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Systematic analysis of inner crust composition using the extended Thomas-Fermi

approximation with pairing correlations

Matthew Shelley∗ and Alessandro Pastore†

University of York, Heslington, York, YO10 5DD, United Kingdom,

(Dated: February 25, 2021)

We perform a systematic investigation of the chemical composition of the inner crust of a neutron
star, using the extended Thomas-Fermi approximation, the Strutinsky integral correction for shell
effects, and the BCS approximation for pairing. 15 Skyrme functionals were selected, which cover
the range of values of important bulk properties of infinite nuclear matter, while also having pure
neutron matter (PNM) equation of states (EoS) with varying degrees of stiffness. We find that
a functional’s low-density PNM EoS is correlated with the number of protons found in the inner
crust’s nuclear clusters and, in the lower-density region of the inner crust, with the pressure.

I. INTRODUCTION

Due to a strong pressure gradient, the matter within
a Neutron Star (NS) organises itself into different lay-
ers [1]. Near the surface of the star lies the crust, where
neutrons and protons are arranged in nuclear clusters in
a crystalline structure, that transitions gradually into a
liquid phase [2] approaching the core of the star [3].
Although the crust only accounts for a small fraction of

the mass of the NS, it plays a major role in a variety of as-
trophysical phenomena, including the r-process [4], short
gamma-ray burst precursors caused by resonant shatter-
ing [5], soft gamma-ray repeater giant flares [6, 7], and
thermal relaxation in soft x-ray transients. The equa-
tion of state (EoS) of the crust is also believed to in-
fluence many properties of NS, such as the moment of
inertia [8] which influences pulsar glitches, transport phe-
nomena within the star [9–11], the relation between the
radius and tidal deformability in low-mass NS [12], and
the value of the second Love number, k2 [13, 14]. There-
fore it is crucial to have a reliable model of the crust of
a NS, in order to achieve accurate descriptions of these
phenomena.
As discussed in Ref.[1], current models predict that the

crust has a crystalline structure, comprising neutron-rich
nuclei surrounded by ultra-relativistic electrons [15–17].
The crust can be further separated into the inner and
outer parts. The outer crust is the lower-density part
of the crust, where neutrons are found only in bound
states. The inner crust begins above baryonic densities
of nb ≈ 1011 g cm−3, where neutrons begin to drip out of
the nuclei, forming a gas.
Since the pioneering work of Negele and Vautherin [18],

many theoretical models have been developed to study
the properties of the inner crust. The presence of a neu-
tron gas dramatically changes the properties of the clus-
ters [19], in contrast to the outer crust, whose nuclei are
isolated. Consequently, determining the composition of
the inner crust requires a simultaneous treatment of the
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clusters and the neutron gas. To simplify this task, it is
customary to adopt the Wigner-Seitz (WS) approxima-
tion, in which the inner crust is decomposed into inde-
pendent spheres, named WS cells, centered around each
cluster, with a radius RWS . Each cell is at β-equilibrium,
with a certain number of protons, Z, and the same num-
ber of electrons (under the condition of charge-neutrality)
spread through the cell. Using this approximation, the
values of Z (the chemical composition) and RWS can be
determined at a given baryonic density, nb, by minimising
the total energy per particle, e, of the cell [20]. This pro-
cedure is valid only in the zero-temperature limit, which
is applicable to the case of a non-accreting NS.

Since the density of electrons in the crust is essentially
uniform [21], it is possible to calculate their contribution
to e analytically [1]. The nuclear contribution is more
complex and requires the use of a model. In the liter-
ature, several models are used to determine the nuclear
binding energy of the system, such as the compressible
liquid drop model [22], semi-classical models using the
Thomas-Fermi approximation [20, 23–28], or the Hartree-
Fock(-Bogoliubov) equations [18, 29].

