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ABSTRACT 

Transformative computing provides an emerging technology to data analysis and information 

processing, but how to effectively connect the data derived from different domains has aroused much 

of concern. Especially on medical areas, the scarcity of annotated medical data makes it hard to build a 

robust classification model, thus, the utilization of medical resources from different sources is 

particularly important. Transfer learning leverages the knowledge gained from the related domain to 

enhance the computational effectivity on the target domain. In this work, we extend transfer learning 

with ensemble learning to present a novel Weighted Multi-Feature Hybrid Transfer Learning 

Framework (W-MHTL) that builds a transformative approach to connect different domains and applies 

it to medical decision making. Our approach lessens the distribution variances from multiple 

perspectives by applying variant types of feature-based transfer learning methods. In each feature space, 

we construct the transfer model by evaluating the corelations and obtain the predicting result from each 

model. Finally, a feasible ensemble strategy is used to jointly consider each result. We evaluate our 

approach on synthetic datasets and UCI medical benchmarks, and a cerebral stroke dataset collected 

from local hospital. The experiment results reveal our method achieves superior performances with the 

currently available alternatives. 

Keywords: medical decision making; transfer learning; ensemble learning; distribution variances; 

transformative computing 

1. Introduction 

With the continues expansion of Internet and the evolution of technology, the data scale grows 

exponentially, which lights the enthusiasm for researchers to apply more intelligent learning methods 

and mine additional useful information in huge number of datasets [1-3]. The Wise Information 

Technology of 120 (WIT120) aims to build a regional medical information platform for health records 

and utilize the intelligent technologies to help doctors and researchers improve the efficiency and quality 

of patients’ medical treatments [4]. Due to the efficient data analysis and information mining abilities, 
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machine learning has become a mainstream approach in WIT120, including healthcare systems [5-7], 

early interventions [8, 9], disease diagnosis support [10-12], and others [13-15]. In real-world 

applications, data analysis is usually run based on large information sets gathered, obtained from varied 

resources, which are frequently independent of each other. Especially in the medical fields, the uneven 

development of medical condition leads to the problems, such as lacking medical resources, limited 

diagnosis information and high diagnostic error rates, which will cause insufficient or even no reliable 

medical data to build a robust classification model. Compared to remote areas, developed areas tend to 

possess sufficient medical resources, including clinical records, medical images, and so on. However, 

these independent medical resources between different areas exist distribution variances caused by 

discrepancies in medical facilities, age groups, geography and other factors [16]. The direct use of 

existing medical models for medical decision making in remote area often fails to reach a satisfactory 

result [17]. Transformative computing aims to provide a persuasive method to execute computations or 

analysis on the data obtained from various resources [18, 19]. Through this way, we can make a rational 

use of multiple resources, to improve the processing ability of target tasks. As illustrated in Fig. 1, the 

main objective of this paper is to construct a transformative method to fix the chasm between different 

medical domains and utilize the medical resources from developed areas as auxiliary supplement to offer 

better medical treatments for medical decision making in remote areas. 

 
Fig. 1. Flow chart of the intelligent medical decision making. 



Transfer learning [20] breaks the hypothesis of traditional machine learning that the distribution of 

training data and testing data must be consistent. It can improve the ability to solve target tasks by 

decreasing the distribution variances and building the connection between domains such that the 

knowledge obtained from the related resources can be effectively used [21]. Following the terminology 

of transfer learning, we denote the one that contains sufficient annotated data as the source domain and 

the one with only limited amounts of data, or none at all, as the target domain [22]. By utilizing massive, 

similar and high-quality medical resources collected in developed areas, transfer learning can be used as 

a transformative way to improve the medical decision making in remote areas. There are four categories 

of transfer learning approaches [20]: instance-based transfer learning [23-25], feature-based transfer 

learning [26-29], model-based transfer learning [30, 31] and relation-based transfer learning [17, 32]. In 

our framework, we mainly consider feature-based and instance-based transfer methods. The 

feature-based transfer learning aims to reduce the discrepancy between source and target domains 

through feature transformation. By rationally transforming the origin source domain and target domain 

into a new feature space, the distribution variance can be effectively reduced. The instance-based 

transfer learning method reuses data based on generating weighting rules and has better theoretical 

foundations. However, some problems still exist in the aforementioned transfer learning approaches in 

practical applications. Feature-based transfer learning methods can only reduce the distribution variance 

from a single perspective, so it is difficult to select an optimal method for a given data set. Moreover, 

when mapped into the new feature space, the traditional methods directly use the source domain to train 

the classifier for target domain, which will cause low generalization by irrelevant instances. 

Instance-based transfer learning is effective in domain distributions with small discrepancies, but it has 

problems when addressing complex distributions. Considering the defects of traditional transfer learning 

methods in medical decision making, we apply various feature mapping methods to transform the source 

domain and target domain into several new feature spaces, in which the discrepancy between domains 

can be effectively reduced from different views. After that, the instance-based transfer learning method 

is used to weight the training sets on account of the different contributions for target domains. The result 

of each single-feature transfer model can be obtained after applying our hybrid strategy. 

