 

with DAI control. 

The rest of the paper is organised as follows, Section II starts 

with the introduction of various notations used in the paper, 

graph theory and modelling of a power network. This Section 

also presents the control objectives and discusses the DAI and 

Distributed Model Predictive Secondary Control techniques. 

Section III presents the design of the proposed Secondary 

Distributed Model Predictive Control (SDMPC) techniques and 

constraints handling algorithm. The stability of the proposed 

control and the convergence of the total cost of the network is 

proved in Section IV. The simulation results are discussed in 

Section V. 

II.  MICROGRID MODELLING 

This Section presents the primary control dynamics and defines 

the control objectives for secondary control. The solution of the 

ED problem is derived in the presence of production 

constraints. The existing distributed secondary control 

techniques and their performance limitations are also discussed. 

The Section starts with a brief introduction of graph theory and 

various notations used in the paper. 

A.  Notations 

Let, ℝ represent the set of real numbers, ℝ>𝑘 is the set {𝑥 ∈ ℝ|𝑥 > 𝑘}, ℝ≥𝑘  is {𝑥 ∈ ℝ|𝑥 ≥ 𝑘} (where 𝑘 is an integer) 

and 𝕆 is the null set. The operator  |∙| represents the 

cardinality of a set, 𝑐𝑜𝑙(∙) creates a column vector from a set, 

while 𝔇(∙) creates the corresponding diagonal matrix from a set 
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or column vector provided as argument. 𝟙𝑛 ∈ ℝ𝑛×1 represents 

the column vector of ones, 𝟘𝑛 ∈ ℝ𝑛×1 represents the column 

vector of zeros and 𝐼𝑛 ∈ ℝ𝑛×𝑛 is the identity matrix. 

B.  Graph Theory 𝔾 is an undirected, static and connected graph consisting of 𝑛 nodes, represented by the set 𝑁 = {𝑛1, … 𝑛𝑛}. The topology 

of 𝔾 is represented by symmetric adjacency matrix 𝐴 ∈ ℝ≥0𝑛×𝑛, 

with elements 𝑎𝑖𝑗 = 1, when the nodes 𝑛𝑖 and 𝑛𝑗 are connected 

by an edge, while 𝑎𝑖𝑗 = 0 otherwise. The set of neighbouring 

nodes of the 𝑖𝑡ℎ node is defined as; 𝑁𝑖 ≔ {𝑛𝑗|𝑎𝑖𝑗 = 1, 𝑗 ∈ 𝑁}. ℚ ≔  𝔇(𝐴𝟙𝑛) is the degree matrix and ℒ ≔  ℚ − 𝐴, ∈ ℝ𝑛×𝑛 is 

the corresponding Laplacian matrix. 

C.  Power Network 

We represent the autonomous MG with a graph 𝔾, consisting 

of 𝑁 = {𝑛1, … 𝑛𝑛} set of nodes. The nodes in 𝔾 are connected 

through the power lines with impedance 𝑧𝑖𝑗 = 1 𝑦𝑖𝑗⁄ , 𝑖, 𝑗 ∈ 𝑁 

(here, 𝑦𝑖𝑗  represents the admittance while, the angle of 

impedance is represented by 𝜃𝑧,𝑖𝑗). For an 𝑖𝑡ℎ node, the set of 

neighbouring nodes, in terms of power links is defined as; 𝑁𝑦,𝑖 ≔ {𝑛𝑗|𝑦𝑖𝑗 ≠ 0, 𝑗 ∈ 𝑁}. The nodes in 𝔾 are either 

categorized as power-nodes, represented by the set 𝑁𝑃, or 

passive-nodes 𝑁𝑅 (𝑁𝑅 = 𝑁 − 𝑁𝑃). The power-nodes contain a 

DRES with an optional local-load while, the passive-nodes only 

contain the (optional) local-load. The power-nodes (𝑁𝑃) are 

also connected through communication lines, forming a 

connected sub-graph in 𝔾, with corresponding adjacency 

matrix 𝐴 = [𝑎𝑖𝑗] ∈ ℝ≥0𝑛𝑃×𝑛𝑃, the degree and Laplacian matrix ℚ ∈ ℝ>0𝑛𝑃×𝑛𝑃 and ℒ ∈ ℝ𝑛𝑃×𝑛𝑃 respectively. The set of 

neighbouring communication nodes of the 𝑖𝑡ℎ power-node is 

defined as; 𝑁𝑐,𝑖 ≔ {𝑛𝑗|𝑎𝑖𝑗 = 1, 𝑗 ∈ 𝑁𝑃}.  
Assumption: The focus of presented work is frequency 

regulation and ED so, for simplicity, the voltage amplitude at 

each power-node is assumed to be constant: 1 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 (𝑝𝑢). 

We use second order dynamics for inverter-interfaced DRES 

to emulate the dynamics of a synchronous generator [5], [21]. 

The discretized dynamics of a power-node are given below.  𝜃𝑖(𝑡 + 1) =  𝜃𝑖(𝑡) +  𝜔𝑖(𝑡)∆𝑡,            (1a) 𝜔𝑖(𝑡 + 1) =  𝜔𝑖(𝑡) + ∆𝑡𝑚𝑖 [−𝑑𝑖(𝜔𝑖(𝑡) − 𝜔𝑑) − 𝑝𝑖(𝑡) + 𝑢𝑖(𝑡)]. 
                        (1b) 

where, 𝜃𝑖 ∈ ℝ and 𝜔𝑖 ∈ ℝ are the phase and angular frequency 

of the power-node respectively, 𝑚𝑖 ∈ ℝ>0 is the virtual inertia, 𝑑𝑖 ∈ ℝ>0 is damping factor, 𝜔𝑑 ∈ ℝ>0 is the desired angular 

frequency and 𝑢𝑖 ∈ ℝ is the control input from secondary 

control. The discrete time is represented by 𝑡 and ∆𝑡 represents 

the time-step. The power injection of the power-node is 

represented by 𝑝𝑖 ∈ ℝ, which is the sum of power absorbed by 

the local-load (𝑝𝐿𝐿,𝑖 ∈ ℝ) and power delivered to the 

neighbouring nodes (𝑝𝑛,𝑖 ∈ ℝ).  𝑝𝑖(𝑡) = 𝑝𝐿𝐿,𝑖(𝑡) + 𝑝𝑛,𝑖(𝑡).                (2) 

Here, 𝑝𝑛,𝑖  is the sinusoidal function of phase angle, voltage 

magnitude (of both the local and neighbouring nodes) and 

admittance of the power line.  

𝑝𝑛,𝑖(𝑡) = ∑ 𝑦𝑖𝑗 ( 𝑣𝑖2 cos(𝜃𝑧,𝑖𝑗) −𝑣𝑖𝑣𝑗 cos (𝜃𝑧,𝑖𝑗 + 𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)))𝑗∈𝑁𝑦,𝑖 . (3) 

However, in case of a lossless power line, (3) reduces to, 𝑝𝑛,𝑖(𝑡) = ∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗 sin (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))𝑗∈𝑁𝑦,𝑖 .       (4) 

Here, 𝑣𝑖 represents the voltage of 𝑖𝑡ℎ power-node and 𝑏𝑖𝑗  is the 

inter-node susceptance. We define the deviation state-variables 

as, ∆𝜔𝑖(𝑡) = 𝜔𝑖(𝑡) − 𝜔𝑑 and ∆𝜃𝑖(𝑡) = 𝜃𝑖(𝑡) − 𝜃𝑑(𝑡), with 𝜃𝑑(𝑡) = 𝑡𝜔𝑑∆𝑡. So, (1) can be rewritten in terms of deviation 

variables as, ∆𝜃𝑖(𝑡 + 1) =  ∆𝜃𝑖(𝑡) +  ∆𝜔𝑖(𝑡)∆𝑡,          (5a) ∆𝜔𝑖(𝑡 + 1) =  ∆𝜔𝑖(𝑡) + ∆𝑡𝑚𝑖 [−𝑑𝑖∆𝜔𝑖(𝑡) − 𝑝𝐿𝐿,𝑖(𝑡) −𝑝𝑛,𝑖(𝑡) + 𝑢𝑖(𝑡)].      (5b) 

While, the dynamics of passive-nodes are given by: 𝑝𝑛,𝑖(𝑡) = −𝑝𝐿𝐿,𝑖(𝑡).                 (6) 

In (5), the control input (𝑢𝑖) is provided by the secondary 

control to regulate the frequency and achieve the ED in the 

system. 

