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Abstract 22 

 23 

If we are truly interested in the evolution of cognition in its many forms, it is vital to 24 

understand not simply that an animal can solve a task, but how they solve the task. 25 

We examined how bees solve a numeric-based task utilizing stimuli common 26 

amongst numerical cognition studies. Bees performed well on the task, but additional 27 

tests showed that they had learned continuous (non-numerical) cues. In simulations, 28 

a simple network model containing just nine elements was capable of learning the 29 

task using only continuous cues inherent in the training stimuli, with no numerical 30 

processing. This model was able to reproduce behaviours that have been 31 

considered in other studies indicative of numerical cognition. Our results support the 32 

idea that a sense of magnitude may be more primitive and basic than a sense of 33 

number. Our findings highlight how problematic inadvertent continuous cues can be 34 

for studies of numerical cognition. This remains a deep issue within the field that 35 

requires increased vigilance and cleverness from the experimenter. We suggest 36 

ways of better assessing numerical cognition in non-speaking animals, including 37 

assessing the use of all alternative cues in one test, using cross-modal cues, 38 

analysing behavioural responses to detect underlying strategies, and finding the 39 

neural substrate. 40 

 41 

1. Introduction  42 

 43 

Mapping specific cognitive capacities to the behaviour of any animal is rarely 44 

straightforward. The difficulty is that animals may not be solving the task the way we 45 

think they are. One example of this is in our own recent work where we had bees 46 

discriminate different shapes based on relative size [1]. Bees’ performance 47 

increased over training to well above chance, and in the unrewarded test they 48 

seemed to have learned to discriminate shapes based on relative size. However, 49 

analysis of first and sequential choices during training bouts and tests revealed that 50 



the bees actually switched to a simpler strategy in the middle of training: win-51 

stay/lose-switch. These results, along with other works suggesting animals are able 52 

to solve tasks in unexpected ways (e.g. [2–7]), prompted us to look deeper into the 53 

strategies of animals in numerical cognition tasks.  54 

 55 

Numerical cognition has been claimed in a large number of animal species (e.g. [8–56 

39]), suggesting that a sense of number is widespread (for reviews see [40–42]). By 57 

far, the most common method for testing numerical cognition in non-verbal animals 58 

is to have subjects discriminate 2D visual displays with differing numbers of shapes 59 

(Fig 1; [8–39] all used this design). As pointed out by others (e.g. [43,44]), in these 60 

types of designs, continuous (non-numerical) cues often unavoidably covary with 61 

numerosity. These include size and shape of elements, area (total amount of colour), 62 

edge length (total boundary length of elements), convex hull (the minimum convex 63 

region covering all elements, spatial frequency (the amount of alternating dark and 64 

light regions), and illusory contour (the basic shape that outlines all elements). In 65 

Figure 1 we further describe these cues and their natural covariation with number 66 

(figure 1a-e). This covariation makes it difficult to know whether animals actually 67 

used any sense of number to solve their tasks.  68 

 69 

The issue of non-numerical strategies within numerical cognition studies has been 70 

highlighted by others [43–46]. It was established decades ago that cells within the 71 

visual system respond to various continuous visual features [45,47,48] and it has 72 

long been known that continuous features can be reliable discrimination cues, even 73 

for bees [49–52]. Further, several works show that animals use non-numerical cues 74 

to solve numeric-based tasks when not controlled for, e.g. size of elements [53], total 75 

area [54], and convex hull [55], and even when they are controlled (e.g. [56]; see 76 

Discussion).  77 

 78 

Most studies investigating numerical cognition attempt to control for at least one non-79 

numerical cue. Several works have made valiant efforts to control for most 80 

continuous cues (e.g. [57,58]). However, we have found no studies that tested for all 81 

continuous variables. It seems clear that animals are solving these tasks, but the 82 

question we attempt to address here is how they might be solving the tasks. We set 83 

out to determine how honeybees solve a numeric-based task using stimuli common 84 

amongst numerical cognition studies.  85 

 86 

2. Materials and Methods 87 

 88 

(a) Subjects 89 

Honeybees (Apis mellifera) used in the experiment were maintained at the University 90 

of Oulu (Oulu, Finland) and at Guangdong Institute of Applied Biological Resources 91 

