
Journal of Artificial Intelligence Research 70 (2021) 169-204 Submitted 07/2020; published 01/2021

Cost-Optimal Planning, Delete Relaxation,
Approximability, and Heuristics

Christer Bäckström christer.backstrom@liu.se
Peter Jonsson peter.jonsson@liu.se
Department of Computer Science
Linköping University
SE-581 83 Linköping, Sweden

Sebastian Ordyniak sordyniak@gmail.com
School of Computing
University of Leeds
LS2 9JT, Leeds, United Kingdom

Abstract
Cost-optimal planning is a very well-studied topic within planning, and it has proven

to be computationally hard both in theory and in practice. Since cost-optimal planning is
an optimisation problem, it is natural to analyse it through the lens of approximation. An
important reason for studying cost-optimal planning is heuristic search; heuristic functions
that guide the search in planning can often be viewed as algorithms solving or approximat-
ing certain optimisation problems. Many heuristic functions (such as the ubiquitious h+
heuristic) are based on delete relaxation, which ignores negative effects of actions. Planning
for instances where the actions have no negative effects is often referred to as monotone
planning. The aim of this article is to analyse the approximability of cost-optimal monotone
planning, and thus the performance of relevant heuristic functions. Our findings imply that
it may be beneficial to study these kind of problems within the framework of parameterised
complexity and we initiate work in this direction.

1. Introduction

We divide the introduction into two parts where we describe the background in Section 1.1
and present our results in Section 1.2.

1.1 Background

In cost-optimal planning, the input is a planning instance where each action has a weight,
and the task is to find a plan with minimum total weight or report that no plan exists.
From the viewpoint of computational complexity both satisficing and cost-optimal Strips
planning are PSPACE-complete problems (Bylander, 1994). It has been observed, though,
that cost-optimal planning is typically much harder to solve in practice than satisficing plan-
ning. This observation has been one major factor behind the intensive search for improved
cost-optimal planners during recent years. Even though cost-optimal planning is a highly
interesting and relevant problem in itself, there is another usage that is probably more
important. Many state-of-the-art planners are based on heuristic search, and the heuristic
function is very often based on solving or approximating cost-optimal planning. Pommeren-

©2021 AI Access Foundation. All rights reserved.

Bäckström, Jonsson, and Ordyniak

ing and Helmert (2012) summarise the connections between cost-optimal planning, delete
relaxation, approximability, and heuristics as follows.

The delete-relaxation heuristic h+ is a well-informed heuristic for classical plan-
ning. It is defined as the optimal solution of a task where all negative effects are
ignored. Since it is intractable, it is seldom used in practice and approximations
are used instead.

The aim of this article is to analyse these connections in greater detail. It is important
to assign the term “approximation” the correct meaning in this context. The interpretation
should be strict: an approximation algorithm (for a minimisation problem) always produces
a solution whose measure is at most α times the optimal one (where α may be a constant
or a function of some parameter based on the given instance). On top of this, we want
our algorithm to produce the approximative solution substantially faster than it would
take to find an optimal solution. Since monotone planning, i.e. planning with actions
having empty delete lists, is NP-complete, we will restrict ourselves to polynomial-time
computable approximation algorithms. We concentrate on the parameter |V |, i.e. the
number of variables and there are many different reasons for this. It is a parameter that is
easy to understand, and, historically, it has been the most common parameter for analysing
quantities such as the run time of planning algorithms or the approximability of planning
problems, cf. (Bäckström & Jonsson, 2017; Kronegger et al., 2019; Jonsson, 1999). We
see that |V | has a close connection to the size of underlying state-transition graph (the
state space has size at most O(2|V | · |A|) where |A| is the number of actions) and it is
thus a good parameter for estimating problem complexity. Another reason is that one is
mainly interested in measuring approximability using parameters that do not "grow too
rapidly". To exemplify, assume a class of planning problems X is approximable within
p(|V |). Since |V | ≤ ||P|| (where ||P|| is instance size), this result immediately implies that
X is approximable within p(||P||), too. However, the implication in the other direction
does not hold in general and it is thus reasonable to consider the result based on |V | to be
stronger than the result based on ||P||.

We begin by a quick comparison of unrestricted and monotone Strips planning. Ap-
proximating the length of optimal solutions for unrestricted Strips planning is a very hard
problem: for every ε < 1, it is PSPACE-hard to approximate the length within the (very
liberal) bound 2|V |·(1−|V |−ε), where |V | denotes the number of variables (Jonsson, 1999).
This result is essentially the best possible since such a plan may have length 2|V | − 1 at
most. The situation may seem much better in monotone planning since the length can be ap-
proximated within |V |. This is an illusion, however, since if a monotone planning instance is
solvable, then it always has a solution of length at most |V |. We are thus interested to prove
or disprove the existence of approximation algorithms that achieve o(|V |)-approximations,
and we describe a number of such results in this article. An outline of the results will be
given in the next section.

The connections between approximation algorithms for cost-optimal planning and plan-
ning heuristics are well understood: approximation algorithms for cost-optimal planning
can be viewed as admissible1 heuristic functions, cf. the paper by Betz and Helmert (2009)

1. A heuristic function is admissible if it never overestimates the cost.

170

Approximability of Monotone Planning

or Section 2.4 in the paper by Aghighi et al. (2016). Loosely speaking, the better approxi-
mation bound that is achieved by an approximation algorithm, the smaller the gap between
the heuristic value and the optimal value. Similarly, a strong nonapproximability result
for a class of planning instances implies that the gap is large—for any polynomial-time
computable heuristic function, there are instances that the function will severely underesti-
mate. One may thus view approximation bounds as a way of measuring how well-informed
heuristics possibly can be when applied to a certain set of Strips instances.

1.2 Our Results

We continue by briefly discussing the results presented in this article. From now on, we
only consider monotone planning unless otherwise stated.

Approximability. Monotone planning comes in two different flavours: (1) where only
positive preconditions are allowed (corresponding to restricted classical Strips with pre-
conditions that are sets of unnegated variables, add lists that are sets of unnegated vari-
ables, and empty delete-lists) and (2) where free preconditions are allowed (corresponding
to restricted state-variable planning with two-valued domains {0, 1} and actions that only
increase variable values). We will see that (1) and (2) behave quite differently. Assume
we consider instances with free preconditions and where the action weights are bounded
by β(|V |) for some function β. Our results will show that this bound on action weights is
directly connected to approximability. Under fairly mild assumptions on β, it is NP-hard to
approximate cost-optimal planning within a bound that is very close to β(|V |) and the prob-
lem is polynomial-time approximable within |V | · β(|V |) (Theorem 9). The hardness result
holds even for instances restricted to having one precondition and one effect. These bounds
are not useful for approximating minimum plan length since every weight can be assumed
to be 1 in that case. We thus present the following complementary result: length-optimal
planning is approximable in polynomial time within |V | but it is NP-hard to approximate
it within |V |1−ε for every ε > 0 (Theorem 11). The hardness result holds even if we restrict
ourselves to instances having actions with at most one precondition and one effect.