Lemma 1: The system represented in eqns. (5) and (6) under 

constant control input 𝑢̅ ∈ ℝ𝑛𝑃×1 (𝑢(𝑡) = 𝑐𝑜𝑙(𝑢𝑖) = 𝑢̅ ∈ℝ𝑛𝑃×1), results in constant synchronous frequency 𝜔𝑠 ∈ ℝ (𝜔(𝑡) = 𝑐𝑜𝑙(𝜔𝑖) = 𝜔𝑠𝟙𝑛𝑃), which does not necessarily equal 

the desired frequency 𝜔𝑑. 

The proof of the Lemma is present in [5],[6]. The summation 

of (5b) over the entire set of power-nodes with constant 

frequency 𝜔(𝑡) = 𝜔𝑠𝟙𝑛𝑃 results in: 0 =  𝟙𝑛𝑃𝑇 [−𝐷(𝜔𝑠 − 𝜔𝑑)𝟙𝑛𝑃 − 𝑃 + 𝑢̅], 𝜔𝑠 = 𝜔𝑑 + −𝟙𝑛𝑃𝑇 𝑃+𝟙𝑛𝑃𝑇 𝑢𝟙𝑛𝑃𝑇 𝐷𝟙𝑛𝑃 .                 (7) 

Here, 𝐷 = 𝔇(𝑑𝑖) ∈ ℝ𝑛𝑃×𝑛𝑃  and 𝑃 = 𝑐𝑜𝑙(𝑝𝑖) ∈ ℝ𝑛𝑃×1. The 

sum of power produced (𝟙𝑛𝑃𝑇 𝑃) at the power-nodes is equal to 

the sum of power consumed; 𝟙𝑛𝑇𝐿 (𝐿 ≔ 𝑐𝑜𝑙(𝑝𝐿𝐿,𝑖) ∈ ℝ≥0𝑛×𝑛) and 

power loss 𝑃𝑙𝑜𝑠𝑠  in the network, so (7) becomes: 𝜔𝑠 = 𝜔𝑑 + −𝟙𝑛𝑇𝐿−𝑃𝑙𝑜𝑠𝑠+𝟙𝑛𝑃𝑇 𝑢𝟙𝑛𝑃𝑇 𝐷𝟙𝑛𝑃 .               (8) 

Equation (8) together with (5b) implies that frequency 

regulation (∆𝜔 = 0 or 𝜔(𝑡) = 𝜔𝑠𝟙𝑛𝑃 = 𝜔𝑑𝟙𝑛𝑃) would be 

achieved when the control input (𝑢) from secondary control 

would satisfy: 𝟙𝑛𝑃𝑇 𝑢 = 𝟙𝑛𝑃𝑇 𝑃 = 𝟙𝑛𝑇𝐿 + 𝑃𝑙𝑜𝑠𝑠; also for individual 

power-nodes 𝑢𝑖 = 𝑝𝑖, ∀𝑖 ∈ 𝑁𝑃. Equation (8) clearly indicates 

that for frequency regulation the secondary control is required 

to be fast enough to cater for the frequent variations in power 

demand (𝐿). 

In addition to frequency regulation, the secondary control is 

also required to provide the ED in the system. Since the power 

demand in the system (𝐿) varies frequently, the fast 

convergence of secondary control is inevitable.  

D.  Unconstrained Control Objectives 

The control objectives for the secondary control are to 

regulate the frequency and provide the ED based on identical 

incremental cost criteria [6]. 

i. ∆𝜔𝑖 = 0,  ∀𝑖 ∈ 𝑁𝑃              (9) 

ii. ∑ (𝑐𝑖𝑝𝑖(𝑡) − 𝑐𝑗𝑝𝑗(𝑡)) = 0𝑗∈𝑁𝑃 ,   ∀𝑖 ∈ 𝑁𝑃.   (10) 
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where, 𝑐𝑖 ∈ ℝ>1 represents the production cost rate or the 

selling cost rate of 𝑖𝑡ℎ power-nodes. The control objective in (9) 

represents the frequency regulation, while (10) is the identical 

incremental cost criteria for production cost minimization (ED). 

Since the power-nodes also form a connected sub-graph in 𝔾 

through communication link, the control objective in (10) can 

also be represented using Laplacian matrix, so (9) and (10) can 

be rewritten as [5], ∆𝜔 = 𝟘𝑛𝑃,                    (11) ℒ𝐶𝑃 = 𝟘𝑛𝑃.                   (12) 

Here, 𝐶 = 𝔇(𝑐𝑖) ∈ ℝ>1𝑛𝑃×𝑛𝑃. Now writing (9) and (10) for the 

equilibrium point;  ∆𝜔𝑖∗ = 0,                   (13) 𝑐1𝑝1∗ = 𝑐2𝑝2∗ = ⋯ = 𝑐𝑛𝑃𝑝𝑛𝑃∗ = 𝛿∗.          (14) 

where, 𝛿∗ ∈ ℝ>0 represents the optimum power (incremental) 

cost for the power-nodes. The optimum cost (𝛿∗) depends on 

the production cost rate (𝑐𝑖) and total power demand (𝐿) in the 

network (Lemma 1). Equation (13) and (14) can be represented 

in matrix form as; ∆𝜔∗ = 𝟘𝑛𝑃 and 𝐶𝑃∗ = 𝛿∗𝟙𝑛𝑃.  

E.  Production Constraints 

The control solutions in (13) and (14) represent an 

unconstrained scenario, with no restriction on the power 

production (𝑝𝑖) of individual DRES. Considering the variable 

power production capacities of DRES, the production 

constraints for the control objectives in (9) and (10) are: 𝑃𝑚𝑖𝑛 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥.                (15) 

Here, 𝑃𝑚𝑖𝑛 = 𝑐𝑜𝑙(𝑝𝑖𝑚𝑖𝑛) ∈ ℝ𝑛𝑃×1 and 𝑃𝑚𝑎𝑥 = 𝑐𝑜𝑙(𝑝𝑖𝑚𝑎𝑥) ∈ℝ𝑛𝑃×1, where 𝑝𝑖𝑚𝑖𝑛 and 𝑝𝑖𝑚𝑎𝑥  represent the minimum and 

maximum power injection limits of the 𝑖𝑡ℎ power-node. To 

represent the solution in the presence of production limits in 

(15), let (𝛼), (𝛽) and (𝛾) be the mutually exclusive subsets of 

power-nodes such that (𝛼) ∪ (𝛽) ∪ (𝛾) = 𝑁𝑃. Now the 

optimum power injection can be represented as: 𝑃∗ = [𝒫̃(𝛼)𝑚𝑖𝑛 𝒫̃(𝛽)∗ 𝒫̃(𝛾)𝑚𝑎𝑥 ,]𝑇.           (16) 

Where, 𝒫̃(𝛽)∗ ∈ ℝ>0|(𝛽)|×1
, satisfies;  𝐶̃𝒫̃(𝛽)∗ = 𝛿∗𝟙|(𝛽)|.                 (17) 

Here, 𝐶̃ = 𝔇(𝑐𝑖) ∈ ℝ>0|(𝛽)|×|(𝛽)|, 𝑖 ∈ (𝛽) and 𝛿∗ ∈ ℝ is the 

constrained optimum (incremental) cost. 

Remark 1: It is intuitively obvious that unconstrained 

optimum cost (𝛿∗) is less than (or equal to) the constrained 

optimum cost (𝛿∗); 𝛿∗ ≤ 𝛿∗. 
The contemporary distributed secondary control solutions 

are designed to provide only the unconstrained solution defined 

in (13) and (14). The following sub-sections provide a brief 

introduction to existing control solutions and their performance 

limitations. 

F.  Distributed Averaging Integral 

DAI based secondary control is designed by integrating the 

errors in (11) and (12) [5], [6]: 𝑢(𝑡 + 1) = 𝑢(𝑡) − ∆𝑡𝑘𝑤  (∆𝜔) − ∆𝑡𝑘𝑝ℒ𝐶𝑢.     (18) 

where, 𝑘𝑤 and 𝑘𝑝 are the weights on errors in frequency and 

incremental cost respectively. The control in (18) provides 

active frequency regulation but possesses slow response in 

creating consensus for ED.  

G.  Distributed Model Predictive Secondary Control 

The Distributed Model Predictive Secondary Control 

scheme proposed in [7] is based on tracking the desired state 

values in each iteration. The control provides fast convergence 

as compared to a DAI technique however, the control has 

several limitations. First, the calculation of desired state values 

involves instantaneous phase information of neighbouring 

nodes, which is difficult to implement practically. Secondly, the 

control assumes a (constant) known value of power lines’ 
admittance. The calculation of desired states also requires at 

least a single power line directly connecting the individual 

power-node to its neighbouring power-nodes, thereby 

restricting a generalized topology of the network. The desired 

value of phase deviations are obtained from the Laplacian based 

error, ℒ𝐶𝑃(𝑡) = 𝟘𝑛𝑃 (or ℚ𝐶𝑃(𝑡) − 𝐴𝐶𝑃(𝑡) = 𝟘𝑛𝑃): 𝑃́∗(𝑡 + 1) = 𝐾𝑃(𝑡).               (19) 

where, 𝐾 = ℚ−1𝐶−1𝐴𝐶, with multiple eigenvalues on the unit 

circle, while 𝑃́∗ is the intermediate optimum power point. 𝑃́∗ is 

further used in (4) to obtain the desired phase value while, 

assuming a known value of susceptance 𝑏𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑁𝑃. 

