

This is a repository copy of *Measuring the success of blinding in placebo-controlled trials: should we be so quick to dismiss it?*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/171594/

Version: Accepted Version

Article:

Webster, R. orcid.org/0000-0002-5136-1098, Bishop, F., Collins, G. et al. (10 more authors) (2021) Measuring the success of blinding in placebo-controlled trials: should we be so quick to dismiss it? Journal of Clinical Epidemiology, 135. pp. 176-181. ISSN 0895-4356

https://doi.org/10.1016/j.jclinepi.2021.02.022

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Measuring the success of blinding in placebo-controlled trials: should we be so quick to		
2	dismiss it?		
3	Running head: Measuring blinding success in placebo-controlled trials		
4	Author list and affiliations		
5	Rebecca K Webster*, PhD, University of Oxford, Oxford, United Kingdom and University of		
6	Sheffield, United Kingdom; Department of Psychology, Cathedral Court, 1 Vicar		
7	Lane, Sheffield, S1 2LT; r.k.webster@sheffield.ac.uk		
8	Felicity Bishop, PhD, University of Southampton, Southampton, United Kingdom		
9	Gary S Collins, PhD, University of Oxford, and NIHR Oxford Biomedical Research Centre,		
10	Oxford, United Kingdom		
11	Andrea WM Evers, PhD, Leiden University, Leiden, Netherlands		
12	Tammy Hoffmann, PhD, Institute of Evidence-Based Healthcare, Bond University,		
13	Queensland, Australia		
14	J. André Knottnerus, MD PhD, Maastricht University, Maastricht, Netherlands		
15	Sarah E Lamb, DPhil, University of Oxford, Oxford, United Kingdom and University of		
16	Exeter, Exeter, United Kingdom		
17	Helen Macdonald, MD, The BMJ, London, United Kingdom		
18	Claire Madigan, PhD, University of Oxford, Oxford, United Kingdom		
19	Vitaly Napadow, PhD, Harvard Medical School, Boston, United States		
20	Amy Price, PhD, Stanford University, Stanford, United States; University of Oxford, Oxford,		
21	United Kingdom and The BMJ, London, United Kingdom,		
22	Jonathan L Rees, MD, University of Oxford, and NIHR Oxford Biomedical Research Centre		
23	Oxford, United Kingdom		
24	Jeremy Howick, PhD, University of Oxford, Oxford, United Kingdom		
25	*Corresponding author		
26	Word count: 2072		

27 Key words: Blinding, masking, trials, measuring, reporting guidelines

28 1 Background

From being almost universally regarded as a methodological virtue of clinical trials and being 29 30 included in the original 2001 Consolidated Standards of Reporting Trials (CONSORT) statement (1), measuring the success of blinding has fallen out of fashion. Subsequent 31 32 versions of CONSORT removed this recommendation based on the correct view that it can 33 lead to misleading inferences about causes of the failure to blind. (2, 3) In addition, Anand, et 34 al. (4) recently questioned the need to blind patients and clinicians or measure and report whether blinding was done successfully. While critics are correct to point out problems with 35 36 the view that blinding is a universal methodological virtue, and to point out that measuring the success of blinding is not straightforward, they are too quick to dismiss the value of 37 testing and reporting on the success of blinding. This is reflected in our findings extending 38 the Template for Intervention Description and Replication (TIDieR) statement for 39 placebo/sham control components, in which almost all Delphi respondents recommended that 40 41 trials should measure and report whether blinding was successful. (5)

We are not aware of any publications that set out the case for and against measuring blinding success, or that provide mitigating positions. Our experience suggests that confusion about blinding inhibits reasonable debates in this area. Here, we attempt to clarify some of the confusions surrounding blinding and measuring its success, before providing the case for and against, reporting measures of the success of blinding, and suggesting a 'middle road' which takes both sides of the debate into account.

48 **2** Measuring blinding success: the case for

49 Blinding involves concealing knowledge of treatment assignment to one or more groups 50 involved in clinical trials (participants, intervention providers, data collectors, outcome 51 assessors, statisticians, and manuscript authors). (6) Trials can be described in a number of 52 ways including open (unblinded), single-blind, double-blind or triple-blind. The terminology can be confusing however, as a random sample of 200 trials has shown that the term double 53 54 blind can be used to describe blinding up to 18 different combinations of trial personnel. (7) 55 As noted in CONSORT, it is important to specify who was blinded in a trial, (2) as blinding 56 different people may affect outcomes, especially those which are subjective. For example, if 57 participants and data collectors were not blinded this may have more of an impact than an 58 unblinded statistician who may have less influence on the outcomes.