(Guangzhou, China) in September and November 2019, respectively. Prior to 92 

training, honeybees were fed ad libitum from a gravity feeder providing 30% sucrose 93 

solution. Each focal honeybee was first lured to visit the experimental setup by 94 

allowing her to drink and walk onto a cotton bud soaked in 50% sucrose solution and 95 

then transferring the bee to the setup. Each forager that returned to the setup on her 96 

own was marked on her thorax with a coloured dot for identification.  97 

 98 

(b) Experimental setup and procedure 99 



The setup consisted of a 50 x 50 cm acrylic sheet. Stimuli were 6 x 6 cm white 100 

displays (laminated sheets of paper) with between 1 and 4 black shapes (squares, 101 

diamonds, or circles). The stimuli, identical to those used in [28], were presented 102 

vertically with a landing platform attached just below the displays. Stimuli were 103 

randomly allocated for each bee and changed when the bee returned to the hive to 104 

offload sucrose, prior to her returning to the setup. The spatial arrangement of stimuli 105 

could be randomly changed, thus excluding position orientation cues. The 106 

background acrylic sheet and landing platforms were grey coloured. The acrylic 107 

background sheet, hangers, platforms and displays were washed with water then 70 108 

% ethanol between all visits to exclude the use of olfactory cues. Two shapes were 109 

used in training, and the third shape was used for testing. During training, honeybees 110 

found either a 10μL droplet of 50 % sucrose solution or a 60 mM quinine 111 

hemisulphate solution, for correct and incorrect choices, respectively. Each trial, four 112 

stimuli (two identical correct; two identical incorrect) were presented simultaneously 113 

on the acrylic sheet. Stimuli positions were changed after each choice to new 114 

random positions. A choice was defined as any time a honeybee landed on a 115 

platform and touched the solution (sucrose or quinine) with their proboscis, leg, or 116 

antenna.  117 

 118 

One group of bees (n = 10) was trained to associate stimuli consisting of more 119 

elements with a reward, and a second group of bees (n = 10) was trained to 120 

associate stimuli consisting of fewer elements with a reward. The choices of 121 

individual bees during training were recorded until a criterion of ≥ 80 % for any 10 122 

consecutive choices was reached (after a minimum of 20 conditioned choices). Once 123 

an individual bee reached criterion, she was presented with a learning test followed 124 

by two additional control tests. Bees reached criterion on average in 41 ± 8 choices. 125 

Each test lasted two minutes and all choices made were recorded as the dependent 126 

variable for statistical analyses. During all tests, a 10μl of unrewarding water was 127 

placed on each platform. Between tests, bees received two reinforced refresher trials 128 

(with the same stimuli used in training) to maintain motivation. For the learning test, 129 

bees were presented with the shape that they had not been trained on – the purpose 130 

being to test whether bees learned to solve the task. The two control tests examined 131 

whether honeybees used the number of elements or continuous visual cues. The 132 

first control test (Equal/Incongruent test) had two pairs of stimuli, each with two 133 

elements, but one pair with higher edge length, convex hull, and spatial frequency. 134 

The second control test (Incongruent/Opposite test) also had two pairs of stimuli, one 135 

pair with three elements and the other with two elements but still with higher edge 136 

length, convex hull, and spatial frequency. In all tests, total black surface area was 137 

the same across all stimuli. Experiments were performed by three different groups of 138 

individuals (MH and OL, SL, and CS) to help independently verify the results.  139 

 140 

(c) Statistical analyses 141 

R 3.6.1 with library “lme4” was used to perform all generalised linear mixed-effect 142 

models (glmm) with binomial distribution and logit function. For the glmm evaluating 143 

the results of the tests, country and rule (more-than/less-than) were considered as 144 

fixed factors and bee ID as a random effect (Table S1). Because country and rule 145 

had no effect on performance, we display data as the mean ± s.e.m. of all bees’ 146 

data. We then removed country and rule in a second glmm (Table 2). Our second 147 

model ranked better than the first on the grounds of Akaike’s Information Criterion 148 

[59] adjusted for small sample sizes (AICc), and therefore we present data from this 149 



second model in the main text. For analyses of all test videos, a blind protocol was 150 

employed, in that each video filename was coded so that the experimenter doing the 151 

analysis was blind to the training of each bee. 152 

 153 

To calculate the spatial frequency of the training and test stimuli, a two-dimensional 154 

