
 

Correspondence Principle for Many-Body Scars in Ultracold Rydberg Atoms

C. J. Turner , J.-Y. Desaules , K. Bull, and Z. Papić
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

(Received 25 June 2020; revised 25 November 2020; accepted 24 February 2021; published 26 April 2021)

The theory of quantum scarring—a remarkable violation of quantum unique ergodicity—rests on two
complementary pillars: the existence of unstable classical periodic orbits and the so-called quasimodes, i.e.,
the nonergodic states that strongly overlap with a small number of the system’s eigenstates. Recently,
interest in quantum scars has been revived in a many-body setting of Rydberg atom chains. While previous
theoretical works have identified periodic orbits for such systems using time-dependent variational
principle (TDVP), the link between periodic orbits and quasimodes has been missing. Here we provide a
conceptually simple analytic construction of quasimodes for the nonintegrable Rydberg atom model and
prove that they arise from a “requantization” of previously established periodic orbits when quantum
fluctuations are restored to all orders. Our results shed light on the TDVP classical system simultaneously
playing the role of both the mean-field approximation and the system’s classical limit, thus allowing us to
firm up the analogy between the eigenstate scarring in the Rydberg atom chains and the single-particle
quantum systems.
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I. INTRODUCTION

Quantum scars provide a surprising connection between
single-particle quantum billiards and their classical
counterpart [1,2]. The understanding of quantum scars is
built upon the existence of unstable classical periodic orbits
and atypical eigenstates. The former was first observed by
studying the spreading of wave packets initialized along
such orbits [1,3] (see also Ref. [4]). In the limit ℏ → 0, the
classical orbits are recovered, as stipulated by the corre-
spondence principle [5]. Furthermore, some atypical
“scarred” eigenstates were found to concentrate around
such orbits, in contrast to typical eigenstates at a similar
energy, which tend to be well spread across the whole
configuration space. In the fully quantum case, the proof for
the existence of scarred eigenstates relied on approximate
eigenstates or “quasimodes,” which are constructed to be
strongly localized around a classical periodic orbit. For
example, in the celebrated Bunimovich stadium problem,
quasimodes have the form ψðx; yÞ ¼ ϕðxÞ sinðnπyÞ; i.e.,
they represent a standing wave in one direction with a
suitably chosen envelope function in the other direction
[2,6]. By carefully controlling the density of states, it was
possible to show that there exist eigenstates with an

anomalously high overlap with a small number of quasim-
odes, hence, “inheriting” their atypical properties [6–8].
Recently, similar nonthermal states have been identified

in interacting quantum systems. These states named quan-
tum many-body scars by analogy have been linked to long-
lived oscillations measured in an experiment on a chain of
Rydberg atoms [9–16]. Since then, an increasing variety
of models have been associated with various aspects of
many-body scarring [17–48]. Moreover, nonstationary
quantum dynamics has been identified in other classes
of models, such as integrable spin chains [49] and dis-
sipative systems [34]. In this work, we focus on the “PXP”
model—an idealized effective model of the Rydberg atom
experiment [50,51]—which can be formally expressed as a
nonintegrable spin-1=2 lattice model without an “obvious”
semiclassical limit. Inspired by the theory of single-particle
scars, an immediate question arises: What are the periodic
orbits and quasimodes in the PXP model?
Unlike single-particle billiards, the equivalent of the

classical trajectory in the many-body case is less trans-
parent. One proposal makes use of the time-dependent
variational principle (TDVP) [52], wherein many-body
dynamics is projected onto a restricted space of matrix
product states [53–55]. Its application to the PXP model
successfully captures the revivals following quenches from
specific product states [11,24]. It is thus natural to suggest
that this approach defines an effective “semiclassical”
description of the quantum dynamics and holds the same
relation with the exact PXP model as expected from the
correspondence principle. On the other hand, a family of
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quasimodes for the PXP model have also been independ-
ently constructed by the so-called forward-scattering
approximation (FSA) [10,56]. This method makes it
possible to extract properties of scarred eigenstates in
systems much larger than those accessible by exact
diagonalization (ED). However, this way of building
quasimodes presents some deficiencies, both on technical
and conceptual levels. Indeed, while the computational cost
of generating the FSA states is lower than the exponential
growth of the Hilbert space, it is still polynomial in the
system size. Furthermore, the link between the FSA and
the TDVP is obscure, thus, making it difficult to relate the
quasimodes with the classical limit of the model, in a
manner that had been achieved for single-particle scars.
In this paper, we introduce a new way to form quasim-

odes which resolves the aforementioned problems. Our
construction relies on building a subspace symmetrized
over permutations within each of the sublattices comprising
even and odd sites in a chain. This approach can be thought
of as a “mean-field” approximation which makes it possible
to obtain closed-form expression for the projections of
states and operators in this symmetric subspace and enables
us to numerically approximate highly excited eigenstates of
chains of length N ≲ 800, far beyond other methods.
Further, we show that the path-integral quantization of
the TDVP topological space with a proper resolution of the
identity exactly reproduces the symmetric subspace in the
thermodynamic limit. While adding quantum fluctuations
to the TDVP description of the PXP model has been
approximated to first order [57], our method includes
quantum fluctuations to all orders. This correspondence
demonstrates that the symmetric subspace, which defines a
mean-field approximation, also serves as a justification for
the TDVP dynamical system playing the role of the bona
fide classical limit for the PXP model. We also show that
the quasimodes corresponding to the scarred eigenstates are
localized around the TDVP periodic orbit, in a way that is
reminiscent of single-particle quantum scars. Finally, per-
forming time evolution in the symmetric subspace strongly
suggests that the classical periodic orbit found in TDVP is
stable to the addition of quantum fluctuations in the
thermodynamic limit, at least to the mean-field level as
described above.

II. RYDBERGBLOCKADEANDQUANTUMSCARS

The PXP model is an effective model of a chain of atoms
in the Rydberg blockade [50]. Denoting by j∘i and j•i the
ground and excited states of each atom, the Hamiltonian is

H ¼
XN
n¼1

Pn−1XnPnþ1; ð1Þ

where Xn ¼ j∘ih•j þ j•ih∘j is the Pauli X matrix, and Pn ¼
j∘ih∘j is a local projector. Here, N denotes the number of

sites in the chain and, unless specified otherwise, we
assume periodic boundary conditions (PBCs) N þ 1≡ 1.
The projectors make the model in Eq. (1) constrained: An
atom can be excited only if both adjacent atoms are in the
ground state; e.g., the transition j…∘∘•…i → j…∘••…i is
forbidden. These constraints cause a fracturing of the
Hilbert space, with a strong impact on its dynamical
properties [58–64]. Below we focus on the largest con-
nected sector of the Hilbert space which contains no state
with adjacent excitations.
The PXP model in Eq. (1) is nonintegrable and thermal-

izing [10], but it exhibits periodic revivals when quenched
from certain initial states such as the Néel state
jZ2i ¼ j•∘•∘…i. The observed revivals in the density of
domain walls [9] are remarkable given that the jZ2i state
effectively forms an “infinite-temperature” ensemble for
this system, for which the “strong” eigenstate thermali-
zation hypothesis predicts fast equilibration [65–68].
Unlike many-body localized [69–71] and integrable sys-
tems [72] which strongly break ergodicity, the PXP model
breaks it only weakly [73,74]. The breaking of ergodicity in
the PXP model occurs most prominently due to the
existence of a band of OðNÞ scarred eigenstates, which
have equal energy separation, anomalously high overlap
with the jZ2i state, and lowest entanglement among all
eigenstates [56]. These states are representatives of scarred
towers of eigenstates [as can be seen in Fig. 2(a) below],
which contain additional atypical eigenstates that exhibit
clustering around the same energies and whose finite-size
scaling of inverse participation ratio is different from that of
the thermalizing eigenstates [10]. The scarring properties in
all of these special eigenstates are explained by the
existence of quasimodes: simpler states with an underlying
structure—the analogs of “standing waves” in billiard
systems—which represent concentration points of the
special eigenstates.

III. CONSTRUCTION OF QUASIMODES

We construct quasimodes for the PXP model by first
defining a symmetric subspace K from a set of equivalence
classes ðn1; n2Þ, where integers n1, n2 label the number of
excitations on the two sublattices encompassing the odd
and even sites, respectively. Elements in these classes are
equivalent under the action of the product of two symmetric
groups SN=2 which “shuffle” the sites in each sublattice. For
example, states j•∘•∘∘•∘∘∘∘i and j∘∘•∘∘∘•∘∘•i belong to the
same class as they both have two excitations in the first
sublattice and one in the second. An illustration of the
construction of K for a PXP model of size N ¼ 8 is
presented in Fig. 1.
The construction of the subspaceK is inspired by the fact

that most of the information is retained near the two
reviving states (the Néel states), while away from them
the details about local correlations are erased. This con-
struction is a natural generalization of the free paramagnet,
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which is recovered by dropping the projectors in Eq. (1): To
characterize the states of the free paramagnet, we need to
know only the number of excitations relative to some
reference state, not their positions in the lattice, which is the
foundation of a mean-field description. In the present case
of the PXP model, we generalize this mean-field approxi-
mation by assuming that the important information is the
number of excitations on each sublattice, regardless of their
positions. This approach is reminiscent of the fully sym-
metric subspaces in the context of the quantum de Finetti
theorem [75] and in studies of fully connected models
[76,77]. However, the key difference here is that the
permutation symmetry is broken to the sublattice level,
and many of the permutation shuffles violate the Rydberg
constraint and therefore have to be excluded, which makes
the analysis nontrivial.
We define an orthonormal basis for K from symmetric

combinations of the members of each class ðn1; n2Þ,

jðn1; n2Þi ¼
1

#ðn1; n2Þ
X

x∈ðn1;n2Þ
jxi; ð2Þ

where #ðn1; n2Þ is the size of an equivalence class, and the
sum runs over all product states jxi that are members of
this class.
The class sizes can be calculated analytically because the

configurations can be generated by a recursive procedure or
transfer-matrix problem which “glues” sites (in the basis)
onto the boundary of a smaller version of the same counting

problem. Because the constraint on gluing an additional •
site is only sensitive to the state of the site immediately on
the boundary, we can erase the information about the
configurations farther away and represent them by a count
of all those configurations which are equivalent on the
boundary. This idea produces a method for calculating
#ðn1; n2Þ using dynamic programming in only polynomial
time. It can be shown (see the Appendix A) that the class
sizes admit the closed-form expression

#ðn1; n2Þ ¼
N
2
ðN
2
− n1 − n2Þ

ðN
2
− n1ÞðN2 − n2Þ

�N
2
− n1
n2

��N
2
− n2
n1

�
ð3Þ

in the case of PBC, with an analogous expression for the
open boundary condition. For simplicity, we assume N
is even.
Using Hermiticity and the sublattice exchange sym-

metry, all matrix elements of H in the symmetric subspace

can be found by examining only the ðHÞðn1−1;n2Þðn1;n2Þ ¼
hðn1 − 1; n2ÞjHjðn1; n2Þi matrix elements. These matrix
elements can be found using the idea that for each
configuration in ðn1; n2Þ, there are precisely n1 ways to
remove an excitation from sublattice 1. Accounting for
normalization and using the closed-form Eq. (3) yields a
remarkably simple effective Hamiltonian within K:

ðHÞðn1−1;n2Þðn1;n2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðN2 − n1 − n2ÞðN2 − n1 − n2 þ 1Þ

N
2
− n1

s
: ð4Þ

IV. PROPERTIES OF QUASIMODES

The quasimodes, or approximations to eigenstates, are
formed by diagonalizing the PXP Hamiltonian projected to
K, Eq. (4). Despite the apparent simplicity of the matrix
elements, we are unaware of an analytical method to
diagonalize Eq. (4), and we perform this step numerically.
In Fig. 2(a), we compare the quasimodes against the exact
eigenstates for system size N ¼ 32.
We measure the localization of the quasimodes

among energy eigenstates using participation ratio
PR ¼PE jhEjϕaij4, which represents the inverse of the
number of eigenstates with which a state has “typical”
overlap. For random states, the participation ratio is 1=D,
with D the Hilbert space dimension. In Fig. 2(b), we plot
the PR of all the quasimodes. The N þ 1 top-band
quasimodes have very large PR compared to a typical
random state, with appreciable overlap with only a small
number of eigenstates. While the remaining quasimodes are
also more localized than typical states, their PR is clearly
smaller than the top-band ones. This difference between the
two groups is further illustrated in the scaling of PR withN.
In Fig. 2(c), we show this scaling, focusing on the top-band
quasimode closest to the middle of the spectrum (E ¼ 0) in

FIG. 1. An example of the constrained Hilbert space of the PXP
model in Eq. (1) for N ¼ 8. Each blue dot represents an allowed
product state of atoms compatible with the Rydberg constraint.
The states are grouped into equivalence classes of the symmetric
subspace K denoted by ellipses. Each class is labeled by a
representative state; e.g., the class (0,3) contains the representa-
tive state ∘ • ∘ • ∘ • ∘∘ and all others obtained by permuting sites in
each of the sublattices. In order to make explicit the connections
between classes, we choose representatives that differ only by
single spin flips between neighboring classes.
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the zero-momentum sector, alongside other quasimodes
with energies 0 < E <

ffiffiffiffi
N

p
. In this way, we avoid the edges

of the spectrum where the density of states is much smaller.
From this, we conclude that the top-band quasimodes are
localized over a small number of eigenstates compared to
the density of states. Furthermore, the simple structure
of the symmetric subspace allows us to characterize the
errors in our eigenstate approximations. We can calculate
the energy variance matrix in the symmetric subspace
σ2H ¼ K̂ðH2Þ − ½K̂ðHÞ�2, where K̂ is a superoperator which
projects linear operators on the full Hilbert space down to
the symmetric subspace K. It can be shown that the energy
variance matrix is diagonal in the symmetric basis and has
the following closed form (see Appendix B):

σ2H ¼ n̂1n̂2ðn̂2 − 1Þ
ðN
2
− n̂1 − 1ÞðN

2
− n̂1Þ

þ ð1 ↔ 2Þ; ð5Þ

where n̂1; n̂2 are the operators that count excitations on their
respective sublattices, e.g., n̂ijðn1; n2Þi ¼ nijðn1; n2Þi for
i ¼ 1, 2.
As expected, among the quasimodes, we find that the

top-band ones are those with the smallest energy variance,
especially those that have high overlap with the jZ2i state,

as can be seen in Fig. 3(a), which slows the energy variance
for individual quasimodes in system size N ¼ 140. The
variance is linear in N, representing constant density of
energy fluctuations, but for the top-band quasimodes it is
much smaller than the typical energy scales. The average
energy fluctuations in a quasimode is asymptotically given
by 1=9, while the same quantity restricted to top-band
quasimodes is found numerically to be approximately
0.0049, which suggests that the time evolution approxi-
mated within this subspace will be reasonably accurate for
local quantities such as local observable expectations for
relatively long times. The typical top-band quasimode
support can be visualized on an (n1,n2) triangle [see
Fig. 3(b)], which reveals that in these cases the quasimodes
tend to “avoid” the region with n1 and n2 both large where
the energy variance is high. This situation is analogous to
the classical trajectory in the TDVP avoiding “high-
leakage” regions of the phase space [11].

V. QUANTUM DYNAMICS

Our construction of the quasimodes can also be used to
approximate the dynamics of the system. This is illustrated
in Fig. 4, which displays a comparison with ED as well as
variational (TDVP) results for a quench from the Z2

Rydberg crystal. TDVP approach is based on a restricted
class M of matrix product states jΨ̃ðθ;ϕÞi with bond
dimension equal to two, which can be parametrized using
matrices [9,11]

A∘
i ¼

�
cos θi

2
0

1 0

�
; A•

i ¼
�
0 −ieiϕi sin θi

2

0 0

�
; ð6Þ

where i labels the lattice sites within a unit cell, i.e., i ¼ 1, 2
for the jZ2i quench. The states are formed by either an

(a)
(b)

FIG. 3. (a) Energy variance of the quasimodes for N ¼ 140.
Top-band quasimodes (red crosses) have low-energy variance
density compared to typical energy scales, indicating that the
dynamics restricted to K remains close to the exact evolution at
relatively long times. (b) Energy variance in the symmetric
subspace Eq. (2) as a function of scaled n1 and n2. Superimposed
(in red) is the probability distribution on n1 and n2 for a top-band
quasimode in the middle of the spectrum (with E ≈ 27.28).

(b)

(a)

(c)

FIG. 2. Quasimode properties. (a) Scatter plot showing energies
of all eigenstates vs their overlap with the jZ2i state. Red crosses
denote top-band quasimodes; blue pluses are the remaining
quasimodes. Color indicates the density of data points. (b),(c)
Localization of quasimodes in the energy eigenbasis. Plots show
PR (see text) as a function of (b) energy E (for N ¼ 32) and
(c) system size N. In (c), we compare the top-band quasimode
closest to E ¼ 0 with the mean over the other quasimodes with
0 < E <

ffiffiffiffi
N

p
, all in the zero momentum sector. The scaling of PR

is different for all top-band modes compared to generic states
(gray dashed line).
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infinitematrix product in the thermodynamic limit or a traced
matrix product for finite and periodic system of size N and
are asymptotically normalized, hΨ̃ðθ;ϕÞjΨ̃ðθ;ϕÞi→1, as
N→∞ [11]. The time evolution of the TDVP angles in
Fig. 4 is obtained using the equations of motion for the
infinite system [24].
The differences between the dynamics within K and the

TDVP dynamics on M can be seen clearly in Fig. 4(a),
which shows the von Neumann entropy for an equal
bipartition of the system. This quantity, although nonlocal,
can also be efficiently calculated using the present method;
see Appendix E. We observe that entropy captures the
differences between approximation schemes well before
the relaxation time set by the energy variance. In contrast,
local quantities such as local expectation values are very
consistent; see Fig. 4(b), which shows the density of
Rydberg excitations in the system hn=Ni. The accuracy
of these different methods can be assessed using comoving
fidelity densities between pairs of evolutions, such as
ð1=NÞ log ðjhψEDðtÞjψKðtÞij2Þ. Both the TDVP and sym-
metric subspace approaches generate a very low error
density. The dynamics in the symmetric subspace is
simulated in large system sizes (for N ≤ 720, see
Appendix F), and the results are consistent with the revivals
of the Néel states becoming perfect in the thermodynamic
limit. However, there is a slight deviation from the TDVP
orbit [11], in that there is no perfect state transfer between
j∘•∘•…i and the Néel state with the two sublattices
flipped j•∘•∘…i.
The comoving fidelities in Fig. 4(c) reveal a curious

similarity between the evolutions within TDVP and

symmetric subspace K. The variational class of states
considered in the TDVP approach can be viewed as a
Gutzwiller projection of spin-coherent states with a unit
cell of two sites, where the projector eliminates nearest-
neighbor excitations [9,11,24]. The states in this subspace
M are parametrized by two angles which represent
probabilities for a site of each sublattice to hold an
excitation. Recall that the basis for K consisted of states
with definite occupation numbers for each sublattice. In this
sense, there is a direct relationship between the two
subspaces, reminiscent of the relationship between canoni-
cal and grand canonical ensembles in statistical mechanics.
More formally, it can be proven that the linear span ofM is
equal to the symmetric subspace K, for every fixed system
size N; see Appendixes C and D. This implies that the
dynamics within K has a leakage rate, or instantaneous
error, which is bounded above by that of the TDVP
evolution. Next, we investigate this connection in more
detail and show how K and M are related by quantization.

VI. QUANTIZATION OF PERIODIC ORBITS AND
THE CORRESPONDENCE PRINCIPLE

Our final step is to establish a correspondence betweenK
and the TDVP system on M. The latter is typically
conceived as a variational approximation: How do we
reinterpret it as a classical limit? Conversely, how can we
best quantize this classical system, given that quantization
is often a nonunique recipe? These questions have been
conveniently addressed in a path-integral framework
[78,79]. Thus, we first carefully formulate the path integral
over our constrained space before arriving at the corre-
spondence principle that relates M and K.