To aggregate each single-feature transfer model and integrate each output for a better prediction 

result, we extend ensemble approach and propose a feasible ensemble strategy for our framework. 

Ensemble learning completes classification tasks by constructing and combining multiple weak 

classifiers to achieve better results [33]. The advantages of the combination of ensemble learning and 

transfer learning can be summarized from three main aspects: (1) Accuracy: A combined result achieves 

a better average performance than does a single transfer result; (2) Transferability: A combined solution 

can extract more domain knowledge from the source domain; (3) Robustness: A combined solution can 

reduce sensitivity to distribution variances. In this regard, researchers have conducted different studies. 

For instance, Acharya et al. [34] described an optimization framework that utilized existing classifiers 

trained on source data and a similarity matrix from a cluster ensemble operating on the target data that 

yielded a consensus labelling of the target data. Kandaswamy et al. [35] proposed a methodology to 

reduce the impact of selective layer-based transference and provided an optimized framework that works 

for many transfer learning cases. Bhatt et al. [36] combined transfer learning and co-training paradigms 



and applied this co-transfer learning framework to perform cross-resolution face matching. Our previous 

studies illustrated the advantages of using ensemble learning algorithms [37-41]. 

In this paper, we present a transformative approach which extends transfer learning and ensemble 

learning to solve problems in medical decision making. Our framework has two parts: First, we take a 

combination of feature-based and instance-based transfer learning approaches to form the hybrid transfer 

model. Specifically, considering the complicated distribution variance, we apply multiple feature-based 

methods that decrease the discrepancy from different views. Then the instance-based transfer learning 

method can be used to construct the hybrid models and enhance the connection between different 

domains. Second, we propose an ensemble strategy to make further analysis for each single-feature 

hybrid transfer model and reconcile the predictions to obtain a final transfer result. The main 

contributions of our work are summarized as follows: 

 We leverage the transfer learning and ensemble learning to propose a transformative approach that 

decreases the distribution variance among different medical resources and provides an effective 

solution for target classification tasks on medical decision making. 

 Compared with other solutions, our approach utilizes different feature-based transfer learning 

methods to reduce the distribution discrepancy from various perspectives, which solves the difficulty 

of searching the optimal feature transformation in the conditions of the complex distributions. 

 By combining feature-based transfer learning and instance-based transfer learning to form a hybrid 

transfer model, our approach overcomes the fundamental weakness of reducing the distribution 

discrepancy and eliminates the negative effects by offering a proper weighting strategy for irrelevant 

samples. 

 Based on the different distribution discrepancies after feature mapping, we measure the 

correspondence between source domain and target domain in the transformed feature space and 

propose a novel weighted ensemble strategy to obtain the final results. 

The following parts of this paper are organized as follows. Section 2 presents related works. Section 3 

describes the proposed framework and provides mathematical analysis. Section 4 reports the simulation 

results on a collection of medical datasets. Section 5 provides further discussion of the experimental 

results and possible future work. The conclusions are drawn in Section 6. 

2. Related work 

Domain adaptation is an important branch of feature-based transfer learning that maps source and 

target data into a Reproducing Kernel Hilbert Space (RKHS) [42] in which the distributions of the 

source and target domains should be as similar as possible. Maximum Mean Difference (MMD) [43] is a 

commonly used measurement to compute the differences among various domains [26-29]. By 

minimizing the MMD, the optimal mapping space can be found. The distribution issues that occur 

between the source and target domains can largely be summarized in two different aspects: marginal 

distribution, namely    =S TP X P X  and conditional distribution, namely ( ) ( )S S T T=P Y X P Y X︱ ︱ [21]. 

Many researchers focus on how to provide a proper way to find the optimal transformation based on the 

above variances. But without performing a qualitative analysis of the data distribution, it is quite difficult 



to choose the optimal method to adapt the distribution variances between domains. The instance-based 

transfer learning methods reuse data based on generating weighting rules and has better theoretical 

foundations [23, 24, 44]. For example, TrAdaBoost [23] proposed a new mechanism to automatically 

adjust the weights of training samples. In the source domain, the weights of instances reduced when the 

instances were misclassified, while in the target domain, as in AdaBoost [45], the weights were reduced 

for correctly classified instances and increased for incorrectly classified instances. When assigned 

reasonable weights, the training instances can efficiently transfer the source domain knowledge to solve 

the target task. However, this kind of approach is effective in domain distributions with small 

discrepancies, it will lose its efficiency when addressing complex distributions. 

Recently, lots of researchers have applied transfer learning methods to medical decision making. 

Samala et al. [46] presented a multi-stage transfer learning framework for the classification of malignant 

and benign masses in digital mammography tomography synthesis. By conducting a two-step 

fine-tuning strategy, a well-trained neural network can be firstly fine-tuned with the mammography 

dataset and utilize the annotated digital breast dataset to make a further training. The simulation results 

demonstrate the advantageous of transfer learning in improving the performance of model in target tasks 

when training data is limited. Due to effects of contrast, brightness and artifacts in medical images and 

the time and labour consuming to examine and evaluate, Martinez et al. [47] leveraged transfer learning 

to present an aided diagnosis tool to solve the classification tasks on retinography. They prove its ability 

in distinguishing among different grades of diabetic retinopathy. Wang et al. [48] proposed a transfer 

learning approach with least squares support vector machine, which can leverage the limited training 

sets to maintain the robustness of the model. The proposed approach is applied to a real-world clinical 

dataset to predict overall and cancer-specific mortality in patients with bladder cancer at 5 years after 

radical cystectomy. 