59 Measuring whether blinding was successful involves asking patients and clinicians about their treatment assignment beliefs before the trial is officially unblinded. Successful blinding 60 occurs when there is a balance of expectations and beliefs related to the assigned 61 intervention, demonstrating that those who are blinded are not aware of the (active or 62 inactive) intervention that has been assigned. However, blinding can fail when participants, 63 64 caregivers, or other groups involved in a trial deduce the intervention allocation at the 65 beginning of the trial (e.g. due to inadequate matching between the placebo and active 66 intervention), or during the trial (e.g. due to adverse events). (8-10) Since the function of 67 blinding is to reduce the impact of expectations, unsuccessful blinding is problematic, as beliefs and expectations of those who correctly guess the intervention allocation could then 68 influence the outcome of the trial. (11-14) As such a trial that was designed blinded but in 69 which attempts to blind were unsuccessful may approach the quality of a trial where 70 71 (complete, double) blinding is ethically and feasibly possible, but is not blinded (see Fig 1).

- 80 Fig 1. Why measuring blinding success is important and why it is not
- 81 A number of meta-epidemiological studies have investigated differences between trials
- 82 (reported as) blinded and those that are not (reported as) blinded. (15-24) Some (but not all)
- 83 of those found that lack of reporting of blinding led to larger effect sizes. Recently,
- 84 Moustgaard, et al. (15) found inconsistent effects of blinding on treatment effect sizes.
- 85 However, there are methodological concerns regarding the study's sample selection and
- 86 classifications of reporting of blinding. (25) Like randomisation and allocation concealment,
- 87 blinding can reasonably be expected to have a small average effect, possibly with an

88 unpredictable direction. (26, 27) In an era when marginal gains from many of our medical interventions suffice to change policy and practice, (28) ruling out small biases or errors is 89 90 becoming more important. In addition, small average effects are compatible with larger 91 effects in some instances, for example trials of treatments for disorders that are placebo 92 responsive, such as pain. Additional meta-epidemiological studies with large sample sizes, together with well-defined outcomes, disease areas, and classifications of reporting of 93 94 blinding are required to address this important issue. Such studies cannot be conducted unless trials report whether blinding was successful (where this is feasible). 95

Aside from the importance of blinding itself, the importance of measuring (see Box 1) and 96 reporting blinding success is apparent in various trials. For example, Karlowski, et al. (29) 97 98 compared Vitamin C with placebo for treating the common cold, and found Vitamin C to be apparently effective. However, because of the sour taste of Vitamin C and sweet taste of the 99 lactose placebo pills, the trial was not successfully blinded. When the authors carried out a 100 101 subgroup analysis in which they divided participants into those who remained blinded and to 102 those who were not, they found that there was no benefit of Vitamin C in the blinded group. 103 Although ideally the authors should have ensured both placebo and active intervention were adequately matched, this example still shows the importance of measuring and reporting 104 105 blinding success. Otherwise, it would have been mistakenly concluded that Vitamin C was 106 superior.

107 More recently, a unsuccessfully blinded trial of zinc for treating common cold symptoms

108 found that zinc significantly reduced the duration of cold symptoms compared to placebo.

109 (30) Whereas, another trial with successful blinding, found that zinc did not reduce symptom

110 duration. (31) This difference may be due to significantly more side-effects being reported to

111 Zinc than placebo in the first trial, (30) which led to unblinding and subsequent bias. As such

the success of blinding reported in these studies could be useful for those appraising them and

113 looking for reasons for their discrepant results.