A. The variational principle and dequantization

A path integral over a classical system is usually used to
define a quantum propagator which associates amplitudes
with pairs of path end points. However, in the present case,
we follow a reverse procedure: We use the path-integral
formulation to “dequantize” a system by writing its
propagator as a path integral [78]. This provides a classical
state space and an action functional defining a classical
system. The restriction to the TDVP state space is equiv-
alent to such a dequantization if it can be given a resolution
of the identity [79]. This process provides a correspondence
between a classical system and a quantum system in its
linear span (for M, the latter system is the symmetric
subspace K). If the same variational principle is taken for
restricting to a vector subspace, such as our symmetric
subspaceK, then it is equivalent to a projection. It is natural
that both the quantized and dequantized system satisfy this
same kind of variational optimality.
Crucially, the prescription above relies on being able to

associate a measure μ with some family of paths. This can
be achieved by equipping the classical state space with an

(a)

(b)

(c)

FIG. 4. Dynamics for N ¼ 32. (a) Entanglement entropy
following a quench for the full quantum dynamics, the dynamics
projected into K, and the TDVP dynamics on M. The entropy
growth shows that for K, the initial state does not revive exactly
leaving some residual entropy compared to the more weakly
entangled dynamics on M. (b) Local observables following the
quench are well reproduced. Both TDVP and K subspace
approximations fail to capture a slow decay in the oscillations
for t≳ 5. (c) Pairwise comparisons between the exact dynamics,
projected dynamics on K, and TDVP dynamics on M. This
illustrates that the dynamics on K is always more accurate than
TDVP on M.
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integration measure, forming a structure we refer to as a
frame [80]. This structure is characterized by the frame
operator

Sμ ¼
Z
M

dμθ;ϕjΨ̃ðθ;ϕÞihΨ̃ðθ;ϕÞj ð7Þ

using the parametrization of states in Eq. (6). For ðM; μÞ to
constitute a genuine frame, Sμ must be bounded and
positive definite. It is this operator which must reproduce
the identity to yield a well-defined quantization.
The strategy we follow is to start from a “proxy”measure

that produces a frame over M which is reasonably well
behaved, although it may not resolve the identity; see
Appendix H for details on this measure and the corre-
sponding frame operator Sμ. This measure can then be used
to construct a transformed state space M by replacing the
states attached to each point according to the linear action

jΨ̃i ↦ S−1=2μ jΨ̃i: ð8Þ

We find the differences between the two spaces decrease as
N increases, until in the thermodynamic limit they are
equivalent almost everywhere. This means that we can
construct a corrected measure ν such that in the thermo-
dynamic limit the frame ðM; νÞ forms a resolution of the
identity. We demonstrate this numerically in Fig. 5(a) by
computing the Fubini-Study metric or Bures distance DFS
[81]—which measures the angle between two states as
projective rays—averaged over the phase space. We find
DFS ∼ 1=

ffiffiffiffi
N

p
, supporting the asymptotic equivalence

between M and M. This means that Sμ asymptotically
acts essentially as a scalar on each of the points of M, and
can therefore be absorbed into the measure. This change in
measure is unable to affect the behavior of the classical
dynamical system, which can be formulated entirely
independent of the measure.

For finite sizes, we find that the transformed space M is
a moral equivalent to M, in the sense that they are highly
similar around the “good” trajectories, i.e., the ones in the
vicinity of the jZ2i quench trajectory, while potentially
disagreeing about the “bad” trajectories. The latter trajec-
tories are the ones that pass through the corners of the phase
space, and they are deemed unphysical as the corners
represent the zero vector in the quantum picture, which
yields a large geometric error. The disregard for the bad
trajectories is also justified because M is intended to be
effective at describing the jZ2i state quench dynamics,
while in other parts of the phase space the leakage rate or
geometric error may be large [11,24]. This situation is
illustrated in Fig. 5(b) forN ¼ 128, where the gray lines are
for the original dynamical system, and the red lines are the
frame-transformed dynamics. The vector fields are for
finite-sized systems and are calculated from the action
principal represented in the symmetric basis for K. This
method avoids numerical instability found in the canonical
treatment [52] around singularities in the Gram matrix. We
observe in Fig. 5(b) that the flows agree around the good
trajectories and diverge from one another on approaching
the corners. The black line is an integral curve for the
frame-transformed system starting from the jZ2i state,
showing that the trajectory which underlies the quantum
scar dynamics is retained.
To summarize, we show there is a measure which

quantizes the original space M to K in the thermody-
namic limit. This is achieved by constructing a sequence
of transformed spaces for finite sizes which has a
common N → ∞ limit as the original space. For each
finite N, the transformed space quantizes naturally to the
Hilbert space K examined in the previous sections, in
which many quantities of interest may be calculated
efficiently. Even for finite system sizes, the transformed
space has very similar dynamics to the original space,
except around regions which do not contribute to the
quench dynamics.

B. Physical interpretation of quasimodes

Armed with a quantization-dequantization correspon-
dence between the classical TDVP system and the sym-
metric subspace K, we now turn to the consequences for
our interpretation of individual quasimodes, and by exten-
sion the exact eigenstates. We show that the top-band
quasimodes can be viewed as standing waves localized
around the jZ2i state trajectory, making contact with the
phenomena which inspires the term quantum scar in billiard
systems. In these systems, it was found that some eigen-
functions anomalously localize around unstable periodic
orbits [1], leading to the picture that the classical trajectory
is “imprinted” upon the quantum states, giving rise to
wave-function scarring.
First, we show how the quasimodes can be viewed as

wave functions. The frames constructed in the previous

(a) (b)

FIG. 5. (a) Fubini-Study distance DFS between the original M
and transformed M state spaces averaged over the phase space
with measure μ. (b) Illustration of the integral curves of (red) the
frame-transformed dynamics and (gray) the original dynamical
system for N ¼ 128. The flows are highly similar except toward
the corners. The black line shows the evolution following a Néel
state quench in the transformed system.
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section, which resolve the identity, allow us to analyze a
quantum state jψi ∈ K through the inner-product map:

ψðθ;ϕÞ ¼ hΨ̃ðθ;ϕÞjS−1=2μ jψi; ð9Þ

jψi ¼
Z
M

dμθ;ϕψðθ;ϕÞS−1=2μ jΨ̃ðθ;ϕÞi: ð10Þ

This mapping allows us to form a wave-function repre-
sentation ψðθ;ϕÞ and, conversely, to recover the quantum
state from that representation. This representation serves as
a phase-space analog to a wave function, which in the usual
Schrödinger picture would be defined only on a Lagrangian
submanifold such as configuration space.
We restrict our attention to a Lagrangian section with

ϕa ¼ 0, as this typically loses no information and the two-
dimensional space is better suited for visualization [24].
The real part of the wave-function representation in Eq. (9)
is shown in Fig. 6 for an illustrative example of a top-band
quasimode [Fig. 6(a)] and one of the remaining quasimodes
[Fig. 6(b)] for N ¼ 128. The top-band quasimodes are
found to concentrate around the jZ2i classical trajectory in
a manner strikingly reminiscent of wave-function scarring
in quantum billiards. The classical trajectory shown by
the black line in Fig. 6 is for the thermodynamic limit. In
Fig. 6(a), we observe that the wave function spreads out
toward the boundary and becomes completely delocalized
at the edges θi ¼ �π, where the points are indistinguish-
able in the transverse direction. Following the classical
trajectory, the phase of the wave function winds, and
integrality of this winding number leads to their approx-
imately equal spacing in energy. We recognize this behav-
ior from quantization of regular trajectories [82]: In the
old quantum theory, it underpins Sommerfeld-Wilson
quantization and leads to the de Broglie standing-wave

condition for the Bohr model. These features are inherited
by the exact scarred eigenstates given their strong overlap
with the quasimodes. In contrast, the other quasimodes are
typically found around the orbits connecting corners of the
manifold; see Fig. 6(b). The geometric error is large around
the corners; perhaps, in this way, accounting for the
increased energy variance and energy delocalization found
previously in such quasimodes.
We note one dissimilarity between our result in Fig. 6

and wave-function scarring in the fact that the TDVP
phase-space section is entirely regular. It cannot exhibit
chaos because a symmetry argument leaves the two-
dimensional ϕa ¼ 0 section dynamically invariant [11].
The other quasimodes are distinguished from the top-band
ones not by chaotic nature but because they do not appear
to survive the “injection” into the full Hilbert space; i.e.,
while the top-band quasimodes accurately approximate the
true eigenstates of the full PXP model, this is not the case
for the other quasimodes. In Ref. [24], related Ansätzewere
used to study the dynamics of different initial states and in
the presence of a chemical potential which makes ϕa
variables dynamical. In these situations, mixed phase space
containing both regular and chaotic regions was found to
generally appear [24]. We expect that if the bond dimension
of our Ansatz is increased, then the TDVP phase space we
consider here can be embedded into this larger phase
space wherein chaos might develop. For the periodic
trajectory, which underlies the top-band quasimodes, the
integrated error is low, and we expect this trajectory to
remain regular, while the top-band quasimodes would
continue to leave a scar on the eigenstates. However, the
other quasimodes, which concentrate around trajectories
with greater integrated variational error, are more sensitive
to the addition of extra degrees of freedom and are
expected to develop chaos.

VII. CONCLUSIONS AND DISCUSSION

We introduce a symmetric subspaceKwhich allows for a
simple construction of quasimodes in the Rydberg atom
model. We show that these quasimodes are well localized in
the energy eigenbasis and have greatly suppressed energy
fluctuations, thereby making them excellent approxima-
tions to the exact eigenstates. As a consequence, the quench
dynamics is also well captured in this subspace. We argue
that our subspaceK can be interpreted as a “requantization”
of the variational classical limit [11] when quantum
fluctuations are restored to all orders, revealing that the
TDVP classical system is formed of two approximations,
one of which is a mean-field-type approximation and
another which is the classical limit. Using finite-size
scaling, we show that the wave-function revivals survive
in the thermodynamic limit in the mean-field regime, but
the state transfer between the two Néel states is no longer
perfect. This implies that the TDVP periodic trajectories are
robust to the addition of quantum fluctuations.

(a) (b)

FIG. 6. Viewing a selected (a) top-band and (b) non-top-band
quasimode as wave functions over θ1 and θ2 for N ¼ 128. Color
scale represents the real part of the wave function. Top-band
quasimodes concentrate around the classical periodic orbits
demonstrating quantum scarring. The phase of the wave function
winds along the trajectory, and this winding number is related to
the approximately equally spaced energies of the quasimodes.
The other quasimodes avoid this periodic trajectory due to
orthogonality, and concentrate around the trajectories with the
corners of the square for end points.
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The simplicity of this approach allows us to obtain
closed-form results for many important quantities, and our
method can be easily extended to account for various
perturbations to the PXP model that have been considered
in the literature [12,14,56]. Moreover, we expect the analog
of subspace K to be particularly useful in studying two-
dimensional scarred models [39,83,84], models of lattice
gauge theories [85], and the one-dimensional limit of the
fractional quantum Hall effect [29], as well as in describing
the dynamics in other types of constrained models, e.g.,
quantum dimer models [86], whose ground states have a
similar “symmetrized” structure at Rokshar-Kivelson
points [87].
Our work also relates to several fundamental questions.

Underlying our method is a symmetrization process which
identifies our symmetric subspace by shuffling the lattice
sites within the even and odd sublattices, while respecting
the Rydberg blockade constraint. It is within this symmetric
subspace that the scarred quasimodes are found. Previously,
the structure of the scarred subspace has been argued to
form an approximate SU(2) representation [10,12]. The
combination of these two structures is suggestive of the
Schur-Weyl duality, which classifies SU(2) representations
by representations of the symmetric group. At the same
time, all the detailed elements of this duality are modified
due to the presence of constraints. For example, the
constrained Hilbert space cannot be given a permutation
group action similar to the tensor space, which has a natural
symmetric group action exchanging the tensor factors. We
believe that the relationship seen here is an interesting and
nontrivial extension of the Schur-Weyl duality that merits
further investigation.
Our results around the quantization of the variational

classical system allow us to firm up the analogy between
the wave-function scarring in the PXP model and the
single-particle quantum systems. The one outstanding
challenge in making contact between the quasimodes
and rigorous results on exact eigenstates is the exponential
many-body density of states. The approximate permutation
group action identified in our work could provide a way to
control the density of states in order to rigorously prove the
existence of quantum nonunique ergodicity in the Rydberg
atom chain.
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APPENDIX A: ANALYTICAL DERIVATION OF
CLASS SIZES AND MATRIX ELEMENTS

1. Class sizes

In the symmetric subspace, each basis state is a sym-
metric superposition of product states in the full (con-
strained) Hilbert space. All these states have the same
number of excitations on each sublattice, so they belong to
the equivalence class ðn1; n2ÞN . The basis states of the
subspace are then defined as

jðn1; n2ÞNi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

#ðn1; n2ÞN
p X

ϕ∈ðn1;n2Þ
jϕi; ðA1Þ

where #ðn1; n2ÞN is the size of the corresponding class. In
order to compute the matrix elements of H, we now derive
an analytical expression for the class size using a recurrence
relation for periodic boundary conditions.
We start with the simple case where n1 ¼ 0, meaning

that there are no excitations on the first sublattice. Then, the
Rydberg constraints are irrelevant, and the class size
corresponds to the number of ways to place n2 identical
excitations in N=2 sites, leading to

#ð0; n2ÞN ¼ ðN=2Þ!
n2!ðN=2 − n2Þ!