Fourier transform on each image was performed, followed by a power spectrum 155 

calculation as the square amplitude of the Fourier transform and averaged over 156 

orientation [60]. The actual power over all frequencies was then measured by 157 

calculating the area under the curve of the radially averaged power spectrum. 158 

Calculations for spatial frequency, convex hull and edge length were done in 159 

MATLAB 2018b (MathWorks, Mass., USA). Statistical analyses for the model results 160 

were also performed in MATLAB 2018b.  161 

 162 

(d) Neural network model 163 

Our model utilizes spatial frequency encoding that is supported by bees’ ability to 164 

discriminate visual patterns based on spatial frequency [49,50] and observed 165 

neurons in the visual lobe of insects that provide a mechanism of frequency coding 166 

[61,62].  Analogous to the spatial frequency coding in primates [63,64], bees may 167 

use Gabor-like filters in their visual lobe to extract spatial frequency information from 168 

visual stimuli [65]. For our model, the stimulus, 𝑠, is encoded by the activity of a 169 

population of neurons with different preferred spatial frequency that possess similar 170 

response profiles. The evoked spiking activities of the seven sensory neurons were 171 

simulated by fixed Gaussian tuning curves spanning spatial frequencies of the input 172 

from zero to six as 173 𝑔𝑖  (𝑠, 𝜎) = 𝑅0 + 𝑅𝑀𝑎𝑥 𝑒𝑥𝑝[− 12𝜎2 (𝑠 − 𝑓𝑖  )2 ] + ℵ(0, 𝜎𝑁), where 𝑅0 = 50 spike/sec and 174 𝑅𝑀𝑎𝑥 = 200 spike/sec are the spontaneous and maximum firing-rate of the sensory 175 

neuron. 𝜎 = 2.5 controls the degree of the selectivity of the sensory neurons to 176 

different frequencies around the preferred frequency, 𝑓𝑖. Gaussian noise, ℵ(0, 𝜎𝑁) 177 

model the randomness of neural activities.  178 

 179 

Outputs of all sensory neurons drive a decision neuron through a vector of synaptic 180 

weights, 𝑊, to create the decision neuron’s activity in response to the input, as: 181 𝐷(𝑠) = 𝐹 (∑ 𝑊𝑘 . 𝑔𝑘(𝑠, 𝜎)6
𝑘=0 ; 𝑎, 𝑏)   182 

where 𝐹(𝑥; 𝑎, 𝑏) = 𝐴0/(1 + 𝑒𝑥𝑝(−𝑎(𝑥 − 𝑏)) ) is the activation function with the 183 

maximum activity at 𝐴0 = 100 Spike/sec. The parameters 𝑎 = 0.05 and 𝑏 = 50 184 

control the sensitivity of the neuron to the input and spontaneous activity of the 185 

decision-neuron, respectively.  186 

 187 

Since we assume that the difference of the decision neuron’s responses to the 188 

positive (𝑠𝑝)  and negative stimuli (𝑠𝑛) must be increased during the training phase, 189 

the locally optimal synaptic weights, 𝑊𝑜𝑝𝑡 , can be obtained from maximizing the 190 

objective function: 191 

 192 𝐿 = ∑[𝐷(𝑠𝑝𝑡 )𝑚
𝑡=1 − 𝐷(𝑠𝑛𝑡 )] 𝑟𝑡 , 193 

 194 



where 𝑡 and 𝑚 are the index over the paired stimuli and the number of presented 195 

stimuli, respectively. Here, 𝑟 presents the reinforcement signal (VUM-mx1 neuron) 196 

that provides modulated feedback whether a stimulus is paired with the reward or 197 

punishment (𝑟 = 1) and 𝑟 = 0 for when no reinforcement signals is presented. The 198 