115 A common approach to measuring the success of blinding uses chi-square tests of independence, 116 where successful blinding is indicated by a null finding (patient guesses are not related to their intervention allocation). (32) However, this lacks sensitivity and does not provide any directional 117 118 information about the pattern of participant guesses. (33) James' (34) and Bang's (33) blinding index 119 (BI) have addressed some of these concerns by asking participants to guess their intervention assignment using three responses (active, placebo or do not know). James' provides a single value that 120 combines data from all arms ranging from 0 to 1, 0 being total lack of blinding, 1 being complete 121 122 blinding and 0.5 being completely random blinding. Bang's BI aims to provide a more sensitive 123 measure of blinding within each experimental arm compared to James' by calculating a score from -1 to 1, 1 being complete lack of blinding, 0 being consistent with perfect blinding and -1 indicating 124 125 opposite guessing which may be related to unblinding. (33) As such, it can be used to detect where blinding may have failed, while still assessing overall success. An even newer method is the use of 126 127 video surveillance. This involves video-recording procedures in the trial and asking a professional 128 familiar with the procedure to guess the intervention allocation. (35) However, in practice, blinding 129 success is rarely measured, with only 2-24% of trials reporting the success of blinding. (36, 37). In 130 addition, these methods fall short as they do not consider why unblinding may have occurred.

131 Box 1. How to measure blinding success?

132 **3** Measuring blinding success: the case against

The case against measuring the success of blinding can be traced to Dave Sackett, who cited 133 a 2x2 factorial trial of aspirin and sulfinpyrazone for stroke prevention. In the trial, blinded 134 clinicians largely distinguished aspirin from sulfinpyrazone. (38) But, because of prior 135 'hunches' that sulfinpyrazone would be more effective, they mistakenly believed that patients 136 with better outcomes had received sulfinpyrazone, when in fact the trial showed aspirin was 137 more effective. In this example, the results of tests for blinding can be ambiguous. Hence, 138 139 Sackett and others following him argued that tests for the success of blinding should not be 140 conducted.

- 141 Sackett is correct that in this example (and perhaps others like it), that the test for the success
- 142 of blinding was confounded by mistaken beliefs about which intervention was effective (or a
- 143 misattributed response to treatment). However, if these (mistaken) hunches about efficacy
- 144 were *different* (unbalanced) in the intervention and control groups, then they could have
- 145 confounded the study no matter how mistaken they were. Or, their beliefs were the same
- 146 (balanced) across the groups, in which case there was no confounding (even if the beliefs
- 147 were mistaken). Either way, the test for the success of blinding will reveal useful information,
- 148 namely about whether expectations might have confounded the results.
- 149 There are some cases in which failure to successfully blind does not imply that the study was
- 150 methodologically lacking. For example, a dramatically effective treatment can cause
- unblinding, however it should not lead us to conclude that a trial of the treatment was

152 methodologically lacking. On the contrary, as Senn (39) argued: 'The whole point of a

153 successful double-blind trial is that there should be unblinding through efficacy." The

154 problem remains however, that if a trial reports that the cause of unblinding was dramatic

effectiveness, a report of 'failed' blinding could mislead some into thinking the trial was less

156 trustworthy.

157 Secondly, measuring the success of blinding at the wrong time (for example before follow-

up or trial completion) may raise suspicion among participants and cause the problem it isintended to prevent. (40) (41)

Thirdly, some trials cannot feasibly or ethically be blinded, for example, non-drug interventions such as exercise, behavioural therapy and nutritional advice. (Aside: trials of these interventions can be rigorous by using other methodological tools to reduce bias (42), such as pre-registering trials, following a pre-specified analysis plan, adequate sample size and using randomisation, to reach the best achievable research practice.) Also, in some cases unblinding is an ethical requirement, for example due to hypothesized toxicity, and blinding

166 itself could increase research waste, with some evidence indicating that patients are less

167 likely to enrol in blinded trials. (4)

168 **4 Discussion**

Demanding that all trials attempt to use and measure the success of blinding is too strong because blinding is sometimes impossible, unethical, or misleading. Future research is required to determine how to best interpret findings from assessing the success of blinding. On the other hand, blinding has the potential to rule out bias, and failure to recommend that the success of blinding be reported when it is measured, seems like wilful withholding of information that potentially useful.

In addition, the change in the CONSORT recommendation from asking researchers to report
on success of blinding (if measured) to not asking, seems to have been based on arguments
that may deserve revisiting. Of course, the fact that CONSORT does not explicitly
recommend reporting on the success of blinding does not prevent reviewers from reporting it.
However, the fact that CONSORT sites a paper by Sackett as the reason for removing it, in
which he claims that testing the success of blinding is a 'mug's game' could be interpreted as
a reason to avoid reporting on the success of blinding.