3. Weighted Multi-Feature Hybrid Transfer Learning Framework 

In this section, we propose the W-MHTL. This framework can be mainly divided into 2 parts: the 

construction of the hybrid transfer learning model and MMD-based weighted ensemble. 

3.1. Problem Statement 

Let  s i i= x ,y i = 1,...,n（ ） be the source domain. To enable our transfer learning model, we use 

part of the labelled data as training data in the target domain and denote as 

   U U 1train test train train test
T T T j j j= = x ,y x j = ,...,m（ ）. We assume the feature space is S T= , and the 

label space is S T= . The data distribution between the different domains exists as variances in either 

the conditional probability distribution S S T T( )=P Y P(X Y )X︱ ︱  or the marginal probability distribution 

   =S TP X P X . Therefore, our transfer learning model aims to learn the labels of 
test

T  using the 

source domain S  and the labelled target domain
train

T . 



3.2. Construction of the Hybrid Transfer Learning Model 

Regarding the different types of domain distributions, it is hard to find a high-performing domain 

adaptation method for all given datasets. Therefore, we adopt different types of methods to narrow the 

distribution variance by mapping them into multiple RKHSs. In this research, we adopt four classical 

domain adaptation methods to map the source domain and target domain into new feature spaces and we 

define the mapping function as  1c c= ,...,C . We denote as RKHS,  1,2,...,l L  as the distinct 

class label. The instances belonging to class l  in the source and target domains can be denoted as 

 l
s  and  l

T . 

 Transfer Component Analysis (TCA) [26] is a classical domain adaptation algorithm that reduces the 

distribution variance between the source and target domains mainly from the marginal distribution 

perspective, as shown in Eq. (1). 
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 Transfer Joint Matching (TJM) [27] lessens the discrepancy through the perspective of marginal 

distribution adaptation and the instances are weighted by their importance, as shown in Eq. (2). To 

solve this problem, TJM weights the source domain instances by introducing 
2,1

 [49] to reflect the 

instance correlations. It should be noted that the way of reweighting the instance in TJM occurs in 

feature mapping steps and it is different from the weighting strategy when constructing our transfer 

model. 
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 Joint Distribution Adaptation (JDA) [28] reduces the distance between the source and target domain 

through the perspective of the joint probability distribution, which takes both the marginal and 

conditional distributions into consideration. For the labels in the target domain, using Eq. (3), the 

adopted method generates fake labels by training a simple classifier with a source domain s  and 

constantly reducing the differences over the iterations. 
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 Balanced Distribution Adaptation (BDA) [29] assumes that marginal distribution adaptation and 

conditional distribution adaptation are unequally important. It adaptively adjusts the importance of 

the marginal and conditional distributions in domain adaptation by dynamically adjusting the 

distance between two distributions using a balance factor  where  0,1 . The balance factor in 

Eq. (4) defines the importance of distributions. BDA considers that marginal distribution adaption 



is more important when 0 , and considers the conditional distribution adaption more important 

when 1 : 
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These four feature mapping approaches adopt the idea of MMD to measure the distribution 

discrepancy. However, they solve the transfer learning problems from different perspectives or different 

constraints. The analysis is based on the conceptual framework of Maximum Mean Discrepancy 

Embedding (MMDE) [31], which first takes advantages of kernel tricks to change the way of learning 

the mapping function c  into learning an adaptation matrix cA . Thus, the source and target domains 

are transformed into RKHS, which can be notated as   1
cs c i i= A x , y i = ,...,n（ ）Τ  in the source 

domain and    U 1
c

Train Train Test
T c j j c j= A x , y A x j = ,...,m（ ）Τ Τ  in the target domain. The new data 

distribution after feature mapping has been well proven    
c cTc S cP P  [26-29]. 
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where t
j  represents the weights of target training sets in the  th 1,...,t N  iteration, and the classifier 

f  is trained by all the input training datasets. By denoting  =1/ 1 2ln /n N   and  t = / 1  t t , 

where N is the iteration number and n denotes source instances, the update of new training weights +1t  

can be summarized as follows: 
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The model iterates until the error of the training sets is 0 or reach the iteration number N. By giving 

such a hybrid transfer learning strategy, a robust model  xch  can be acquired to predict the testing 

datasets and obtain the transfer results from each model. 