(on-line) updates of the synaptic weights, 𝑊𝑖𝑡 are calculated by 199 

 200 𝑊𝑖𝑡 = 𝑊𝑖𝑡−1 + 𝜂 𝜕𝜕𝑊𝑖 (𝐷(𝑠𝑝𝑡) − 𝐷(𝑠𝑛𝑡 )) 𝑟𝑡 201 

 202 

where 𝜂 is the rate of the weights change. 𝑊𝑖𝑡−1 is the updated weight from the 203 

iteration 𝑡 − 1 (with 𝑊𝑖0 being the initial weight), and 204 

 205                                                    𝜕𝜕𝑊𝑖 (𝐷(𝑠𝑝𝑡 ) − 𝐷(𝑠𝑛𝑡 ))206 

= 𝑔𝑖(𝑠𝑝𝑡 , 𝜎) 𝐹′ (∑ 𝑊𝑘 . 𝑔𝑘(𝑠𝑝𝑡 , 𝜎)6
𝑘=0 ; 𝑎, 𝑏) −𝑔𝑖(𝑠𝑛𝑡 , 𝜎). 𝐹′ (∑ 𝑊𝑘 . 𝑔𝑘(𝑠𝑛𝑡 , 𝜎)6

𝑘=0 ; 𝑎, 𝑏) 207 

Finally, the derivatives of the activation function 𝐹 is obtained as   208 

 209 𝐹′(𝑥; 𝑎 , 𝑏) = 𝐴0  𝑎 𝑒𝑥𝑝(−𝑎(𝑥 − 𝑏))(1 + 𝑒𝑥𝑝(−𝑎(𝑥 − 𝑏)))2 210 

 211 

After exposing the model to conditioned stimuli in learning paradigms, the 212 

behavioural outcomes of the model presented with a pair of the test stimuli were 213 

evaluated as a simple subtraction of the decision neuron’s responses to both test 214 

stimuli.  215 

 216 

3. Results  217 

 218 

(a) Bees use continuous cues over numerosity in a numerical cognition task 219 

 220 

Using the same 2D visual stimulus set as a paradigmatic honeybee study [28], and 221 

similar to stimulus sets used for other animals (e.g. [8–39]), we first asked whether 222 

honeybees use numerosity to solve a numeric-based discrimination task. In this 223 

particular stimulus set, area (total black within each stimulus) is kept constant across 224 

all stimuli, and therefore could not be used to solve the task. But, similar to many 225 

other numerical cognition studies, edge-length (Spearman correlation: rho=0.93, 226 

p=1.00e-40), convex hull (Spearman correlation: rho=0.44, p=4.88e-6), and spatial 227 

frequency (Spearman correlation: rho=0.92, p=1.00e-40) covaried with number 228 

(figure 1f-j). We therefore aimed to train bees on this stimulus set, for which they’ve 229 

already been shown to discriminate, and subsequently test bees to determine 230 

whether they had used these particular continuous cues or rather numerosity to 231 

solve the task. 232 

 233 

We first trained honeybees (n = 10) to find rewarding sugar solution on displays with 234 

more shapes and an aversive quinine solution on displays with fewer shapes 235 

(Methods; figure 2a). Another group of bees (n = 10) was trained on the opposite 236 

contingency. Once bees reached 80% performance (8/10 consecutive choices 237 



correct), they were given an unrewarded learning test. Bees trained on a “more-than” 238 

rule preferred (landed on more often) stimuli containing more elements during the 239 

test, whereas bees trained to “less-than” preferred stimuli with fewer elements. 240 

Honeybees showed high performance in the Learning test (figure 2b left; 241 

Generalised linear mixed-effect model (glmm): 95% Confidence interval (CI) = 0.75 242 

(0.47 to 1.03), n = 20, p = 1.49e-07).  243 

 244 

To determine if bees used non-numerical cues, after the learning test and refresher 245 

trials (Methods), we tested the same honeybees on an “Equal/Incongruent test”, 246 

where two pairs of unrewarded stimuli contained the same number of elements 247 

(figure 2b middle), but differed in edge-length, convex hull, and spatial frequency 248 