Ideally, in order to model the EoS of a NS in a uni-
fied way, one should use the same model for all of its
layers. The ideal choice is a fully microscopic method
based on solving the Hartree-Fock-Bogoliubov (HFB)
equations [29–31], using an effective nucleon-nucleon in-
teraction [32, 33] adjusted to reproduce selected nuclear
observables [34]. A big disadvantage of this approach is
how the HFB equations treat continuum states in the
inner crust using Dirichlet-Neumann boundary condi-
tions [31, 35, 36], which leads to spurious shell effects.
New methods to overcome such a problem have been sug-
gested [37, 38], but no systematic calculations of the WS
cells have been performed yet.

To avoid this difficulty, several authors have opted
to instead use the extended Thomas-Fermi (ETF)
method [24, 26, 39]. Due to its semi-classical nature,
the ETF method is not affected by the spurious shell ef-
fects of the neutron gas encountered in the standard HFB
approach. In Ref. [25], the ETF method was extended
to use the Strutinsky integral (SI) correction to recover
the important shell effects for the protons in the clus-
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ters. This method, named ETFSI, calculates the nuclear
energy contribution using parameterised nuclear density
profiles, while still using the same energy density func-
tional to generate the fields as in the HFB method. In
Ref. [40], the ETFSI method was further developed to
take into account the effects of proton pairing correla-
tions.
In a recent series of articles [41, 42], we have performed

a systematic comparison between the HFB and ETFSI
methods, which have typically yielded different results
for the structure of the inner crust. In particular, we
observed that by adding to ETFSI the effects of neu-
tron pairing correlations under a simple local density ap-
proximation, the resulting energy per particle agrees well
with that obtained using the HFB method, apart from
the very low density region where the outer-inner crust
transition takes place.
Having quantified the agreement of this

ETFSI+pairing method with HFB, we can now address
an interesting question, namely, why Zirconium isotopes
(i.e. clusters with Z = 40) are consistently predicted
throughout the inner crust [20, 25, 39, 43–45]. To answer
this, we perform systematic calculations of the inner
crust EoS, selecting several Skyrme functionals whose
various infinite nuclear matter (INM) properties [46]
cover reasonable ranges. By investigating possible
relationships between the INM properties of Skyrme
functionals and the proton content and pressure of the
WS cells, we aim at providing a better understanding
of previous investigations of the structure of the inner
crust.
The article is organised as follows: in Sec. II, we outline

the main features of the ETFSI+pairing method, and in
Sec. III we discuss the Skyrme functionals selected for
this work. In Sec. IV, we present results for the chemical
composition and EoS of the inner crust, and we give our
conclusions in Sec. V.

II. THE ETFSI+PAIRING METHOD

We now briefly review the ETFSI+pairing method,
used to study the structure of the inner crust. For a
more detailed discussion on the ETFSI method we refer
the reader to Refs. [20, 25].
In this article, we consider only cold non-accreting NS,

and so we neglect the effects of temperature [47, 48].
Under the WS approximation, for a fixed baryonic den-
sity nb in the inner crust, we minimise the total energy
per particle of the WS cell

e = eSky + ee − YpQn,β . (1)

eSky is the contribution to e from the interaction of the
baryons via the strong force and from the Coulomb inter-
action between the protons. ee is contribution from the
kinetic and potential energies of ultra-relativistic elec-
trons [49] and from the proton-electron interaction [29].

The last term accounts for the mass difference between
neutrons and protons, Qn,β = 0.782 MeV. Yp = Z/A
is the proton fraction in the cell, where A is the total
number of baryons in the cell.
The nuclear part of the energy per particle is expressed

as functional of local densities as [33]

eSky =
1

A

∫

E

(

nq(r), τq(r), ~J(r)
)

dr , (2)

where q = n, p stands for neutrons (n) and protons (p).
Considering only time-reversal invariant systems [50], the
standard Skyrme functional [51] depends only on a linear
combination of the matter densities nq(r), kinetic densi-

ties τq(r), and spin current densities ~J(r), and on their
derivatives.
To calculate eSky, we use the ETFSI+pairing

method [25, 40, 42]. In this approach, the densities nq(r)
are not calculated using the wave-functions, as in the
HFB method [52], but are instead parameterised using
Fermi-Dirac density profiles [25] as

nq(r) =
ρliqq − δq,nρ

gas

1 + exp
(

r−rq
aq

) + δq,nρ
gas . (3)