The situation becomes different for monotone planning restricted to positive precondi-
tions (Section 4). The currently best known approximation bound states that it is NP-hard
to approximate the length of optimal plans within (1 − o(1)) · ln |V |. We show that plan
length is NP-hard to approximate within gc(|V |) for all c < 1/2, where gc is a certain
function that grows slower than all polynomial functions but faster than all polylogarith-
mic functions (Watel & Weisser, 2016). In particular, gc(|V |) grows much faster than
(1−o(1)) · ln |V |. This is thus a significant strengthening of the previous bound. This result
holds when restricted to instances having at most two preconditions and one effect. Un-
fortunately, the result is not accompanied by an improved upper bound (the currently best
known approximability bound is |V |) so there is still a substantial gap between the lower
and upper bound. Closing this gap appears difficult since there are certain theoretical bar-
riers that need to be overcome. This leads us to consider monotone planning with only one
precondition—this class of planning problems have been considered by, for instance, Key-
der and Geffner (2009) when constructing heuristic functions. We prove that cost-optimal
planning can be approximated within |V |ε for every ε > 0 and that this result holds even
when an unbounded number of effects are allowed. Good approximation bounds can thus

171

Bäckström, Jonsson, and Ordyniak

at most one prec. unbounded number of prec.
positive prec. approx: |V |ε, ε > 0 approx: |V | · β(|V |)

nonapprox: log2−ε |V |, ε > 0 nonapprox: gc(|V |), c < 1/2

free prec. approx: |V | · β(|V |)
nonapprox: close to β(|V |)

Figure 1: Summary of (non)approximability results for COP with respect to preconditions

at most one prec. unbounded number of prec.
positive prec. approx: |V |ε, ε > 0 approx: |V |

nonapprox: log2−ε |V |, ε > 0 nonapprox: gc(|V |), c < 1/2

free prec. approx: |V |
nonapprox. |V |1−ε, ε > 0

Figure 2: Summary of (non)approximability results for LOP with respect to preconditions

be obtained by choosing ε close to 0. We additionally prove that plan length cannot be
approximated within log2−ε |V | for any ε > 0, unless NP has quasi-polynomial Las-Vegas
algorithms (i.e. every problem in NP has a probabilistic algorithm with expected quasi-
polynomial run-time and zero error probability.) These results are proven in Theorems 22
and 23, respectively.

We use COP to denote cost optimal planning and LOP to denote length optimal planning.
Our (non)approximability results for COP are summarised in Figure 1 and the results for
LOP can be found in Figure 2. All approximability results hold for instances where the
actions may have an unbounded number of effects while all nonapproximability results hold
for instances where actions have at most one effect. One can thus note (and this may be
slightly surprising) that the (non)approximability of these problems is closely connected to
the type and number of preconditions while the effects have a negligible impact.

Heuristics. We will now sketch how to transfer the (non)-approximability results to
the world of heuristics. Our presentation is partly based on Sec. 2.4 in the paper by
Aghighi et al. (2016). We ignore the costs of actions for the moment in order to streamline
the presentation, i.e. we only consider heuristics that estimate plan length. Note that if
we analyse heuristic functions that take costs into account then we can only obtain worse
approximation bounds (compared to the case when we restrict ourselves to plan length)
since such heuristics are applicable to a larger set of possible inputs. Let OPT (·) denote
the measure of an optimal solution to a given instance of an optimisation problem. Given
a Strips instance P = ⟨V,A, I,G⟩ and a state s, we define the perfect heuristic function
h∗ as usual: h∗(P, s) = OPT (⟨V,A, s,G⟩). We begin by considering admissible heuristics.
Let us consider Strips instances with free preconditions. Our results say that for arbitrary
ε > 0, there is no polynomial-time computable function f satisfying

OPT (P) ≤ f(P) ≤ |V |1−ε ·OPT (P)

172

Approximability of Monotone Planning

unless P=NP. Assume now that h is a polynomial-time computable and admissible heuris-
tic function for Strips. Here it is important to note that we allow h to be any such function,
and it is not required to be based on delete relaxation. Even if we restrict ourselves to mono-
tone instances P, the function h cannot achieve better than

h∗(P, s)
|V |1−ε

≤ h(P, s) ≤ h∗(P, s)

for any ε > 0; if so, the function h(P, s) · |V |1−ε would violate the nonapproximability
result. Clearly, h cannot perform better on unrestricted Strips instances so the bound
holds in the general case. Let us view this from a slightly different angle. We let h+ denote
the delete relaxation heuristic: we may view it as a function that takes a Strips instance
⟨V,A, I,G⟩ and a state s, and computes the shortest plan for the instance (V,A+, s, G)
where A+ contains the actions in A with emptied delete lists. The function h+ is NP-
hard to compute so we may want to approximate it. If there exists an admissible heuristic
function h satisfying

h+(P, s)
|V |1−ε

≤ h(P, s) ≤ h+(P, s),

for any ε > 0 then h is not polynomial-time computable by our results.
If we consider Strips instances with only positive preconditions, then we have the

bounds h∗(P,s)
gc(|V |) ≤ h(P, s) ≤ h∗(P, s) and h+(P,s)

gc(|V |) ≤ h(P, s) ≤ h+(P, s), for c < 1/2. This
may appear to be much better since gc is a function that grows slower than any polyno-
mial function. As pointed out earlier, there are unfortunately no known polynomial-time
algorithms that achieve a better bound than |V |. We conclude that polynomial-time com-
putable approximations of h+ are necessarily quite weak. One may exemplify with the max
heuristic hmax that is a well-known admissible heuristic that can be computed in polynomial
time. The heuristic is unfortunately known for not being very informative, cf. Helmert and
Domshlak (2009) and Ghallab et al. (2016, p. 39). Our result shows that this is a property
that it necessarily shares with all admissible and polynomial-time computable heuristics
that attempt to approximate h+—such functions cannot even produce a polylogarithmic
approximation of h+ under plausible complexity-theoretic assumptions.

The situation is more complex for non-admissible heuristics and full details together with
slightly sharper bounds can be found in Section 5. In brief, we prove that no polynomial-
time computable function h can achieve OPT (P)

|V |ε ≤ h(P) ≤ |V |1−ε ·OPT (P) for any 0 < ε < 1

when considering instances with free preconditions. We may, for instance, set ε to 1/2 and
arrive at the bound OPT (P)√

|V |
≤ h(P) ≤

√
|V | · OPT (P). If we restrict ourselves to positive

preconditions, then we have the bound OPT (P)
logk |V | ≤ h(P) ≤ logk(|V |) · OPT (P) for arbitrary

k ≥ 0. The fact that the overestimation may be quite substantial—at least polylogarithmic
in the number of variables—has been observed in practice; for instance, Domshlak et al.
(2015) write the following about a particular nonadmissible polynomial-time computable
heuristic function.

173

Bäckström, Jonsson, and Ordyniak

Foremost, we observe in Section 5.1 that hRB
repair is prone to dramatic over-

estimation even in trivial examples...

Our results give a solid theoretical explanation for this behaviour.

Fixed-parameter tractability Parameterised complexity is an important branch of
computational complexity that focuses on classifying computational problems according
to their inherent difficulty with respect to multiple parameters, and the complexity of a
problem is then measured as a function of those parameters. This allows for a more fine-
grained classification of computationally hard problems than in classical computational
complexity where the complexity of a problem is only measured in the input size. Of
particular interest are fixed-parameter tractable problems, i.e. solvable in f(k) ·poly(n) time
where f is an arbitrary function, k is some parameter, and n is the (ordinary) size of the
instance. For instances where the parameter k is sufficiently small, we thus have access to
an efficient solution method. Furthermore, we know that the dependence on the parameter
k is limited— it is an important difference between an algorithm running in f(k) · poly(n)
time and an algorithm running in, say, nk time.

Our previous hardness results indicate that bounding parameters such as action weight
and the number of preconditions and/or effects is not sufficient for obtaining polynomial-
time approximation algorithms with good performance and, naturally, not for obtaining
exact algorithms either. We thus turn our attention towards finding parameters that may
serve as the basis for fixed-parameter tractable algorithms for monotone planning (Sec-
tion 6). It is a plausible working hypothesis that the planning process becomes more
difficult if there are many actions that achieve the same effect, and it is known that there
are efficiently solvable special cases if there is only one action that can achieve a partic-
ular effect (Bäckström & Nebel, 1995; Bäckström et al., 2015). Inspired by this, we first
show that directly bounding the number of actions that achieve an effect cannot lead to a
fixed-parameter tractable algorithm. However, a fixed-parameter tractable algorithm exists
if we use a variant of this parameter and only consider instances with unary actions, i.e.
actions that only have one effect. Unary actions are interesting for many different reasons
and we merely point out that heuristics that exploit acyclic causal graphs are based on
unary action. A well-known example is the original heuristic used by the Fast Downward
planner (Helmert, 2006). Even though our results may appear preliminary, we view this ap-
proach as a viable research direction towards a better understanding of monotone planning.
An interesting aspect of our results is that they are only based on the effects of actions,
thus making them very different from the approximability results presented in Sections 3
and 4.