182 Also, while measuring the success of blinding at many (or the wrong) points may cause some 183 problem, this does not imply that measuring success of blinding at a single (roughly) correct

- 184 point is not useful. Moreover, empirical research suggests that getting the 'correct' point may
- not be required. Rees, et al. (43) have shown that the difference between a six-point
- assessment of blinding success during a trial and a two-point model is not significant.
- 187 Overall, the fact that difficulties, ethical problems, or ambiguity in measuring its success does188 not imply that it should be given up altogether.

189 5 Conclusion and recommendation? A middle ground

While we acknowledge there are a dearth of studies that have investigated this issue, more definitive evidence can only come from studies that measure the success of blinding. We recognise that some trials cannot feasibly or ethically be blinded, but it is important that trials that *could have* introduced blinding and measured its success, are distinguished from trials that could not have. Our suggestion for a way forward considers the current state of evidence for and against measuring the success of blinding. We hope this stimulates further discussion, and that future iterations of CONSORT reflect on our arguments and revisits this issue.

197 We suggest that:

- Authors should make every attempt to match the placebo and active intervention to
 avoid unblinding at the start of the trial and subsequent research waste.
- 200 2. When authors have measured the success of blinding they should report the results.
- 201 3. Critical appraisers should consider reasons why unblinding may have arisen before
- condemning a trial as having a high risk of bias, or if blinding success has not been
 reported, they should assess whether it is possible that blinding has been compromised.
- 4. Future development of measures to assess the success of blinding should ask those
 intended to be blinded what their intervention allocation beliefs were and why. This
 can help disentangle the reasons (dramatic effects or side-effects), although the reason
- 207 may not always be known for sure.

208 **Competing interests**

- 209 Declarations of interest: none
- 210 Contributor statement
- 211 Rebecca K Webster: Conceptualization, Visualisation, Project administration, Writing –
- 212 Original draft preparation; Jeremy Howick: Conceptualization, Supervision, Funding
- 213 acquisition, Writing Review & Editing; Felicity Bishop, Gary S Collins, Andrea WM
- 214 Evers, Tammy Hoffmann, André Knottnerus, Sarah E Lamb, Helen Macdonald, Claire

215 Madigan, Vitaly Napadow, Amy Price, Jonathan L Rees: Conceptualization, Writing –

216 Review & Editing.

217 Funding

- 218 This work was partly supported by the University of Oxford Humanities Division REF
- 219 Support Fund provided funding for part of this project (awarded to JH and RW), a VICI grant
- from the Netherlands Organization for Scientific Research (NWO) (Number: 45316004), and
- a European Research Council Consolidator Grant (ERC2013-CoG-617700) (awarded to
- AWME). VN was supported by the National Institutes of Health, National Center for
- 223 Complementary and Integrative Health (R01- AT007550, R61/R33-AT009306, P01-
- AT009965), and the National Institute of 16 Arthritis and Musculoskeletal and Skin Diseases
- 225 (R01- AR064367). GSC was supported by the NIHR Biomedical Research Centre, Oxford
- and Cancer Research UK (grant C49297/A27294). TH is supported by a National Health and
- 227 Medical Research Council of Australia Senior Research Fellowship. None of the funders
- 228 played any role in the study