ρliqq=n,p are the densities of the neutrons and protons at
the centre of the WS cell, r = 0, while ρgas is the neutron
density at the cell edge, r = RWS . rq=n,p are the radii
of the neutrons and protons in the cluster, and aq=n,p

are their cluster surface diffusivities. These 7 adjustable
parameters are determined by the minimisation of the
energy per particle, given in Eq. 1, under the constraints
of charge neutrality and β-equilibrium. We also use the
relations presented in Ref. [25], reducing the number of
free parameters to 5. In Ref. [26] the authors introduced
an exponent for the denominator in Eq. 3, but they con-
cluded that the results are largely unchanged, so we do
not consider such a parameterisation.

The ETF method expresses τq(r) and ~J(r) as a func-
tion of the matter densities and their derivatives, up to
4th order in the Wigner-Kirkwood expansion [53]. The
full expressions of these quantities are given in Ref. [54].
In this semiclassical approach, shell effects are lost;

they are recovered with the Strutinsky integral (SI) cor-
rection suggested in Ref. [25]. The main advantages of
this ETFSI method over the HFB method are the reliable
treatment of the neutron gas [35, 55], and the dramatic
reduction in computational cost needed for the energy
minimisation.
In the original ETFSI method [20, 25], pairing corre-

lations were not taken into account, despite their fun-
damental role in describing several important phenom-
ena related to the physics of the inner crust [30, 56–
58]. Recent improvements of the model presented in
Refs. [40, 42] now allow the inclusion of pairing corre-
lations for both protons and neutrons.



3

The resulting ETFSI+pairing model leads to results
that agree well with the most accurate HFB results cur-
rently available [31]. At the interface region between the
outer and the inner crust, a non-negligible discrepancy
was observed [42], but this concerns a very limited den-
sity region and it will not modify the conclusions of this
article.
Since Skyrme functionals are often fitted on doubly-

magic nuclei, they are not usually equipped with a con-
sistent pairing interaction. Therefore, for each functional
used in this work, we add a simple density-dependent
pairing interaction of the form [59]

vpairq (r1, r2) = v0q

[

1− η

(

nq(r)

n0

)α]

δ (r1 − r2) . (4)

We choose the parameters η = 0.7 and α = 0.45. n0

is the saturation density of the functional. We assume
that the pairing strength v0q is the same for neutrons
and protons, and we fix it to obtain a maximum pairing
gap in pure neutron matter (PNM) of ≈ 3 MeV, as done
in Ref. [29]. These choices may appear arbitrary [60],
but it was shown in Ref. [42] that a variation of the
pairing strength does not impact the resulting chemical
composition of the inner crust. To avoid the ultravio-
let divergence of the interaction given in Eq.4 [61], we
adopt a smooth cut-off in quasi-particle space as defined
in Ref. [29].
For functionals of the BSk family [62], we keep the

pairing interaction used and developed by the authors.

III. CHOICE OF FUNCTIONALS

According to Ref. [46], more than 240 Skyrme func-
tionals have been published in the literature. Typically,
their parameters are adjusted to reproduce the binding
energy of some (or all) atomic nuclei, and also some INM
properties. There is no standard parameter fitting pro-
tocol; various (pseudo)-observables are used in fitting,
with widely varying uncertainties. As a consequence, it
is difficult to assess the quality of functionals.
The neutron gas in the WS cell is similar to an infinite

nuclear system, and comprises the majority of the bary-
onic matter in the inner crust. We therefore focus on 4
INM properties of the functionals: the saturation den-
sity n0, the energy per particle E0, the symmetry energy
J , and its slope L, all evaluated at n0. These quanti-
ties depend exactly on the EoS of INM [63], and so one
can expect that variations in the EoS lead to modifica-
tions in the energy per particle of the neutron gas, thus
changing the relative energy contributions from baryons
and electrons in the WS cell, and ultimately affecting the
chemical composition and pressure in the inner crust. In
Fig. 1, we show as histograms the distributions of n0, E0,
J and L, for all the functionals in Ref. [46].
By inspecting the lower panels of Fig.1, we observe

