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Abstract

To identify the localization of indoor sound source, especially when attempted

using only a single microphone, it is a challenging problem to machine learning.

To address these issues, this paper presents a distinct novel solution based on

fusing visual and acoustic models. Therefore, we propose two novel approaches.

First, to estimate orientation of vocal object in a stable manner, we employ

the visual approach as estimation model, where we develop a robust image fea-

ture representation method that adopts Fourier analysis to efficiently extract

polar descriptors. Second the distance information is estimated by calculating

the signal difference between transmit receive ends. To implement these, we

use phoneme-level hidden Markov models (HMMs) extracted from clean speech

sound, to estimate the acoustic transfer function (ATF), which can capture the

speech signal as a network of phoneme HMMs. And using the separated frame

sequences of the ATF, we can indicate the signal difference between two posi-

tions, which can be used to estimate the distance of sound source. Experimental

results show that the proposed method can simultaneously extract the sound

source parameters of direction and distance, and thus improves the verification

task of sound source localization.
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1. Introduction

The goal of this study is to automatically identify the position information

of a dominant sound source which may alternate frequently among multiple

candidate positions in the environment of an enclosed room. Methods for our

task have to estimate the direction information of a sound source and its dis-5

tance information. To simultaneously implement these, it is difficult, but this

is an important capability in various applications in a number of applications,

including teleconferencing scenarios [1], disease detection [2], speaker verifica-

tion [3] and human-robot interaction (HRI) [3, 4]. Most of these applications

require real-time processing of the signals. Furthermore, the estimation of sound10

source location is frequently used in the subsequent processing stages, such as

sound source separation [5], sound source classification [6] and automatic speech

recognition [7].

For the tasks of verifying the localization information of indoor sound source

in the artificial intelligence system, there are a plethora of related studies de-15

scribed in the literature, but these mainly rely only on audio information and

use the difference of arrival times for source localization using microphone arrays

[3, 8]. However, microphone-array based systems depend on bulky equipment

and are often computationally expensive, making them almost impracticable for

real-time speech processing applications. Meanwhile, it is inevitable to range20

the microphones in a suitable length: when the microphones are spaced too

closely together so that they all record essentially the same sound because of

the Interaural Time Difference (ITD) near zero, making it extremely difficult to

estimate the orientation [9, 10].

In this context, the ability to localize sound using a single microphone has25

emerged as an interesting low-complexity sound processing problem. In fact,

sound source verification with the technique of single-channel microphone could
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potentially be applied to a wider range of devices, especially small low-power de-

vices with limited computational resources. Examples include wearable devices

and smart phones, both of which have important potential commercial applica-30

tions. Moreover, they also have interesting untapped potential in disaster relief

tasks. For instance mobile sensors can be used to localize buried earthquake

localize victims under rubble by following their voice.

However, since they have to simultaneously extract separate parameters

for orientation and distance features, the accuracies of these existing meth-35

ods are therefore still quite low. Alternative existing verification techniques for

sound source location with a single microphone mainly use learning-based map-

ping procedures, accompanied with the use of external pinnae and/or inner-ear

canals. Studies focusing on the techniques for monaural sound source localiza-

tion are also being carried out [11, 12]. In these studies, the information obtained40

from the external ear, such as head-related transfer functions (HRTFs), is used

to localize the sound source. For example, the work presented in [13] can only

locate the types of sources for which it is trained, and as a result its performance

might be affected by extraneous sound sources. One way around this problem

is presented in [14], where a neural network is trained with recorded sound45

sources with known locations and different array positions. However, its dis-

tance estimation suffers from poor performance. This is because these methods

[15, 13, 14] mainly focus on the estimation of direction (angle direction) between

the sound source and the receiver (microphone). To the best of our knowledge,

there has not been any work in the past aimed at the sound source/microphone50

absolute distance estimation from received single microphone signals.

Most of the work so far on localization of sound source relies solely on the

acoustic modality. While audio-only-based techniques might present promising

results, leveraging from visual information is often beneficial when a video cam-

era is available. In the work reported in this paper, we adopt a visual model to55

implement the source direction estimation and then we estimate the distance

of the sound source using an acoustic model, respectively. Moreover, both of

these two feature modalities can be trained by a SVM. Our direction estimation
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model is based on the convex imaging theory of a camera (see Fig. 1). To

accurately estimate the orientation angle of a sound source, we propose a ro-60

bust image feature extraction method based on Fourier analysis. This allows us

to densely and efficiently calculate descriptor Fourier coefficients on a pixel-by-

pixel basis and thus extract histograms of oriented gradients [16] (HOG)-type

image polar features. In the Fourier domain, the polar data can be conveniently

computed, since the rotation calculation is just a multiplication with a complex65

basis. Moreover, the polar features are sufficiently stable to accommodate the

shaking of the bounding box, guaranteeing correct direction estimation.

Generally, a speech sound signal in a room environment can be represented as

the convolution of clean speech sound and the acoustic transfer function (ATF).

However, only AFT is a useful information for estimating the distance. There-70

fore, here we develop a novel method i.e.., phoneme Hidden Markov Models

(HMMs) [17], to separate the ATF. However, to estimate the ATF, the separa-

tion approaches implemented by HMM, require texts of the speech utterances.

In [18], although the utterance texts for the adaptation data are given, the case

for unsupervised on-line adaptation was not discussed. In the studies of unsu-75

pervised adaptation for speech recognition, it is able to obtain the utterance

text by using the word recognition approaches [18, 19]. However, in the case of

verification tasks for sound source localization, we require the utterance text of

the test data without any dictionaries or knowledge of the language. Therefore,

the alternative method is used for the proposed method that can identify the80

information of sound source localization in phoneme level. Our solution uses a

classification system to recognize the phoneme to replace the conventional text

information for the ATF estimation. Since the cepstral parameters are the effec-

tive representation model for preserving useful clean speech sound information,

the estimation approaches are performed in the cepstral domain adopting the85

method based on maximum likelihood (ML).