In summary, the contemporary distributed secondary control 

solutions are unable to achieve the constrained ED solution 

defined in (16) and (17). Moreover, these control schemes have 

few limitations: the DAI based control possesses slow response 

against fluctuating power demand while, the Distributed Model 

Predictive Secondary Control is based on impractical 

assumptions. To overcome the above-mentioned performance 

limitations, the design of appropriate control schemes is 

proposed and presented in the following Section. 

III.  SECONDARY DISTRIBUTED MODEL PREDICTIVE CONTROL 

This work proposes the Secondary Distributed Model 

Predictive Control (SDMPC) for frequency regulation and ED 

of autonomous microgrid with the capability to handle the 

production constraints. The control is proposed for a 

generalized network topology with unknown network 

parameters.  

The design of SDMPC is based on decoupled primary 

control dynamics of power-nodes. An improved method for 

calculation of desired state values is adopted providing fast 

convergence and minimal frequency deviation. The local 

optimization problem is designed to track the desired state 

values, with terminal constraints to ensure the stability of the 

control. The Constraints Handling Algorithm is also proposed 

to achieve the constrained ED solution in (16) and (17). 

A.  Decoupled Dynamics & Desired State Values 

The unknown values of inter-node power lines’ admittance 

restrict the construction of state predictions for a DMPC 

architecture. To eliminate the problem of unknown parameters 

and coupled dynamics, we create an equivalent of the entire 

network at each power-node. The equivalent of the network is 

represented by a virtual-node (𝑛𝑣,𝑖) with constant voltage 



 5 (𝑣𝑣 = 1𝑝𝑢)  and connected to individual power-nodes through 

a virtual susceptance (𝑏𝑣).  

Remark 2: The concept of a virtual-node is similar to the 

concept of an ‘infinite-bus’, frequently used in power systems. 

However, unlike an ‘infinite-bus’ the phase of a virtual-node is 

adjusted in each iteration, based on power injection (𝑝𝑖) of the 

respective power-node. The total power injection of a power-

node is assumed to flow towards the virtual-node, thus creating 

a decoupled non-linear system. 𝑝𝑖(𝑡) = 𝑏𝑣𝑣𝑖𝑣𝑣 sin (∆𝜃𝑖(𝑡) − ∆𝜃𝑣,𝑖(𝑡)).       (20) 

The value of 𝑏𝑣 and 𝑣𝑣 is kept same for all the power-nodes. 

Now, the phase of virtual-node (∆𝜃𝑣,𝑖) can be calculated as: ∆𝜃𝑣,𝑖(𝑡) = ∆𝜃𝑖(𝑡) − sin−1 ( 𝑝𝑖(𝑡)𝑣𝑖𝑣𝑣𝑏𝑣).         (21) 

Now, let the variables ∆𝜃𝑖, ∆𝜔𝑖 and 𝑝𝑖  be collectively 

represented as, 𝜒𝑖(𝑡) = [∆𝜃𝑖(𝑡) ∆𝜔𝑖(𝑡) 𝑝𝑖(𝑡)]𝑇. So, the 

system dynamics in (5) and (20) can be compactly represented 

as: 𝜒𝑖(𝑡 + 1) = 𝑓 (𝜒𝑖(𝑡), ∆𝜃𝑣,𝑖(𝑡), 𝑢𝑖(𝑡)),        

 = Υ𝜒𝑖(𝑡) + [  
 ∆𝑡∆𝜔𝑖(𝑡)∆𝑡𝑚𝑖 (−𝑑𝑖∆𝜔𝑖(𝑡) − 𝑝𝑖(𝑡) + 𝑢𝑖(𝑡))𝑏𝑣𝑣𝑖𝑣𝑣 sin (∆𝜃𝑖(𝑡 + 1) − ∆𝜃𝑣,𝑖(𝑡))]  

 
.   (22) 

where, Υ = 𝔇([1 1 0]). To reach the equilibrium state 

defined in (9) and (10), we compute the values of desired power 

injection (𝑝𝑖𝑑) and phase deviation (∆𝜃𝑖𝑑) at each iteration of 

SDMPC algorithm. Tracking the desired values would lead to a 

global equilibrium point (the proof is discussed in Section IV). 

Unlike [7], 𝑝𝑖𝑑 is derived while preserving the sum of power 

injections of the neighbouring power-nodes (𝑁𝑐,𝑖), resulting in 

minimal frequency deviation.  𝑝𝑖𝑑(𝑡) + ∑ 𝑝𝑗(𝑡)𝑗∈𝑁𝑐,𝑖 = 𝑝𝑖(𝑡) + ∑ 𝑝𝑗(𝑡)𝑗∈𝑁𝑐,𝑖 .     (23) 

Here, the righthand side represents the measured values of 

local and neighbouring nodes power injection. Now, the left-

hand side can be rewritten using (14): 𝑝𝑖𝑑(𝑡) + ∑ 𝑐𝑖𝑐𝑗 𝑝𝑖𝑑(𝑡)𝑗∈𝑁𝑐,𝑖 = 𝑝𝑖(𝑡) + ∑ 𝑝𝑗(𝑡)𝑗∈𝑁𝑐,𝑖 ,    (24) 𝑝𝑖𝑑(𝑡) = 11+𝑐𝑖 ∑ 1 𝑐𝑗⁄𝑗∈𝑁𝑐,𝑖 (𝑝𝑖(𝑡) + ∑ 𝑝𝑗(𝑡)𝑗∈𝑁𝑐,𝑖 ),     (25) 

from (20), ∆𝜃𝑖𝑑(𝑡) = 𝜃𝑣,𝑖 + sin−1 (𝑝𝑖𝑑(𝑡)𝑏𝑣 𝑣𝑖𝑣𝑣⁄ ).        (26) 

Equation (25) and (26) respectively provide the desired 

values of power and phase for individual power nodes. The 

power injection of neighbouring power nodes (𝑝𝑗) are obtained 

using internode communication links. Unlike [7], the desired 

phase obtained in (26) does not involve the neighbouring nodes 

phase information. 

Note that the value of desired power obtained in (25) 

represents the unconstrained scenario. The equation would fail 

to converge in a constrained scenario as it strives to achieve the 

consensus 𝐶𝑃∗ = 𝛿∗𝟙𝑛𝑃 instead of 𝐶̃𝒫̃∗ = 𝛿∗𝟙𝑛̃𝑃 . 

To satisfy the production constraints a Constraint Handling 

Algorithm is proposed that provides the constrained desired 

power (𝑝𝑖𝑑) and correction factor (𝜀𝑖). The correction factor (𝜀𝑖) is used to modify the power trajectories before 

communicating to neighbouring power-nodes.  

B.  Local Optimization Problem 

The local control of power-nodes is designed to track the 

desired values. The desired value of phase (∆𝜃𝑖𝑑) is defined in 

(26) while, the desired value of frequency is; ∆𝜔𝑖𝑑(𝑡) = 0. 