that not all functionals given in Ref. [46] are shown. In
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FIG. 1. (Colors online) Each panel represents the distribution
of the Skyrme functionals given in Ref. [46] for 4 INM prop-
erties. Starting from the top left panel and going clockwise
we show n0, E0, L and J . The values of each quantity for
the 15 functionals selected in this work are shown as labelled
vertical lines. See text for details.

our selection process, we imposed two additional con-
straints on the symmetry energy and its slope, namely
30 ≤ J ≤ 35 MeV and L = 58 ± 18 MeV. These ranges
of values are the ones suggested in Ref. [46]. These con-
straints are to some extent arbitrary, as there is no con-
sensus on what constitutes a reasonable range of values
for J and L, but they are consistent with the findings of
recent analyses [64–68], and with results and associated
uncertainties from new chiral EFT calculations [69, 70].
From this group, we finally selected 15 functionals

which have a wide range of values for each of n0, E0, J ,
and L: BSk22 and BSk24 [62], KDE [71], KDE0v1 [71],
LNS [72], NRAPRii [73] (NRAPR [74] with the spin-
orbit strength modified), SII [75], SIV [76], SKRA [77],
SKA [78], SLy4 [79], SQMC650 and SQMC700 [80],
SkM∗ [81], and Skz-1 [82]. Their INM properties are
labelled in Fig. 1. Five of them — KDE0v1, LNS,
NRAPR, SKRA and SQMC700 — are consistent
with all the INM constraints presented in Ref. [46], and
are named in that reference and hereafter as the CSkP∗

set.
For our functional selection, we also show the energy
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FIG. 2. (Colors online) The EoS of PNM as a function of the
neutron density nn for the 15 functionals selected in this work.
The shaded area represents the constraint given in Fig. 4(a)
of Ref. [46]. The functionals labelled in the upper left are the
Stiff set, and those in the lower right the Soft set. See text
for details.

per particle ePNM in PNM in Fig. 2, for the density
range relevant for spherical inner crust calculations. The
functionals clearly fall into two distinct families: the set
BSk24, KDE, KDE0v1, SII, and SLy4, with a stiff EoS at
these low densities (hereafter the Stiff set), and the set
BSk22, LNS, NRAPRii, SIV, SKRA, SKa, SQMC650,
SQMC700, SkM*, and Skz-1, with a very soft EoS (here-
after the Soft set). On the same figure, we have added a
shaded area which corresponds to the range spanned by
several ab-initio calculations used to derive the EoS in
PNM, and which is discussed in Fig. 4(a) of Ref. [46].

The Stiff set, including SLy4 and BSk24 which have
been widely used for NS calculations, are in disagree-
ment with the ab-initio calculations at these densities.
In contrast, the majority of the Soft set are in reasonable
agreement, apart from Skz-1 which is very soft. How-
ever, the ab-initio calculations selected in Ref. [46] do
not represent the entire range available in the literature.
As shown in Ref.[62], BSk24 and SLy4 are compatible
with the error bars provided by chiral effective field the-
ory calculations from Ref [83].

The inner crust does not only comprise neutrons, but
also has a significant proton fraction, and so it is interest-
ing to observe the behaviour of the symmetry energy S
in the relevant density region and not only at n0. This is
shown in Fig. 3, where we again observe a similar group-
ing into the Stiff and Soft sets as shown in Fig. 2. The
reason is quite simple and can be understood from Fig. 1:
the vast majority of the functionals have values of n0 and
E0 in a very narrow range. This means that all these
functionals have a very similar EoS in symmetric nuclear
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FIG. 3. (Colors online) The symmetry energy S as a function
of density for selected functionals. The functionals labelled
in the upper left are the Stiff set, and those in the lower right
the Soft set. See text for details.

matter (SNM) in the low density region. Since S is just
the difference between the EoS in PNM and SNM (within
the parabolic approximation [84]), it follows that the pat-
tern observed in PNM repeats here in a very similar way.
The exception to this simple rule are SII and SIV. They
have extremely low values of n0, shown in Fig. 1, and
so a significantly different EoS in SNM compared to the
other functionals.