Experiments demonstrate the effectiveness of our methods for the sound

source verification task using a single-channel microphone. Our study makes

the following distinct contributions:
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• Accurately, we explore a novel solution to accurately identify localization90

information of sound source, which fuses visual and acoustic models based

on a single-microphone into a multimodal framework. Since the task of

single-microphone voice source localization is one of the most challenging

scenarios in the area of speech signal processing, our solution is therefore

likely to lead to further related research.95

• We develop an HMM-based method for separation of the ATF to describe

clean speech sound. This leads to the accurate indication of the temporal

phonetic changes of clean speech sound in a single channel.

• We propose a new Fourier domain method for fast implementation of the

HOG-type polar feature descriptor. The proposed method simultaneously100

has rotation-invariant capabilities and preserves the discriminative power

of extracted features.

The remainder of this paper is organized as follows. In Section 2, we review

the literature on related work, and discuss the relationship between our pro-

posed model and a number of alternative methods. Section 3 gives overview of105

proposed method. Sections 4 and 5 respectively illustrate the proposed acoustic

model for estimating sound source orientation and sound source distance with

the proposed visual model. This is followed by an experimental evaluation in

Section 6. Finally, conclusions are presented in Section 7.

2. Related Works110

To date, most of the work on the localization of sound sources relies solely

on the acoustic modality. The task is usually considered as being composed of

two parts, namely (1) determining the direction of arrival (DOA) of the source

and (2) determining the distance of the source to the microphone.

2.1. Direction of arrival (DOA) estimation115

In signal processing tasks, DOA can be estimated using a variety of ap-

proaches such as source clustering through time and tracking techniques using
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Kalman filters [20, 21] or particle filtering [22]. The implementation of these

techniques depends on the number of microphones. For a single-channel, it is

common to make use of the time-difference-of-arrival (TDOA) between a pair120

of sensors or microphones. In the past, the most popular way to estimate the

TDOA is based on calculating a cross correlation vector [23]. To improve the

performance of this approach, Fourier domain methods are used to efficiently

compute the generalized cross-correlation (GCC) [24]. Problems are also en-

countered with GCC-based approaches, because Dirac delta functions appear125

in the correlation vector in the case of high correlation and the Fourier trans-

form of a Dirac delta function spans the complete frequency domain. One way

to enhance this approach-based approaches is to use the phase transform[25].

However, as mentioned in the previous section, these approaches are very sensi-

tive to equipment reverberations and other noise sources, and GCC cannot be130

used with only one microphone.

In this study, our solution is to use visual processing tools to calculate the

direction of the sound source. The proposed image feature used in our work is

reminiscent of Dalal et al.’s histogram of oriented gradients (HOG) [16]. The

HOG feature was first proposed to represent objects in images using the distri-135

bution of gradient magnitude and orientations over spatially distributed regions

[26]. It has been widely acknowledged as one of the best features to capture edge

or local shape information of the objects. More recently improved HOG-type

descriptors have been developed including histograms of radial gradient [27] and

Oi-HOG [28] that leverage radial or polar gradient transforms to achieve rota-140

tional invariance. Although the aforementioned feature representations have

shown impressive levels of success on a variety of visual tasks, they are highly

dependent on the relative position with respect to the center of the local patch.

Furthermore, they require us to calculate an auxiliary space (unit vectors of

tangent and radius directions) in polar coordinates. These factors limit the145

performance in some applications.
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2.2. Distance estimation

After the direction-of-arrival is computed, then the distance to the source

must be estimated to achieve sound source location . A widely used approach

relies only on audio information and utilizes time delay cues for localization150

by microphone arrays [3, 8]. This method splits the microphone array into

pairs and estimates the time difference of arrival (TDOA) for different micro-

phone pairs [29]. This can produce significant distance estimation errors. How-

ever, microphone-array based systems depend on bulky equipment and are often

computationally expensive, making them virtually impracticable for real-time155

speech processing applications.

Recently, there has been work aimed at using monophonic signals. These

include a neural network based approach [14], where distance is not estimated

directly. Instead, it is a byproduct of estimating the Cartesian coordinates of the

source using just one microphone. Additional existing monophonic techniques160

[15, 13] mainly focus on the estimation of direction (angle detection) between

the sound source and the receiver (microphone). Lu et al. [30, 31] have proposed

a binaural distance estimator for the dynamic case in which the receiver is mov-

ing. Georganti et al. [32] have proposed a novel detector based on extraction

of statistical measures from the single-channel microphone in combination with165

the classification-based Gaussian mixture model. Smaragdis and Boufounos [29]

have employed an expectation maximization algorithm for learning the ampli-

tude and phase differences of cross-spectra in order to determine the position

of a sound source using two microphones. This method was later improved by

Vesa [33] in order to account for different positions that have the same azimuth170

angle. The method makes use of the magnitude-squared coherence, which is a

frequency-dependent feature. The feature is used in addition white noise in the

training of a Gaussian Maximum Likelihood scheme for distance estimation.

To the best of our knowledge, there has been no prior work aimed at sound

source-to-microphone absolute distance detection from received monophonic175

speech signals. In one-microphone tasks, there are a number of problems to

solve. These include a) changes in the talker characteristics, b) the speaker
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position and c) the room environment. As discussed in the previous section,

the accurate estimation of the ATF from the observed speech is important for

these scenarios. Therefore, we focus on the ATF to estimate the distance of the180

sound signal source. Since, an HMM can describe the features of all phonemes

more accurately, the proposed method adopts a phoneme HMM to accurately

separate the ATF.

3. The Overview of Proposed Method

As explained above, our solution to identify the sound source position in-185

formation fuses together both visual and acoustic models to improve accuracy.