Three different types of trajectories are used in the SDMPC 

Algorithm. The predicted trajectories (𝜒𝑖𝑝, 𝑢𝑖𝑝) are used in the 

optimization problem, the optimum trajectories (𝜒𝑖𝑜𝑝, 𝑢𝑖𝑜𝑝) are 

obtained after solving the optimization problem while, the 

assumed trajectories (𝜒𝑖𝑎 , 𝑢𝑖𝑎) are communicated to 

neighbouring nodes for the calculation of desired states. The 

actual or implemented values are represented by: 𝜒𝑖 , 𝑢𝑖. The 

length of prediction horizon (𝒩𝑝) is kept the same for all the 

nodes. The designed optimisation problem is given below: 

The Optimisation Problem 𝔽𝑖: 𝑚𝑖𝑛.   𝐽𝑖 (𝜒𝑖𝑝(: |𝑡), 𝑢𝑖𝑝(: |𝑡), 𝜒𝑖𝑎(: |𝑡), ∆𝜃𝑖𝑑(: |𝑡)), 𝑆𝑢𝑏𝑗. 𝑡𝑜  𝜒𝑖𝑝(0|𝑡) = 𝜒𝑖𝑎(0|𝑡), 𝜒𝑖𝑝(𝑘 + 1|𝑡) = 𝑓 (𝜒𝑖𝑝(𝑘|𝑡), ∆𝜃𝑣,𝑖(𝑡), 𝑢𝑖𝑝(𝑘|𝑡)), 

for 𝑘 = 0,1, … ,𝒩𝑝 − 1, 𝑢𝑖𝑝(: |𝑡) ∈ 𝑈, 𝑝𝑖𝑝(𝒩𝑝|𝑡) = 𝑝𝑖𝑑(𝒩𝑝|𝑡),              (27) ∆𝜔𝑖𝑝(𝒩𝑝|𝑡) = 0.                 (28) 

Where, 𝐽𝑖 (𝜒𝑖𝑝(: |𝑡), 𝑢𝑖𝑝(: |𝑡), 𝜒𝑖𝑎(: |𝑡), ∆𝜃𝑖𝑑(: |𝑡))  = ∑ 𝑙𝑖 (𝜒𝑖𝑝(: |𝑡), 𝑢𝑖𝑝(: |𝑡), 𝜒𝑖𝑎(: |𝑡), ∆𝜃𝑖𝑑(: |𝑡))𝒩𝑝𝑘=1 , = ∑ ||𝜒𝑖𝑝(𝑘|𝑡) − 𝜒𝑖𝑎(𝑘|𝑡)||𝑄 + ||∆𝜃𝑖𝑝(𝑘|𝑡) −𝒩𝑝𝑘=1 ∆𝜃𝑖𝑑(𝑘|𝑡)||𝑆 + ||∆𝜔𝑖𝑝(𝑘|𝑡)||𝑇.             (29) 

The terminal constraints (27) and (28) are used to force the 

trajectories to reach the desired states at the end of the 

prediction horizon. The cost function in (29) penalizes the 

deviation between predicted and assumed trajectories and the 

deviation from the desired state values. The weights on errors: 𝑄 ∈ ℝ>03×3, 𝑆 ∈ ℝ>0 and 𝑇 ∈ ℝ>0 serve as the tuning 

parameters. 

C.  SDMPC Algorithm 𝔸𝑆𝐷𝑀𝑃𝐶: 

The SDMPC Algorithm consists of the following steps; 

Initialization 

i. Obtain the initial values of 𝜒𝑖𝑎(0|0) = 𝜒𝑖(0) and initialize 𝑢𝑖𝑎(0|0) = 𝑢𝑜,𝑖. 
ii. Compute the phase of the virtual-node based on initial 

power injection (𝑝𝑖(0)): ∆𝜃𝑣,𝑖(0) = ∆𝜃𝑖𝑎(0|0) − sin−1 ( 𝑝𝑖(0)𝑣𝑖𝑣𝑣𝑏𝑣). 

iii. Construct the trajectories 𝜒𝑖𝑎(: |0) over the prediction 

horizon: 𝜒𝑖𝑎(𝑘 + 1|0) =  𝑓 (𝜒𝑖𝑎(𝑘|0), ∆𝜃𝑣,𝑖(0), 𝑢𝑖𝑎(𝑘|0)), 

for 𝑘 = 0,1, … ,𝒩𝑝 − 1. 
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iv. Communicate the power trajectories  𝑝𝑖𝑎(: |0) to 

neighbouring nodes. 

SDMPC Iterations 

1. Compute the desired power and phase: 𝑝𝑖𝑑(: |𝑡) = 11+𝑐𝑖 ∑ 1 𝑐𝑗⁄𝑗∈𝑁𝑐,𝑖 (𝑝𝑖𝑎(: |𝑡) + ∑ 𝑝𝑗𝑎(: |𝑡)𝑗∈𝑁𝑐,𝑖 ). 

                           (30) 

2. Run the Constraint Handling Algorithm routine (𝔸ℂ) to 

obtain the constrained desired power and correction 

factor: (𝑝𝑖𝑑(: |𝑡), 𝜀𝑖(: |𝑡)) = 𝔸ℂ(𝑝𝑖𝑑(: |𝑡), 𝑝𝑖𝑚𝑎𝑥 , 𝑝𝑖𝑚𝑖𝑛). 

3. Find the desired value of phase deviation: ∆𝜃𝑖𝑑(: |𝑡) = 𝜃𝑣,𝑖(𝑡) + sin−1 (𝑝𝑖𝑑(: |𝑡)𝑏𝑣 𝑣𝑖𝑣𝑣⁄ ).   (31) 

4. Solve the optimal control problem 𝔽𝑖 for optimum control 

input (𝑢𝑖𝑜𝑝(: |𝑡)). 

5. Compute the optimal trajectories: 𝜒𝑖𝑜𝑝(0|𝑡) = 𝜒𝑖(𝑡 − 1), 𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡) = 𝑓 (𝜒𝑖𝑜𝑝(𝑘|𝑡), ∆𝜃𝑣,𝑖(𝑡), 𝑢𝑖𝑜𝑝(𝑘|𝑡)),  (32) 

for 𝑘 = 0,1, … ,𝒩𝑝 − 1. 

6. Implement the first value of optimum control input (𝑢𝑖(𝑡) = 𝑢𝑖𝑜𝑝(0|𝑡)) to update the actual states (𝜒𝑖(𝑡)) in 

(22). 

7. Update the phase of virtual-node: ∆𝜃𝑣,𝑖(𝑡 + 1) = ∆𝜃𝑖𝑜𝑝(1|𝑡) − sin−1 ( 𝑝𝑖(𝑡)𝑣𝑖𝑣𝑣,𝑖𝑏𝑣).     (33) 

8. Compute the assumed input by one step shifting the 

optimum control input: 𝑢𝑖𝑎(𝑘|𝑡 + 1) = 𝑢𝑖𝑜𝑝(𝑘 + 1|𝑡),          (34) 

for 𝑘 = 0,1, … ,𝒩𝑝 − 2, 𝑢𝑖𝑎(𝒩𝑝 − 1|𝑡 + 1) = 𝑝𝑖𝑜𝑝(𝒩𝑝|𝑡).         (35) 

9. The assumed trajectories are computed based on updated 

value of (∆𝜃𝑣,𝑖(𝑡 + 1)): 𝜒𝑖𝑎(0|𝑡 + 1) = 𝜒𝑖𝑜𝑝(1|𝑡), 𝜒𝑖𝑎(𝑘 + 1|𝑡 + 1) =  𝑓 (𝜒𝑖𝑎(𝑘|𝑡 + 1), ∆𝜃𝑣,𝑖(𝑡 + 1),𝑢𝑖𝑎(𝑘|𝑡 + 1) ),  (36) 

for 𝑘 = 0,1, … ,𝒩𝑝 − 1. 

10. Perform the power adjustment of assumed power: 𝑝𝑖𝑎(𝑘|𝑡 + 1) = 𝑝𝑖𝑎(𝑘|𝑡 + 1) + 𝜀𝑖(𝑘|𝑡). 

11. Communicate the assumed power (𝑝𝑖𝑎(: |𝑡 + 1)) and 

production cost rate (𝑐(: |𝑡 + 1)) to neighbouring nodes. 

12. Increment the time; 𝑡 = 𝑡 + 1. 

13. Go to step No. 1. 

Here, 𝑢𝑜,𝑖 represents the initial value of the control input. 

The Algorithm solves the optimisation problem 𝔽𝑖 in Step No. 

4 to obtain the optimum control input, which is used in Step No. 

5 to form the optimum trajectories. Step No 6, implements the 

first value of optimum control input. The virtual phase value is 

updated based on instantaneous power injection in Step No. 7. 

The assumed trajectories are formed based on updated values 

of virtual phase. Equation (35) maintains the terminal state 

achieved in (27) and (28). The assumed power trajectories are 

modified using the correction factor in Step No 10. The local 

and neighbouring assumed power is used in Step No. 1 to 

compute the desired power while Step No. 2 provides the 

constrained desired power and correction factor using the 

following algorithm 𝔸ℂ. 

D.  Constraint Handling Algorithm 𝔸ℂ: 
1. Check whether the desired power is within the production 

limits, 𝑖𝑓 𝑝𝑖𝑑(𝑘|𝑡) ∈ [𝑝𝑖𝑚𝑖𝑛 𝑝𝑖𝑚𝑎𝑥], 𝑝𝑖𝑑(𝑘|𝑡) = 𝑝𝑖𝑑(𝑘|𝑡), 𝜀𝑖(𝑘|𝑡) = 0. 