3.3. MMD-based Weighted Ensemble 

For the complex data distribution in practical problems, different feature-based transfer learning 

methods contribute unequally to the final results, so it is crucial to design a reasonable combination. The 

results of the ensemble owe to the prediction result from each single-feature model, so our assessment 

criterion is to use MMD as a distance metric to evaluate the similarity in each new feature space and we 

denote cDist  as 



    
1 1

1 1
=

n m

c c i c j

i= j=

Dist x - x
n m

        (7) 

To ensure each single-feature transfer learning model makes a constructive contribution to the 

consensus solution, we introduce an efficient weighting scheme. Based on the assumption that a larger 

MMD distance has less similarity, we define the weight cw  as follows 

 
 
 

1

c

c C

cc=

exp -Dist
=

exp -Dist
w      (8) 

where 0cw  and 
=1

=1C

cc
w . We use an inverse function to simulate the purpose of our ensemble 

strategy. Lastly, the weighted hybrid transfer learning framework  H x  is constructed by a linear 

combination of each model ch  with its weight cw . The whole process of W-MHTL is summarized 

in Algorithm 1. 

    
1

C

c c

c

x h x


H w      (9) 

Algorithm 1: W-MHTL 

Input: training sets s  and 
train

T with labels and testing set 
test

T  without labels; 

parameters for domain adaptation 

Output: Ensemble classifier H  

for c=1 to C do 

Find the adaptation matrix cA  of the feature-based transfer learning method. 

Transform all original data into the new pace c . 

Calculate the ambiguity cDist  by Eq. (7). 

Use TrAdaBoost strategy to weight the training sets sc

 and 
train

Tc
. 

Construct a single-feature hybrid transfer model ch . 

end for 

Get the weights cw  for every transfer model using Eq. (8). 

H  Multi-feature hybrid model ensemble classification by Eq. (9) 

 

3.4. Algorithm Analysis 

In our proposed framework, we assume that the classifier from each single-feature model is 

1 2c Ch = h ,h ,...,h , and H  denotes the final ensemble output. Similar to the analysis in [50], we define 



the ambiguity of an input instance x  between each individual model and the ensemble framework as 

follows: 

       2
| = -V h x h x H xc c     (10) 

Thus, the weighted mean of the ensemble ambiguity can be illustrated as:  
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This function illustrates the ambiguity of the weighted mean ensemble output by each model. In 

other words, it measures the disagreement among single-feature models on input x . We denote y  as 

the ground truth label; consequently, the loss of the individual model and the ensemble are adjusted as 

follows: 

     2

c cL h | x = h x - y     (12) 

     2
L H | x = H x - y     (13) 

Let    
1

C

c c

c=

L h| x = L h | xw  represents the mean of the weighted loss for all individual models. 

The formula in Eq. (11) can be transformed into: 
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In our framework, the distribution variances between different domains are reduced after the feature 

mapping. Under the ideal circumstance, we consider the distribution    =
c cS Tc cP P  after feature 

mapping. Therefore, the ensemble ambiguity for all the input instances can be denoted by: 

           
=1 =1

d =
C C

c c c c

c c

V h | x x x L h | x x dx L H | x x dP P xP    w w    (15) 

Similarly, the loss value and the ambiguity terms of an individual model for all input instances can 

be denoted as follows: 



    dc cL = L h | Px x x      (16) 

    dc cV = V h | Px x x      (17) 

and the loss function of the ensemble is: 

    dL = L H | x x xP      (18) 

Here, 
1

C

c c

c=

L = Lw  represents the weighted average of the loss value, and 
1

C

c c

c=

V = Vw  denotes 

the weighted average of the ambiguity. So, the Eq. (15) can be rewritten as follows: 

            
=1 =1

d = d d
C C

c c c c

c c
L

L V

L H | x x x L h | x x x VP P h | x x xP   w  w    (19) 

Equation (19) gives a brief interpretation of the ensemble loss L = L -V , in which the former 

depends on the mean loss values of each hybrid models and latter one includes the variances of each 

model with the ensemble. The greater the accuracy and diversity of each individual model is, the better 

the ensemble results will be. To further analyse Eq. (19), L  is influenced by the loss in each model. In 

our framework, we construct the hybrid transfer learning model by combination of the feature-based and 

instance-based transfer learning, which was sufficiently proven in [23] to be able to reduce the training 

loss both in the source data and target data. The second term in Eq. (19), V  represents the weighted 

average of the ambiguity. The differences among the individual models mainly stems from the results of 

each domain adaptation method. As we mentioned before, it is rare to find a method that performs well 

for all given datasets. Although the distribution variance may be reduced after each feature mapping 

method, some discrepancies will still exist in most of the feature spaces. We expect that such properties 

can be measured by MMD so that the ambiguity of each model can be well reflected. In practical 

medical applications, domain adaptation methods are generally not available for finding the best 

mapping function for a given dataset. Therefore, instead of finding a specific feature mapping function, 

we measure the capacities of the adopted methods from different perspectives by giving them a proper 

weighting strategy to integrate our framework. 

4. Simulations 

In this section, the extensive evaluations and experiments are conducted to validate the effectiveness 

and performance of W-MHTL. We design the experiments from three types of datasets: synthetic 

datasets, UCI medical benchmarks and a cerebral stroke dataset collected from The First People’s 

Hospital of Yunnan Province1, China. 
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4.1. Synthetic Datasets 

It is known that domain adaptation methods can effectively reduce the distribution variances, 

nonetheless different methods come from different perspectives, they convey discrepant transferability 

for the given datasets. For illustration, we use two 2-D synthetic datasets to simulate the marginal 

distribution variance and conditional distribution variance in practical medical applications. To 

demonstrate the discrepancies among the four adopted methods, we compare the differences in the 

Gaussian distribution curve between the source domain and target domain after dimension reduction. 