Both the visual and the acoustic models are trained by SVM [34].

3.1. The Proposed Visual Model Overview

As illustrated in Fig. 1, we adopt the convex imaging theory of camera to

estimate the orientation of the sound source, since this offers one of the most190

succinct and effective solutions available. In Fig. 1 , we consider the central

point r(x, y, z) of the object as the observed point for orientation calculation.

The imaged point corresponding to this point on the image plane of the camera is

r′(x′, y′, z′) (the units of x′, y′ and z′ are pixel, pixel and cm, respectively) in the

bounding box of the sound source object (that is detected by the proposed object195

detection model). According to the convex projection theorem, the orientation

angle α of the object is calculated as follows,

α = arctan
(x′ − x′

0)∆d

z′
, (1)

where z′, c(x′
0, ·, ·), and ∆d denote image distance, the central point on the

image plane, and the pixel pitch respectively.

3.2. The Proposed Acoustic Model Overview200

Fig. 2 gives an overview of the proposed acoustic model. The reverberant

speech sound signal in the room environment can be represented by the convolu-

tion of clean speech sound frame sequences and the ATF. We can adopt the ATF
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Figure 1: Illustration of sound source directional estimation.

to estimate the sound source distance. The training stage of proposed acoustic

model includes three approaches: a) the data set O
(θ)
train of reverberant speech205

sound uttered from each distance position θ are firstly recorded as preparations.

b) We adopt a clean speech sound model that is trained in advance by using

a clean speech sound database, to estimate Ĥ
(θ)
train from O

(θ)
train, where Ĥ

(θ)
train

and O
(θ)
train indicate frame sequences of ATF and reverberant speech sound, re-

spectively. c) Frame sequences of the estimated ATF Ĥ
(θ)
train are fed into the210

support vector machine (SVM) to train the classification model to estimate the

distance of the sound source position θ. In the test stage, the ATF Ĥ
(θ)
test is es-

timated from input data O
(θ)
test (any utterance) in the same way as the training

procedures. The distance of sound source position θ̂ is estimated by the trained

classification model.215

4. Estimation of Source Orientation with the Proposed Visual Model

As already discussed Subsection 3.1, direction estimation is based on the

convex imaging theory, using a camera. In this approach, the parameters of the

pixel pitch ∆d and image distance z′ can be deduced from the camera imaging

system. However, we have to obtain the observed position r′ of the sound source220
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Figure 2: The proposed acoustic model overview, where θ denotes the distance

of the sound source position.

object in the image. The orientation estimation is therefore dependent on esti-

mating the range of the source object from the available images. Consequently,

we require a robust object detection tool to bound the box containing the source

object in the available images. This object detection tool should be capable of

capturing the invariant features so that the object position can be obtained in225

a stable manner.

In our earlier work [28], we have systematically demonstrated the advantages

and in particular the rotation-invariant capabilities of polar descriptors in local

image feature representation. Polar data can either be represented in a Cartesian

basis η = [α, β]T ∈ R
2 or in a radial basis [r, ϕ] (r and ϕ are the norm of η230

and the angle of η, respectively). The Cartesian approaches make use of the

tangent directions in polar coordinates as the reference directions. They then

generate rotation or reversal-invariant descriptors by normalizing the contents

of multiple concentric spatial bins [28, 35]. However, this solution is dependent

on a) auxiliary calculations of the tangent or radius vectors and b) the relative235
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position to a selected center in the local feature patch of the images. These two

elements of the calculation provide a computational bottleneck and as a result

there is a relatively limited potential for developing “fast” Cartesian features.

Since we require the computations of the image model to be synchronized

with those of the acoustic model, the processing speed plays an important role240

in the choice of methods for our task. We therefore use a radial rather than a

Cartesian basis to extract the polar HOG descriptor. There are two reasons for

this. Firstly the polar basis can be used conveniently in conjunction with Fourier

domain analysis to improve the HOG feature extraction efficiency. Secondly, the

Fourier-based approach is naturally invariant to rotations.245

A standard HOG feature is calculated in three procedures: a) binning the

gradient orientation, b) spatial aggregation, and c) normalization [16]. In this

paper, the orientation quantization for gradients is created using an orientation

distribution function to make the image gradient for one pixel p(x, y) be oriented

to bin ϕ.250

To calculate polar HOG descriptor η, we require a local patch function g

to capture the structural information in the neighborhood surrounding a pixel.

The local patch function can be implemented by using the Gaussian kernel. We

calculate the local polar HOG descriptors at position (x, y) by collecting all gra-

dient magnitudes within the local patch function g to calculate the orientation255

ϕ (which is similar to the procedure of spatial aggregation in HOG [16]). The

polar HOG descriptor η at each pixel is computed as follows,

η(p, ϕ) =

∫

‖d(t)‖ δ(d̂(p))g(p− t)dt, (2)

where ϕ=atan2(y, x), d(·) is the gradient, and d̂(·) := is a function to get the

angle of d(·)
‖d(·)‖ , respectively. In addition, the delta function (Dirac) δ(·) is used to

remove those gradients without orientation ϕ. g(·) is a Gaussian function, which260

is used to implement spatial aggregation by evaluating the feature contributing

to orientation ϕ at point p. A polar function can be expanded linearly in terms

of Fourier basis functions. Therefore in the Fourier domain, Eq. 2 can be
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(a) Annular spatial cells (b) Polar HOG

Figure 3: Illustration of annular spatial cells and a polar gradient template

image over the annular spatial patch.

represented as,

η(p, ϕ) =
1

2π

+∞
∑

m=−∞

n(p)e−imϕ. (3)

By considering the Fourier expansion of the delta function δ(x) = 1
2π

∑

e−mxϕe−imϕ,265

we can compute the descriptor as follows,

η(p, ϕ) =
1

2π

∑

m

‖d(p)‖ e−ikmϕ ∗ g(p)e−imϕ, (4)

where m is an integer, k = d̂(p). To obtain the rotation-invariant descriptors,

we denote t(·) = 1
2π‖d(p)‖ e

−ikmϕ ∗ g(p)e−imϕ and we can describe the rotated

descriptor as follows,

R∆ϕη =
∑

m

‖d(p)‖ e−ikm(ϕ−∆ϕ) ∗ g(p)e−im(ϕ−∆ϕ)

=
∑

m

ei(−km+m)∆ϕ ∗ t(·).
(5)

The rotation-invariant should follow the condition η = R∆ϕη where R is a270

rotation matrix by a given angle ∆ϕ, i.e., k = 1.