(figure 2c-f). If honeybees were using numerosity, they should prefer all displays 249 

equally during this test. Conversely, honeybees more often chose stimuli with a 250 

higher level of continuous variables if they had been trained to choose stimuli with 251 

more elements, and more often chose stimuli with a lower level of continuous 252 

variables if they had been trained to choose stimuli with fewer elements (figure 2b 253 

middle; glmm: 95% CI = -0.64 (-0.89 to -0.39), n = 20, p = 6.5e-07). This suggests 254 

honey bees responded to continuous cues in the stimuli and not the number of 255 

elements. 256 

 257 

We further tested honeybees on an “Incongruent/Opposite test” where the number of 258 

elements for each pair of displays differed (2v3; figure 2b right) and the continuous 259 

cues (edge length, convex hull, and spatial frequency) were in the opposite direction 260 

to the numerical difference (i.e. higher for two elements than for three elements; 261 

figure 2c-f). In this test, honeybees behaved in the reverse manner to which we 262 

would expect if they had learned numerosity. Bees that were trained to associate 263 

more elements with reward preferred test displays with the higher level of continuous 264 

variables but fewer elements. Bees that were trained to associate fewer elements 265 

with reward preferred test displays with the lower level of continuous cues but more 266 

elements (figure 2b right; glmm: 95% CI = -0.55 (-0.79 to -0.30), n = 20, p = 1.17e-267 

05).  268 

 269 

Our results indicate that honeybees use continuous properties to discriminate stimuli 270 

with varying number of shapes. This caveat may also apply to other numerical 271 

cognition studies with honeybees and other animals that used stimulus sets which 272 

controlled for one or more but not all continuous variables.  273 

 274 

(b) A neural network model with no reference to numerosity can reproduce behaviors 275 

indicative of numerical cognition 276 

 277 

Our results beg the question: what explanation is simpler and more plausible: 278 

numerical or non-numerical processing? Therefore, how simple is learning 279 

continuous variables as an explanation for the behaviour of honeybees? To explore 280 

this, we created a simple neural network model containing just nine elements 281 

arranged in three layers (figure 3a) to encode a relational rule (“more-than” or “less-282 

than”) based only on one non-numerical cue (Materials and Methods). Seven 283 

elements acted as sensory neurons that encoded spatial frequency in the visual lobe 284 

and which projected frequency information to the eighth element, a single decision 285 

neuron in the mushroom bodies (high-level sensory integration centres involved in 286 

learning and memory). Synaptic weights between the sensory neurons and decision 287 



neuron were adjusted according to the activation (by presentation of stimuli) of the 288 

ninth element, a reinforcement neuron, based on the specific learning rule (more-289 

than or less-than). We chose spatial frequency for simplicity, and because we have 290 

yet to find any recent study that controlled/tested for it, but the model could also be 291 

applied to other continuous variables.  292 

 293 

We trained our model following the methods for several experiments in [28], a recent 294 

study that had honeybees discriminate 2D visual cues with different numbers of 295 

shapes. We then evaluated the model’s choices when presented with test stimuli 296 

(See Methods for details and figure 3 for simplification). This simple model was able 297 

to reproduce the behaviour of honeybees in numerical cognition tasks, with a very 298 

simple computational structure using only non-numerical information. Specifically, 299 

the model could transfer a “more-than” or “less-than” rule to novel shapes, to stimuli 300 

containing a number of elements outside the range trained on, to stimuli with zero 301 

elements, and could recognise stimuli with zero elements as the lower end of a 302 

continuum (figure 3b-e). Thus, we are able to reproduce behavioural evidence that 303 

has been taken in honeybees (and similarly in other animals) as indicative of 304 

understanding number with a model in which there is no processing of numerosity.  305 

 306 

4. Discussion 307 

 308 

(a) General summary 309 

 310 

We are not suggesting that all numerical cognition studies are wrong or that no 311 

animal has numerical cognition. We show, however, that in a task using a 2D visual 312 

display set with differing number of shapes, non-numerical cues can be learned, they 313 

dominate over numerosity when equal to or set in opposition to number of elements, 314 

and they can be learned by simple computational systems with no reference to 315 

numerosity. Our behavioural and computational results provide a counterexample 316 

against the assumption that 2D visual stimuli with different numbers of shapes are 317 

processed by honeybees as discrete numerical elements. Our findings suggest that 318 

an alternative non-numerical explanation exists for studies using similar methods in 319 

honeybees. If other animals are sensitive to any available continuous cues, then an 320 

alternative non-numerical explanation exists for those results as well. This is vital 321 

information if we truly want to know how any animal solves the numerical problems 322 

they face in their own ecological niches.  323 

 324 

(b) The depth of the issue 325 

 326 

It is very difficult to control for all continuous visual cues [44,66]. By controlling one 327 

parameter, another will necessarily covary with numerosity. Even varying parameters 328 

randomly during training is not enough to solve the issue. Leibovich and Henik 329 