¼
�
N=2
n2

�
; ðA2Þ

which is simply a binomial coefficient.
For n1 ≠ 0, we want to obtain a relation between

#ðn1; n2ÞN and #ðn1 − 1; n2ÞN−2. This can be done by
counting the number of product states in the class starting
with the pattern j•∘…:i in two different ways. This quantity
is denoted by D•∘ðN; n1; n2Þ, and can be computed using
the operator Si•∘, which is a projector on all states having •∘
on sites i and iþ 1. So, for any product state jψi in the full
Hilbert space,

Si•∘jψi ¼
8<
:

jψi if jψi ¼ j …|{z}
i−1

•∘ …|{z}
N−i−2

i;

0 otherwise:
ðA3Þ

Hence, we can compute

D•∘ðN;n1;n2Þ¼
X
jψi∈

ðn1 ;n2ÞN

hψ jS1•∘jψi

¼ 2

N

XN=2−1

j¼0

X
jψi∈

ðn1 ;n2ÞN

hψ jS2jþ1
•∘ jψi¼ 2n1

N
#ðn1;n2ÞN:

ðA4Þ

Here we use the fact that the sum over the class elements is
invariant under translation of two sites. The two sums can
then be swapped, and the sum over j simply counts the
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number of excitations on the first sublattice, and thus gives
n1 for every state in this class.
The second way of counting D•∘ðN; n1; n2Þ relies on

separating the first two sites from the rest of the chain.
Any state jψi ∈ ðn1; n2ÞN with the pattern j•∘…i can be
rewritten as j•∘i ⊗ jϕi, where jϕi ∈ ðn1 − 1; n2ÞN−2
with its last site not excited. The fraction of states in
ðn1 − 1; n2ÞN−2 satisfying this condition is given by
1 − ðn2=N=2 − 1Þ ¼ ðN=2 − 1 − n2=N=2 − 1Þ.
Accounting for the size of this class leads to

D•∘ðN; n1; n2Þ ¼
N=2 − 1 − n2

N=2 − 1
#ðn1 − 1; n2ÞN−2: ðA5Þ

Putting together Eq. (A4) and (A5) gives the recurrence
relation

#ðn1; n2ÞN ¼ N
2n1

N=2 − 1 − n2
N=2 − 1

#ðn1 − 1; n2ÞN−2: ðA6Þ

Using Eq. (A2) as the initial condition, it is straightforward
to use this recurrence to obtain the general class size

#ðn1;n2ÞN ¼
N
2
ðN
2
−n1−n2Þ

ðN
2
−n1ÞðN2 −n2Þ

�N
2
−n1
n2

��N
2
−n2
n1

�
: ðA7Þ

2. Matrix elements

As the PXP Hamiltonian removes or adds a single
excitation, jn1; n2i has only nonzero matrix elements with
jn1 � 1; n2i and jn1; n2 � 1i. Using the Hermiticity of H
and the exchange symmetry n1⇌n2, only one of these
elements has to be computed. For simplicity, we choose

ðHÞðn1−1;n2Þðn1;n2Þ ¼ hðn1 − 1; n2ÞN jHjðn1; n2ÞNi

¼
X
jψi∈

ðn1 ;n2ÞN

X
jϕi∈

ðn1−1;n2ÞN

hϕjHjψiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1; n2ÞN#ðn1 − 1; n2ÞN

p :

ðA8Þ

For each element of ðn1; n2ÞN , there are n1 excitations that
can be removed to give a product state in ðn1 − 1; n2ÞN .
Because of the orthonormality of the product states, each of
these moves simply gives a contribution of 1. The double
sum ends up giving n1#ðn1; n2ÞN , and the matrix element is

ðHÞðn1−1;n2Þðn1;n2Þ ¼ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1; n2ÞN

#ðn1 − 1; n2ÞN

s
: ðA9Þ

This can be rewritten using Eq. (A7) as

ðHÞðn1−1;n2Þðn1;n2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðN2 −n1−n2ÞðN2 þ1−n1−n2Þ

N
2
−n1

s
: ðA10Þ

The case where n1 ¼ ðN=2Þ needs to be treated separately.
Because of the kinetic constraint, a sublattice can be fully
occupied only if the other one is empty, hence, n2 ¼ 0.
Equation (A9) can then be expanded using Eq. (A2) instead
of Eq. (A7) to give

ðHÞðn1−1;0Þðn1;0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

�
N
2
þ 1 − n1

�s
; ðA11Þ

which is well behaved for all values of n1.

APPENDIX B: SUBSPACE ENERGY VARIANCE

The subspace energy variance is defined as

σ2H ¼ K̂ðH2Þ − ðK̂ðHÞÞ2; ðB1Þ

where K̂ is a superoperator which projects linear operators
defined on the full Hilbert space down to the symmetric
subspace K. The matrix elements of ½K̂ðHÞ�2 can easily be
computed from the results of Appendix A. To obtain the
elements of K̂ðH2Þ, it is helpful to decompose H as

H ¼ Hþ
1 þHþ

2 þH−
1 þH−

2 ; ðB2Þ

where H�
i adds or removes an excitation on the ith

sublattice. This decomposition turns H2 into a product
of 16 terms, and we show that only four of them are
relevant. To lighten the notation, we define the result for
each term as

Aþ;−
1;2 ðn1; n2Þ ≔ ½K̂ðHþ

1 H
−
2 Þ�ðn1þ1;n2−1Þ

ðn1;n2Þ : ðB3Þ

In a similar fashion, the terms of ðK̂ðHÞÞ2 are labeled as

Bþ;−
1;2 ðn1; n2Þ ≔ ½K̂ðHþ

1 ÞK̂ðH−
2 Þ�ðn1þ1;n2−1Þ

ðn1;n2Þ : ðB4Þ

As these elements are all computed for a system of fixed
size N, the subscript referring to it is dropped.
An important simplification comes from the fact that

Hþ
1 jðn1; n2Þi ¼ ðn1 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1 þ 1; n2Þ
#ðn1; n2Þ

s
jðn1 þ 1; n2Þi;

ðB5Þ

which implies that Hþ
i does not leak out of the symmetric

subspace. This is not the case forH−
1 , and if it were it would

mean that the subspace energy variance is always zero.
The difference between these two operations comes
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from the Rydberg constraint. Indeed, consider a state
jψi ∈ ðn1 þ 1; n2Þ and remove an excitation. As stated
in Appendix A, this gives n1 þ 1 distinct elements in
ðn1; n2Þ, one per excitation that can be removed. Let us
denote the set of these states by Gψ ⊂ ðn1; n2Þ. Formally,
this means that Gψ ≔ fjϕi ∈ ðn1; n2ÞjhϕjH−

1 jψi ≠ 0g.
When applying Hþ

1 to jðn1; n2Þi, the n1 þ 1 states in Gψ

will contribute to jψi, and the ones in ðn1; n2ÞnGψ will not.
So, Hþ

1 jðn1; n2Þi gives n1 þ 1 contributions to jψi. As this
is valid for any state jψi in ðn1 þ 1; n2Þ, it means that
applying Hþ

1 to jðn1; n2Þi will give a symmetric super-
position of states in ðn1 þ 1; n2Þ. Taking into account the
normalization factors gives Eq. (B5).
For H−

1 , the same procedure is not possible. Indeed, the
number of excitations that can be added to a state jψi ∈
ðn1; n2Þ is not uniquely defined. It is actually very easy to
find an example of two states in the same class to which we
can add a different number of excitations. Consider the
states j•∘•∘∘•∘•∘∘∘∘i and j•∘∘•∘∘•∘∘•∘∘i that are both in
ð2; 2Þ12. We can add an excitation on any sublattice to the
former but not the latter.
The main consequence of Eq. (B5) is that the right

actions of Hþ
i and K̂ðHþ

i Þ are the same. This also holds for
the left action of ðHþ

i Þ† ¼ H−
i . So, H

þ
1 H

−
2 , H

þ
1 H

−
1 , and

their 1⇌2 counterparts are the only elements that can differ
between K̂ðH2Þ and ðK̂ðHÞÞ2.

1. Diagonal elements: H +
1 H

−
1

As mentioned previously, applyingH−
i to jðn1; n2Þi does

not give a symmetric superposition. In order to describe
correctly the resulting state, we need to introduce more
detailed classes.
Let ðn1; n2; m1; m2Þ be the class of states with ni

excitations on the ith sublattice and mi excitable sites on
it. By “excitable,” we mean a site that is not excited, but
with both neighbors also unexcited. From this definition, it
follows that ðn1; n2; m1; m2Þ ⊂ ðn1; n2Þ andX

m1;m2

#ðn1; n2; m1; m2Þ ¼ #ðn1; n2Þ: ðB6Þ

Applying Hþ
1 to any state in ðn1; n2; m1; m2Þ gives m1

distinct states, one for each excitable site. This allows one
to compute the matrix element

ðHÞðn1þ1;n2Þ
ðn1;n2Þ ¼

P
m1;m2

m1#ðn1; n2; m1; m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1; n2Þ#ðn1 þ 1; n2Þ

p : ðB7Þ

Because of the Hermiticity of H, Eq. (A9) can be used to
derive the identityX
m1;m2

m1#ðn1; n2; m1; m2Þ ¼ ðn1 þ 1Þ#ðn1 þ 1; n2Þ: ðB8Þ

Using these new classes and identities, it is now possible
to compute the matrix element for K̂ðHþ

1 H
−
1 Þ acting on

jðn1; n2Þi. First, the number of states in the class needs to be
expressed as #ðn1; n2Þ ¼

P
m1;m2

#ðn1; n2; m1; m2Þ. Acting
withH−

1 simply gives a factor of n1 for all states, leaving us
with n1

P
m1;m2

#ðn1; n2; m1; m2Þ elements. It also creates
an additional excitable site, which means that acting with
Hþ