Based on the above, we can densely compute Fourier representations of the

candidate descriptors at each pixel point η from Eq. 4. For fast descriptor pro-

cessing, we implement the calculation by decomposing it into two parts namely,

η1(p,m) = ‖d(p)‖ e−ikmϕ and η2(p,m) = g(p)e−imϕ. In our experiments, we275
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Algorithm 1 Fast Polar Feature Extraction in Fourier Space

Require:

A set of image data I over the feature local patch;

Ensure:

Polar HOG feature T(I);

1: Compute the gradient of image I: D := ▽I;

2: Initialization: Set feature descriptor set T = ∅;

3: Subdivide the local patch into annular spatial cells, as shown in Fig. 3(a);

4: for m=0:6 do

5: Calculate part descriptor basis in Fourier space for each pixel p(x, y) ∈ I:

ϕ = atan2(y, x),

k = atan2
d(p)

‖d(p)‖
,

η1(p,m) = ‖d(p)‖ e−ikmϕ,

η2(p,m) = g(p)e−imϕ;

6: Normalize the descriptor

η1(p,m) =
‖d(p)‖ e−ikmϕ

√

‖D(I)‖2
⊗

K
;

7: end for

8: for all η1 do

9: if k=1 then

10: Calculate polar HOG descriptor in each cell:

η(p,m) = η1(p,m) ∗ η2(p,m);

11: Add polar descriptors η to T, according to their polar gradient orien-

tations;

12: end if

13: end for

14: Output T; 13



find it difficult to implement the normalization of histograms in Fourier space.

We therefore normalize the descriptor before sorting them into bins. Since η2

uses a Gaussian kernel to implement the spatial aggregation[16, 35], we require

only a local normalization calculation. Following [36, 35], we adopt a convolu-

tion operator to implement the local spatial normalization as follows,280

η1(p,m) =
‖d(p)‖ e−ikmϕ

√

‖D(I)‖2
⊗

K
, (6)

where D := ▽I is the gradient of the image I (d(p) ∈ D(I)) and K is a smooth-

ing convolution kernel. The procedure for extracting polar HOG descriptor in

Fourier space is described in Algorithm 1.

We use Algorithm 1 to densely calculate the patch of feature templates in an

image. In this paper, we set the maximum patch size of these templates as 100285

× 100 pixels (see an example of descriptors generated by Algorithm 1 in Fig.

3(b)). In addition, we allow different aspect ratios for each template patch (i.e.

the ratio of width to height). In the Fourier domain, we can densely calculate

polar gradients on local patches. Furthermore, since the parameter of the polar

descriptors can be conveniently calculated by projecting them into Fourier space,290

we can efficiently extract descriptors to meet the speed requirements necessary to

synchronize with the acoustic model for verifying the sound source localization

information.

We use the proposed feature to detect the object of sound source. The

detector window is tiled with the above feature patch in which polar vectors295

are extracted. The combined vectors are fed to the SVM for object/non-object

classification. The detection window is scanned across the image at all positions

and scales, and conventional non-maximum suppression is run on the output

pyramid to detect the sounding object. Finally, the orientation can be calculated

in accordance with procedures of Subsection 3.1.300
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speech sound signal, λ denotes the parameter set of HMM, and abp(n−1),bp(n)

indicates the transition probability.

5. Estimation of Source Distance with the Proposed Acoustic Model

In this study, we adopt clean speech sound HMMs to estimate the frame se-

quence of the ATF Ĥ(θ). For following easily, an example for illustrate the HMM

model of a clean speech sound is shown in Fig. 4. In the case of HMM represen-

tation, the speech is represented by a state transition model, and the posterior305

probability estimation is implemented with the Gaussian mixture model (GMM)

[37] for each state. Therefore, we can calculate the likelihood as the product of

the transition probability abp(n−1),bp(n) and the posterior probability for each

state of the frame n. Namely, we can express the clean speech sound as a net-

work of phoneme HMMs. In this clean speech sound HMM model, since the310

more detailed clean speech sound information, such as the temporal phonetic

changes can be represented by the individual phoneme HMMs, we therefore can

preserve the discriminative structure parameters of the ATF for the distance

estimation.

Fig. 5 shows the overview of the proposed distance estimation procedures.315

Our method is based on the ATF that is represented by the HMMs of clean

speech sound. Since the HMMs of clean speech sound are trained for each
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individual phoneme, to construct the network of phoneme HMMs, we require

the texts of user utterances. Consequently, we firstly use each phoneme HMM

derived from the clean speech sound data to recognize the phoneme sequence320

of the reverberant speech sound data. Then, we adopt the recognized results

(1-best hypothesis) to concatenate the network of phoneme HMMs. Finally, the

frame sequence of the ATF Ĥ(θ) is estimated from the reverberant speech sound

O(θ) by the maximum likelihood estimation based on the concatenated HMM.