(2014) trained adult humans on visual stimuli of differing number of dots where 330 

continuous cues were minimally correlated or uncorrelated with numerosity. Despite 331 

this, they found that in a regression analysis, half of the behavioural variance could 332 

be explained by the irrelevant continuous cues [56]. Presenting stimuli 333 

separately/sequentially may make the task more difficult (e.g. [67,68]). However, 334 

animals may store, in working memory, an accumulation of neural responses to 335 

continuous variable changes as they pass/observe stimuli, without reference to 336 

numerosity [69–72].  337 



 338 

It will also not suffice to test for continuous cues separately because animals may 339 

learn multiple redundant cues and use those available when others are not [73–78]. 340 

Testing all continuous variables (that cannot be kept constant across stimuli) and 341 

numerosity within one test can help determine if continuous variables have been 342 

learned. In one of our recent works, examining how bumblebees solved a numeric-343 

based task, we assessed the use of continuous cues within one unrewarded test 344 

[79]. Here, bees were shown 10 stimuli simultaneously during one unrewarded test, 345 

each with different numbers of elements and levels of continuous cues. We chose 346 

the characteristics of different stimuli so that the bees’ choices for some over others 347 

would reveal whether or not they had learned and used specific continuous cues to 348 

solve the task. For example, two displays both contained the same number of 349 

elements, but the elements in one of the displays had a greater edge-length. Bees 350 

chose these two displays equally in the test, suggesting they did not use edge 351 

length. However, if they had performed well on the test (i.e. more often chose stimuli 352 

based on the numerosity rule they had been trained) but had chosen one of these 353 

two stimuli significantly more than the other, this would suggest bees had learned 354 

and used edge-length instead of numerosity. We provided pairs of stimuli that varied 355 

in this way for edge-length, area, convex hull, spatial frequency and illusionary 356 

contour (Area was kept constant throughout training and tests and therefore did not 357 

need to be tested). We must keep in mind, as pointed out above, that even when this 358 

type of design suggests continuous cues were not used, as it had in our work, other 359 

strategies could still be used. Although bees’ behaviour [79] indicated some form of 360 

counting, the bumblebees could have used working spatial memory to avoid recently 361 

visited shapes (cf. “inhibition of return” [80,81]). Therefore, it is possible that bees 362 

discriminated stimuli based on duration of time taken to scan all shapes within a 363 

display, or perhaps by an accumulator mechanism responding to visual changes as 364 

they scanned past each shape [69]. Either of these possible strategies do not require 365 

a true sense of number.  366 

 367 

(c) Ways forward 368 

 369 

How then can we address this natural, deep-seated issue? We propose that the 370 

method of assessing all continuous cues in one unrewarded test, in conjunction with 371 

varying all continuous cues during training, be set as a minimum when investigating 372 

numerical cognition in animals. But, as mentioned above we need to still keep in 373 

mind other potential non-numerical strategies. 374 

 375 

Most numerical cognition studies utilise visual stimuli. Stimuli in other modalities 376 

come with their own set of issues regarding continuous variables. For example, 377 

number of individuals covaries with the overall complexity of their chemical/olfactory 378 

cues, and with the total volume and complexity of vocal calls. However, combining 379 

modalities does offer some promising avenues for investigation. One of the strongest 380 

pieces of evidence for numerical cognition is the ability to transfer across modalities, 381 

which seems to prevent the use of continuous cues because the only similarity 382 

across modalities should be numerosity. A nice example of this was shown in 383 

monkeys where they were able to match the sum of randomly-ordered sequentially-384 

presented shapes and tones to a visual array with the same number of squares [82]. 385 