1 leads to

n1
X
m1;m2

ðm1 þ 1Þ#ðn1; n2; m1; m2Þ

¼ n1ðn1 þ 1Þ#ðn1 þ 1; n2Þ þ n1#ðn1; n2Þ ðB9Þ

contributions, where identities Eqs. (B6) and (B8) are used
to resolve the sum. With the normalization, this amounts to

Aþ;−
1;1 ðn1;n2Þ¼ n1ðn1þ1Þ#ðn1þ1;n2Þ

#ðn1;n2Þ
þn1

¼ n1
ðN
2
−n1−n2−1ÞðN

2
−n1−n2Þ

N
2
−n1−1

þn1:

ðB10Þ

The equivalent quantity for ðK̂ðHÞÞ2 is

Bþ;−
1;1 ðn1;n2Þ¼ n21

#ðn1;n2Þ
#ðn1−1;n2Þ

¼ n1
ðN
2
−n1−n2ÞðN2 −n1−n2þ1Þ

N
2
−n1

: ðB11Þ

2. Off-diagonal elements: H +
1 H

−
2

This case is trickier because it involves the mixing of m1

andm2. To simplify the computation, it is better to focus on
the unnormalized matrix element Āþ;−

1;2 ðn1; n2 þ 1Þ such
that

Āþ;−
1;2 ðn1; n2 þ 1Þ ¼ N hðn1 þ 1; n2ÞjHþ

1 H
−
2 jðn1; n2 þ 1Þi;

ðB12Þ

where N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1 þ 1; n2Þ#ðn1; n2 þ 1Þp

. The rightmost
state is jðn1; n2 þ 1Þi because the focus of the computation
is on the intermediate state jðn1; n2Þi. When acting withH−

2

on jn1; n2 þ 1i, each state in ðn1; n2; m1; m2Þ gains a factor
of m2 because of the number of states contributing. The
same is true for the left half, acting withH−

1 on jn1 þ 1; n2i
gives a factor of m1. Inserting the identity in the middle as
jðn1; n2Þihðn1; n2Þj=#ðn1; n2Þ gives

Āþ;−
1;2 ðn1;n2þ1Þ¼

X
m1;m2

m1m2#ðn1;n2;m1;m2Þ
#ðn1;n2Þ

¼
P

m1;m2
m1m2#ðn1;n2;m1;m2ÞP

m1;m2
#ðn1;n2;m1;m2Þ

: ðB13Þ
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m1 and m2 can be viewed as random variables with a
probability distribution proportional to #ðn1; n2; m1; m2Þ,
and then Eq. (B13) is simply the expectation value
E½m1m2�. The equivalent element for ½K̂ðHÞ�2 can itself
be understood as a product of the expectation values

E½m1�E½m2� ¼
ðn1þ1Þ#ðn1þ1;n2Þ

#ðn1;n2Þ
ðn2þ1Þ#ðn1;n2þ1Þ

#ðn1;n2Þ

¼ ðN
2
−n1−n2−1Þ2ðN

2
−n1−n2Þ2

ðN
2
−n1−1ÞðN

2
−n2−1Þ ; ðB14Þ

where the relation between E½mi� and the matrix elements
of K̂ðHÞ is derived from Eqs. (B7) and (B8).
The subspace energy variance forHþ

1 H
−
2 is then given by

the difference between Eqs. (B13) and (B14), which is
equal to the covariance of m1 and m2:

Cov½m1; m2� ¼ E½m1m2� − E½m1�E½m2�: ðB15Þ

Up to a multiplicative factor, this quantity is equal to

X
m1;m2

�
m1m2

�
N
2
−n1−1

��
N
2
−n2−1

�

−
�
N
2
−n1−n2

�
2
�
N
2
−n1−n2−1

�
2
�
#ðn1;n2;m1;m2ÞN:

ðB16Þ

We now make the assumption that ðN=2Þ − n1 − 1 ≠ 0 and
ðN=2Þ − n2 − 1 ≠ 0 and demonstrate that this expression is
identically zero. The cases ni ¼ ðN=2Þ − 1 are handled
separately later.
For the purposes of this proof, we introduce an ordinary

generating function for the elaborated class sizes,

½zN=2xn11 xn22 ym1

1 ym2

2 �G ¼ #ðn1; n2; m1; m2ÞN: ðB17Þ

From Eq. (B16), we can derive a differential equation for
this generating function,

ð∂y1∂y2ðw∂w þ x1∂x1 − 1Þðw∂w þ x2∂x2 − 1Þ
þ ðw∂wÞ2ðw∂w − 1Þ2ÞG

���y1¼1
y2¼1

¼ 0; ðB18Þ

where we eliminate z by a change of variable in favor of
w ¼ z=ðx1x2Þ. This equation is satisfied if and only if
Eq. (B16) is equal to 0.
We now derive a rational expression forG. Take a look at

Fig. 7. Each state of this automaton is the state of the two
sites on the (left) boundary of a partial configuration. Each
arrow is an allowed gluing process. It takes the motif on the
target of the arrow and glues it onto the left on the partial
configuration producing a configuration with two more
sites. The label on the arrows is a monomial factor which is

picked up when following that gluing process. The x1 and
x2 indeterminates mark when an excitation is added to the
respective sublattices, whereas y1 and y2 mark when we
realize that we could have placed an excitation on a site
consistent with all subsequent choices. The sum of all the
execution paths of this automaton generates all the allowed
configurations and marks them with the appropriate powers
of the indeterminates. A process matrix for this automaton
is the following:

M ¼

0
B@ y1y2 y2 1

x2 x2 0

x1y1 x1 x1

1
CA; ðB19Þ

with which we can express the generating function as a
Neumann series. The series clearly is convergent in some
neighborhood of z ¼ x1 ¼ x2 ¼ 0 and y1 ¼ y2 ¼ 1, and so
we may express it as

Gðx1;x2;y1;y2;zÞ¼
X
N=2

zN=2TrfMN=2g¼Trfð1− zMÞ−1g

¼ 3−2f1z−f2z2

1−f1z−f2z2−f3z3
; ðB20Þ

where

f1 ¼ y1y2 þ x1 þ x2; ðB21Þ

f2 ¼ x1y1ð1 − y2Þ þ x2y2ð1 − y1Þ; ðB22Þ

f3 ¼ ð1 − y1Þð1 − y2Þ: ðB23Þ

This expression differs by an additive constant from
the definition given previously, but this detail is unim-
portant. It is a lengthy albeit straightforward calculation to
verify that this expression indeed satisfies the differential
equation (B18) as required.
Now we return to the deferred cases of when either

ðN=2Þ − n1 − 1 ¼ 0 or ðN=2Þ − n2 − 1 ¼ 0. The first term
E½m1m2� vanishes because in either of these cases, for one

FIG. 7. Finite-state automaton diagram for the elaborated
generating function. From this diagram, we can read off the
matrix elements of Eq. (B19).
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of the sublattices, it is not possible to insert an excitation,
hence, m1m2 ¼ 0. For the second term E½m1�E½m2�, the
same reasoning implies that one of #ðn1 þ 1; n2Þ and
#ðn1; n2 þ 1Þ must vanish. Thus, the proposition is shown
inclusive of the previously excluded cases.

3. Total subspace energy variance

The only nonzero matrix elements of the subspace energy
variance are the diagonal ones given by Eqs. (B10) and
(B11). Taking their difference leads to

σ2H ¼ n1n2ðn2 − 1Þ
ðN
2
− n1 − 1ÞðN

2
− n1Þ

þ ð1 ↔ 2Þ ðB24Þ

for jðn1; n2Þi. The total subspace variance can also be
obtained by tracing over all basis states

Tr½σ2H� ¼
1

9

�
N
2
− 3

��
N
2
− 2

��
N
2
− 1

�
: ðB25Þ

APPENDIX C: PROOF THAT M ⊆ K

Wework in the general setting where there is a collection
of N sites, an assignment of them onto d subsets, and a
projection operation which is diagonal in the computational
basis. The state spaceM consists of a coherent state on the
highest spin representation formed by fusing all the spins
on each subset which is then projected into the constrained
Hilbert space. The vector space K is the span of the
symmetric combinations of the computational basis states
with fixed occupation on each of the subsets. This setting
subsumes the cases of the coherent-state TDVP Ansatz for
the PXP model from Ref. [9] developed further in Ref. [11],
and also the generalizations for Zd initial states and tree-
tensor networks [24]. The states in M can be expressed
using matrix product states with bond dimension D ¼ 2.
Similar to Ref. [11], we use the parametrization

A•ðθj;ϕjÞ ¼
 
0 −ieiϕj sin

�
θj
2

	
0 0

!
;

A∘ðθj;ϕjÞ ¼

0
B@ cos

�
θj
2

	
0

cos
�
θj
2

	
0

1
CA; ðC1Þ

where A• is for an excited site and A∘ for an unexcited site.
The chain is split into d sublattices, each with two param-
eters θj and ϕj, thereby producing N=d identical unit cells.
The corresponding (unnormalized) quantum state isX
fσg

Tr½Aσ1ðθ1;ϕ1ÞAσ2ðθ2;ϕ2Þ;…; Aσdðθd;ϕdÞ

× AσN−dþ1ðθ1;ϕ1Þ;…; AσN ðθd;ϕdÞ�jσ1;…; σNi; ðC2Þ

where the trace enforces periodic boundary conditions.
Equivalently, we are fixing sites j; jþ d; jþ 2d;… to
cos ðθj=2Þj∘i − ieiϕj sin ðθj=2Þj•i, with the additional appli-
cation of a projector that annihilates configurations with
neighboring excitations.
Up to this point, only the symmetric subspace with two

sublattices (d ¼ 2) has been considered. However, it is easy
to see how to extend our previous results to d sublattices.
The basis states jðn1;…; ndÞNi are then symmetric super-
positions of product states with ni excitations on the ith
sublattice. As in Appendix A, recurrence relations for the
class sizes can be found using combinatorics arguments.
Once these relations are known, the matrix elements can be
computed from them as it was done for d ¼ 2. We now
demonstrate that, for any value of d, all states in M lie in
the corresponding K subspace.
In Eq. (C2), for each configuration of σ’s there is a

product of N matrices of size 2 × 2. For the moment,
suppose that there is at least one excitation in the configu-
ration. Then this sequence can be segmented into blocks
with the following pattern: The leftmost matrix corresponds
to an excitation and all the others are vacancies. Because of
the cyclic property of the trace, we can also assume that the
leftmost matrix in Eq. (C2) corresponds to an excitation and
rewrite the quantity inside the trace as

Y
blocks



A•ðθj;ϕjÞ

Ym
l¼1

A∘ðθjþl;ϕjþlÞ
�
; ðC3Þ

where the indices of the angles are periodic in d, meaning
that θdþj ¼ θj. From Eq. (C1), it is easy to compute the
product of two vacancy matrices