5.1. Cepstrum Representation of Reverberant Speech325

Generally, the reverberant speech sound signal O(t) in a room environment

is represented as the convolution of clean speech sound and the ATF O(t) =
∑L−1

l=0 S(t− l)H(l) , where S(t) , H(l), and L denote clean speech sound signal,

ATF (room impulse response) from the sound source to the microphone and the
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length of the ATF, respectively.330

Recently, some related works [38, 39, 40] have focused on the modelling of

reverberant speech sound in the short-term Fourier transform (STFT) domain,

presenting solutions to tasks of speech recognition and speech dereverberation.

Specifically, each frequency bin of the reverberant speech sound can be repre-

sented by the ATF and the convolution of the clean speech sound frame se-335

quences as follows,

Ospc(τ ;n) =

L′−1
∑

l′=0

Sspc(τ ;n− l′) ·Hspc(τ ; l
′), (7)

where Ospc, Sspc andHspc respectively denote spectra for the reverberant speech

sound signal, the clean speech sound signal and the ATF. τ is the index number

of frequency bins of the short-term linear spectra in the n-th frame sound signal

sequence, and L′ express the length of the ATF in the STFT domain. However,340

the cost of such solution to estimate the frame sequence of the ATF is quite

expensive [41]. Therefore, the estimated components of the ATF are too complex

and it is difficult to deal with those parameters for this task.

To address the above problems, in this paper, we try to adopt a simpler

model to represent the signal of reverberant speech sound. We consider that345

a linear spectra Ospc of short term can be approximately represented as

Sspc(τ ;n) · Hspc(τ ;n). It has been widely known that spectra are not ideal

model for sound signal feature representation, yet the cepstral-based feature

can preserve an effective representation and discriminative information in tasks

of speech recognition. Therefore, we require use the cepstrum to replace the350

spectrum to estimate the ATF. The cepstral representation for the reverberant

speech sound signal is defined as follows, i.e., the inverse Fourier transform of

the log spectrum,

Ocep(d;n) ≈ Scep(d;n) +Hcep(d;n), (8)

where the meaning of symbols Ocep, Scep and Hcep is similar to the representa-

tion in Eq. 7. d denotes the dimensionality of a cepstrum. When O and S are355
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observed, we can simply obtain H as the following equation,

Hcep(d;n) ≈ Ocep(d;n)− Scep(d;n). (9)

5.2. Maximum-Likelihood Parameter Estimation

As discussed in the last subsection, the Eq. 8 shows a possible solution to es-

timate the ATF, but we cannot observe the cepstrum of clean speech sound(Scep)

directly. We, therefore require an alternative solution to estimate the ATF Hcep.360

In this subsection, we propose an alternative approach for estimating the ATF,

which is implemented by maximizing the likelihood of the training data from the

sound source position. For simplicity in this subsection, the cepstral variables

Ocep, Scep and Hcep are written as O, S and H, respectively.

In order to estimate the frame sequence of the ATF in Eq. (9), we adopt the365

expectation maximization algorithm to maximize the likelihood of the observed

sound as shown follows,

Ĥ = argmax
H

Pr(O|H,λS), (10)

where λS indicates the parameter set of concatenated clean speech sound HMM

and the subscript S denotes the index refer to the cepstral domain of the clean

speech sound. As we known, the expectation maximization algorithm has two370

iterative procedures. In the first procedure, referred to as the expectation step,

the aim is to calculate the following expected log-likelihood function,

f (Ĥ|H)

= E[log Pr(O, p, bp, cp|Ĥ, λS)|H,λS ]

=
∑

p,bp,cp

Pr(O, p, bp, cp|H,λS)

Pr(O|H,λS)
· log Pr(O, p, bp, cp|Ĥ, λS), (11)

where bp denotes the unobserved state of the speech sound frame sequence, and

cp represents the unobserved mixture component labels corresponding to the

phoneme p in the observation sequence O.375
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The joint probability of frame sequences O, b and c, which are being ob-

served, can be expressed as follows,

Pr(O, p, bp, cp|Ĥ, λS)

=
∏

n abp(n−1),bp(n)wbp(n),cp(n) · Pr(O(n)|p, bp(n), cp(n); Ĥ, λS), (12)

where a and w respectively denote the transition probability and mixture weight.

Since we consider the ATF as subject to additive noise in the cepstral domain,

the mean of the mixture k at the state j in the model λO is derived by adding380

the ATF, where λO indicates the parameter set of concatenated reverberant

speech sound HMM and the subscript O denotes the index refer to the cepstral

domain of the reverberant speech sound. Therefore, Eq. (12) can be written as,

Pr(O, p, bp, cp|Ĥ, λS)

=
∏

n abp(n−1),bp(n)wbp(n),cp(n) · N (O(n);µ
(S)
p,j,k + Ĥ(n),Σ

(S)
p,j,k), (13)

whereN (·) is the distribution of multivariate Gaussian. The following derivation

of the expression for the expected log-likelihood is straightforward [42]:385

f (Ĥ|H)

=
∑

p,i,j,n

Pr(O(n), p, bp(n) = j, bp(n− 1) = i|H,λS) log ap,i,j

+
∑

p,j,k,n

Pr(O(n), p, bp(n) = j, cp(n) = k|H,λS) logwp,j,k

+
∑

p,j,k,n

Pr(O(n), p, bp(n) = j, cp(n) = k|H,λS)

· logN (O(n);µ
(S)
p,j,k + Ĥ(n),Σ

(S)
p,j,k), (14)

where µ and Σ (S) respectively represent the mean and the covariance in the

concatenated HMM network of clean speech sound, and i denotes the state index

number for previous sequences. Since these parameters can be calculated by

using a clean speech sound dataset, it is able to train the classification framework

based on these parameters for estimating the distance of sound source. Since the390

covariance Σ (S) is a diagonal matrix, the expression of the Eq. 14 just simply
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calculates those terms involving the cepstrum ATF H as follows,

f(Ĥ|H) = h
∑

p,j,k,n

hp,j,k(n)