IV. INNER CRUST COMPOSITION

To calculate the EoS and determine the chemical com-
position of the inner crust, we minimise the total en-
ergy per particle e in the WS cell, given in Eq.1, using
the method explained in Sec. II and Ref [42]. We cover
the range of baryonic densities nb ∈ [0.00025, 0.05] fm−3,
above which non-spherical pasta phases are expected
to appear [45], and the range of proton numbers
Z ∈ [16, 60].
We first show results for a few selected baryonic den-

sities nb = 0.01, 0.02 and 0.03 fm−3, for a smaller group
of functionals. Figure 4 illustrates the energy per parti-
cle as a function of Z. We show a re-scaled energy per
particle, es, defined as

es(nb) = e(nb)− ePNM (nb)− en,pair(nb) , (5)

where en,pair is the neutron pairing energy per particle.
This is purely for visual reasons, so that all values lie
within a similar energy range. Since ePNM is indepen-
dent of Z, and en,pair is roughly constant with respect to
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FIG. 4. (Colors online) The re-scaled energy per particle es, defined in Eq.5, for selected functionals from the Soft (left column)
and Stiff (right column) sets, at three values of baryonic density nb. The large dot on each curve represents the position of the
energy minimum. See text for details.

Z [42], this results in a simple shift in e for a given func-
tional. In the left column are 5 from the Soft set: BSk22,
LNS, NRAPRii, SKRA, and SQMC700; in the right
column are 4 functionals from the Stiff set: BSk24,
KDE0v1, SII, and SLy4, as explained in Sec. III.

In this figure, we clearly see the different behaviour
of the Soft and Stiff sets. The Stiff set has a persistent
minimum at Z = 40, while the Soft set has minima that
favour lower Z, or that shift towards lower Z as nb in-
creases, with all favouring Z = 20 at nb = 0.03 fm−3.
The exception in the Soft set is BSk22, which transitions
to Z = 20 just above nb = 0.03 fm−3, and which has
one of the stiffest PNM EoS in this set. NRAPRii is
unique among all the functionals investigated, in that it
favours Z = 28 at nb = 0.01 fm−3. This is likely re-
lated to an issue involving the spin-orbit parameter, W0.
See the discussion in Ref. [73] for more details. Below
nb = 0.01 fm−3, nearer the transition region between
the outer and inner crust, other finite-size effects not
considered in our ETFSI+pairing method may become
significant, changing the results. The HFB method is
preferable in this very low density range.

To better understand the origin of the different min-
ima, we plot in Fig. 5 the smooth part of the total energy

per particle, esmooth, defined as

esmooth = e− en,pair − (eSI
p + ep,pair) (6)

where the last term is the sum of the SI correction with
BCS pairing for protons, and the proton pairing en-
ergy, as explained in Ref. [40]. This results in a smooth
parabola-like shape, with a single minimum. We select 2
representative functionals SQMC700 and BSk24, from
the Soft and Stiff sets respectively. The parabola shifts
significantly in Z going between the two functionals. Fur-
thermore, as nb increases, we observe that for SQMC700
the minimum moves from Z = 32 to Z = 28, while for
BSk24 it stays at Z = 46.

When the SI correction is included, as in Fig. 4,
each functional at each density displays local minima
at (semi-)magic Z values between 20 and 50. However,
Fig. 5 shows how the global minimum in each case is
governed more by the stiffness of the PNM EoS. In this
work, we strictly consider no temperature effects. Since
the various energy minima are quite close to each other,
the inclusion of such effects may change this picture. See
discussion in Ref. [47] for more details.