The datasets are produced by a Gaussian distribution function with different means and covariance 

matrixes as illustrated in Fig. 2. 

  

  

 

 

 



 

 

 

 

Fig. 2. Synthetic data sets demonstrate the different impacts when using different methods: (a) and (f) represent the 2-D datasets 
of the ground-truth; (b)–(e) and (g)–(j) illustrate the Gaussian distribution curves from different types of domain adaptation 
methods. 

 

1) Conditional distribution variance: Fig. 2. (a) shows the simulated conditional distribution 

variance situation in which the data are similar overall but not specific to each class. By mapping them 

into 1-D space, Fig. 2. (b)–(e) show the distribution variances of different domains. By adding the source 

label information into the domain adaptation process, the distribution curves of JDA and BDA become 

more similar, while TCA and TJM perform poorly in this situation. For further illustration, the Gaussian 

distributions of JDA fit perfectly not only in the whole view of datasets but also specific to the curve of 

each class. BDA can reach a better performance like JDA but remains some discrepancy in each class 

that may come from some irrelevant data. While TCA and TJM achieve unsatisfactory results, they 

narrow the distribution only from the perspective of the marginal distribution variance with different 

constraints; thus, they do not achieve good performance in this situation. 

2) Marginal distribution variance: To simulate the marginal distribution variance, we adopt 

different covariance matrices in the source domain and target domain, as shown in Fig. 2. (f). For this 

kind of complex distribution, we can observe from the curves of the source domain and target domain 

that the mathematical expectations for each method are basically similar. On the other hand, from the 

perspective of the standard deviations, the amplitudes of the distributions exhibit a huge discrepancy, 

which means that simply narrowing the distance on holistic measurements of datasets is insufficient 

because some irrelevant instances still exist. In Fig. 2. (e), we see that TCA achieves a better 

performance because the curves show the best matches between domains, while the other three adopted 

methods show unsatisfactory performance.  



In summary, without performing a qualitative analysis of the data distribution, it is quite difficult to 

select an optimal feature mapping method to adapt the distribution variances between the source and 

target domains. Furthermore, as shown in Fig. 2, while the distributions after the domain adaptation are 

similar overall, uncorrelated instances still exist that may cause classifier deviations. Thus, the above 

intuitive demonstration strongly advocates the necessity for the joint use of diverse perspectives and the 

need to reweight the instances to achieve better classification. 

4.2. UCI Medical Benchmarks 

To evaluate the properties of our framework, 18 representative medical datasets from the UCI 

repository [51] were selected to conduct the experiments. By utilizing the methods in [23], we apply 

binary feature values in the datasets, such as age group, area, etc. to split the datasets and simulate 

inconsistent data distributions. In the last 4 groups of datasets, the attributes are all continuous variables. 

One way to separate the source domain and target domain is to select a given attribute and use K-means 

to cluster it into two partitions. Intuitively, these two partitions will have different data distribution and 

we use MMD to further evaluate the variances between different domains. The information of 

concerning datasets is shown in Table 1 in detail. 

Table 1 

The descriptions of the UCI medical data sets. 

Datasets Feature Sample MMD 

Source 

Domain 

Target 

Domain 

Pos. Neg. Pos. Neg. 

Autism 20 346 0.082 126 122 62 36 
Heart Disease 12 270 0.013 83 100 67 20 
Brest Cancer 8 277 0.211 32 30 164 51 

Diabetic 18 1151 3.264 194 193 417 347 
ILPD 9 579 0.457 91 49 323 116 
Sani 54 303 0.184 129 40 87 47 

Thoracic 15 470 0.035 55 268 15 132 
Lung 7 365 0.018 149 100 56 60 
Colic 16 368 0.184 160 110 72 28 

Cervical 32 668 0.385 37 535 8 88 
Cleve 12 296 0.008 71 24 89 112 
Sick 27 2643 0.048 1633 131 798 81 

Hepatitis 18 80 0.176 19 9 28 24 
Bupa 6 345 0.315 58 61 87 139 

Parkinson 22 195 0.032 31 19 116 29 
Mammography 5 830 0.072 23 44 380 383 

Pima 8 768 1.189 94 192 174 308 
WDBC 14 569 0.222 185 93 172 119 

 

For the main parameters of the domain adaptation methods, the adopted experiments settings are 

showed as follows. We simulate the parameter adjustment methods in [27, 28] and seek the optimal 

parameters through an empirical approach. The iterations of the domain adaptation methods (TJM, JDA, 

BDA) are set to 20. The optimal   is obtained from  0.01,0.1,1,10 . The domain adaptation 

methods involve dimensionality reduction, we select  1/ 4,  1/ 2 and 3/ 4  of the initial data 

dimensions for dimensionality reduction and choose the best parameter for each model. In practical 

applications, there is no uniform conclusion on the selection of kernel function, thus empirical 

adjustments are usually employed according to a given dataset. In general, linear kernel is used for 

linearly separable cases, and RBF is mainly used for linearly inseparable cases. We find the optimal 

kernel function for each data set, the RBF kernel is chosen for the datasets Autism, Lung and Cervical, 



while the linear kernel is used for the rest of the datasets. For all the selection of parameters, we adopt 

the grid search to find the optimal parameter sets. The base classifier of this experiment is mainly used 

to validate the effectiveness of W-MHTL; thus, we chose C4.5 as the base classifier for TrAdaBoost 

with T=10 iterations. We randomly select 10% target samples as target training sets in each experiment 

and set the same random seed to guarantee the fairness. The results are compared with the average 

accuracy and standard deviations of the 10-fold cross validation results.  