2. Preliminaries

This section is divided into three parts. In the first two parts, we introduce general Strips
planning and the optimisation framework, respectively, and we present some useful results
concerning monotone planning in the third part. Note that we allow negative preconditions
in our basic formalism, thus making it equivalent to the SAS+ formalism restricted to
two-valued variable domains. We begin by providing some mathematical terminology and
notation that will be frequently used throughout the article. We let log denote the logarithm

174

Approximability of Monotone Planning

function with base 2 and we let ln denote the logarithm function with base e. We follow
common practice and let logk n denote (log n)k. A sequence of objects x1, x2, . . . , xn is
written ⟨x1, x2, . . . , xn⟩, with ⟨⟩ denoting the empty sequence. We write |X| to denote the
cardinality of a set X or the length of a sequence X, i.e., the number of elements in X, and
we write ||X|| to denote the size of x, i.e., the number of bits of the representation of X.

2.1 Planning

We will only consider binary variables (i.e. propositional atoms) in this article. Let V be a
set of variables. A state (over V) is a subset s ⊆ V , interpreted such that a variable v ∈ V
is true in s if and only if v ∈ s. The negation of a variable v is denoted v and a literal is
either a variable or the negation of a variable. A set S of literals over V is consistent if
there is no variable v ∈ V such that both v ∈ S and v ∈ S. A consistent set of literals over
V is referred to as a partial state (over V). Let s be a state and t a partial state. Then t is
satisfied in a state s if (1) v ∈ s for every v ∈ t and (2) v ̸∈ s for every v ∈ t. The update
operator n is defined such that r = s n t is a state defined such that for every variable
v ∈ V , v ∈ r if and only if either (1) v ∈ t or (2) v ∈ s and v ̸∈ t.

Definition 1. A Strips instance is a tuple P = ⟨V,A, I,G⟩ where V is a set of variables,
A is a set of actions, I is a state over V and G is a partial state over V . Each action a
in A has a precondition pre(a) and an effect eff(a), which are both partial states over V ,
together with a weight w(a) that is a member of N+. For any two states s, t ⊆ V and action
a ∈ A, a is from s to t if

(1) s satisfies pre(a) and
(2) t = sn eff(a).

Let ω be an action sequence over A. Then ω is a plan for P if ω = ⟨a1, . . . , aℓ⟩ and there
are states s0, . . . , sℓ ⊆ V such that

(1) s0 = I,
(2) sℓ satisfies G and
(3) ai is from si−1 to si for all i (1 ≤ i ≤ ℓ).

The sequence ⟨s0, . . . , sℓ⟩ is referred to as the state sequence for ω from s0. A plan ω for P
is a shortest plan for P if there is no other plan ω′ for P such that |ω′| < |ω|.

We extend the notion of weight as follows: w(A) =
∑

a∈Aw(a) and if ω = ⟨a1, . . . , aℓ⟩
is an action sequence over A, then w(ω) =

∑ℓ
1w(ai). We also define the function wmax :

A → N+ such that wmax(A) = maxa∈Aw(a) and if ω = ⟨a1, . . . , aℓ⟩ is an action sequence
over A, then wmax(ω) = max1≤i≤ℓw(ai). A plan ω for P is an optimal plan for P if there is
no other plan ω′ for P such that w(ω′) < w(ω).

We use the notation a : pre(a)
w⇒ eff(a) to define an action a with precondition pre(a),

effect eff(a) and weight w, or a : pre(a) ⇒ eff(a) when the weight is implicitly assumed to
be 1. We restrict ourselves to positive weights since zero weights and negative weigths often
cause anomalies, cf. Richter and Westphal (2010) and Benton et al. (2010). However, we
do believe that considering actions with zero and negative weights may be an interesting
direction for future research. We will sometimes ignore weights entirely and consider the
optimal plan length, i.e., the smallest number of actions, rather than the minimal plan
weight. These two measures are obviously equivalent if we assume that every action has

175

Bäckström, Jonsson, and Ordyniak

weight 1, and this implies that cost-optimal planning can never be easier to approximate
than length-optimal planning.

We define the following computational problems for Strips instances.
Plan Existence(PE)
Type: Decision problem.
Instance: A Strips instance P.
Question: Does P have a plan?

Bounded Plan Existence(BPE)
Type: Decision problem.
Instance: A Strips instance P and a positive integer k.
Question: Does P have a plan ω with weight w(ω) ≤ k?

Note that BPE can be used for checking if there is a plan of length k or less by assigning
unit weight to the actions. For a class X of Strips instances, we write PE(X) and BPE(X)
to denote PE and BPE, respectively, restricted to the instances in X.

We will mainly consider subclasses that are systematically defined by imposing various
restrictions on the preconditions and effects of actions. For such classes we will use the
notation Strips(x, y) where x corresponds to restrictions on the precondition and y to
restrictions on the effect. Each of these can be a positive integer or either of the symbols
“k” and “∗”, optionally followed by a plus sign. An integer specifies a fixed maximal number
of literals in the condition, while k specifies a maximal number of literals that is a parameter
of the class. The ∗ symbol means that the number of literals is unrestricted. If followed
by a plus sign then all literals must be positive. For instance, Strips(2, ∗+) is the class
of instances where the precondition has at most two literals (which may be positive or
negative) and the effect can contain an arbitrary number of positive literals. We write,
for instance, PE(x, y) and BPE(x, y) for PE and BPE restricted to the class Strips(x, y).
Sometimes, we also add a third element, sat, to the tuples to denote the restriction to
solvable instances only. For instance, Strips(1, ∗+, sat) denotes the class Strips(1, ∗+)
restricted to those instances that have at least one plan.

2.2 Optimisation and Approximation

An optimisation problem takes an instance and generates a solution that is optimal according
to some specified measure such as plan length. Alternatively, we may ask only for the
actual measure of an optimal solution and not for the solution itself: this is known as non-
constructive optimisation. An optimisation problem can be either a minimisation problem
or a maximisation problem, depending on if the measure should be minimised or maximised.
We will exclusively consider minimisation problems in this article.

Let OPT be a function that denotes the measure of an optimal solution for an instance.
Let f be a function that computes solutions to instances, and let m be a function that
computes the measure of a solution. For instance, we may consider Strips instances, let
the function f be a planner, and let m compute the length of a given plan—this is the setting
for approximating the minimum length of Strips plans. For a minimisation problem, we

176

Approximability of Monotone Planning

say that f approximates OPT within a factor α if

OPT (I) ≤ m(f(I)) ≤ α ·OPT (I)

for all instances I. That is, the measure of the solution produced by f never underesti-
mates the optimal value but it is at most a factor α larger than the optimal value. In the
non-constructive version of approximation (nc-approximation), one let f be a function from
instances to numerical values instead of instances. That is, we do not require concrete solu-
tions to be computed. The definition is then very similar to that of ordinary approximation:
for a minimisation problem, we say that f nc-approximates OPT within a factor α if

OPT (I) ≤ f(I) ≤ α ·OPT (I)

for all instances I.
The approximation factor α is often also a function of the instance. Furthermore, the

purpose of approximation is that the approximation function f should be easier to compute
than the actual optimum OPT . Formally, this can be defined as follows for the case of
minimisation.

Definition 2. Let X be some set and let g : X → N∞ (where N∞ = N ∪ {∞}) be an
arbitrary function. We say that g is NP-hard if NP ⊆ Pg (i.e. if every NP-complete
problem can be solved by some polynomial-time algorithm having oracle access to g).