2. If desired power is less than minimum production limit (𝑝𝑖𝑑(𝑘|𝑡) < 𝑝𝑖𝑚𝑖𝑛) then, 𝑝𝑖𝑑(𝑘|𝑡) = 𝑝𝑖𝑚𝑖𝑛,                                                     𝜀𝑖(𝑘|𝑡) = 𝑝𝑖𝑑(𝑘|𝑡) − 𝑝𝑖𝑚𝑖𝑛.                                      

3. If desired power is greater than maximum production 

limit (𝑝𝑖𝑑(𝑘|𝑡) > 𝑝𝑖𝑚𝑎𝑥) then, 𝑝𝑖𝑑(𝑘|𝑡) = 𝑝𝑖𝑚𝑎𝑥, 𝜀𝑖(𝑘|𝑡) = 𝑝𝑖𝑑(𝑘|𝑡) − 𝑝𝑖𝑚𝑎𝑥 .                          

The algorithm 𝔸ℂ forces the constrained desired power to lie 

within the production limits: 𝑝𝑖𝑑 ∈ [𝑝𝑖𝑚𝑖𝑛 𝑝𝑖𝑚𝑎𝑥], resulting in 

steady state value 𝑢∗ = 𝑃∗ = 𝑃̃𝑑 ∈ [𝑃𝑚𝑖𝑛 𝑃𝑚𝑎𝑥] and 

reaching the equilibrium state defined in (16). The algorithm 𝔸ℂ also provides the correction factor 𝜀𝑖, which is used in Step 

No. 10 to modify the assumed power before communicating to 

neighbouring nodes. As a result, the restriction of local power 

injection to its production limits is invisible to neighbouring 

nodes, allowing the rest of the nodes to converge to an optimum 

production point and satisfy, ℒ𝐶𝑃𝑎 = 𝟘𝑛𝑃. 

Remark 3: The Algorithm 𝔸SDMPC together with 𝔸ℂ forces 

the assumed power (𝑃𝑎) to converge to identical incremental 

cost: 𝐶𝑃𝑎 = 𝛿∗𝟙𝑛𝑃 where, 𝛿∗ represents the constrained 

optimum cost defined in (17). While the equilibrium point in 

terms of actual power (𝑃) will be same as defined in (16). 

Remark 4: Instead of adopting the standard procedure of 

handling the constraints in optimization problem 𝔽𝑖, the 

production constraints are handled in algorithm 𝔸SDMPC and 𝔸ℂ. The reason lies in divergence of (25) for the constrained 

equilibrium states in (16). Now, to illustrate the divergence, 

consider the system in equilibrium state defined in (16). Now, 

for the system to remain in equilibrium: 𝑝𝑖𝑑(𝑡 + 1) = 𝑝𝑖𝑑(𝑡) =𝑝𝑖∗. However, the desired state for the next iteration using (25) 

are given by: 

 𝑝𝑖𝑑(𝑡 + 1) = 11+𝑐𝑖 ∑ 1 𝑐𝑗⁄𝑗∈𝑁𝑐,𝑖 (𝑝𝑖∗(𝑡) + ∑ 𝑝𝑗∗(𝑡)𝑗∈𝑁𝑐,𝑖 ). 

Here, 𝑝𝑖𝑑(𝑡 + 1) ≠ 𝑝𝑖∗, 𝑖 ∈ (𝛽) (if 𝑁𝑐,𝑖 ∩ (𝛼) ≠ 𝕆 or 𝑁𝑐,𝑖 ∩(𝛾) ≠𝕆) indicating divergence from the equilibrium state. 

Equation (25) strives to achieve the identical incremental cost 

which is not possible with constrained equilibrium values in 

(16), resulting in infeasible ED problem. 

The SDMPC technique is implemented individually on each 

power-node, so the size of network does not affect the 

processing time of the algorithm. The control employs an 

improved technique of calculating the desired values to provide 

the fast convergence to the equilibrium point. The decoupling 
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technique enables the implementation of the control to generic 

network topologies. While, the 𝔸ℂ forces the power-nodes to 

follow the power production constraints and achieve the 

solution in (16) and (17). The design of 𝔸SDMPC together with 

the terminal constraints in 𝔽𝑖 results in asymptotic convergence. 

The analytical convergence proof is provided in the following 

Section.  

IV.  STABILITY ANALYSIS 

The stability of the proposed control scheme is analysed in 

two portions: first the convergence of desired values to the 

global optimum point is analysed with the help of terminal 

constraints, followed by the convergence of the cost function.  

To show the stability of the desired states, the dynamics of 

the system are linearised. Calculation of desired power 

introduced in (25), together with terminal constraints in (27) 

and (28), provide asymptotic convergence to equilibrium point. 

While the convergence of the cost function is proved using the 

total cost of the network as a Lyapunov Function. 

A.  Convergence of terminal Constraints 

We start with linearising (20), considering a large value of 

virtual susceptance (𝑏𝑣) that results in a small phase difference (∆𝜃𝑖 − ∆𝜃𝑣,𝑖), for the rated value of power injection. This 

implies that sin(∆𝜃𝑖 − ∆𝜃𝑣,𝑖) ≈ (∆𝜃𝑖 − ∆𝜃𝑣,𝑖). So, the power 

injection of a power-node is given by: 𝑝𝑖(𝑡) = 𝑣𝑖𝑣𝑣𝑏𝑣,𝑖 (∆𝜃𝑖(𝑡) − ∆𝜃𝑣,𝑖(𝑡)). 

Now, linearising (33) and rewriting in vector form to 

represent the complete network. Also, using the assumption that 

the voltage of power-node and virtual-nodes is 1𝑝𝑢: ∆𝜃𝑣(𝑡 + 1) = ∆𝜃𝑜𝑝(1|𝑡) − 1𝑏𝑣 𝑃(𝑡).         (37) 

Now, writing (30) in matrix form: 𝑃𝑑(𝑘|𝑡) = 𝕂𝑃𝑎(𝑘|𝑡).               (38) 

where, 𝕂 = (𝔇(𝐶(𝐴 + 𝐼𝑛𝑃)𝐶−1𝟙𝑛))−1 (𝐴 + 𝐼𝑛𝑃). The 

application of matrix 𝕂 in (38) would drive the desired power 

to an equilibrium point. The matrix 𝕂  possess a single 

eigenvalue at unit circle since the equilibrium power 𝑃∗ ≠ 𝟘𝑛𝑃 . 

To show the asymptotic convergence, we apply the matrix 𝕂 on 

the difference 𝑃𝑎(𝑘|𝑡) − 𝑃∗. From Remark 3, the equilibrium 

value of power can be represented as 𝑃∗ = 𝛿∗𝐶−1𝟙𝑛𝑃: 𝕂(𝑃𝑎(𝑘|𝑡) − 𝑃∗) = 𝕂(𝑃𝑎(𝑘|𝑡) − 𝛿∗𝐶−1𝟙𝑛𝑃), 𝕂(𝑃𝑎(𝑘|𝑡) − 𝑃∗) = 𝕂𝐶−1(𝐶𝑃𝑎(𝑘|𝑡) − 𝛿∗𝟙𝑛𝑃).    (39) 

Here, 𝐶𝑃𝑎(𝑘|𝑡) − 𝛿∗𝟙𝑛𝑃 represents the error from the 

equilibrium point. For asymptotic convergence the eigenvalues 

of 𝕂𝐶−1 should lie within the unit circle. The proof of 

convergence is provided with the help of the following 

Lemmata. 

Lemma 2: Consider a matrix 𝑅 = [𝑟𝑖𝑗] ∈ ℝ𝑛×𝑛, with the set 

of eigenvalues (𝜆𝑖), then according to the Geršgorin Disk 
Criteria [22]: |𝜆 − 𝑟𝑖𝑖| ≤ ∑ |𝑟𝑖𝑗|𝑛𝑗=1,𝑗≠𝑖 .              (40) 

For 𝑟𝑖𝑖 ∈ ℝ≥0, (40) can be rewritten as: |𝜆| ≤ |𝑟𝑖𝑖| + ∑ |𝑟𝑖𝑗|𝑛𝑗=1,𝑗≠𝑖 .             (41) 

Equation (41) is a special case of (40), with non-negative 

diagonal elements. 

Lemma 3: Consider a matrix 𝑅 = [𝑟𝑖𝑗] ∈ ℝ≥0𝑛×𝑛, such that 

eigenvalues of 𝔇(𝑅𝟙𝑛) lie within the unit circle, then the 

eigenvalues (𝜆𝑖) of 𝑅 would be within the unit circle (|𝜆𝑖| < 1). 