This kind of cross-modal generalization design would certainly strengthen arguments 386 

for numerical cognition in other animals.  387 



 388 

Video of animals solving numerical cognition tasks can help determine how animals 389 

are solving those tasks (cf. [1,2]). Automated approaches combining machine vision 390 

and learning with computational behavioural analyses have the ability to discover 391 

behavioural features that humans cannot (cf. [83]; [84]). For example, by measuring 392 

the inspection behaviour (e.g. gaze, body direction, movement) of an animal towards 393 

different numerical stimuli and comparing across different decisions (choose/reject) 394 

and different outcomes (correct/incorrect), underlying strategies may become 395 

apparent.  396 

 397 

Ultimately, however, we must establish the underlying neural mechanisms to truly 398 

know which cues and strategies an animal utilised to solve a numeric-based task. 399 

This will provide vital information for how numerical cognition may have evolved, and 400 

how processing of numerosity compares between animals [85,86]. 401 

 402 
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Figures and legends 648 

 649 

 650 

Figure 1. Number of elements naturally co-varies with non-numerical cues. (a-651 

d) Examples of 2D stimuli used in numerical cognition studies and how different 652 

continuous cues normally covary with numerosity. Note that illusory contour does not 653 

covary with numerosity but can still be learned and used to solve numerical cognition 654 

tasks, especially with lower number of elements. (e) Spatial frequency (the amount 655 

of alternating dark and light regions in a given area) also normally covaries with 656 

numerosity. The more changes from black to white across an image in all directions, 657 

the greater spatial frequency. The right images of each pair in (e) all have higher 658 

spatial frequency than the left images. (f-h) For all stimuli in [28], from which our 659 

stimulus set was borrowed, area (amount of total black (inset)) was kept constant (f), 660 

but edge length (total boundary length (inset); g) and convex hull (the minimum 661 

convex region covering all elements (inset); h) covaried with numerosity. (j-i) Spatial 662 
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frequency is calculated by obtaining a power spectrum (Methods) and measuring the 663 

area under the power spectrum’s curve. The power spectrum plots (f and zoomed-in 664 

inset) for all stimuli in [28], from which our stimulus set was borrowed, averaged for 665 

each number of elements from one to six, shows that spatial frequency increases 666 

with numerosity (g). Note that for all covarying continuous cues, a zero-set stimulus 667 

will have zero measurement and thereby be placed naturally at the lower end of the 668 

spectrum for each of these non-numerical cues.  669 

  670 



 671 

 672 

Figure 2. Bees can use non-numerical strategies to discriminate numerical 673 

stimuli. (a) Experiment setup. Honeybees were trained to find 50% sucrose solution 674 

at one of two pairs of displays showing different numbers of elements, and aversive 675 

quinine solution on the other display pair (Methods). (b) Once honeybees reached 676 

80% performance, they were tested using displays with novel shapes. In the 677 

Learning test, honeybees more often chose stimuli following the numerical rule on 678 

which they had been trained (71.3±3.3%; more-than: 70.3±4.7%; less-than: 679 

72.4±4.8%). However, when tested on stimuli that differed in continuous cues but not 680 
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number of elements (Equal/Incongruent test; middle bar; 32.5±2.6; more-than: 681 

30.7±4.2%; less-than: 34.2±3.4%) and separately on two pairs of stimuli where 682 

numerosity and continuous cues were set in opposition (Incongruent/Opposite test; 683 

right bar; 36.7±1.8; more-than: 35.1±2.4%; less-than: 38.2±2.8%), honeybees chose 684 

stimuli based on continuous cues over numerosity. Data shown are combined from 685 

the two groups trained with different numerical rules since no difference in 686 

performance was found between groups (Table 1; Methods). Dotted line = 0.5 687 

chance level. Bars = mean. Vertical lines = s.e.m. Circles = individual bees’ data 688 

points (filled circles: bees trained to more-than rule; empty circles: bees trained to 689 

less-than rule). (c-f) Stimuli used in tests with corresponding continuous variable 690 

measurements (Methods).  691 

  692 



 693 

 694 

Figure 3. A simple computational model using only non-numerical cues 695 

reproduces honeybees’ performance on a numerosity task. (a) The model uses 696 

seven sensory neurons that are activated by the output of visual receptors. Each 697 

sensory neuron responds to multiple levels of a single continuous cue with different 698 

sensitivities. Firing of each sensory neuron is specific and selective to the preference 699 
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level modelled by a Gaussian tuning curve. Information from all sensory neurons 700 

converges at a single decision neuron. Synaptic connectivity (W) between sensory 701 

neurons and the decision neuron are modified by an associative learning rule for 702 

encoding appetitive and aversive valences. Performance of the model is evaluated 703 

by a simple subtraction of the responses of the decision neuron to the test stimuli. 704 