Let g : X → N∞ be a function that we wish to minimise. Let f : X → N∞ and
α : X → N∞ be functions. We say that f approximates g within α if for every I ∈ X,

g(I) ≤ f(I) ≤ α(I) · g(I).

We additionally say that g is NP-hard to approximate within α if every function f that
approximates g within α is NP-hard.

Note that NP ⊆ Pg if and only if coNP ⊆ Pg, so there is no need to consider coNP-
hardness in this context.

We define the following two minimization problems for Strips planning.

Length-Optimal Planning (LOP)
Type: Minimzation problem.
Instance: A Strips instance P.
Solution: A plan ω for P.
Measure: The number of actions |ω| in ω.

Cost-Optimal Planning (COP)
Type: Minimzation problem.
Instance: A Strips instance P.
Solution: A plan ω for P.
Measure: The total cost w(ω) of ω.

177

Bäckström, Jonsson, and Ordyniak

2.3 Monotone Planning

We say that a Strips instance is monotone if all actions have only positive effects, i.e.
we consider the instance set Strips(∗, ∗+). In monotone planning, it consequently holds
that s n eff(a) = s ∪ eff(a) for all states s and actions a. Some of the most important
consequences of this are summarised in the following lemma.

Lemma 3. Let P = ⟨V,A, I,G⟩ be a Strips(*,*+) instance, let ω = ⟨a1, . . . , aℓ⟩ be a plan
for P and let ⟨s0, . . . , sℓ⟩ be the state sequence for ω from s0 = I. Then,

(a) si = I ∪ eff(a1) ∪ . . . ∪ eff(ai), for all i (1 ≤ i ≤ ℓ), and

(b) si ⊆ sj for all i, j (0 ≤ i < j ≤ ℓ).

If ω is also an optimal plan, then

(c) si ⊂ sj for all i, j (0 ≤ i < j ≤ ℓ) and

(d) each a ∈ A occurs at most once in ω.

Proof. We prove (a)-(d) below.

(a) Immediate since sn eff(a) = s ∪ eff(a) when eff(a) contains no negative literals.

(b) Immediate from (a).

(c) Suppose si−1 = si for some i (1 ≤ i ≤ ℓ). It follows from (b) that ai is redundant in ω,
so ω′ = ⟨a1, . . . , ai−1, ai+1, . . . , aℓ⟩ is also a plan for P. However, w(ω) = w(ω′)+w(ai)
and w(ai) > 0 so w(ω′) < w(ω), which contradicts that ω is an optimal plan for P. It
follows that si−1 ̸= si for all i (1 ≤ i ≤ ℓ).

(d) Suppose ai = aj where i < j. Then si = si−1 ∪ eff(ai) and si ⊆ sj−1 according to
(b), so eff(aj) = eff(ai) ⊆ si ⊆ sj−1 and it follows that sj = sj−1 ∪ eff(aj) = sj−1.
This contradicts (c) and, thus, that ω is optimal, so we conclude that no action occurs
more than once in ω.

Another consequence of monotonicity is that there is no need to consider negative goals.
If an atom is set true by an action in a plan, then it can never be set to false again. Hence,
no plan can contain an action that sets an atom that also occurs as a negative goal, so the
instances can always be preprocessed by removing such actions.

We next use Lemma 3 for obtaining certain bounds on plan lengths and costs.

Corollary 4. Let P = ⟨V,A, I,G⟩ be a Strips(*,*+) instance and let ω = ⟨a1, . . . , aℓ⟩ be
an optimal plan for P. Then, (1) |ω| ≤ |V | and (2) w(ω) ≤ |V | · wmax(A).

Proof. (1) follows from Lemma 3c and (2) follows from (1).

178

Approximability of Monotone Planning

The bounds in Corollary 4 immediately implies that the problems PE, BPE, LOP, and
COP are in NP when restricted to monotone Strips instances. The bounds do not hold for
general planning where we allow negative effects: there is, for instance, an infinite sequence
of Strips(∗, 1) instances P1,P2, . . . such that Pi contains i variables and 2i actions, and
the length of the shortest plan for Pi is 2i − 1 (Bäckström & Nebel, 1995, Theorem 2)

The computational complexity of monotone Strips planning with restricted precondi-
tions and effects is quite well understood.

Theorem 5. The following results are proved by Bylander (1994).

1. BPE(0, 2+) is in P (Theorem 4.8),

2. BPE(0, 3+) is NP-complete (Theorem 4.4),

3. BPE(1+, 1+) is NP-complete (Corollary 4.3),

4. PE(∗+, ∗+) is in P (Footnote 4), and

5. PE(1, 1+) is NP-complete (Corollary 3.6).

The picture is less clear when it comes to approximation properties of monotone plan-
ning. As a warm-up, we will provide some general upper bounds for approximation of
monotone Strips planning. Even though the bounds may seem trivial, we will see later on
that some of them are close to being optimal.

Theorem 6. LOP(∗+, ∗+) can be approximated within |V | and COP(∗+, ∗+) can be ap-
proximated within |V | · wmax(A).

Proof. That PE(∗+, ∗+) is in P since it can be solved by a simple greedy algorithm is
well-known—one adds an arbitrarily chosen action a to the end of the plan whenever a is
applicable in the state achieved by the current plan. We will use an algorithm that is very
close to the algorithm formulated by Bäckström and Jonsson (2017) (see Figure 3). There
are only two differences.

1. We begin the algorithm by checking whether the initial state satisfies the goal state
or not. This ensures that the algorithm returns the empty plan if this is indeed the
case.

2. We never add an action to the plan if it does not change the current state. This way,
we guarantee that the plan does not contain more than |V | actions.

Our approximation algorithm(s) work as follows. Given an (∗+, ∗+) instance, we first
check whether it has a solution or not by using GreedyPlan. If it has a solution, then we
output the plan ω, and otherwise we report that there is no solution. We verify that this
algorithm achieves the required bounds. Let ω′ denote an optimal plan, i.e. it has either
shortest length (for the LOP case) or it has lowest cost (for the COP case).

Let us now consider the LOP bound. If |ω| = 0, then ω = ω′ and the algorithm returns
the optimal answer. Otherwise, we see that 1 ≤ |ω′| ≤ |ω| ≤ |V | since each action in ω
changes at least one variable. We conclude that the algorithm approximates the instance

179

Bäckström, Jonsson, and Ordyniak

within |V |. The COP bound can be proved analogously: If |ω| = 0, then ω = ω′ = ⟨⟩ so
w(ω) = w(ω′) = 0 and the algorithm returns the optimal answer. Otherwise, we see that
1 ≤ w(ω′) ≤ w(ω) ≤ |V | · wmax(A).

1 function GreedyPlan(⟨V,A, I,G⟩)
2 if G is satisfied by I then return ⟨⟩
3 s := I; ω := ⟨⟩
4 while there is some a ∈ A such that pre(a) is satisfied by s and s ̸= sn eff(a) do
5 s := sn eff(a)
6 Add a to the end of ω
7 Remove a from A
8 if G is satisfied by s then return ω
9 else reject

Figure 3: Greedy algorithm for solving (∗+, ∗+) instances

We now turn our attention to Strips(∗, ∗+) instances where negative preconditions
are allowed. An important difference compared to Strips(∗+, ∗+) is that PE(∗, ∗+) is an
NP-complete problem, and it is consequently computationally hard to verify whether a
given instance has a solution or not. This implies that approximation is only meaningful
for instances that are known to have a plan. Furthermore, the approximation results will
be non-constructive since we do not have access to any plans solving the given instance—we
only know that there exist at least one valid plan.

Theorem 7. LOP(∗, ∗+, sat) can be nc-approximated within |V | and COP(∗, ∗+, sat) can
be nc-approximated within |V |wmax(A).