229

231		References
232		
233	1.	Moher D. Schulz KF. Altman DG. The CONSORT statement: revised recommendations for
234		improving the quality of reports of parallel-group randomised trials. Lancet
235		2001:357(9263):1191-4
236	2	Moher D. Hopewell S. Schulz KE. Montori V. Gøtzsche PC. Devereaux PL et al. CONSORT
237		2010 Explanation and Elaboration: updated guidelines for reporting parallel group
238		randomised trials BML 2010:340:c869
239	3.	Schulz KF. Altman DG. Moher D. Fergusson D. CONSORT 2010 changes and testing blindness
240		in RCTs. Lancet. 2010;375(9721):1144-6.
241	4.	Anand, Rohan, Norrie, John, Bradley, Judy M, McAuley, Danny F, Clarke, Mike. Fool's gold?
242		Why blinded trials are not always best. BMJ. 2020;368:I6228.
243	5.	Howick J, Webster R, Rees J, MacDonald H, Price A, Bishop F, et al. TIDieR-Placebo: checklist
244		guide to reporting placebo and sham controls. PLoS Medicine. In press.
245	6.	Questioning Double Blinding as a Universal Methodological Virtue of Clinical Trials: Resolving
246		the Philip's Paradox. The Philosophy of Evidence-Based Medicine:63-79.
247	7.	Haahr MT, Hrobjartsson A. Who is blinded in randomized clinical trials? A study of 200 trials
248		and a survey of authors. Clin Trials. 2006;3(4):360-5.
249	8.	Moncrieff J, Wessely S, Hardy R. Active placebos versus antidepressants for depression.
250	-	Cochrane Database Syst Rev. 2004(1):Cd003012.
251	9.	Bello S, Wei M, Hilden J, Hrobjartsson A. The matching quality of experimental and control
252		interventions in blinded pharmacological randomised clinical trials: a methodological
253	4.0	systematic review. BMC Medical Research Methodology. 2016;16(1):18.
254	10.	Sackett DL. Commentary: Measuring the success of blinding in RCTs: don't, must, can't or
255	4.4	needn't? Int J Epidemioi. 2007;36(3):664-5.
250	11.	Schulz KF, Grimes DA. Blinding in randomised trials: hiding who got what. Lancet.
257	10	2002;359(9307):696-700.
238	12.	spanos NP, Burgess CA, Cross PA, MacLeou G. Hypnosis, reporting bias, and suggested
239	12	Hegalive Hallucinations. J Abhorni Psychol. 1992, 101(1).192-9. Hrébiartsson A. Thomson ASS. Emanuelsson F. Tondal B. Hilden I. Poutron I. et al. Observer
200	15.	hiss in randomized clinical trials with measurement scale outcomes: a systematic review of
201		trials with both blinded and populinded assessors. Canadian Medical Association Journal
262		
263	1/1	Karanicolas PI Farrokhvar F. Rhandari M. Practical tins for surgical research: hlinding: who
265	17.	what when why how? Canadian journal of surgery Journal canadian de chirurgie
266		2010·53(5)·345-8
267	15.	Moustgaard H. Clayton GL. Jones HE. Boutron I. Jorgensen L. Laursen DRT. et al. Impact of
268		blinding on estimated treatment effects in randomised clinical trials: meta-epidemiological
269		study. BMJ. 2020;368:16802.
270	16.	Page MJ, Higgins JP, Clayton G, Sterne JA, Hrobjartsson A, Savovic J. Empirical Evidence of
271		Study Design Biases in Randomized Trials: Systematic Review of Meta-Epidemiological
272		Studies. PLoS One. 2016;11(7):e0159267.
273	17.	Dechartres A, Trinquart L, Faber T, Ravaud P. Empirical evaluation of which trial
274		characteristics are associated with treatment effect estimates. J Clin Epidemiol. 2016;77:24-
275		37.
276	18.	Saltaji H, Armijo-Olivo S, Cummings GG, Amin M, da Costa BR, Flores-Mir C. Influence of
277		blinding on treatment effect size estimate in randomized controlled trials of oral health
278		interventions. BMC Med Res Methodol. 2018;18(1):42.
279	19.	Armijo-Olivo S, Fuentes J, da Costa BR, Saltaji H, Ha C, Cummings GG. Blinding in Physical
280		Therapy Trials and Its Association with Treatment Effects: A Meta-epidemiological Study. Am
281		J Phys Med Rehabil. 2017;96(1):34-44.