D
∑

d=1

{

1

2
log(2π)Dσ

(S)2

p,j,k,d + φ

}

, (15)

where hp,j,k(·) = Pr(O(·), p, j, k|H,λS), φ =
(O(d;n)−µ

(S)
p,j,k,d

−Ĥ(d;n))2

2σ
(S)2

p,j,k,d

. D de-

notes the dimension of O(n). µ
(S)
p,j,k,d and σ

(S)2

p,j,k,d are the d-th element of its

mean and the d-th diagonal element of its covariance matrix, respectively.395

Based on the analyses above, the maximization procedure of our method for

expectation maximization algorithm is to maximize the likelihood Q(Ĥ|H). The

function for updatingH can therefore be derived from the condition ∂Q(Ĥ|H)/∂Ĥ =

0 as,

Ĥ(d;n) =

∑

p,j,k hp,j,k(n)
O(d;n)−µ

(S)
p,j,k,d

σ
(S)2

p,j,k,d

∑

p,j,k

hp,j,k(n)

σ
(S)2

p,j,k,d

. (16)

When the calculation of ATF over all sound data of different distances has400

been executed by using the proposed approaches above, we can obtain the esti-

mated ATF. In this study, the obtained signal feature represented by the transfer

function in different distances is then fed into SVM for training.

6. EXPERIMENTS

The proposed method was carried out in both of simulated and real condi-405

tions for evaluations of ideal environment and real environments. The visual

model for this task cannot be accurately synthesized in a simulated environ-

ment. Therefore, in our simulated experiments, we used the proposed acoustic

model to estimate both distance and orientation for the sound source. In our

real-world experiments on the other hand, we embed the visual model into the410

proposed method to test the method on representative applications involving

sound source identification.
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Figure 6: Experimental room environment for simulation.

6.1. Simulation-experiment Dataset and Implementation

Fig. 6 illustrates the environment setting for simulation experiments. The

width and length of the simulation experimental room were 6.7 meters and 4.2415

meters, respectively. The reverberation time in this room was 300 milliseconds.

A loudspeaker acted as sound source (the height of that was 1,720 millimeters)

was located on a semicircle with the 2,020-millimeter radius. A single micro-

phone as the input device (the height of that was 1,620 millimeters) was set 420

millimeters from the circle center. The loudspeaker was set to face the input420

device. Therefore, the distances between the microphone and each position of

sound source ranged from 1,600 to 1,900 millimeters.

In the simulated experiments, the reverberant speech sound from every posi-

tion was simulated by linearly computing the convolution of clean speech sound

and the ATF (impulse response). The impulse response data were estimated by425

clean speech sound from the RWCP database of real acoustical environments

[43, 44]. The estimated ATF was then fed into SVM for training to obtain the

classification model of sound source localization.

We adopt the ATR Japanese speech database as sound data. The speech
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Table 1: The MSE results for the ATF separated by different models.

The observed speech GMM
HMM
(1-best)

HMM
(CT)

MSE 9485.97 2264.33 2096.14 1968.36

sound signal was sampled in frequency of 12 kHz, with the 32-millisecond Ham-430

ming window, and the frame shift was 8 milliseconds. A 16-order mel-frequency

cepstral coefficients (MFCCs) [45] was used as the features. There are totally

54 phonemes in Japanese. The proposed HMM model for every phoneme was

a simple left-right model, which has three self-transition states. Each state

contains 32 Gaussian mixture components.435

We used 2,620 words to train the clean speech sound HMM (speaker-dependent

model), and used 10, 20, 30, 40 and 50 words to respectively train the ATF and

to evaluate their performances for one location. The number of test data was

1,000 words per person section for each location. There were five randomly se-

lected persons. The training data (for clean speech sound model O and the ATF440

H) and testing data were spoken by the same person, but the speech contents

of that were different.

We also set different conditions of sound source positions for evaluations.

We trained proposed model and tested its performances in three positions set

of 30◦, 90◦ and 130 ◦, five positions set of 10◦, 50◦, ..., 170◦, seven positions set445

of 30◦, 50◦, ..., 150◦ and nine positions set of 10◦, 30◦, ..., 170◦.

6.2. Results of the Simulated Reverberant Environment

We had tried a large number of candidate methods to implement the ATF

estimation and the following methods obtained acceptable results. We therefore

adopted these models as comparison methods.450

The observed speech This comparison method was implemented by directly

classifying the observed speech without separating the ATF for verifying the

sound source localization information.

22



GMM Similar to the proposed HMM-based approach, this comparison method

used a clean speech GMM to estimate the ATF. In a manner different from455

HMM-based approaches, each stage of phoneme model has 64 Gaussian mix-

ture components.

HMM (1-best hypothesis) The HMMs network of phoneme in the proposed

model are concatenated using those phonemes with best recognition results

(1-best hypothesis).460

HMM (correct transcription) The HMMs network of phoneme in the

proposed model are concatenated by using the correct transcription.

To make fair comparison, we used the same learning framework, the same data

and the same experimental conditions for these methods.

Table 1 shows the mean square error (MSE) for the ATF separated by dif-465

ferent models, where GMM, HMM (1-best) and HMM (CT) respectively denote

the models based on clean speech sound GMM, clean speech sound HMMs with

the 1-best hypothesis, and HMMs with the correct transcription. We can cal-

culate the MSE as follows,

MSE =
1

N

∑

n,d

(Htrue(d;n)− Ĥ(d;n))2, (17)

where Ĥ is the estimated ATF. Htrue denotes the calculation result of the true470

clean speech sound data from the Eq. 9, referred to as the ground truth of

the ATF, d denotes the d-th dimension of a cepstrum in the n-th frame sound

signal sequence, and N express the length of the cepstrum representation. As

results shown in the table, the MSE of the proposed approach was smaller than

comparison methods. This means that the proposed method can estimate the475

ATF more accurately than other methods.