Proof. Every (∗, ∗+, sat) instance has a solution ω of length at most |V | that contains at
most |A| actions by Corollary 4. The proof is thus analogous to the proof of Theorem 6.
The actual plan ω is unknown so this is a non-constructive approximation result.

3. Free Preconditions

The goal of this section is to analyse the approximability of COP(∗, ∗+) and LOP(∗, ∗+).
We begin with the COP(∗, ∗+) problem in Section 3.1. We find that the approximability of
COP(∗, ∗+) is strongly correlated to wmax(A), i.e. the weight of the heaviest action. The
proof for this result is not directly applicable to LOP(∗, ∗+) so we analyse LOP(∗, ∗+) in
Section 3.2 and present an alternative proof.

The basis for the results in this section is the following variant of 3-SAT, which is
well-known to be NP-complete (Berman, Karpinski, & Scott, 2003, Theorem 1).

(3,B2)-SAT
Type: Decision problem.
Instance: A propositional formula φ in conjunctive normal form such that (1) every clause
of φ has exactly three distinct literals and (2) every literal occurs in exactly two clauses.
Question: Is φ satisfiable?

180

Approximability of Monotone Planning

We assume without loss of generality that F contains no repeated clauses and that n is
a multiple of 3. This implies that a (3,B2)-SAT formula F with n variables contains exactly
4n/3 clauses since each variable give rise to four literal occurrences—two negated and two
unnegated.

3.1 Cost-Optimal Planning

Aghighi et al. (2016) have proved that it is NP-hard to nc-approximate COP(3, 2+, sat)
within 2|V |p for every p ≥ 0. The proof by Aghighi et al. is based on a reduction from
the directed Hamiltonian path problem and it is not clear how to generalise it to the
COP(1, 1+, sat) problem. In response to this, we present an almost equally strong non-
approximability result for COP(1, 1+, sat) in this section. The heart of our proof is the
following construction.

Lemma 8. For every integer n > 0, every (3,B2)-SAT formula F with n variables and
every function f : N+ → N+, there exists a Strips(1,1+,sat) instance PF,f = ⟨V,A, I,G⟩
such that

(a) PF,f can be computed in polynomial time in the size of F if f(n) ∈ O(2n
p
) for some

fixed constant p,

(b) |V | = K · n where K = 2 + 4/3,

(c) PF,f has a minimal weight plan with weight ≤ n+ 4n/3 if F is satisfiable,

(d) every minimal weight plan for PF,f has weight ≥ f(K · n) if F is not satisfiable, and

(e) the weights in PF,f are bounded from above by f(K · n).

Proof. Let F be a (3,B2)-SAT formula over the variables x1, . . . , xn and clauses C1 . . . Cm

(where m = 4n/3). Let ℓji denote the j:th literal in clause Ci. Define the Strips(1,1+,sat)
instance PF,f = ⟨V,A,∅, G⟩ such that

• V = {xt1, . . . , xtn, x
f
1 , . . . , x

f
n, c1, . . . , cm},

• G = {c1, . . . , cm},

and A contains the following actions:

• truei : {xfi } ⇒ {xti}, for all i (1 ≤ i ≤ n)

• falsei : {xti} ⇒ {xfi }, for all i (1 ≤ i ≤ n)

• vfyji :

{
{xtq} ⇒ {ci}, if ℓji = xq
{xfq } ⇒ {ci}, if ℓji = xq

, for all i, j (1 ≤ i ≤ m, 1 ≤ j ≤ 3)

• sati : ∅
f(K·n)⇒ {ci}, for all i (1 ≤ i ≤ m).

181

Bäckström, Jonsson, and Ordyniak

Proofs of the cases in the lemma follow:
(a) The weights for the sati actions need roughly np bits each to be written down. With

this in mind, it is straightforward to verify that PF,f can be computed in polynomial time.
(b) Obvious from the construction.
(c) Assume F is satisfiable and let g : {x1, . . . , xn} → {0, 1} be a satisfying assignment.

A shortest plan for PF,f must contain at most one of the actions truei and falsei for each
variable xi (depending on the satisfying assignment g), and exactly one of the actions
vfy1i , . . . , vfy

3
i for each clause Ci (depending on g and Ci). This plan is of length at most

m+ n ≤ 4n/3 + n, since m = 4n/3.
(d) Assume that F is not satisfiable. Then at least one goal variable ci cannot be set to

true by using a vfyji action. Since ci must be true in the goal, the plan must include action
seti, which has weight f(K · n).

(e) The sati actions have weight f(K · n) while all other actions have weight 1.

Let β : N → N be a function and let Iβ denote the set of COP(∗, ∗+, sat) instances such
that if ⟨V,A, I,G⟩ ∈ Iβ, then wmax(A) ≤ β(|V |).

Theorem 9. Arbitrarily choose some integer k ≥ 0 and a constant ε > 0. Let K = 2+4/3
be the constant from Lemma 8. Let β : N → N denote a polynomial-time computable and
non-decreasing function such that (7n/3 + ε) ≤ β(n) ≤ 2n

k for all n ∈ N. Then, the
following hold:

1. COP(Iβ) can be nc-approximated in polynomial time within |V | · β(|V |) and

2. COP(Iβ) is NP-hard to nc-approximate within β(|V |/K)/(7|V |/3 + ε), even if re-
stricted to (1, 1+, sat) instances.

Proof. The approximability bound follows directly from Theorem 7 so we concentrate on
the non-approximability bound. We simplify the notation by letting β′(x) = β(x/K) and
then prove non-approximability within β′(|V |)/(7|V |/3 + ε). The proof is by exhibiting
a polynomial-time reduction from (3,B2)-SAT. Suppose COP(Iβ) can be nc-approximated
within β′(|V |)/(7|V |/3+ε) for some ε > 0 by algorithm A. Let F be an arbitrary (3,B2)-SAT
formula with n variables and m = 4n/3 clauses, and assume without loss of generality that
n/K is an integer. Compute the COP(1, 1+, sat) instance PF,β′ = ⟨V,A, I,G⟩ according
to Lemma 8. This can be done in polynomial time by Lemma 8(a) since we require that
β(n) ≤ 2n

k for some fixed k and this holds for β′, too, since β is required to be non-
decreasing. The largest possible weight in PF,β′ is β′(|V | ·K) = β(|V |) by Lemma 8(e) so
PF,β′ is a member of Iβ.

Let OPT denote the optimal plan weight for PF,β′ and let W be the weight reported
by algorithm A. First suppose that F is satisfiable. We then know from Lemma 8(c) that
OPT ≤ 4n/3 + n = 7n/3. Hence, we get

W ≤ β′(|V |)
7|V |/3 + ε

·OPT ≤ β′(|V |)
7|V |/3 + ε

· 7n
3
.

Suppose instead that F is not satisfiable: it follows from Lemma 8(d) that β′(K · n) ≤
OPT ≤W . We know that |V | = K ·n by Lemma 8(b) and consequently that |V | > n since

182

Approximability of Monotone Planning

K > 1. This implies that

β′(|V |)
7|V |/3 + ε

· 7n
3

≤ β′(|V |)
7n/3 + ε

· 7n
3
< β′(|V |) = β′(K · n) ≤ OPT ≤W.

We can consequently check whether F is satisfiable by nc-approximating PF,β′ within the
bound, computing β′(|V |), and comparing W with β′(|V |)

7|V |/3+ε · 7n
3 . Recall that the function

β is required to be polynomial-time computable and that this implies polynomial-time
computability of β′, too. It follows that NP ⊆ PA.

It is only Strips(1, 1+, sat) instances that are constructed in Lemma 8 so the previous
bound holds when restricted to such instances. We remind the reader that the previous
theorem is only applicable if β is at least linearly increasing: β(|V |)/(7|V |/3 + ε) ≥ 1 must
hold since, otherwise, the approximation algorithm is required to produce a solution that
is strictly better than the optimal solution. This explains why Theorem 9 is not applicable
to the LOP problem and that we need to present a slightly different proof for LOP.