A more systematic study of the evolution of the proton
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FIG. 5. (Colors online) Total energy per particle, esmooth,
obtained without using shell or pairing corrections, for two
functionals at three representative baryonic densities nb. See
text for details.

content of the clusters in the inner crust is illustrated in
Fig. 6, for all functionals in the Soft and Stiff sets. For
clarity, small vertical offsets have been added to each
line, and the Soft and Stiff sets in are shown in separate
panels. At very low nb several values of Z are observed,
but above nb = 0.02 fm−3 only two minima are observed:
Z = 20 and Z = 40. The minimum at Z = 40 seems to be
favoured by most functionals at around nb = 0.01 fm−3,
but at nb = 0.03 fm−3 the majority of the Soft set have
transitioned to the Z = 20 configuration. The only ex-
ception to this rough classification is SQMC650, whose
ePNM is the highest out of the Soft set, as seen in Fig. 2,
and it maintains a Z = 40 minimum up to quite a high
baryonic density of nb ≈ 0.04 fm−3.

It is interesting to note that Z = 20 is favoured by
functionals whose PNM EoS is compatible with ab-initio

calculations. This result is also in good agreement with
the findings of Ref. [58]. Although further analysis is
necessary, our results suggest that a better understanding
of the EoS in low-density PNM may help to clarify the
chemical composition of the inner crust.

Having calculated the chemical composition of the in-
ner crust, we now study its general properties with the
different functionals. In Fig. 7, we show the total energy
per particle e (Eq. 1) for the WS cells in the inner crust,
obtained through the energy minimisation, as a function
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FIG. 6. (Colors online) Proton content of WS cells in the
inner crust as a function of the baryonic density nb, for all
functionals in the Soft and Stiff sets. A small vertical offset
has been added to each line to make them more visible; all
lines only take values from one of Z = 20, 28, 40, 50. See text
for details.
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FIG. 7. (Colors online) The energy per particle e in the inner
crust, as a function of the baryonic density nb. 4 functionals
from the Stiff set are shown, labelled in the upper left, and
5 from the Soft set, labelled in the lower right. See text for
details.
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FIG. 8. (Colors online) Proton fraction Yp in the inner crust,
as a function of the baryonic density nb. 4 functionals from
the Stiff set are shown, labelled in the upper right, and 5 from
the Soft set, labelled in the upper left. See text for details.

of the baryonic density nb. The pattern formed by the
various Soft and Stiff functionals is almost identical to
that seen for ePNM , shown in Fig. 2. This further sup-
ports the PNM EoS being the major driver of the inner
crust EoS.
Another relevant astrophysical quantity is the proton

fraction in the inner crust, Yp = Z/A. It plays a role in
the transport properties of a NS and in the determination
of the neutrino mean free path in the stellar medium [85].
In Fig. 8, we report Yp as a function of nb for the same
smaller selection of functionals shown in Fig. 4. The same
feature already observed in Fig. 6 is clear: the Soft func-
tionals predict WS cells with fewer protons, and have a
lower Yp, while the contrary is true for the Stiff func-
tionals. At around nb = 0.02 fm−3, Yp varies by up to
a factor of 2 between the two sets. When Z in a WS
cell changes, the baryon content of each WS cell follows
this change quite closely. As a consequence, the factor
of 2 observed between the two dominant minima in Fig.6
(Z = 20, 40) is conserved here.
It is worth commenting on the case of BSk24, a func-

tional specifically created to be able to provide a uni-
fied description of the NS EoS. This was adjusted un-
der many constraints, including the requirement that
it reproduce the LS2 equation of state [86] in PNM,
which was calculated using the microscopic Brueckner-
Hartree-Fock method. The authors note in Ref. [62] that
they focused on supernuclear densities when constraining
BSk24 to the LS2 EoS. As a result, the BSk24 PNM EoS
is significantly stiffer than LS2 at inner crust densities.
Around nb = 0.04 fm−3, LS2 is better approximated by
SQMC650, SQMC700, and NRAPRii, than by BSk24.
In Ref. [43, 44], the authors claim that the constraining
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[
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]
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FIG. 9. (Colors online) Radius of WS cells RWS in the inner
crust, as a function of the baryonic density nb. 4 functionals
from the Stiff set are shown, labelled in the upper right, and
5 from the Soft set, labelled just below on the right. See text
for details.