Proof: 𝑅𝟙𝑛 represents the row-sum of 𝑅 and the eigenvalues 

of 𝔇(𝑅𝟙𝑛) are equal to its diagonal elements, which are less 

than one. Since all the elements of 𝑅, 𝑟𝑖𝑗 ≥ 0 and according to 

(41) the eigenvalues are less than or equal to the absolute row-

sum of a matrix, so |𝜆𝑖| < 1.∎ 

Lemma 4: The eigenvalues (𝜆𝑖) of 𝕂𝐶−1 = (𝔇(𝐶(𝐴 +𝐼𝑛𝑃)𝐶−1𝟙𝑛𝑃))−1 (𝐴 + 𝐼𝑛𝑃)𝐶−1, where 𝐶 = 𝔇(𝑐𝑖) ∈ ℝ𝑛𝑃×𝑛𝑃, lie 

with the unit circle, provided that 𝑐𝑖 > 1. 

Proof: Since 𝐶 is a diagonal matrix so: 𝕂𝐶−1 = 𝐶−1 (𝔇((𝐴 + 𝐼𝑛𝑃)𝐶−1𝟙𝑛𝑃))−1 (𝐴 + 𝐼𝑛𝑃)𝐶−1. 

Since, all the elements of 𝕂𝐶−1 are greater than zero, we use 

Lemma 3: 𝔇(𝕂𝐶−1𝟙𝑛) = 𝔇(𝐶−1 (𝔇((𝐴 + 𝐼𝑛𝑃)𝐶−1𝟙𝑛𝑃))−1(𝐴 + 𝐼𝑛𝑃)𝐶−1𝟙𝑛𝑃 ), 

= 𝐶−1 (𝔇((𝐴 + 𝐼𝑛𝑃)𝐶−1𝟙𝑛𝑃))−1 𝔇 ((𝐴 + 𝐼𝑛𝑃)𝐶−1𝟙𝑛𝑃), = 𝐶−1.                       (42) 

Then 𝐶−1 is a diagonal matrix and (𝑐𝑖)−1 < 1 implies that |𝜆𝑖| < 1.∎ 

Equation (39) together with Lemma 4 provides the 

convergence proof of desired states to the global equilibrium 

point of the network.  

Theorem I: Consider the power graph 𝔾, with dynamics of 

the power-nodes in (5) and (6). The terminal constraints of 𝔽𝑖 
in (27) and (28), result in asymptotic convergence to 

equilibrium point defined in (9) and (10). 

Proof: From (27) and (32):  𝑃𝑜𝑝(𝒩𝑝|𝑡) = 𝑃𝑝(𝒩𝑝|𝑡) = 𝑃𝑑(𝒩𝑝|𝑡). 

Using (37): 𝑃𝑜𝑝(𝒩𝑝|𝑡) = 𝕂𝑃𝑎(𝒩𝑝|𝑡).             (43) 

Now, if we use the assumption for a while, that 𝜒𝑖𝑎(𝑘|𝑡 + 1) =𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡), then the terminal value of assumed power would 

be: 𝑃𝑎(𝒩𝑝 − 1|𝑡 + 1) = 𝑃𝑜𝑝(𝒩𝑝|𝑡).          (44) 

Now, using (28), (35) and (43): 𝑃𝑎(𝒩𝑝|𝑡 + 1) = 𝕂𝑃𝑎(𝒩𝑝|𝑡).           (45) 

Using Lemma 4, (45) would result in asymptotic convergence 

of terminal states to equilibrium. 

However, it remains to prove that terminal values of 

assumed power 𝑃𝑎(𝒩𝑝|𝑡 + 1) → 𝑃𝑜𝑝(𝒩𝑝|𝑡). Since, 𝜃𝑣,𝑖 and 𝑏𝑣 do not represent the exact equivalent of MG at each power-

node, this may result in: 𝑝𝑖𝑎(0|𝑡 + 1) = 𝑝(𝑡) ≠ 𝑝𝑖𝑜𝑝(1|𝑡), as 𝜃𝑣,𝑖(𝑡 + 1) may not equal the 𝜃𝑣,𝑖(𝑡). Thus, the assumed 

trajectories 𝜒𝑖𝑎(𝑘|𝑡 + 1) may not equal the optimum 

trajectories 𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡) within a given iteration. Now, 

representing the assumed trajectories in terms of optimum 

trajectories and 𝜃𝑣,𝑖(𝑡 + 1) in terms of 𝜃𝑣,𝑖(𝑡): 



 8 𝜒𝑖𝑎(𝑘|𝑡 + 1) = 𝜒𝑖𝑎̅̅̅̅ (𝑘|𝑡 + 1) + 𝜒𝑖𝑎∆(𝑘|𝑡 + 1),     (46)

 ∆𝜃𝑣,𝑖(𝑡 + 1) = 𝜃𝑣,𝑖(𝑡) + 𝜃∆𝑣,𝑖(𝑡 + 1).        (47) 

Here, 𝜒𝑖𝑎̅̅̅̅  follows the optimum trajectories; 𝜒𝑖𝑎̅̅̅̅ (𝑘|𝑡 + 1) =𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡), while the 𝜒𝑖𝑎∆ = [∆𝜃𝑖𝑎∆ ∆𝜔𝑖𝑎∆ 𝑝𝑖𝑎∆]𝑇  

represents the deviation from the optimum trajectories. 

Similarly, 𝜃∆𝑣,𝑖(𝑡 + 1) represents the deviation in virtual phase 

at successive iterations. Now, from (32) we have: ∆𝜃𝑖𝑜𝑝(1|𝑡) = 𝜃𝑣,𝑖(𝑡) + 1𝑏𝑣 𝑝𝑖𝑜𝑝(1|𝑡).         (48) 

So, (37) becomes: ∆𝜃𝑣(𝑡 + 1) = 𝜃𝑣(𝑡) − 1𝑏𝑣 (𝑃(𝑡) − 𝑃𝑜𝑝(1|𝑡)).     (49) 

Comparing (47) and (49); 𝜃∆𝑣(𝑡 + 1) = − 1𝑏𝑣 (𝑃(𝑡) −𝑃𝑜𝑝(1|𝑡)).  

Now, the trajectories for both 𝜒𝑖𝑎̅̅̅̅  and 𝜒𝑖𝑎∆ would be formed 

as follows: 𝜒𝑖𝑎̅̅̅̅ (0|𝑡 + 1) = 𝜒𝑖𝑜𝑝(1|𝑡),             𝜒𝑖𝑎̅̅̅̅ (𝑘 + 1|𝑡 + 1) = 𝑓 (𝜒𝑖𝑎̅̅̅̅ (𝑘|𝑡 + 1), ∆𝜃𝑣,𝑖(𝑡), 𝑢𝑖𝑎(𝑘 + 1|𝑡)), 

for 𝑘 = 0,1, … ,𝒩𝑝 − 2.     

Note that above equations would provide the same result as, 𝜒𝑖𝑎̅̅̅̅ (𝑘|𝑡 + 1) = 𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡). While, the terminal values of 𝜒𝑎̅̅̅̅  

can be found using (27), (28) and (32): 

 𝜒𝑎̅̅̅̅ (𝒩𝑝|𝑡 + 1) = 𝜒𝑎̅̅̅̅ (𝒩𝑝 − 1|𝑡 + 1) = 𝜒𝑜𝑝(𝒩𝑝|𝑡).      (50) 

For 𝜒𝑖𝑎∆ we have: 𝜒𝑖𝑎∆(0|𝑡 + 1) = [0 0 𝑝𝑖𝑎∆(0|𝑡 + 1)],        𝜒𝑖𝑎∆(𝑘 + 1|𝑡 + 1) =  𝑓(𝜒𝑖𝑎∆(𝑘|𝑡 + 1), 𝜃∆𝑣,𝑖(𝑡 + 1), 0).  (51) 

In equation (51), ∆𝜃𝑖𝑎∆(0|𝑡 + 1) & ∆𝜔𝑖𝑎∆(0|𝑡 + 1) are zero. 

Note that the control input in (51) is also zero while, 𝑝𝑖𝑎∆(0|𝑡 + 1) = 𝑝(𝑡) − 𝑝𝑖𝑜𝑝(1|𝑡) = 𝑏𝑣 (∆𝜃𝑖𝑎∆(0|𝑡 + 1) −𝜃∆𝑣,𝑖(𝑡 + 1)). 

Remark 5: The natural response of 𝑓(𝜒𝑖𝑎∆(𝑘|𝑡 +1), 𝜃∆𝑣,𝑖(𝑡 + 1), 0) with zero input and initial conditions, 𝜒𝑖𝑎∆(0|𝑡 + 1) = [0 0 𝑝𝑖𝑎∆(0|𝑡 + 1)]𝑇, is: 𝜒𝑖𝑎∆(𝑘|𝑡 + 1) →[𝜃∆𝑣,𝑖(𝑡 + 1) 0 0]𝑇 for 𝑘 ≥ 3.  

The result in Remark 5 supports the assumption in (44). 