3.2 Length-Optimal Planning

We continue by proving that LOP(1, 1+, sat) is not approximable within |V |1−ε for any
ε > 0. The outline of the proof is identical to the proof for COP(1, 1+, sat) but it is based
on a slightly more involved construction.

Lemma 10. For every (3,B2)-SAT formula F with n variables and every integer γ ≥ 2,
there exists a Strips(1,1+,sat) instance PF,γ = ⟨V,A, I,G⟩ such that

(a) PF,γ can be computed in polynomial time in the size of F ;

(b) |V | = nγ + 4n/3 + 2n

(c) PF,γ has a shortest plan of length ≤ 4n/3 + n if F is satisfiable and

(d) every plan for PF,γ has length ≥ nγ if F is not satisfiable.

Proof. Let F be a (3,B2)-SAT formula over the variables x1, . . . , xn and clauses C1 . . . Cm

where m = 4n/3. Let ℓji denote the j:th literal in clause Ci. Arbitrarily choose an integer
γ ≥ 2 and let h = nγ .

We construct the Strips(1, 1+, sat) instance PF,γ = ⟨V,A,∅, G⟩ as follows. Let

• V = {xt1, . . . , xtn, x
f
1 , . . . , x

f
n, c1, . . . , cm, y1, . . . , yh},

• G = {c1, . . . , cm},

and let A contain the following actions:

• truei : {xfi } ⇒ {xti}, for all i (1 ≤ i ≤ n)

• falsei : {xti} ⇒ {xfi }, for all i (1 ≤ i ≤ n)

• vfyji :

{
{xtq} ⇒ {ci}, if ℓji = xq
{xfq } ⇒ {ci}, if ℓji = xq

, for all i, j (1 ≤ i ≤ m, 1 ≤ j ≤ 3)

183

Bäckström, Jonsson, and Ordyniak

• count1 : ∅ ⇒ {y1}

• counti : {yi−1} ⇒ {yi}, for all i (2 ≤ i ≤ h)

• sati : {yh} ⇒ {ci}, for all i (1 ≤ i ≤ m).

Proofs of the cases in the theorem follow:
(a) PF,γ can obviously be computed in polynomial time.
(b) We see that |V | = h + 2n +m so the bounds follow by observing that h = nγ and

m ≤ 4n/3.
(c) Assume F is satisfiable and let f : {x1, . . . , xn} → {0, 1} be a satisfying assignment.

A shortest plan for PF must contain at most one of the actions truei and falsei, depending
on f , for each variable xi, and exactly one of the actions vfy1i , . . . , vfy

3
i for each clause Ci,

depending on Ci and f . This plan is of length at most m+ n ≤ 4n/3 + n, since m = 4n/3.
(d) Assume that F is not satisfiable. Then at least one goal variable ci cannot be set

to true by using a vfyji action. Since ci must be true in the goal, the plan must include
action sati, which requires the plan to include all counti actions. Under that requirement,
the plan is as short as possible only if it sets all goal atoms with sat actions. It follows that
any shortest plan is of length h+m = nγ +m ≥ nγ .

Theorem 11. LOP(∗, ∗+) can be nc-approximated in polynomial time within |V | and for
every ε > 0, it is NP-hard to nc-approximate LOP(1, 1+, sat) within |V |1−ε.

Proof. The approximability bound follows from Theorem 7. The hardness proof is by a
polynomial-time reduction from (3,B2)-SAT. Suppose LOP(1, 1+, sat) can be nc-approximated
within α = |V |1−ε for some 0 < ε < 1 by an algorithm A. Choose a constant integer γ > 4/ε.

Let F be an arbitrary (3,B2)-SAT formula with n variables. Construct a corresponding
Strips(1, 1+, sat) instance PF,γ = ⟨V,A, I,G⟩ according to Lemma 10. Let OPT denote
the optimal plan length for PF and let W be the weight reported by algorithm A.

First suppose that F is satisfiable. We know from Lemma 10(c) that OPT ≤ 7n/3 so
OPT ≤ n2 when n is sufficiently large. We also know from Lemma 10(b) that nγ ≤ |V |.
Hence,

W ≤ 7n/3 · |V |1−ε ≤ n2 · |V |1−ε = (nγ)2/γ · |V |1−ε ≤ |V |2/γ · |V |1−ε.

We continue by supposing that F is not satisfiable. It follows from Lemma 10(d) that
nγ ≤ OPT ≤W , and |V | ≤ nγ +4n/3+2n ≤ 2nγ holds for sufficiently large n since γ ≥ 2.
Hence, |V |/2 ≤ nγ ≤ OPT ≤W so it is sufficient to prove that

|V |1−ε · |V |2/γ < |V |
2
. (1)

We see that 1 − ε + 2
γ ≤ 1 − ε + 2

4/ε = 1 − ε
2 so the lefthand side of (1) is bounded from

above by |V |1−ε/2. It follows that the inequality holds for sufficiently large |V |. From this
point, the proof is analogous to the proof of Theorem 9.

184

Approximability of Monotone Planning

4. Positive Preconditions

The currently strongest non-approximability result for monotone planning restricted to
positive preconditions has been proven by Aghighi et al. (2016).

Theorem 12. It is NP-hard to approximate LOP(0, ∗+) within any function α such that
α(⟨V,A, sI , sG⟩) = (1− o(1)) · ln |V |.

Note that this result holds for instances with no preconditions. For this (fairly un-
interesting) class of instances, the result is basically tight: Aghighi et al. (2016) have
demonstrated how to modify the lnn + 1-approximation algorithm for Set Cover (Chvá-
tal, 1979) into an lnn + 1-approximation algorithm for LOP(0, ∗+). The restricted nature
of LOP(0, ∗+)—disallowing preconditions is a severe restriction—indicates that stronger
approximation bounds are obtainable if we allow preconditions. We analyse such bounds in
Section 4.1. In particular, we present a strong nonapproximability result for LOP(2+, 1+).
To describe the result, we define the function

gc(n) = 2log

(
1− 1

(log logn)c

)
n.

It is well-known, and not hard to verify, that gc grows slower than all polynomial functions
but faster than all polylogarithmic functions; concrete calculations can be found in the
paper by Watel and Weisser (2016). Our result demonstrates that LOP(2+, 1+) is NP-
hard to approximate within gc(|V |) for all c < 1/2. Hence, our new result is substantially
stronger than the bound presented by Aghighi et al. (2016). We note that we do not
have any stronger lower bound for COP(2+, 1+). It is not uncommon for these kind of
problems to have the same approximability for both the unweighted and weighted version:
for instance, Set Cover can be approximated within lnn+ 1 in both cases (Chvátal, 1979).
Thus, it is not inconceivable that LOP(2+, 1+) and COP(2+, 1+) are indistinguishable from
an approximability point of view.

These results raise several important questions such as the following: in what cases do
we have strictly better bounds than the upper bounds in Theorem 6? This question ap-
pears to be very difficult to answer. It is not hard to see that there is a close connection
between LOP(∗+, 1+) and the length of propositional Horn proofs; each action can basically
be viewed as a Horn clause. Whether the minimal length of such proofs can be approx-
imated within n1−ε for some ε > 0 or not is an important open question in theoretical
computer science, and such a result would imply improved bounds for many computational
problems (Alekhnovich et al., 2001; Dinur & Safra, 2004; Goldwasser & Motwani, 1999).
Furthermore, the so-called projection games conjecture (Moshkovitz, 2015) is closely related
to the approximability of these kinds of problems (via the Label Cover problem). More
information about the difficulties of improving the (non)-approximability bounds of some
of the problems that we use in the sequel can be found in the dissertation by Goldwasser
(1997, Sec. 5.5.2).