A∘ðθk;ϕkÞA∘ðθj;ϕjÞ ¼ cos

�
θj
2

�0B@ cos
�
θk
2

	
0

cos
�
θk
2

	
0

1
CA: ðC4Þ

Therefore, in each block the whole trail of vacancy matrices
on the right can be reduced to a single vacancy matrix and a
product of cosines. The product between an excitation
matrix and a vacancy matrix can also be simplified as

A•ðθk;ϕkÞA∘ðθj;ϕjÞ ¼ −ieiϕk sin

�
θk
2

�
cos

�
θj
2

�
B; ðC5Þ

where B ≔ ð1
0
0
0
Þ. Finally, it is easy to see from Eq. (C1) that

the product of two excitation matrices gives 0. This
parametrization guarantees that each block has at least
one vacancy matrix on the right, and that Eq. (C3) can be
written as

Y
blocks



−Bieiϕj sin

�
θj
2

�Ym
l¼1

cos

�
θjþl

2

��
: ðC6Þ
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This is a product of collinear (and hence, commuting)
matrices, and the effect of the trace on it is trivial. The last
step is to count the number of blocks with a leftmost matrix
with index j. For any configuration, it is simply given by
the number of excitations in the corresponding sublattice.
This means that each excitation in the sublattice j gives a
factor of ieiϕj sinðθj=2Þ. The other sites in this sublattice are
free and give a factor of cosðθj=2Þ each. This means that
each configuration n1;…; nk has a prefactor of

Yd
j¼1

c
nj
•;jc

N=d−nj
∘;j with

c•;j ¼ −ieiϕj sin
�
θj
2

	
;

c∘;j ¼ cos
�
θj
2

	
:

ðC7Þ

As this term depends only on the sublattice on which the
excitations are placed and not on the actual sites, it
can be exactly expressed in the symmetric subspace.
Inserting this result into Eq. (C2) and accounting for the
number of such configurations in the product basis means
that in the symmetric subspace the state jfθi;ϕigNi can be
rewritten as

X
n1;…;nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1;…; ndÞ

p �Yd
j¼1

c
nj
•j c

N=d−nj
∘j

�
jðn1;…; ndÞNi:

ðC8Þ

Returning to the excluded case where there are no exci-
tations, it is easy to see from Eq. (C4) that it will give

Yd
i¼j



cos

�
θj
2

��
N=d

¼
Yd
j¼1

cN=d
∘j : ðC9Þ

As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ð0;…; 0Þp ¼ 1, it satisfies Eq. (C8). This concludes

the proof thatM ⊆ K, as Eq. (C8) expresses every point of
M as a linear combination of vectors in K.

APPENDIX D: PROOF THAT K= spanM

Appendix C established thatM ⊆ K. We now claim that
the relation between these two spaces is stronger and that
K ¼ spanM. For simplicity, in this section we work with
the complex parametrization of M,

jψNðzÞi ¼
X

n1;…;nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1;…; ndÞN

p Yd
a¼1

znaa jðn1;…; ndÞNi:

ðD1Þ

This parametrization, like the coherent-state parametriza-
tion of Appendix C, may fail to be injective. This happens
for the PXP model when θi ¼ �θiþ1 ¼ �π=2. This is a
defect with the space M, where M fails to be locally
Euclidean, rather than with the parametrizations.

We now consider two ordered bases B and B0, where
spanB ¼ K and spanB0 ⊆ spanM. The first basis B is
defined as

Bn1;…;nd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1;…; ndÞN

p
jðn1;…; ndÞNi; ðD2Þ

where the multi-index n1;…; nd is taken to include values
such as N=2;…; N=2 for which the basis vector is a zero
vector. Hence, B is an overcomplete and linearly dependent
basis for K. This choice is made to provide the multi-index
with a natural Cartesian product structure.
In order to define the second basis B0, we first need to

choose a set of distinct coordinate values za;ð1Þ;…; za;ðN=2þ1Þ
for each dimension a ¼ 1;…; d. We define the basis B0
using the complex parametrization as

B0
i1;…;id

¼ jψðz1;ði1Þ;…; zd;ðidÞÞi: ðD3Þ

We can interpret this basis as coordinate-aligned grid of
points, where we sample the M-valued polynomial
jψðz1;…; zdÞi to provide our basis vectors.
Disregarding possible linear dependence in B and B0, our

goal of showing that spanB0 ¼ spanB is equivalent to how
the coefficients of a polynomial may be determined by
evaluating at a sufficient number of distinct points. This
motivates introducing for each a ¼ 1;…; d a Vandermonde
matrix

Qa ¼

0
BBBBBBBB@

1 za;ð1Þ z2a;ð1Þ � � � zjaja;ð1Þ

1 za;ð2Þ z2a;ð2Þ � � � zjajÞa;ð2Þ

..

. ..
. ..

. ..
.

1 za;ðjajþ1Þ z2a;ðjajþ1Þ � � � zjaja;ðjajþ1Þ

1
CCCCCCCCA
; ðD4Þ

where jaj is the number of sites in sublattice jaj. Since the
za;ð1Þ;…; za;ðN=2þ1Þ are all distinct, each Qa is invertible.
These matrices can be used to relate the two ordered

bases using Q ¼ ⊗
d

a¼1
Qa providing two equations

B0 ¼ QB and B ¼ Q−1B: ðD5Þ

These can be read to mean that each basis vector in B0 is a
linear combination of those in B and vice versa, i.e.,
spanB ¼ spanB0. Recalling that B is a complete basis for
K and that every vector in B0 is contained inM, we find the
containment spanM ⊇ spanB0 ¼ spanB ¼ K, which com-
pletes the proof.
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APPENDIX E: BIPARTITE ENTROPY IN THE
SYMMETRIC SUBSPACE

Computing the von Neumann bipartite entropy in the
symmetric subspace is not straightforward due to the
nonlocal definition of the basis states. Consider a spin
chain of length N with periodic boundary conditions and
cut it into two subsystems of size NL and NR, respectively.
Let quantities related to the left part be denoted by the
subscript L and the ones related to the right part by the
subscript R. The simplest way to compute the bipartite
entropy for this cut for a basis state jðn1; n2ÞNi would be to
express it in the full Hilbert space and proceed from there.
However, this is suboptimal as it strongly limits our ability
to study large systems. Instead, the structure of the sub-
space can be exploited in order to write the states in the
right and left subsystems in their respective symmetric
subspaces. To simplify the computations, we consider
only cases where the right and left subsystems are of even
size. If nothing is specified, we consider the cut into two
subsystems of equal size, meaning that the full system
has size N ¼ 4M;M ∈ N, and the two subsystems have
size NL ¼ NR ¼ 2M.
While the full system has periodic boundary conditions,

the subsystems must have open boundary conditions.
Consider the cut j•∘∘•∘•∘∘i ¼ j•∘∘•i ⊗ j∘•∘∘i, it is clear
that the left part violates the Rydberg constraint if periodic
boundary conditions are assumed. Conversely, the two
subsystems j∘∘∘•i and j•∘∘∘i respect the Rydberg con-
straints individually but their tensor product does not. This
simple case shows that we must further subdivide the
classes in the left and right subsystems based on the value
of the extremal sites.
Let us denote by ðn1; n2; a; bÞN; a; b ∈ 0; 1 the class of

states in ðn1; n2ÞN with the additional constraint that the
leftmost site is defined by a and the rightmost site is by b.
The convention used is that the leftmost site is unexcited
if a ¼ 0 and excited if a ¼ 1, and the same hold for b
and the rightmost site. Then, jðn1; n2; a; bÞNi is the
normalized symmetric superposition of all product states
in ðn1; n2; a; bÞN . Using these states, the relevant Schmidt
decomposition for jðn1; n2ÞNi isX
l1 ;l2
r1 ;r2

X
aL;bL
aR;bR

αjðl1; l2; aL; bLÞNL
i ⊗ jðr1; r2; aR; bRÞNR

i; ðE1Þ

where the sums on li and ri run from 0 to N=2, the sums on
all a and b run from 0 to 1, and α depends on n1, n2, and on
all the summation indices. This decomposition includes
terms that are forbidden by Rydberg constraints such as
jðNL=2; NL=2; aL; bLÞNL

i. However, we see later that the
coefficient α corresponding to these terms is naturally zero.
To compute α, selection rules can be stated. The most

obvious one is the conservation of the number of excita-
tions on each sublattice, which tells us that li þ ri ¼ ni.
More formally, it means that α needs to include a term

βn1;n2l1;l2;r1;r2
¼ δl1þr1;n1δl2þr2;n2 ; ðE2Þ

where δi;j is the Kronecker delta. The selection rule on the a
and b is also simple: aL and bR cannot both be 1 and neither
can bL and aR, as this would correspond to neighboring
excitations. This rule can be expressed as

ηaR;bRaL;bL
¼ ð1 − aLbRÞð1 − bLaRÞ: ðE3Þ

The last step is to compute the contribution of each class
ðn1; n2; a; bÞN . Each product state in ðn1; n2ÞN corresponds
to a single state in ðl1; l2; aL; bLÞNL

⊗ ðr1; r2; aR; bRÞNR
.

So, the only multiplicative factors that enter the equation
are the normalization ones. For each combination of the
li; ri; a; b, the contribution to α is simply given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

#ðl1; l2; aL; bLÞNL

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðr1; r2; aR; bRÞNR

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1; n2ÞN

p : ðE4Þ

These class sizes can be computed using the same argu-
ments as in Appendix A, keeping in mind that the two
subsystems have open boundary conditions. To separate the
contributions of the left and right parts, we define

γNn1;n2;a;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#ðn1; n2; a; bÞN

p
: ðE5Þ

This coefficient ensures that all states in the Schmidt
decomposition respect the Rydberg constraint. Indeed, if
a state is incompatible with it, its class size must be 0 and so
is the corresponding γ.
Using Eqs. (E2)–(E5), the coefficients α from Eq. (E1)

can be written as

α ¼ βn1;n2l1;l2;r1;r2
ηaR;bRaL;bL

γNL
l1;l2;aL;bL

γNR
r1;r2;aR;bRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

#ðn1; n2ÞN
p : ðE6Þ

From this Schmidt decomposition, it is straightforward to
compute the entanglement spectrum and the von Neumann
entropy.