1) The Effectiveness of W-MHTL: To further demonstrate the effectiveness of W-MHTL, we 

compare the results of each single-feature hybrid model and different ensemble strategies with our 

approach. Table 2 collectively lists all the experimental results from two aspects. Regarding transference 

on single features, no single-feature model can produce optimal results on all the datasets; the winning 

performances spread across the four models on different datasets. These results illustrate the difficulty of 

choosing the most effective domain adaptation method for a given dataset. To compare with the MHTL 

which considers the importance of each model equally, our weighting strategy also shows its superiority. 

As shown in Table 2, our approach achieves expressively better performance in terms of both 

classification and standard deviations. The objective of our W-MHTL framework is to obtain a more 

universal way that considers complex data distribution from different perspectives and weighting 

methods. Our approach achieves the best performances on 16 out of 18 datasets, which provides a strong 

indication of its effectiveness. 

Table 2 

Classification accuracy (%) of different transfer learning models on medical benchmarks. 

Datasets 
Single Feature Mapping Multi Feature Mapping 

TCA [26] JDA [28] BDA [29] TJM [27] MHTL W-MHTL 

Autism 75.3±1.6 75.7±6.6 74.1±3.6 71.5±3.2 80.1±3.9 78.1±3.4 

Heart Disease 78.6±2.8 79.2±4.1 76.4±3.1 77.4±5.3 79.6±2.9 80.2±2.6 

Brest Cancer 72.5±1.7 70.5±2.8 68.8±3.2 71.3±2.2 72.7±1.8 74.4±1.2 

Diabetic 66.3±1.3 66.1±1.3 66.9±1.4 66.7±1.2 67.3±1.2 68.4±0.8 

ILPD 67.4±2.1 65.4±1.1 67.1±1.6 66.7±1.5 67.5±2.1 69.9±0.9 

Sani 70.3±2.4 69.4±2.5 69.1±3.1 68.2±2.9 68.7±2.8 72.3±2.8 

Thoracic 84.8±1.9 84.8±1.3 85.4±2.2 84.3±1.1 86.6±1.9 87.1±1.7 

Lung 68.4±2.2 66.2±3.0 68.1±3.1 67.7±1.2 68.8±3.2 70.4±2.3 

Colic 72.1±1.5 70.5±1.5 71.9±2.8 69.9±2.7 74.3±2.7 76.7±2.2 

Cervical 86.4±1.7 88.6±2.9 88.1±4.3 87.8±3.4 90.6±2.2 93.6±1.8 

Cleve 68.9±2.1 69.8±2.9 70.1±2.6 69.1±3.2 70.5±2.7 72.1±2.3 

Sick 93.1±0.7 93.4±0.4 92.4±0.7 93.2±1.2 93.9±0.8 95.1±0.4 

Hepatitis 63.2±3.9 66.2±4.1 65.5±3.5 67.1±3.8 67.4±3.3 68.9±3.2 

Bupa 65.4±1.3 67.8±2.2 66.9±3.2 66.1±1.9 69.1±1.2 72.9±1.7 

Parkinson 73.2±1.7 75.6±3.7 76.0±2.3 75.3±1.4 77.2±3.8 79.4±2.4 

Mammography 69.5±1.4 71.3±2.4 70.7±2.6 71.1±2.0 71.3±2.3 73.8±1.8 

Pima 61.1±1.4 62.4±2.7 63.1±2.1 61.5±2.3 64.1±1.3 66.8±1.8 

WDBC 93.3±0.8 92.5±0.8 94.5±1.0 91.7±1.8 93.4±0.9 93.8±0.4 

 

2) The Performance of W-MHTL: In this part, we compare our W-MHTL approach with other three 

state-of-the-art transfer learning algorithms for medical classification problems, i.e., TrAdaBoost [23], 

MTLF [52] and CODA [53]. All the compared algorithms require data with class notation in target 



domain, and we use C4.5 as the base learner for all adopted methods. Table 3 shows that TrAdaBoost 

and the MTLF algorithm each win on two datasets, and the CODA wins on one dataset, while our 

W-MHTL approach achieves the best results on the other 13 datasets. For further analysis, compared 

with the feature selection and the matrix processing, the direct sample weighting retains the original data 

properties thus, the TrAdaBoost algorithm has advantages for processing data with small distribution 

differences. However, as the distribution variances become larger between the source and target 

domains, TrAdaBoost will lose its efficacy. The MTLF and CODA belong to feature-based transfer 

learning methods. From Table 3, we can easily see their effectiveness when the instance-based methods 

loss its power in datasets Sani, Lung and Sick. The MTLF takes advantage of the Mahalanobis distance 

[54] to measure the distribution discrepancy between source and target domains instead of MMD. The 

CODA conducts a feature selection strategy based on the Pearson correlation coefficient [55], then 

co-training is used to improve the classifier. However, we can also see that it has limitations when faced 

with complex distribution variances. 