In Section 4.2, we analyse problems where actions are allowed to have at most one
precondition. This class of problems is partly motivated by work on the local Steiner
tree heuristics (Keyder & Geffner, 2009). Our results are two-fold: LOP(1+, 1+) is not
approximable within log2−ε |V | for any ε > 0 (and this result still beats Theorem 12) but

185

Bäckström, Jonsson, and Ordyniak

COP(1+, ∗+) is approximable within O(|V |ε) for arbitrary constant ε > 0. COP(1+, ∗+)
is our first example of a natural class of planning instances (besides the precondition-free
class of Strips(0, ∗+) instances) where we improve upon the trivial upper bound given by
Theorem 6.

4.1 Problems with Several Preconditions

The basis for our nonapproximability result is a scheduling problem. Similar problems
have been utilised for studying planning problems earlier by, for instance, Keyder et al.
(2010). We are not aware of any prior examples where they have been used for analysing
the approximability of planning, though.

Minimum And/Or Scheduling (AOS)
Type: Minimization problem.
Instance: A set T = {t1, . . . , tn} of tasks, a set P = {P1, . . . , Pn} of predecessor task sets,
where Pi ⊆ T for each Pi ∈ P , and a distinguished goal task tg. Each task is labelled as
either an AND-task or an OR-task.
Solution: A set {tg} ⊆ T ′ ⊆ T and a total order < on T ′ such that for all ti ∈ T ′:

1) if ti is an AND-task, then tj ∈ T ′ and tj < ti for all tj ∈ Pi;
2) if ti is an OR-task, then tj ∈ T ′ and tj < ti for at least one tj ∈ Pi;
3) if ti ̸= tg then tg ̸< ti.

Measure: The size |T ′| of T ′.

Note that the predecessor task sets may be empty. In fact, every solvable instance of
AOS contains at least one task with an empty predecessor task set.

Theorem 13. AOS is NP-hard to approximate within gc(|T |) for arbitrary c < 1/2, even
if |Pi| ≤ 2 for all Pi ∈ P .

Proof. Goldwasser and Motwani (1999, Theorem 12) derived a nonapproximability result
for this problem based on a one-to-one correspondence between AOS and the Label Cover
problem. Dinur and Safra (2004) later proved that it is NP-hard to approximate Label Cover
within gc(n) for all c < 1/2 so this result immediately carries over to AOS (Dinur and Safra
(2004) mention explicitly this as one of several consequences of their result.)

The AOS result provides a fairly direct way of proving non-approximability of LOP(2+, 1+).

Theorem 14. The following hold:

1. COP(∗+, ∗+) can be approximated in polynomial time within |V | · wmax(A),

2. LOP(∗+, ∗+) can be approximated in polynomial time within |V |, and

3. it is NP-hard to approximate LOP(2+, 1+) within gc(|V |) for arbitrary c < 1/2.

Proof. The approximability results (1) and (2) are immediate from Theorem 6. To prove
the nonapproximability result (3), let A = ⟨T, P, tg⟩ be an arbitrary AOS instance where
T = {t1, . . . , tn} is a set of tasks with a set P = {P1, . . . , Pn} of predecessor task sets

186

Approximability of Monotone Planning

and where tg ∈ T is the goal task. We assume that |Pi| ≤ 2 for all Pi ∈ P since the
non-approximability bound in Theorem 13 holds under this restriction. Construct a corre-
sponding Strips(2+,1+) instance P = ⟨V,A,∅, {tg}⟩, where V = T and A is defined such
that for each ti ∈ T ,

• if ti is an AND-task, then A contains the action ai : Pi ⇒ {ti}, and

• if ti is an OR-task, then A contains the action aki : {tk} ⇒ {ti} for each task tk ∈ Pi.

Let ω be a shortest plan for P. Then there is obviously some optimal schedule ⟨T ′, <⟩ for
A such that ω contains one action for each task in T ′ and ω corresponds to a topological
sorting of these tasks. We see that that OPT (P) = OPT (A) and the instance P can clearly
be computed in polynomial time. It follows that approximating LOP(2+, 1+) within gc(|V |)
is NP-hard since it is NP-hard to approximate within gc(|T |) by Theorem 13.

4.2 Problems with One Precondition

The results in this section are based on Steiner trees. Steiner tree problems form a large
and diverse family of well-studied combinatorial optimisation problems. One particularly
well-known variant is the Steiner tree problem in graphs, where the input is an undirected
graph with non-negative edge weights together with a subset of vertices (known as the
terminals), and the task is to find a subtree of the graph that has minimum total weight
and that contains all terminals. It is not hard to verify that if the instance contains exactly
two terminals, the problem reduces to finding the shortest path between the terminals.
Furthermore, if all vertices are terminals, then the problem is equivalent to the minimum
spanning tree problem. The connection between this Steiner problem and planning is well-
known: the Steiner tree problem in graphs can be polynomial-time transformed into the
COP(1+, 1+) problem. The details of this transformation can be found in the paper by
Keyder and Geffner (2009).

The Steiner tree problem can be approximated within 1.39 (Byrka et al., 2013) so it
is not very useful for proving strong nonapproximability results. We will instead use the
Directed Steiner Tree problem—this allows us to prove a log2−ε |V | bound for the LOP(1+, 1+)
and COP(1+, 1+) problems. First recall that an arborescence is a directed graph that has
a distinguished root vertex u and where there is exactly one directed path from u to any
other vertex v.

Directed Steiner Tree (DST)
Type: Minimization problem.
Instance: A directed graph G = ⟨V,E⟩, a root vertex r ∈ V and a set Z ⊆ V of terminals.
Each edge e ∈ E has a non-negative weight w(e).
Solution: A subgraph T = ⟨VT , ET ⟩ of G that is an arborescence with r as root such that
Z ⊆ VT .
Measure: The sum w(T) =

∑
e∈ET

w(e) of edge weights in ET .

Let ZTIME(f) denote the set of problems that can be solved by a probabilistic algo-
rithm with expected runtime f(n) and zero error probability.

187

Bäckström, Jonsson, and Ordyniak

Theorem 15 (Halperin and Krauthgamer (2003)). The DST problem is not approximable
within log2−ε n for any ε > 0, unless NP ⊆ ZTIME(npolylog(n)), where n = |V |.

It is considered unlikely that NP ⊆ ZTIME(npolylog(n)); an immediate consequence
is that SAT can be solved in subexponential time by a randomised algorithm and, conse-
quently, the randomised exponential time hypothesis is false. We will consider a variant of
DST in the sequel: define HKDST to be the restriction of DST where Z = V and w(e) is an
integer such that 1 ≤ w(e) ≤ |V |.

Lemma 16. The HKDST problem is not approximable within log2−ε n for any ε > 0, unless
NP ⊆ ZTIME(npolylog(n)), where n = |V |

Proof. The proof of the non-approximability result for DST by Halperin and Krauthgamer
(2003) is based on input graphs that are complete trees of some arity d and height H, that
is, the number of vertices is n =

∑H
i=0 d

i ≥ dH . All edge weights are on the form 1/(ch)
where c and h are integers such that 2 ≤ c ≤ d and 1 ≤ h ≤ H. This can be scaled
to integers between 1 and cH , but cH ≤ dH < n so w(e) ≤ n for all edges e. Halperin
and Krauthgamer furthermore assume Z = V and their proof for DST thus holds also for
HKDST.

4.2.1 Chain Reduction

We will now introduce a simple general method, chain reduction, for translating weighted
Strips instances into unweighted instances in a solution-preserving way. The idea is similar
to the count actions in Lemma 10 but there are important differences. We may view the
count actions as simulating actions with weight h. Unfortunately, we need to simulate many
actions—we would have m count actions of weight h where m is the number of clauses in
formula F . By using chain reduction, we would end up with h · m actions and h · m
variables. The solution in Lemma 10 is more economical since it only introduces h actions
and h variables (and this is apparently a prerequisite for the proof of Theorem 11 to go
through). However, the method in Lemma 10 is not generally applicable.