In our method, the acoustic transfer function is separated from the training

speech uttered by the same people from the same position in the room as those

for testing. The related evaluations are shown in Fig. 7. The 32-order mel

spectrum was obtained by computing the inverse cosine transform of the 32-480

order MFCCs, where the estimated 16-order MFCCs were extended to 32-order

MFCCs using zero padding. Then, the mel spectra had normalized energies
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Figure 7: Mel spectra of different ATF models compared with that of the ground

truth.

because the 0th dimension of the MFCCs (which is equivalent to the energy of

the mel spectrum and is not discussed in this study) was also padded with zeros.

This figure also shows that the clean speech HMMs suppressed the influence of485

clean speech more effectively and estimated the acoustic transfer function more

correctly than the existing methods.

Table 2 shows a comparison of the different methods for using 10-, 20-, 30-,

40- and 50-word training data, where the average accuracy was calculated in

three-position set. The parenthetic numbers show the differences from the accu-490

racy of the HMMs with 1-best hypothesis. Table 2 also shows that as the number

of training data decreased, the accuracy of the proposed method became much

larger than other methods. These results mean that the proposed method will

obtain better performances, especially in the cases of small-size training data.

Because in the classification framework based on the observed speech, when the495

number of training data decreased, the classification boundaries were biased by
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Table 2: Localization accuracies [%] (3 positions) of compared different methods

for using 10-, 20-, 30-, 40- and 50-word training data.
Number of training

data (words)
50 40 30 20 10

HMM
(1-best hypothesis)

82.9 82.4 82.3 80.6 79.9

HMM
(correct transcription)

83.9
(0.9)

83.3
(0.9)

83.0
(0.8)

81.0
(0.4)

79.5
(-0.4)

GMM
80.5
(-2.4)

80.2
(-2.2)

79.2
(-3.1)

76.9
(-3.6)

75.1
(-4.8)

Observed speech
53.2

(-29.7)
50.2

(-32.2)
46.6

(-35.7)
40.7

(-39.9)
35.7

(-44.2)

Table 3: Localization accuracies [%] (50 words) of compared methods for each

number of positions.

Number of positions 3 5 7 9

HMM
(1-best hypothesis) 82.9 61.4 56.0 46.6

HMM
(correct transcription)

83.9
(0.9)

62.0
(0.7)

58.0
(1.9)

48.0
(1.5)

GMM
80.5
(-2.4)

57.0
(-4.4)

53.6
(-2.5)

44.0
(-2.5)

Observed speech
53.2

(-29.7)
27.0

(-34.4)
30.3

(-25.7)
22.5

(-24.1)

the utterance contents of the training data, which will cause overfitting. Similar

situation also exists in the GMM-based frameworks, because the clean speech

sound components are not completely removed from the observed signal in those

frameworks.500

Table 3 indicates comparisons of the different methods for identifying sound

source localization of 3, 5, 7, and 9 positions, where the number of training data

was 50 words. The parenthetic numbers show the differences from the accuracy

of the HMMs with 1-best hypothesis. The observed speech includes information

of the acoustic transfer function and clean speech sound. The clean speech sound505

is not useful information for sound source localization, which also requires addi-
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Figure 8: Mean ATF values.

tion calculation cost. Since our methods separate the acoustic transfer function

from the observed speech signal, the proposed method showed higher accura-

cies than the method adopted the observed speech. In the comparison between

the proposed method (HMMs with 1-best hypothesis) and clean speech sound510

GMM, the proposed method also showed higher performances by an accuracy

of more than 2.2% for every set of conditions.

About the comparison of proposed phoneme HMMs with different candidate

approaches, i.e., the HMMs network of phoneme in the proposed model are

concatenated using those phonemes with 1-best hypothesis and that with the515

correct transcription. We found that as the number of estimated sound source

positions increased, the proposed method in use of the correct transcription be-

came obviously better than that method with 1-best hypothesis. In comparison,

for each number of training data (words), there were no significant differences

between the performances of two candidate approaches.520

Figs. 8(a) and (b) illustrate respectively the 7-th of the mel cepstral coef-

ficients and 10-th order of that, where the ATFs are calculated from Eq. (9).

As shown in the figures, there is the highest Fisher’s ratio (i.e., ratios of the

within-class variances to the between-class variances) for each word in the case

three positions case, which means the distribution of the ATF for each position525

can be classified easily. In comparison, the ratio of mean acoustic transfer func-
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tion values for each word in the seven-position case, is highest, which means

that it becomes difficult to classify the distribution for each sound source, when

the number of source positions is seven. Therefore, based on these results, we

can find that the tasks of verifying sound source localizations are deeply depen-530

dent on the accurate estimation of the ATF contribute, which is also supported

by the comparison performance results between the proposed method with the

1-best hypothesis approach and that with the correct transcription.

6.3. Experimental Results in a Real World Environment

The proposed method was also evaluated in a real world environment. Fig. 9535

(a) shows the experimental room environment and the position of the loud-

speaker. The size of the recording room was about 6,300 micrometers (mm) ×

3,200 mm × 2,800 mm (width × depth × height). The reverberation time was

about 350 microseconds, and the SNR was about 41.49 [dB]. The distance from

each position to the microphone was 1,500 mm. The speech signal was recorded540

using two (directional-type) microphones in order to provide a comparison with

conventional CSP [46, 47] analysis, but the signal recorded by only one micro-

phone (+ one camera) was used for the proposed method. The experimental

devices were set on the table and desk. Three loudspeaker positions, i.e., −45◦,

0◦ and 45◦ were set for training and testing, and one loudspeaker was used545
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Figure 10: Comparison of our method and HOG: our method allows more flex-

ible image representation, and produces smaller feature distances between the

test and rotated object images.

for sound sources. Figure 9 (b) shows the differences in the orientation of the

loudspeaker.