Since, the terminal value of 𝑝𝑖𝑎∆ asymptotically converges to 

zero, this implies that the terminal value; 𝑃𝑎 → 𝑃𝑎̅̅̅̅ = 𝑃𝑜𝑝, 

completing the proof. ∎ 

B.  Convergence of Cost Function 

To show the convergence of the cost function, we consider 

an optimum value of cost function 𝐽𝑖∗(𝑡) and compare it with the 

suboptimal value of cost function. Now the optimum value is 

given by: 𝐽𝑖∗(𝑡) = 𝐽𝑖∗ (𝜒𝑖𝑜𝑝(: |𝑡), 𝑢𝑖𝑜𝑝(: |𝑡), 𝜒𝑖𝑎(: |𝑡), ∆𝜃𝑖𝑑(: |𝑡)),   (52) 𝐽𝑖∗(𝑡) = ∑ 𝑙𝑖 (𝜒𝑖𝑜𝑝(𝑘|𝑡), 𝑢𝑖𝑜𝑝(𝑘|𝑡), 𝜒𝑖𝑎(𝑘|𝑡), ∆𝜃𝑖𝑑(𝑘|𝑡))𝒩𝑝𝑘=1 . 

                       (53) 

Now, according to [22],[23], the feasible solution of 𝔽𝑖 is 

given by: (𝜒𝑖𝑝(: |𝑡), 𝑢𝑖𝑝(: |𝑡)) = (𝜒𝑖𝑎(: |𝑡), 𝑢𝑖𝑎(: |𝑡)).       (54) 

Equation (54), represents the feasible solution which may not 

be an optimum solution of 𝔽𝑖.  

Theorem 2: For the power graph 𝔾, with dynamics of the 

power-nodes in (5) and (6) and satisfying Theorem 1, the cost 

function of 𝔽𝑖 in (29) would converge asymptotically 

satisfying: 

 𝐽𝑖∗(𝑡 + 1) − 𝐽𝑖∗(𝑡) ≤−𝑙𝑖 (𝜒𝑖𝑜𝑝(1|𝑡), 𝑢𝑖𝑜𝑝(1|𝑡), 𝜒𝑖𝑎(1|𝑡), ∆𝜃𝑖𝑑(1|𝑡)) −∑ ||𝜒𝑖𝑜𝑝(𝑘|𝑡) − 𝜒𝑖𝑎(𝑘|𝑡)||𝒩𝑝𝑘=2 . 

Proof: Comparing the optimum cost function in (53) with 

sub-optimum cost function obtained from (54), at time 𝑡 = 𝓉 +1: 

 𝐽𝑖∗(𝑡 + 1) ≤ 𝐽𝑖 (𝜒𝑖𝑎(: |𝑡 + 1), 𝑢𝑖𝑎(: |𝑡 + 1), 𝜒𝑖𝑎(: |𝑡 +1), ∆𝜃𝑖𝑑(: |𝑡 + 1)), ≤ ∑ 𝑙𝑖 (𝜒𝑖𝑎(: |𝑡 + 1), 𝑢𝑖𝑎(: |𝑡 + 1), 𝜒𝑖𝑎(: |𝑡 +𝒩𝑝𝑘=11), ∆𝜃𝑖𝑑(: |𝑡 + 1)). 

From the terminal constraints in (27), (28) and sub-optimal 

solution in (54): 𝑙𝑖 (𝜒𝑖𝑎(𝒩𝑝|𝑡 + 1), 𝑢𝑖𝑎(𝒩𝑝|𝑡 + 1), 𝜒𝑖𝑎(𝒩𝑝|𝑡 +1), ∆𝜃𝑖𝑑(𝒩𝑝|𝑡 + 1)) = 0. 

So, 𝐽𝑖∗(𝑡 + 1) ≤ ∑ 𝑙𝑖 (𝜒𝑖𝑎(𝑘|𝑡 + 1), 𝑢𝑖𝑎(𝑘|𝑡 + 1), 𝜒𝑖𝑎(𝑘|𝑡 +𝒩𝑝−1𝑘=11), ∆𝜃𝑖𝑑(𝑘|𝑡 + 1)). 

Now, from Theorem 1, 𝜒𝑖𝑎∆(𝑘|𝑡 + 1) = 0 for 𝑡 ≥ 𝓉; results 

in 𝜒𝑖𝑎(𝑘|𝑡 + 1) = 𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡) and 𝐽𝑖∗(𝑡 + 1) ≤ ∑ 𝑙𝑖 (𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡), 𝑢𝑖𝑜𝑝(𝑘 +𝒩𝑝−1𝑘=11|𝑡), 𝜒𝑖𝑜𝑝(𝑘 + 1|𝑡), ∆𝜃𝑖𝑑(𝑘 + 1|𝑡)), 𝐽𝑖∗(𝑡 + 1) ≤∑ 𝑙𝑖 (𝜒𝑖𝑜𝑝(𝑘|𝑡), 𝑢𝑖𝑜𝑝(𝑘|𝑡), 𝜒𝑖𝑜𝑝(𝑘|𝑡), ∆𝜃𝑖𝑑(𝑘|𝑡))𝒩𝑝𝑘=2 .    (55) 

Subtracting (55) and (53): 𝐽𝑖∗(𝑡 + 1) − 𝐽𝑖∗(𝑡) ≤∑ 𝑙𝑖 (𝜒𝑖𝑜𝑝(𝑘|𝑡), 𝑢𝑖𝑜𝑝(𝑘|𝑡), 𝜒𝑖𝑜𝑝(𝑘|𝑡), ∆𝜃𝑖𝑑(𝑘|𝑡))𝒩𝑝𝑘=2 −∑ 𝑙𝑖 (𝜒𝑖𝑜𝑝(𝑘|𝑡), 𝑢𝑖𝑜𝑝(𝑘|𝑡), 𝜒𝑖𝑎(𝑘|𝑡), ∆𝜃𝑖𝑑(𝑘|𝑡))𝒩𝑝𝑘=1 , ≤ ∑ ||𝜒𝑖𝑜𝑝(𝑘|𝑡) − 𝜒𝑖𝑜𝑝(𝑘|𝑡)|| + ||∆𝜃𝑖𝑜𝑝(𝑘|𝑡) −𝒩𝑝𝑘=2∆𝜃𝑖𝑑(𝑘|𝑡)|| + ||∆𝜔𝑖𝑜𝑝(𝑘|𝑡)|| −  ∑ ||𝜒𝑖𝑜𝑝(𝑘|𝑡) − 𝜒𝑖𝑎(𝑘|𝑡)|| + ||∆𝜃𝑖𝑜𝑝(𝑘|𝑡) −𝒩𝑝𝑘=1∆𝜃𝑖𝑑(𝑘|𝑡)|| + ||∆𝜔𝑖𝑜𝑝(𝑘|𝑡)||, ≤ −𝑙𝑖 (𝜒𝑖𝑜𝑝(1|𝑡), 𝑢𝑖𝑜𝑝(1|𝑡), 𝜒𝑖𝑎(1|𝑡), ∆𝜃𝑖𝑑(1|𝑡)) −∑ ||𝜒𝑖𝑜𝑝(𝑘|𝑡) − 𝜒𝑖𝑎(𝑘|𝑡)||𝒩𝑝𝑘=2 .                (56) 

From the definition of the cost function in (29), 𝑙𝑖(∙) ≥ 0 and ||𝜒𝑖𝑜𝑝(𝑘|𝑡) − 𝜒𝑖𝑎(𝑘|𝑡)|| ≥ 0, completing the proof.∎ 

Theorem 3: For the power graph 𝔾, with the dynamics of 

power-nodes in (5) and satisfying Theorem 1, the total cost of 

the network; 𝕁∗(𝑡) = ∑ 𝐽𝑖∗(𝑡)𝑁𝑃𝑖=1 , would converge 

asymptotically and satisfy: 𝕁∗(𝑡 + 1) − 𝕁∗(𝑡) ≤−∑ 𝑙𝑖 (𝜒𝑖𝑜𝑝(1|𝑡), 𝑢𝑖𝑜𝑝(1|𝑡), 𝜒𝑖𝑎(1|𝑡), ∆𝜃𝑖𝑑(1|𝑡))𝑁𝑃𝑖=1 −∑ ∑ ||𝜒𝑖𝑜𝑝(𝑘|𝑡) − 𝜒𝑖𝑎(𝑘|𝑡)||𝒩𝓅𝑘=2𝑁𝑃𝑖=1 .              (57) 
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Proof: The summation of (56) for the complete set of power-

nodes provides (57).∎ 

Equation (39) together with the results in Lemma 4 provides 

the proof for asymptotic convergence of desired state values, 

provided that the cost rate 𝑐𝑖 > 1.  The stability of the terminal 

states provided in Theorem 1 is based on equality based 

terminal constraints in 𝔽𝑖. The deviation of assumed trajectories 

from optimum state trajectories is analysed, which is caused by 

the change in virtual phase angle. However, the terminal values 

of assumed trajectories approach the optimum trajectories with 

sufficiently large values of prediction horizon (𝒩𝑝 > 3), as 

discussed in Remark 5. Theorem 2 provides the convergence 

proof of the cost function for individual power nodes while, the 

convergence of the cost for entire network is presented in 

Theorem 3. 