PNM EoS has little effect on Yp in the inner crust, and
show that J is an important INM quantity. However,
by inspecting carefully Figs. 2 and 8, we see that BSk24
(J = 30 MeV), SLy4 (J = 32 MeV), and KDE0v1 (J =
34.6 MeV) have a Yp largely in the range 0.03 − 0.04.
The functionals with a softer PNM EoS — BSk22, LNS,
NRAPRii, SKRA, and SQMC700 — have a Yp mostly
in the range 0.02− 0.025, despite having J ranging from
31.3 MeV to 33.4 MeV. We therefore conclude that J is
not the driving factor leading to large variations of Yp,
but it is the equation of state of PNM at low density,
or equivalently the symmetry energy S at low density as
shown in Fig.3 and discussed in Sec. III.
The softest functional investigated in Ref. [43, 44],

BSk22, which more closely follows LS2 at inner crust
densities, gives results favouring an energy minimum at
Z = 20 at intermediate inner crust densities, and lower
values for Yp, e, and P . This means that the results
presented in this article are consistent with those in
Ref. [43, 44], but given the small variations in the prop-
erties of the functionals used, the authors were not able
to observe such an interesting correlation.
It is also interesting to note from Fig. 8 that almost

all of the CSkP∗ set, selected in Ref. [46] according to
several criteria based on INM properties, tend to favour
a very small Yp within the crust. The only exception is
KDE0v1, from the Stiff set.
In Fig.9, we illustrate the evolution of the ra-

dius of the Wigner-Seitz cell, RWS , as a function
of the baryonic density, again for the smaller selec-
tion of functionals. While in the low density region,
nb ∈ [0.00025, 0.015] fm−3, we observe significant varia-
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FIG. 10. Pressure P in the inner crust, as a function of the
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below on the left. See text for details.

tions in the sizes of the cells, at higher baryonic densities,
we notice that the size of the cell is almost independent of
the functional. In particular, we clearly identify again the
Stiff set and the Soft set, giving values of RWS very close
to each other. The sudden jumps shown in this figure cor-
respond to abrupt changes in the chemical composition
of the crust, as seen in Fig. 6.

Finally, in Fig. 10, we illustrate the evolution of the
pressure P as a function of the baryonic density nb, for
the same 8 functionals already discussed in Figs. 7 and 8.
In this case, the separation into the Stiff and Soft sets is
only visible up to around nb = 0.025 fm−3. We recall

that the pressure depends on the derivatives of the EoS,
rather than its value.

V. CONCLUSIONS

In this article we have performed a systematic analysis
of the structure of the inner crust of a non-accreting neu-
tron star (NS), using the ETFSI+pairing method. By
selecting 15 different functionals with different infinite
nuclear matter properties, we have illustrated a possible
correlation between the a functional’s pure neutron mat-
ter (PNM) equation of state (EoS) at low density, and the
proton content and pressure of the Wigner-Seitz cells. In
particular, we have shown that functionals with a soft

PNM EoS at low densities tend to favour the Z = 20
minimum, as well as a lower proton fraction, and a lower
pressure up to around nb = 0.025 fm−3, while functionals
with a stiff PNM EoS show the opposite behaviour, and
favour instead the Z = 40 minimum. This result clearly
shows the importance of the constraining the PNM EoS
more tightly at subnuclear densities in the adjustment
protocol of Skyrme functionals used to study NS. This
is not the standard procedure, since authors tend to fo-
cus more on the high density trend of the EoS; indeed,
this is necessary to prevent the collapse of the NS, and
to reproduce its global properties such as the maximum
mass and radius [87]. More stringent constraints on func-
tionals obtained by more recent ab-initio calculations at
low density should pave the way toward a more reliable
unified EoS for neutron star matter.
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