The speech sound data for experiments were from the ATR Japanese speech

database. 2,620 words were used for training the clean speech sound HMM.

We recorded 216 words as reverberant speech signal data for each sound source550

position, where 50 of them were used to train the ATF for each sound source

position and the rest ones were test data. The accuracy calculation followed the

rule of 4-fold cross validation. The test data contained 216 words × 3 persons

who were randomly selected from the ATR database, totally had 648 words.

The speech sound data used as the clean speech sound model training data, the555

ATF training data and testing data were spoken by the same person but with

different speech contents. The other experimental setting are the same as those

described in Subsection 6.1.

Few methods have been proposed for the task of the verification of sound

localization information using the input of a single microphone. The method560

proposed in this paper was therefore compared with the CSP algorithm which

28



is a popular microphone-array-based method. Fig. 9(a) shows illustration of

the experimental environment. The orientation for testing was changed to 0◦

(same to their statuses in the training stage), 45◦ and 90◦ (different from their

statuses in the training stage). Similarly, the distance was changed to 0, 15 and565

30 centimeters.

For visual model training (based on the same SVM framework), we respec-

tively recorded 150 sample images of the sound source object (0 degree) at

positions of 0, 15 and 30 centimeters. The sample images are normalized as

the size of 100 × 200 pixels for training. Since the HOG-type feature is not570

scale-invariant, to enhance the generalization ability of the learning process, we

performed a variety of scale transformations on the training samples, ultimately

increasing the original number of samples by a factor of 10. Meanwhile, we also

prepared images of the surrounding environment as examples of negative data.

In the training stages, the positive-negative ratio is roughly 1:6.575

Fig. 10 compares the distances in the feature space of the speaker for different

orientations. In these cases, we aim at evaluating the feature similarity between

the rotated image and the test image (0◦). By this we can find the proposed

image feature method produces smaller feature distances between the test and

rotated images. This means the proposed Fourier domain HOG features can580

stably represent the image in different orientations. Consequently, our method

has a relatively stable capacity to capture highly invariant features, i.e., the

representation of proposed feature is stable enough to resist the observed point

shaking.

Fig. 11(a) shows accuracies of different orientations that were changed from585

the training stage by 0, 45, and 90 degrees. As shown in the Fig. 11(a), the

comparison method based on CSP algorithm obtained the accuracy of 100%

in the 0-degree and 45-degree cases. However, the accuracy of the case of 90

◦ was 87.7%, because reflected signals (reverberation) from walls turned quite

large. The similar situation also existed in the proposed phoneme HMM model590

(without visual model, marked as HMM (single-channel)). In comparison, the

proposed multimodal fusion model (Proposed (signal-channel)) was slightly ef-
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Figure 11: Accuracies of different orientation and distances changed from the

training stage.

fected. These mean that the influence of reverberation signals obviously de-

grades the performance of both acoustic models using signal microphone and

the microphone array. We also found that the proposed phoneme HMM is sen-595

sitive to the orientation parameter. Fig. 11(b) indicates accuracies of different

distances that changed from the training stage by 0, 15, and 30 centimeters. As

shown in Fig. 11(b), the accuracy of the acoustic model reduced dramatically

when then changed distance is more than 15 centimeters, which means that the

features of the ATF changed dramatically when the position was changed by 15600

centimeters from the distance of trained stage.

From Figs. 11(a) and (b), we can find that the localization accuracy of the

proposed acoustic model (marked as HMM) degraded as the orientation angle

of the loudspeaker changed significantly. This means that the ATF depends not

only on the position but also on the orientation of the speaker. Moreover, the605

features of the ATF changed from those used for training despite being measured

from the same position. As shown in Fig. 11(a), the accuracy of the acoustic

model degraded dramatically at the point where the difference between the posi-

tions of the loudspeaker for training and testing was 15 centimeters. Meanwhile,

the CSP algorithm estimated the location with an accuracy of 100% for every610

condition. This means that the features of the ATF changed dramatically when

the position was changed by 15 centimeters, although the phase difference used
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in the CSP algorithm was stable and changed very little.

Based on these results, the conventional approaches that simultaneously ex-

tract and separate the parameters of localization (orientation and distance)615

suffer from the fact that these features influence each other. This limits their

performance for the single-channel sound source localization task. By compar-

ison, the new approach developed in this paper that individually estimates the

distance and orientation of the sound source improves the level of achievable

performance by about 22.7%.620

7. CONCLUSION

This paper has used machine learning techniques to develop a novel solution

to verify the sound source localization information using a single microphone.

We have explored an effective location estimation framework based on fusing

acoustic and visual models. The acoustic model uses the ATF to estimate the625

distance of sound scource. Specifically, the ATF is estimated using phoneme

HMMs of clean speech sound together with a label sequence obtained from

phoneme recognition. By so doing, the proposed method estimates the ATF

more accurately than existing methods.

We also combine acoustic and visual models to help to identify speaker630

position. We have proposed a novel method based on Fourier domain analysis

to efficiently implement the HOG-type polar feature descriptor. The proposed

polar feature representation has rotation-invariant capabilities, which facilitates

stable sound source object detection. We can therefore use the observed sound

source object position to reliably calculate the orientation of the source object635

based using the convex imaging camera theory. The proposed combined visual-

acoustic method improves the performance by about 22.7% for experiments

conducted in real world acoustic environments. Therefore, the approach of

multimodal fusion should be an important solution to the verification tasks of

source localization information.640

The proposed method is effective indoors and it has an impact on the rever-
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berant environment. Future work will try to develop a deep model to capture

more meticulous signal patterns to estimate the ideal ATF. Correspondingly,

we also need to organize a larger dataset.
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