V.  PERFORMANCE VALIDATION 

 The proposed control is simulated on an IEEE 14-Bus 

System and the performance is compared with DAI control. As 

shown in Figure 2, six DRES based power-nodes are used in the 

system (𝑛𝑃 = 6), so, the resulting set of power nodes is; 𝑁𝑃 ={𝑛1 𝑛2 𝑛3 𝑛6 𝑛8 𝑛13}. The performance of the 

proposed control strategy is analysed using two test cases.  

• Case-I demonstrates the fast convergence and ability of  

proposed control to anticipate the upcoming planned 

changes. Both planned and unplanned abrupt changes, as 

well as continuous fluctuations in power demand are 

introduced to test the performance of SDMPC.  

• Case-II represents the performance of the proposed control 

in presence of production constraints to provide the 

constrained ED solution. 

A.  Cases-I  

This case represents the response of the proposed control to 

different types of disturbances and fluctuations\changes in the 

system while, assuming sufficiently large production limits (𝟘𝑛𝑃 ≤ 𝑃 ≤ ∞𝟙𝑛𝑃). Abrupt changes are introduced at 

simulation times of 1 second and 9 seconds while, continuous 

fluctuations in power demand are introduced between the 

simulation time of 3.5 seconds to 8 seconds. The disturbances 

cause the deviation in frequency and optimum production in the 

network. An unplanned change at 1 second is caused by a 

sudden decrease in power demand, while the abrupt change at 

9 seconds is a planned disturbance and all the power-nodes in 

the network have prior information of the disturbance. The 

simulation time of 9 seconds is considered as the start of peak-

hours, where the production cost rate (𝑐𝑖) of all the power-

nodes increases abruptly and not uniformly, disturbing the 

consensus to identical incremental cost. 

Figure 3 represents the convergence to identical incremental 

cost with the proposed control scheme. The largest deviation in 

ED point (and frequency) is caused by the unplanned abrupt 

change at 1 second however, the fluctuations in incremental 

cost are damped within 0.4 seconds. The control actively 

maintains the consensus for ED for varying power demand 

between 3.5 seconds to 8 seconds. Since the disturbance at 9 

seconds is a planned disturbance, each node in Figure 3, 

anticipates the change in cost before 9 seconds resulting in a 

relatively smooth transition to peak hours. Figure 4 represents 

the frequency deviation of the individual power nodes. The 

maximum frequency deviation takes place at 1 second due to 

the unplanned abrupt change in power demand. However, the 

amplitude of deviation in frequency is less than 0.1 (rad/sec) 

which is well within the acceptable limits for the system.  

Figures 5 and 6 respectively represent the incremental cost 

and frequency deviation with DAI control schemes. As shown 

in Figure 5 the system hardly achieves the consensus to 

identical incremental cost after the disturbance at 1 second, 

illustrating the slow response of the control. However, in Figure 

6 the control provides excellent frequency regulation with 

minimal deviations. 

The proposed control scheme outperforms the DAI control 

in terms of fast convergence to maintain the ED. Since the 

power networks frequently undergoes fluctuations in power 

demand, the slow nature of DAI would fail to provide the ED 

resulting in increased production cost and degraded power 

quality. The proposed control scheme does exhibit relatively 

greater deviation in frequency, however the amplitude of the 

deviations is well within the acceptable limits. 

B.  Cases-II  

This case represents the convergence to identical 

incremental cost in the presence of production constraints. The 

production constraints used in the paper are; 𝑃𝑚𝑖𝑛 = 𝟘6 and 𝑃𝑚𝑎𝑥 = [0.60 0.85 1.30 0.70 0.80 0.62]𝑇(𝑝𝑢). The 

simulation starts at equilibrium state, with equilibrium power (𝑃∗) lying well within the production limits 𝑃𝑚𝑖𝑛 < 𝑃∗ <𝑃𝑚𝑎𝑥, resulting in 𝛿∗ = 𝛿∗.  The power demand in the system 

is increased linearly after the simulation time of 1 second 

resulting in increased power injection by the individual power-

nodes. Consequently, the ED solution approaches the maximum 

production limits for the power-nodes; 𝑛1 at simulation time of 1.63 seconds and 𝑛13 at the simulation time of 3.05 seconds.  

The proposed control scheme successfully achieves the 

constrained ED solution defined in (16) and (17). Figure 7 

represents the actual incremental cost (cipi) of power-nodes 

with the proposed control scheme. The incremental cost of 

nodes 𝑛1 and 𝑛13 saturates at 𝑐1𝑝1𝑚𝑎𝑥  and 𝑐13𝑝13𝑚𝑎𝑥, while the 
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Figure 2.   IEEE 14-Bus Test System 
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incremental cost of the remaining nodes converge to an 

identical value; 𝑐2𝑝2 = 𝑐3𝑝3 = 𝑐6𝑝6 = 𝑐8𝑝8 = 𝛿∗. Figure 8 

represents  
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Figure 3.  SDMPC: Identical Incremental Cost (𝑐𝑖𝑝𝑖) Figure 4.    SDMPC: Frequencies deviation (∆𝜔𝑖) 

  
Figure 5.   DAI control: Identical Incremental Cost (𝑐𝑖𝑝𝑖) Figure 6.   DAI control: Frequencies deviation (∆𝜔𝑖) 

  
Figure 7.   SDMPC: Identical Incremental Cost (𝑐𝑖𝑝𝑖), with 

Actual Power (𝑝𝑖) 

Figure 8.   SDMPC: Identical Incremental Cost (𝑐𝑖𝑝𝑖𝑎), with 

Assumed Power (𝑝𝑖𝑎) 

  
Figure 9.   DAI control: Identical Incremental Cost (𝑐𝑖𝑝𝑖) Figure 10.   DAI control: Frequencies deviation (∆𝜔𝑖) 
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the convergence of all the power-nodes to constrained optimum 

cost with assumed power (𝐶𝑃𝑎 = 𝛿∗𝟙𝑛𝑃), as discussed in 

Remark 3. 

Figure 9 represents the performance of DAI control scheme 

in presence of production constraints. The control diverges as 

soon as the single node (𝑛1) reaches its maximum production 

limit and fails to maintain the ED in the system. Figure 10 

illustrates that the control also fails to achieve the frequency 

regulation in the system after simulation time of 1.63 seconds. 

In summary, this Section has demonstrated the value of the 

proposed approach in that: 

• The proposed SDMPC provides active frequency 

regulation and fast convergence to ED, in the presence of 

abrupt disturbances as well as continuous fluctuations in 

the power demand. Whereas, DAI control possesses slow 

convergence and fails to converge in presence of 

fluctuating power demand, resulting in increased 

production cost. 

• The response of SDMPC is particularly better in the case 

of planned disturbances, employing the inherent 

capability of MPC to anticipate the future changes. 

• The proposed control successfully handles the production 

constraints and achieves the constrained ED solution 

whereas, DAI based control becomes unstable when a 

single power-node saturates at its maximum production 

limit. 

VI.  CONCLUSIONS 

This paper addresses the frequency regulation and ED of 

autonomous MG. The paper presents a technique to implement 

a DMPC based secondary control technique to the nonlinear 

coupled dynamics of MG. The concept of a virtual-node is 

introduced to create a decoupled system with known 

parameters, enabling the construction of state predictions and 

implementation to generic network topologies. The control 

benefits from the inherent capabilities of DMPC such as; fast 

convergence and anticipation of upcoming planned changes, to 

effectively comply with the control requirements of low inertia 

MG. Whereas, distributed integral based control fails to 

converge to an ED solution in the presence of fluctuating power 

demands, resulting in increased production cost. Considering a 

practical scenario of volatile production capacity of DRES, the 

Constraints Handling Algorithm is proposed to achieve the 

constrained ED solution. While, the contemporary control 

solutions become unstable as a single DRES node saturates at 

its extreme production limit. The stability of the control is 

ensured with the help of terminal constraints and convergence 

is proved using the total cost of the network as a Lyapunov 

Candidate Function. For future work the presented control 

strategy can be extended to provide the voltage and reactive 

power sharing at secondary control simultaneously, with 

frequency regulation and ED. 
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