Table 3 
Classification accuracy of different transfer learning methods on benchmarks. 

Datasets TrAdaBoost [23] MTLF [52] CODA [53] W-MHTL 

Autism 83.6±3.3 87.6±2.6 80.7±2.3 78.1±3.4 

Heart Disease 70.8±1.3 78.9±1.1 75.4±1.2 80.2±2.6 

Brest Cancer 69.1±3.2 71.4±3.6 73.1±2.3 74.4±1.2 

Diabetic 62.8±1.3 64.4±1.2 65.7±1.3 68.4±0.8 

ILPD 68.9±1.5 68.1±1.3 66.1±2.5 69.9±0.9 

Sani 72.5±2.8 74.8±1.7 73.4±2.9 72.3±2.8 

Thoracic 86.1±1.8 80.2±2.4 82.1±1.7 87.1±1.7 

Lung 67.2±2.9 68.8±1.7 77.4±2.1 70.4±2.3 

Colic 74.7±3.4 76.1±1.0 75.7±1.6 76.7±2.2 

Cervical 91.4±0.9 93.3±0.5 90.3±0.7 93.6±1.8 

Cleve 71.2±3.0 70.6±1.4 69.5±1.2 72.1±2.3 

Sick 92.5±0.7 95.9±0.1 90.6±0.2 95.1±0.4 

hepatitis 61.9±2.4 65.7±1.9 65.3±2.8 68.9±3.2 

Bupa 64.3±2.3 65.1±2.3 68.1±3.2 72.9±1.7 

Parkinson 83.4±1.7 81.5±0.5 81.2±1.2 79.4±2.4 

Mammography 70.4±1.3 71.2±1.6 69.8±2.3 73.8±1.8 

Pima 64.0±1.6 61.8±1.8 60.9±3.5 66.8±1.8 

WDBC 89.8±1.5 90.7±0.9 90.5±1.5 93.8±0.4 

 

In Fig. 3, we compare our W-MHTL framework with other algorithms regarding the limited training 

sample problems. We focus on the datasets Breast Cancer and Diabetic. In Fig. 3, the X-axis respects 

the percentages of the training data in the target domain: 5%, 10%, 20%, 30%, 40% and 50%, while the 

Y-axis represents the accuracy. As shown in Fig. 3, we see the advantages of transfer learning when 

addressing limited training sample problems. By utilizing knowledge from the source domain, the task 

of the target domain can be solved well. The W-MHTL yields better performances than any of the other 

algorithms when there is limited training data on target domain. The accuracy curves improve sharply 

when the ratio is less than 0.1, especially for the Breast Cancer, but gradually flatten out after the ratio is 

larger than 0.1. Fig. 3 shows that traditional machine learning may be able to learn a suitable classifier 

when the training data ratio is larger than 0.3. To further demonstrate the performance of W-MHTL, we 

select two representative unbalanced datasets and use the Receiver Operating Characteristic (ROC) and 



Area Under Curve (AUC) for comparison. The experiment results are reported in Fig. 4. It can be 

observed that W-MHTL achieves better AUC which means our method is more robust than other 

compared algorithms and has better resistance to the processing of unbalanced datasets. 

 
Fig. 3. Experimental results on different ratios of target training data. 

 

Fig. 4. The ROC curves on unbalanced datasets. 

 

4.3. Application on Actual Medical Data 

In this section, we verify our W-MHTL framework using actual medical data obtained from The 

First People’s Hospital of Yunnan Province, China. Cerebral stroke is an acute cerebral vascular disease, 

a type of brain tissue injury caused by sudden blood vessel ruptures in the brain or blood flow 

interruptions to the brain because of vascular obstruction, including both ischaemic and haemorrhagic 

strokes [56]. Due to lack of effective medical treatment, early prevention is the best approach, among 

which hypertension is considered as an important controllable stroke risk factor. Therefore, we aim to 

simulate an experiment in this section to diagnose cerebral strokes in people with hypertension and 

people without hypertension. As described above, we separate the datasets on the hypertension feature to 

form the source and target domains and the partition results are reported in Table 4. Our task is to use 

the knowledge from the data of patients with hypertension to assist in the final task of diagnosing the 

risk of cerebral stroke in people without hypertension.  

Table 4 

The description of real dataset. 

Data 

Sets 
Feature Sample MMD 

Source 

Domain 

Target 

Domain 

Pos. Neg. Pos. Neg. 