Our model is able to reproduce behaviours claimed to be indicative of numerical 705 

cognition [28], without any reference to numerosity. This includes transferring a 706 

“more-than” or “less-than” rule to: (b) novel shapes in a “conflict test” examining 707 

preference for zero numerosity (Wilcoxon signed rank test, z-value>6.22 and 708 

p<3.50e-9) and a “transfer test” using displays with more shapes than in training 709 

(Wilcoxon signed rank test, z-value>7.99 and p<3.17e-14). Compare to [28] Fig 1C. 710 

(c) stimuli containing a number of elements outside the training stimuli range, in a 711 

learning test (Wilcoxon signed rank test, z-value=3.89 and p=9.98e-05), conflict test 712 

(z-value=3.23 and p=0.0012) and transfer test (z-value=2.40 and p=0.016). Compare 713 

to [28] Figure 1D). (d) novel pairs of stimuli, including stimuli with zero elements, in a 714 

learning test (Wilcoxon signed rank test, z-values> 5.27 and p<1.35e-06), and 715 

conflict test (Wilcoxon signed rank test, z-values> 5.51 and p<3.49e-07). Compare to 716 

[28] Figure S4. (E) and recognising stimuli with zero elements as the lower end of a 717 

continuum (Wilcoxon signed rank test for comparing each pair with the chance level 718 

50%, z-values> 2.24 and p<0.024; Kruskal-Wallis test, df=299; chi-sq=183.94 and 719 

p=7.71e-37. Compare to [28] Figure 2B. Light grey=less-than. Dark grey=more-than. 720 

Insets=test stimuli. Bars=mean. Vertical lines=s.e.m. calculated from the firing rate of 721 

the decision neuron for 50 different initial parameters that simulated 50 different 722 

model bees. 723 

 724 

 725 

 726 

Table S1. Summary of the full generalized linear mixed models examining 727 

factors in relation to proportion of correct choices during each test 728 

 729 

     For each glmm, the dependent variable was the proportion of correct choices 730 

during that test (following the numeric rule on which the bee was trained). The rule 731 

(more-than/less-than) and country where the individual bee completed training and 732 

tests (China/Finland) were included as fixed factors. Bee ID was used as a random 733 

factor. 734 

 735 

 736 

Dependent variable Fixed factors df Estimate SE z-value P

Proportion correct

in Learning test
Intercept

Rule
Country

16

16
16

0.66

0.19
-0.11

0.61

0.29
0.30

1.09

0.65
-0.38

0.28

0.52
0.70

Proportion correct

in Equal/Incongruent test

Proportion correct

in Incongruent/Opposite test

Intercept

Rule
Country

Intercept

Rule
Country

16

16
16

-0.68

0.91
-0.06

0.57

0.26
0.26

-1.19

0.35
-0.22

16

16
16

-0.69

0.11
-0.01

0.57

0.25
0.26

-1.22

0.43
-0.04

0.23

0.72
0.83

0.22

0.67
0.97

AICc

76.7

80.7

76.6



Table S2. Summary of the reduced generalized linear mixed models examining 737 

factors in relation to proportion of correct choices during each test  738 

 739 

     For each glmm, the dependent variable was the proportion of correct choices 740 

during that test (following the numeric rule on which the bee was trained). Bee ID 741 

was used as a random factor. 742 

Dependent variable Fixed factors df Estimate SE z-value P

Proportion correct

in Learning test
Intercept 18 0.66 0.14 5.25 1.49e-7

AICc

71.3

Proportion correct

in Equal/Incongruent test
Intercept 18 -0.64 0.13 -4.98 6.50e-7 74.9

Proportion correct

in Incongruent/Opposite test
Intercept 18 -0.55 0.12 -4.38 1.17e-5 70.8


	After exposing the model to conditioned stimuli in learning paradigms, the behavioural outcomes of the model presented with a pair of the test stimuli were evaluated as a simple subtraction of the decision neuron’s responses to both test stimuli.