282 20. Hrobjartsson A, Thomsen AS, Emanuelsson F, Tendal B, Hilden J, Boutron I, et al. Observer 283 bias in randomised clinical trials with binary outcomes: systematic review of trials with both 284 blinded and non-blinded outcome assessors. BMJ. 2012;344:e1119. 285 21. Hrobjartsson A, Thomsen AS, Emanuelsson F, Tendal B, Hilden J, Boutron I, et al. Observer 286 bias in randomized clinical trials with measurement scale outcomes: a systematic review of 287 trials with both blinded and nonblinded assessors. CMAJ. 2013;185(4):E201-11. 288 22. Hrobjartsson A, Thomsen AS, Emanuelsson F, Tendal B, Rasmussen JV, Hilden J, et al. 289 Observer bias in randomized clinical trials with time-to-event outcomes: systematic review 290 of trials with both blinded and non-blinded outcome assessors. Int J Epidemiol. 291 2014;43(3):937-48. 292 23. Hrobjartsson A, Emanuelsson F, Skou Thomsen AS, Hilden J, Brorson S. Bias due to lack of 293 patient blinding in clinical trials. A systematic review of trials randomizing patients to blind 294 and nonblind sub-studies. Int J Epidemiol. 2014;43(4):1272-83. 295 24. Savovic J, Jones HE, Altman DG, Harris RJ, Juni P, Pildal J, et al. Influence of Reported Study 296 Design Characteristics on Intervention Effect Estimates From Randomized, Controlled Trials. 297 Annals of internal medicine. 2012. 298 25. Howick J. Re: Impact of blinding on estimated treatment effects in randomised clinical trials: 299 meta-epidemiological study. BMJ. 2020;368:16802. 300 26. Howick J, Mebius A. In search of justification for the unpredictability paradox. Trials. 301 2014;15:480. 302 Kunz R, Oxman AD. The unpredictability paradox: review of empirical comparisons of 27. 303 randomised and non-randomised clinical trials. BMJ. 1998;317(7167):1185-90. 304 28. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, et al. Statins for the 305 primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 306 2013;1:CD004816. 307 29. Karlowski TR, Chalmers TC, Frenkel LD, Kapikian AZ, Lewis TL, Lynch JM. Ascorbic Acid for the 308 Common Cold: A Prophylactic and Therapeutic Trial. JAMA. 1975;231(10):1038-42. 309 30. Prasad AS, Fitzgerald JT, Bao B, Beck FWJ, Chandrasekar PH. Duration of Symptoms and 310 Plasma Cytokine Levels in Patients with the Common Cold Treated with Zinc Acetate: A 311 Randomized, Double-Blind, Placebo-Controlled Trial. Annals of Internal Medicine. 312 2000;133(4):245-52. 313 31. Smith DS, Helzner EC, Nuttall CE, Jr., Collins M, Rofman BA, Ginsberg D, et al. Failure of zinc 314 gluconate in treatment of acute upper respiratory tract infections. Antimicrob Agents 315 Chemother. 1989;33(5):646-8. 316 32. Boutron I, Estellat C, Ravaud P. A review of blinding in randomized controlled trials found 317 results inconsistent and questionable. J Clin Epidemiol. 2005;58(12):1220-6. 318 33. Bang H, Ni L, Davis CE. Assessment of blinding in clinical trials. Controlled Clinical Trials. 319 2004;25(2):143-56. 320 34. James KE, Bloch DA, Lee KK, Kraemer HC, Fuller RK. An index for assessing blindness in a 321 multi-centre clinical trial: disulfiram for alcohol cessation--a VA cooperative study. Stat Med. 322 1996;15(13):1421-34. 323 35. Gill J, Prasad V. Testing for blinding in sham-controlled studies for procedural interventions: 324 the third-party video method. Cmaj. 2019;191(10):E272-e3. 325 36. Hrobjartsson A, Forfang E, Haahr MT, Als-Nielsen B, Brorson S. Blinded trials taken to the 326 test: an analysis of randomized clinical trials that report tests for the success of blinding. Int J 327 Epidemiol. 2007;36(3):654-63. 328 37. Fergusson D, Glass KC, Waring D, Shapiro S. Turning a blind eye: the success of blinding 329 reported in a random sample of randomised, placebo controlled trials. BMJ. 330 2004;328(7437):432. 331 38. Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in 332 threatened stroke. N Engl J Med. 1978;299(2):53-9.

- 333 39. Senn SJ. Turning a blind eye: Authors have blinkered view of blinding. BMJ.
 334 2004;328(7448):1135-6.
- 33540.Kolahi J, Bang H, Park J. Towards a proposal for assessment of blinding success in clinical336trials: up-to-date review. Community dentistry and oral epidemiology. 2009;37(6):477-84.
- 41. Cheon S, Park H-J, Chae Y, Lee H. Does different information disclosure on placebo control
 affect blinding and trial outcomes? A case study of participant information leaflets of
 randomized placebo-controlled trials of acupuncture. BMC Medical Research Methodology.
 2018;18(1):13.
- Heine M, Verschuren O, Hoogervorst EL, van Munster E, Hacking HG, Visser-Meily A, et al.
 Does aerobic training alleviate fatigue and improve societal participation in patients with
 multiple sclerosis? A randomized controlled trial. Multiple sclerosis (Houndmills,
 Basingstoke, England). 2017;23(11):1517-26.
- Rees JR, Wade TJ, Levy DA, Colford JM, Jr., Hilton JF. Changes in beliefs identify unblinding in randomized controlled trials: a method to meet CONSORT guidelines. Contemp Clin Trials.
 2005;26(1):25-37.