Cerebral 31 3438 0.235 2246 49 1083 61 



Stroke 

 

Considering the unbalanced nature of origin dataset, we use SMOTE [57] to make the number of 

positive and negative instances balanced before applying the transfer learning methods for them. By 

adopting the experimental setups described in Section 4.3, we expect to demonstrate the performance of 

our approach in practical applications involving limited training samples as well as its effectiveness on 

resource-sharing problems. As shown in Fig. 5, our framework achieves the best performance among all 

the compared methods when the training data ratio is below 0.2. This result demonstrates the feasibility 

of transfer learning methods when training data in the target domain are rare. As the number of training 

data increases, it is sufficient to simply train a classifier for the final task, and there is no need to use 

transfer learning. However, considering the scarce training data in practical problems, especially in 

medical problems, it is necessary to construct a robust classifier by transfer learning methods and our 

methods provide a satisfactory solution in such cases. 

 

Fig. 5. Experimental results on different ratios of real datasets. 

 

5. Discussion 

As illustrated in Section 4, W-MHTL obtains high-quality transfer learning results even with 

extremely limited target training data. Therefore, it provides a promising yet easy-to-use technique for 

addressing transfer learning problems. After analysing from the mathematical formulas and the overall 

experimental results, the novelties and the deficiencies of our approach are summarized as follows. 

Firstly, the usage of different feature perspectives in our framework plays an important character in 

mitigating the complex distribution variances in medical applications. As shown in Fig. 2, it is difficult 

to find a high-performing method for all given datasets in complex practical applications. The simulation 

results in Table 2 and Table 3 consistently indicate that our framework not only provides better 

classification accuracy than any other compared methods, but also has the stability for the given 

datasets. Furthermore, by applying multiple feature-based transfer learning methods, W-MHTL can 

improve the generalization especially on unbalanced datasets. 

Secondly, our approach combines the strengths of both feature-based and instance-based transfer 

learning approaches. As shown in Fig. 2 the data distribution after domain adaptation is similar in the 



mass but some irrelevant instances still exist that may cause negative transfer. Thus, a hybrid strategy 

that combines the feature-based and instance-based transfer learning approaches can solve both data 

variance and instance reuse problems. Table 2 lists persuasive experimental results that such a 

combination substantially improves the approach to solving transfer learning problems. Nevertheless, we 

are convinced that when there are few differences in the data distributions, instance-based transfer 

learning forms a better solution for representing the information loss during feature-based transfer 

learning methods. We list the MMD values of the collected datasets in Table 1 and find an interesting 

phenomenon that data with small variances in distribution tend to get higher accuracy. However, 

TrAdaBoost does not achieve excellent classification results in all datasets with small distribution 

variances which reveals that feature-based transfer learning methods can reduce the divergences. 

Furthermore, they enhance the separability of data for a better classification. 

Thirdly, the proposed ensemble strategy produces a consolidated solution for combining each 

single-feature hybrid transfer learning model through a quantitative analysis of the transfer ability in 

each feature space. The objective function derived in (15) declare that the performance of our framework 

depends on both the quality and the diversity of each model, which means that the transfer problem must 

be solved from different viewpoints. The performance of TrAdaBoost was well-proven in its proposing 

paper; the diversity of each model stems mainly from the distance between the source domain and the 

target domain, which we measure using MMD. On a collection of benchmark datasets, the experimental 

results shown in Table 2 demonstrate the effectiveness of the proposed ensemble strategy in comparison 

with its prototype. Compared with other classical transfer learning methods, Table 3 shows the 

superiority of our approach, while Fig. 3 illustrates its effectiveness in dealing with limited training 

sample problems. Finally, in our tests, the W-MHTL also illustrates its feasibility on real-world 

problems and achieves satisfactory results. 

Although the experimental results demonstrate that our proposed method achieves a certain level of 

superiority on benchmark datasets and real-world dataset, some constrains still exist for further study. 

The computational overhead of domain adaptation is quite expensive; thus, our framework requires 

relatively high computation to find a suitable feature space to reduce the distribution variances. 

Moreover, this method requires many parameters, but we can seek the optimal parameter values only 

through an empirical approach, which makes finding the best parameter values a bit difficult. 

Furthermore, while our approach is compatible with any other domain adaptation algorithms for initial 

feature mapping, how to select appropriate methods for the target domain, which has different 

characteristics, remains an interesting topic for further research. Finally, the measurement of 

transferability is crucial in transfer learning problems—not only to evaluate the data variances between 

domains but also to consider the target task’s accuracy. Such measurement can effectively avoid 

negative transfer problems, which means that we need to define a more reasonable way to select the 

optimal module in our framework. 

6. Conclusion 

In this paper, we presented a transformative method named W-MHTL which constructed the 

connection between different domains and provided a feasible solution for the fundamental problems in 



medical decision making. Under the condition of limited training data on target domain, our model 

combined both feature-based and instance-based transfer learning to make a sufficient leverage of the 

related domain as auxiliary to improve the performance on target domain. Considering the complicated 

distribution variance in practical application, we utilized multiple feature-based transfer learning 

methods to decrease the gap between domains from different perspectives and weighted the instances by 

their correlations. Finally, we designed a consensus function to further enhance the connection between 

the source domain and target domain. The simulation results showed that our transfer learning 

framework yields better results when solving transfer learning problems in medical fields. The 

experiments to test our framework on real medical data sets demonstrated its robustness. 
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