APPENDIX F: REVIVALS IN LARGE-N LIMIT

The main feature of the PXP model is the revivals
of the wave function that can be seen for some initial
product states. This effect is strongest when starting from
the Néel state jZ2i ¼ j•∘•∘…i or the anti-Néel state
jZ̄2i ¼ j∘•∘•…i. When starting in one of these states, after
a time T the wave function approximately comes back to
itself. Furthermore, when starting in the state jZ2i, after a
half-period the wave function will be jZ̄2i and vice versa.
In the remainder of this section, we refer to this phenomena
as state transfer. However, these revivals (and state trans-
fers) are not perfect and decay with time. On the other hand,
TDVP shows a periodic orbit going through both the Néel
and anti-Néel states for an infinite system. In this section,

TURNER, DESAULES, BULL, and PAPIĆ PHYS. REV. X 11, 021021 (2021)

021021-14



we study the finite-size dependence of revivals in the
symmetric subspace.
To measure the quality of the revivals, the wave-function

fidelity and the entanglement entropy are used. Starting
from the Néel state jðN=2; 0ÞNi ¼ jZ2i, the Schrödinger
time evolution is generated by e−iHt. The fidelity of revival
is then

frevðtÞ ¼ jhðN=2; 0ÞN je−iHtjðN=2; 0ÞNij2; ðF1Þ

and the fidelity of state transfer is

ftransðtÞ ¼ jhð0; N=2ÞN je−iHtjðN=2; 0ÞNij2: ðF2Þ

For the entanglement entropy, we use the von Neumann
bipartite entropy, as computed in Appendix E. We also
restrict our study to systems of size N ¼ 4M;M ∈ N, and
we cut them into two equally sized subsystems. From this,
we define the entropy as

SðtÞ ¼ Sðe−iHtjðN=2; 0ÞNiÞ: ðF3Þ

As both the Néel and anti-Néel states are product states in
the full Hilbert space, their entanglement entropy is 0. From
the exact PXP model, we expect the first state transfer to
happen around t ¼ 2.35 and the first revival around t ¼
4.70 [10]. This can be seen in the entropy plot in Fig. 8.
From this plot, it is clear that the revivals get enhanced as N
increases, but the quality of the first state transfer varies
very little with system size. To obtain a more rigorous
scaling, let us define the times of the first revival and state
transfer, respectively, as

t1 ¼ argmax
3<t<6

½frevðtÞ�; ðF4Þ

t1=2 ¼ argmax
1<t<4

½ftransðtÞ�: ðF5Þ

This leads to their respective fidelity and entropy

f1 ¼ frevðt1Þ; ðF6Þ

f1=2 ¼ ftransðt1=2Þ; ðF7Þ

S1 ¼ Sðt1Þ; ðF8Þ

S1=2 ¼ Sðt1=2Þ: ðF9Þ

The scaling of these quantities with N can be seen in Fig. 9.
The results for f1 are consistent with the symmetric
subspace having perfect revivals in the thermodynamic
limit. However, the state transfer fidelity f1=2 clearly does
not converge toward 1.
To understand this behavior, we need to look at different

symmetry sectors as well as different bands of states. With
periodic boundary conditions, the relevant symmetry
of the PXP model is translation. Because of the periodicity
of the Néel state, it is composed of only eigenstates with
momentum k ¼ 0 or k ¼ π. The scarred states of the top
band belong alternatively to these two sectors, with the
condition that the ground state always has k ¼ 0. In the
symmetric subspace, the quasimodes show the same
behavior with respect to momentum sectors.
Because our method allows us to access larger systems,

more can be said about the top-band eigenstates. For
example, scaling the system size shows that there is a
constant fraction of them with an equal energy spacing
around E ¼ 0. As N → ∞, the number of top-band
quasimodes with a significant support on jZ2i scales as
Oð ffiffiffiffi

N
p Þ. This means that, as we approach the thermody-

namic limit, the only top-band eigenstates that have a
nonzero overlap with the Néel state are evenly spaced.
Equal spacing of the energies with a difference ΔE

implies perfect revivals with a period T ¼ 2π=ΔE. Without

FIG. 8. Bipartite von Neumann entropy of e−iHtjZ2i in the
symmetric subspace. As N increases, the entropy growth with
time becomes slower.

FIG. 9. Wave-function fidelity and bipartite entanglement
entropy at the first state transfer (f1=2; S1=2) and revival (f1,
S1). The fits shown are of the form y ¼ a1=N þ b. The data are
for sizes up to N ¼ 720 for f1=2; f1 and for sizes up to N ¼ 560

for S1=2; S1.
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loss of generality, let us assume that the energy of the jth
eigenstate is equal to jΔE. After half a period, the phases of
the even and odd eigenstates are

ϕ2n ¼ exp ð−iπ2nEÞ ¼ 1; ðF10Þ
ϕ2nþ1 ¼ exp ½−iπð2nþ 1ÞE� ¼ −1: ðF11Þ

Because of the alternation of momentum, only the k ¼ π
states get a −1 factor as they are the odd ones. These phases
exactly reproduce the anti-Néel state as

jZ̄2i ¼ T̂jZ2i ¼
X

jEi∈k¼0

α0ET̂jEi þ
X

jEi∈k¼π

απET̂jEi

¼
X

jEi∈k¼0

α0EjEi −
X

jEi∈k¼π

απEjEi; ðF12Þ

where T̂ is the translation operator. This means that if only
the top band were relevant, there would be perfect revivals
and perfect state transfer in K. However, the overlap
between jZ2i and the quasimodes not belonging to the
top band is not negligible. In particular, we can explain the
discrepancy between revivals and state transfers by looking
at the second band. By “second band,” we refer to the band
of states with the highest overlap with jZ2i after the top-
band states (see Fig. 10). The quasimodes in this band have
a much lower overlap with the Néel state than the top-band
ones, but they also display the alternation between the two
momentum sectors. Near E ¼ 0, the two top bands con-
verge toward the same energy values (Fig. 11), but with the
opposite momentum value. Hence, in this region there are
two eigenstates for each energy value, one with k ¼ 0 and
the other with k ¼ 1. Because of that, the previous argu-
ment for state transfer no longer holds. However, this has
no effect on the energy spacing itself, so perfect revivals are
still possible.
To summarize, in the symmetric subspace revivals get

better as system size increases. While the finite-size scaling
is consistent with revival becoming perfect in the

thermodynamic limit, it appears that the state transfer is
never perfect because of the presence of the second band.
This is to be contrasted with TDVP where both revivals and
state transfers are exact.

APPENDIX G: PATH-INTEGRAL
DEQUANTIZATION

If we seek to model a particular quantum dynamics
with a classical analog, we need a good understanding
of the relationship between the two. In the main text, we
state that in certain situations we can view the TDVP
classical system as the dequantization of the original
dynamics. This viewpoint was put forward in Ref. [79],
where it was applied to nonuniform matrix product states.
In the following, we review and justify this procedure
using our frame-theoretic language. We do this from the
point of view of path-integral quantization and with the
proviso that from the state space we can form a good
resolution of the identity.
The quantum path integral comes in a number of

conventional representations: the position or momentum
representations corresponding to the Schrödinger formu-
lation, and coherent-state representation corresponding to
the phase-space formulation. In each case, the quantization
procedure involves an integral over all admissible paths,
including those with nonstationary action, which assigns
to each path a weight given by a measure function and a
phase provided by the classical action. Our approach is
closely modeled on the way the path integrals are conven-
tionally defined for various types of coherent states; see,
for example, Ref. [78]. Because our starting point is a
quantum system, we instead take the backward view
where the path integral is defined by a classical limit.
We are also provided with a collection of states jxi for
which we assume that we can pick a measure μ to form a
resolution of the identity,

1 ¼
Z

dμðxÞjxihxj: ðG1Þ

FIG. 10. Overlap of the quasimodes with the Néel state for
N ¼ 440. The top band is shown in red, and the second band
in black.

FIG. 11. Energy difference between consecutive states in the
top band and in the top two bands. Near E ¼ 0, the two bands
converge in energy, as can be seen from Eiþ1 − Ei alternating
between 0 and ΔEtop band.
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Hence, our measure provides the time evolution operator
as an integral operator,

Ktðx0; xÞ ¼ hx0je−iHtjxi; ðG2Þ
which satisfies the homomorphism condition,

Kaþbðx00; xÞ ¼
Z

dμðx0ÞKaðx00; x0ÞKbðx0; xÞ: ðG3Þ

In this way, the finite-time propagator can be broken into a
product of infinitesimal generators,

Kϵðxnþ1; xnÞ ¼ hxnþ1jxni
�
1 − iϵ

hxnþ1jHjxni
hxnþ1jxni

þ oðϵ2Þ
�

¼ exp ð−iϵȞ þ logTÞ þ oðϵ2Þ; ðG4Þ
where

Ȟðxnþ1; xnÞ ¼
hxnþ1jHjxni
hxnþ1jxni

ðG5Þ

and Tðxnþ1; xnÞ ¼ hxnþ1jxni. To deal with inner products
across different times in a symmetric manner, half-steps
can be introduced along the path,

T ¼
�
hxnþ1

2
j þ ϵ

2
h_xnþ1

2
j
��

jxnþ1
2
i − ϵ

2
j_xnþ1

2
i
�
þ oðϵ2Þ

¼ hxnþ1
2
jxnþ1

2
i þ ϵ

2

�
hxnþ1

2
j_xnþ1

2
i − H:c:

�
þ oðϵ2Þ:

The first term here gives another contribution to the path-
integral measure, and the second produces the kinetic term
in the resulting Lagrangian,

Lðx; _xÞ ¼ i
2

hxj_xi − h_xjxi
hxjxi − Ȟ: ðG6Þ

Therefore, in this scenario where we can assume Eq. (G1),
the TDVP action describes a valid classical limit, and this
path integral provides a way to quantize it to recover the
full quantum dynamics. Many of the familiar manifolds of
quantum states, such as spin-coherent states and matrix
product states, come with a natural choice for this measure
which is the Haar measure for a transitive group action.
However, for the constrained coherent states of M, there
is no obvious choice. In the following section, we derive a
suitable measure from an analog to the large-spin corre-
spondence principle.

APPENDIX H: FLUCTUATION BOUNDS FOR
THE FRAME OPERATOR

In this section, we prove convergence between the
transformed and untransformed classical systems in the
thermodynamic limit, and show how a measure can be
constructed with which the untransformed system quan-
tizes naturally. This involves establishing an asymptotic
bound on the fluctuations in frame transformation, which is

then used to reduce the frame transformation to a choice of
measure.
As mentioned in the main text, we start from a measure

that does not properly resolve the identity. Our starting
point is the gauged coherent-state parametrization for M,
Eq. (6), and we want to find a measure such that Sμ [see
Eq. (7)] is bounded. The choice of measure is to an extent
arbitrary, since its details are transformed away later, but
the challenge of ensuring that Sμ is bounded can be
understood from the following heuristic argument. Many
of the properties of Sμ can be seen by considering its
expectation value for a point x ofM. A contribution to this
integral will be significant if it is not too distinguishable
from x, and therefore, the integral can be estimated by the
volume of the “fuzzy” set indistinguishable from x. For
almost all x and as N increases, the fuzzy neighborhood
retracts around x to a point, with a typical fuzzy size
Oð1= ffiffiffiffi

N
p Þ. This phenomenon also occurs on the manifold

of spin-coherent states with increasing spin [78], where it is
a manifestation of the large-spin correspondence principle.
We can imagine each state as a biased coin from which we
observe N flips. The more flips we observe, the more
accurate our estimate of its bias will be. Consequently, we
become better at distinguishing coins with different biases
as N increases. A small part of the space does not behave
like this; for example, if θ1 ¼ π, then θ2 is entirely
indistinguishable regardless of N. These regions can be
suppressed by adopting the measure

dμ ¼
�N

2
þ 1

4π

�
2Y
i¼1;2

dθidϕi sin θicos2
θi
2
: ðH1Þ

Relative to the product of spherical measures, the additional
cos2ðθi=2Þ is chosen to vanish rapidly enough at the edges
of the phase space that the singularity is removed.
The integral over the azimuthal parameters ϕa is oscil-

latory, ensuring that only the diagonal matrix elements are
nonzero. The diagonal matrix elements are now computed,

ðSμÞn1;n2 ¼ #ðn1; n2Þ
Y2
i¼1

Z
π

0

dθicosN−2nþ3
θi
2
sin2niþ1

θi
2

¼ #ðn1; n2Þ
Y2
i¼1

Γðni þ 1ÞΓðN
2
− nþ 2Þ

ΓðN
2
− ni þ 3Þ ; ðH2Þ

where n ¼ n1 þ n2, and the integration is performed by
taking a substitution ti ¼ cos2ðθi=2Þ to place it in the form
of a Euler integral. For periodic boundary conditions, we
arrive at the rational function

ðSμÞn1;n2 ¼
N
2
ðN
2
þ 1Þ2ðN

2
− nÞðN

2
− nþ 1Þ2

ðN
2
− n1Þð3ÞðN2 − n2Þð3Þ

; ðH3Þ
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where ðxÞðnÞ is the rising factorial or Pochhammer poly-
nomial [88]. This expression is best thought of as a function
of the densities, na=N. Each linear factor in the numerator
and denominator is a zero line or pole line, respectively, for
the frame operator. For finite N and with the exception of
the Néel states, these lines are outside of the domain of
allowed densities. On the Néel states, the zero line ðN=2 −
nÞ and pole line ðN=2 − naÞ intersect and cancel. In the
vicinity of the Néel configurations, there are three “corner”
pole lines with fixed na and three “diagonal” zero lines with
fixed n, all within a distance of order 1=N. As N increases,
the pole lines may become closer, but proportionally the
zero lines also become closer. The scaling imparted by the
zero lines to the residues of the approaching poles removes
the divergence that would otherwise be caused by their
approach. The additional cosine factors in the measure have
the effect of adding two diagonal zero lines and one pole
line passing by each Néel state, and so without this effect,
there would be a residual pole at each Néel state spoiling
boundedness. Along the edge close to ðN − nÞ ¼ 0, there
are no poles to cancel the zero lines, so we can find matrix
elements which are arbitrarily small as N increases. Hence,
our measure provides a frame operator which is bounded
and positive definite, even in the N → ∞ limit, except
along the triangle edge. This last point is not too concerning
because we know that the dynamics avoids this part of K,
and is greatly preferable to leaving a simple pole on the
most physically important states.
As stated in the main text, the frame operator found in

this way is not suitable for quantization. Its bounded and
essentially positive-definite nature, however, leaves a
measure which is qualitatively close to one in which a
good resolution of the identity is found. Using the resulting
frame operator, we define a transformed frame M, which
produces a resolution of the identity from a congruence,

1K ¼
Z

dμθ;ϕS
−1=2
μ jΨðθ;ϕÞihΨðθ;ϕÞjS−1=2μ : ðH4Þ

This frame transformation potentially disturbs the states
and obscures their physical meaning. We remedy this
situation by approximating the effect of the frame trans-
formation with a mere measure transformation,

1K ≈ Sν ¼
Z

dνθ;ϕjΨðθ;ϕÞihΨðθ;ϕÞj; ðH5Þ

with the transformed measure,

dν ¼
�hΨjS−1=2μ jΨi

hΨjΨi
�

2

dμ; ðH6Þ

which we claim is asymptotically exact. This measure
in the thermodynamic limit is shown in Fig. 12, where
it is seen to be smooth away from the corners. This allows

the classical system produced by the retraction onto the
gauged constrained coherent states to quantize naturally to
the quantum dynamics projected into K, as described in the
previous section.
The error in the approximation can be characterized by

the quantity

varΨ½S−
1
2

μ � ¼ hΨjS−1μ jΨi
hΨjΨi −

hΨjS−1=2μ jΨi2
hΨjΨi2 : ðH7Þ

This is the norm of the difference between the action of
S−1=2 on a state jΨðθ;ϕÞi and the action of multiplying by
the state by the expectation value of that operator. It can be
used to bound the difference between the measure-trans-
formed frame operator Sν and the identity, and also the
pointwise differences between untransformed and frame-
transformed states.
In the remainder of this Appendix, we show that

varΨ½S−1=2μ � ¼ Oð1=NÞ, which establishes the asymptotic
equivalence between the frame transformation and a
change of measure. The essential idea involves viewing
each state Ψðθ;ϕÞ as a stationary ergodic Markov process.
These correlations in jΨi are controlled by the correlation
length ξ of connected correlation functions, which can be
determined from the eigenvalues of the transfer matrix.
This length scale is finite almost everywhere on M but
diverges as the corner points are approached. According to
the Gärtner-Ellis theorem, such a process satisfies a large
deviation principle [89]. Therefore, large deviations such as
extensive fluctuations in n1 and n2 are suppressed expo-
nentially and typical fluctuations are of magnitudeOð ffiffiffiffi

N
p Þ.

This suggests that the frame transformation, which is
diagonal in the density basis, would also become diagonal
in the frameM and act as a scalar. In Fig. 13, we show how
the variance behaves over M for a fixed system size

FIG. 12. Transformed measure ν, Eq. (H6), in the thermody-
namic limit is non-negative and smooth away from the corner
points.
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N ¼ 128. The fluctuations become strong only in the
corners where ξ diverges.
We use Eq. (H3) to view the operators S−1μ and S−1=2μ as

functions of densities n1=N and n2=N which are then
extended to the complex domain. We use f to refer to either
of these functions in what follows. This function is shifted
in the argument such that the density expectation value is at
the origin and shifted in value with a constant term so that f
vanishes there. In some places, it may be necessary to
regularize the frame operator by introducing some ϵ > 0
and replacing Sμ ↦ Sμ þ ϵ before the inverse, in order to
displace any singularities into the complex domain. This
regularization is then removed at a later point by taking the
ϵ → 0 limit after calculating some physical quantity insen-
sitive to the singularity. For example, when applied to the
frame operator for the transformed frame, this procedure
yields a projector into the subspace of K with the
nonphysical states removed.
Now, we model f as a Taylor series truncated at first

order in each variable, and form a Cauchy bound to the
remainder term. Pick a polydisk D centered around the
mean densities with radii 0 < r1 and 0 < r2. We also
choose some 0 < β < 1, defining inner radii βr1, βr2, and
corresponding polydisk βD. If possible, βD should be
chosen to include all subextensive density fluctuations for
each finite N, but otherwise can be varied for an optimal
bound in the final result. Since f is complex differentiable,
its value interior to the disk βD can be related to that on the
boundary by the multivariate Cauchy integral formula,

fðz1; z2Þ ¼ ∯
∂D

dw1dw2

ð2πiÞ2
fðw1; w2Þ

ðw1 − z1Þðw2 − z2Þ
¼ fð1;0Þz1 þ fð0;1Þz2 þ fð1;1Þz1z2 þ RðzÞ; ðH8Þ

where RðzÞ is the remainder term, and the other terms are
the truncated Taylor series. The remainder term is found by
expanding the geometric series and is bounded by

jRðzÞj ≤
����∯
∂D

fðw1; w2Þdw1dw2

ðw1 − z1Þðw2 − z2Þð2πiÞ2
�
z21
w2
1

þ z22
w2
2

−
z21z

2
2

w2
1w

2
2

�����
≤

M∂D
r1r2ð1 − βÞ2

�jz1j2
r21

þ jz2j2
r22

þ jz1z2j2
ðr1r2Þ2

�
; ðH9Þ

whereM∂D appears as a uniform bound jfðw1; w2Þj ≤ M∂D
for all ðw1; w2Þ ∈ ∂D. This bound uses the fact that z is
within the inner disk βD. The constant factors in this bound
are optimally independent of N (for sufficiently large N)
because the smallest radii only admissible for larger N are
bounded by at least M∂D ¼ Oðr1 þ r2Þ.
Next, we relate these properties of S−1 and S−1=2 as

functions to their properties as operators. This is done
with the Dunford-Riesz functional calculus [90], which is a
mapΦ∶HolðDÞ → LðKÞ from holomorphic functions on a
domain D to continuous linear operators on a Hilbert space
K. It assigns to each function the Cauchy integral formula
but with the geometric series replaced by resolvents of n1
and n2, effectively promoting the indeterminants to oper-
ators. The result is a power series in the expectation values’
density fluctuation operators δi ¼ ðni − hniiÞ=Nor, equiv-
alently, the central moments of the density observable
distribution. In the spectral subspace outside the inner radii,
the series may not converge, thereby failing to correspond
to the original operator, and also the bound established does
not apply. This region, however, corresponds to extensive
fluctuations in the densities which are suppressed in
probability exponentially with N due to the large deviation
principle wherever the correlation length is finite. The
series divergence cannot overcome this exponential, so we
may safely use our Taylor series and bound the remainder
as if they were entire, while incurring only an error
exponentially small in N. The first-order terms vanish in
expectation; hence, the only remaining contributions pro-
vide a bound,

jhΦðfÞij ≤ jfð1;1Þhδ1δ2ij þ C

���� hδ21ir21
þ hδ22i

r22
þ hδ21δ22i

r21r
2
2

����;
ðH10Þ

where C is a constant factor from Eq. (H9). The moments
appearing here are finite-order connected correlations
functions which are all Oð1=NÞ. This implies that the
differences between the expectation value of, e.g., S−1μ and
its value as a function at the expected densities is only
Oð1=NÞ, and therefore, so is the variance of S−1=2μ .
In summary, we show that the frame operator fluctua-

tions vanish as Oð1= ffiffiffiffi
N

p Þ for almost any point inM in the
thermodynamic limit. This is in agreement with what is

FIG. 13. Variance in the S−1=2μ observable [see Eq. (H7)]
divided by the expectation value, in the ϕa ¼ 0 section of the
state space M for N ¼ 128. The fluctuations are strong only
toward the corners in a region which shrinks as N increases.
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numerically found in Fig. 5 in the main text, where the
Fubini-Study distance between untransformed- and trans-
formed-state spaces is integrated for different finite sizes N.
That calculation would also pick up a contribution due to
the region of unphysical states with extensive correlation
lengths which would decrease as the measure of this region
decreases. Given the agreement with the Oð1= ffiffiffiffi

N
p Þ theory,

it appears that the dominant contribution is instead the
normal fluctuations discussed in this section.
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