Definition 17. Let P = ⟨V,A, I,G⟩ be a Strips(*,*+) instance. For each a ∈ A, define
the sets Va and Aa as follows:

• If w(a) = 1, then Va = ∅ and Aa = {a1}, where a1 : pre(a) ⇒ eff(a).

• Otherwise, let w = w(a) and define Va = {v1a, . . . , vw−1
a } and Aa = {a1, . . . , aw} where

a1 : {v1a} ⇒ eff(a)
ai : {vi+1

a } ⇒ {via} for all i (1 < i < w) and
aw : pre(a) ⇒ {vw−1

a }

Also define the sets VR = V ∪ (∪a∈AVa) and AR = ∪a∈AAa. The chain reduction of P is the
Strips instance PR = ⟨VR, AR, I, G⟩.

Intuitively, the chain reduction removes every action a with weight w > 1 and replace
it with a set of w actions where each action has weight 1, and this is done in a solution-
preserving way. One should observe that if P is a Strips(1+, 1+) instance, then so is the
chain reduction of P; this fact will be important later on. The size of a chain reduction can
easily be inferred from the definition.

188

Approximability of Monotone Planning

Proposition 18. Let P = ⟨V,A, I,G⟩ be an arbitrary Strips(*,*+) instance and let PR =
⟨VR, AR, I, G⟩ be the chain reduction of P. Then,

(a) |VR| = |V |+w(A)− |A| and

(b) |AR| = w(A).

The action weights can, in principle, be arbitrarily large and this implies that the size
of a chain reduction can be arbitrarily large, too. This motivates the next definition.

Definition 19. A class X of Strips instances is polynomially bounded if there exists a
polynomial p such that w(A) ≤ p(||P||) for every instance P = ⟨V,A, I,G⟩ in X.

For polynomially bounded subclasses of Strips chain reductions behave reasonably
well.

Lemma 20. Let X be a polynomially bounded subclass of Strips(*+,*+), let P = ⟨V,A, I,G⟩
be an arbitrary instance in X, and let PR = ⟨VR, AR, I, G⟩ be the chain reduction of P. Then:

(a) PR is computable in polynomial time in ||P||.

(b) PR has a plan if and only if P has a plan.

(c) OPT (PR) = OPT (P).

(d) If ωR is an optimal plan for PR, then |ωR| ≤ w(A).

(e) Given an optimal plan ωR for PR, a plan ω for P such that w(ω) ≤ |ωR| can be
computed in polynomial time.

Proof. (a) It is immediate from Definition 17 that PR can be computed in polynomial time
since P is polynomially bounded.

(b-c) Immediate from Definition 17.
(d) According to Lemma 3, we may assume that no action occurs more than once so

|ωR| ≤ |AR| = w(A).
(e) Let ωR be an optimal plan for PR. According to Lemma 3 no action needs to occur

more than once, so we can remove all multiple occurences of actions. Each action b in ωR

belongs to Aa ⊆ AR for some a ∈ A. Obviously, b cannot contribute to the goal unless all
actions in Aa are in ωR. Furthermore, a1 can occur in ωR only if all actions in Aa occur
in ωR since ωR is a plan. Hence, we can construct a plan ω for P as follows: Start with
ω = ⟨⟩ and step through ωR from beginning to end. For each action b in ωR, if b = a1 for
some a ∈ A, then add a to the end of ω. It follows from (2) that this is a polynomial time
computation and it is obvious that w(ω) ≤ |ωR| since |Aa| = w(a) for every a ∈ A.

(a) and (b) says that the construction is a polynomial-time reduction, (c) says that the
reduction preserves optimal solutions and (d)-(e) says that solutions for PR can be converted
back to solutions for P in polynomial time.

189

Bäckström, Jonsson, and Ordyniak

4.2.2 Non-approximability of Strips(1+, ∗+) Instances

We will now prove non-approximability results for Strips(1+, ∗+). The basic result is that
there is a polynomial-time reduction HKDST to COP(1+, 1+) that preserves optimal solu-
tions (Lemma 21). This reduction proves almost directly that COP(1+, 1+) cannot be ap-
proximated within log2−ε |V | for any ε > 0, unless NP ⊆ ZTIME(npolylog(n)). This result is
combined with chain reductions (in Theorem 22) for proving the same non-approximability
bound for LOP(1+, 1+).

Lemma 21. There is a polynomial reduction from HKDST to COP(1+, 1+) that preserves
optimal solutions.

Proof. Let D be an instance of HKDST with a directed graph H = ⟨V,E⟩, a root ver-
tex r ∈ V and the terminal set V as input. Define the corresponding (1+,1+) Strips
instance PD = ⟨V,A, {r}, V ⟩ where A contains the action ae : {u}

w(e)⇒ {v} for each edge
e = ⟨u, v⟩ ∈ E. We claim the following:

a) If ω is an optimal plan for PD, then D has a DST T such that w(T) = w(ω).
b) If T is an optimal DST for D, then PD has a plan ω such that w(ω) = w(T).
c) The construction above is a polynomial reduction from HKDST to COP(1+, 1+).

Proofs of these claims follow:
a) Suppose ω = ⟨a1, . . . , aℓ⟩ is an optimal plan for PD and ⟨s0, . . . , sℓ⟩ is the correspond-

ing state sequence from s0 = {r}. Since PD is a (1+,1+) instance and ω is optimal it follows
from Lemma 3 that si−1 ⊆ si and |si \ si−1| = 1 for 1 ≤ i ≤ ℓ. Hence, there is an order
v0, . . . , vℓ on the variables in V such that v0 = r and {vi} = si \ si−1 = eff(ai) for 1 ≤ i ≤ ℓ.
That is, si = {v0, . . . , vi} for 1 ≤ i ≤ ℓ. Let ωi denote the prefix ⟨a1, . . . , ai⟩ of ω. We
claim that for each i such that 0 ≤ i ≤ ℓ, the graph H contains a DST Ti = ⟨si, Ei⟩ for
the terminal set si such that w(Ti) = w(ωi). Proof by induction over the length of plan
prefixes:

Base case: (i = 0) We have ω0 = ⟨⟩, so w(ω0) = 0. Let T0 = ⟨s0,∅⟩ = ⟨{r},∅⟩, which
is a DST for s0. Obviously, w(T0) = 0 = w(ω0).

Induction: (i > 0) Suppose the claim holds for some k such that 0 ≤ k < ℓ. Then
there is a DST Tk = ⟨sk, Ek⟩ for sk such that w(Tk) = w(ωk). Then consider action
ak+1. Obviously, pre(ak+1) ⊆ sk since ω is a plan. Furthermore, pre(ak+1) = {vj} for
some vj ∈ V by definition of ak+1, so it follows that pre(ak+1) ⊆ sj and that j ≤ k since
sj = {v0, . . . , vj} ⊆ {v0, . . . , vk} = sk. We also know that eff(ak+1) = {vk+1}, so it fol-
lows from the definition of ak+1 that ⟨vj , vk+1⟩ ∈ E. Let Ek+1 = Ek ∪ {⟨vj , vk+1⟩} and
Tk+1 = ⟨sk+1, Ek+1⟩. By assumption, Tk = ⟨sk, Ek⟩ is a DST for sk so Tk+1 must be a DST
for sk+1. Finally, w(Tk+1) = w(Tk) + w(⟨vj , vk+1⟩) = w(ωk) + w(ak+1) = w(ωk+1).

It follows that the claim holds for all prefixes of ω, so H contains a DST T = Tℓ such
that w(T) = w(Tℓ) = w(ωℓ) = w(ω).

b) Suppose T = ⟨V,ET ⟩ is an optimal DST for D. Let ν = v0, . . . , vℓ be a topological
sorting of T , where v0 = r since T is a tree directed from the root r. Let si = {v0, . . . , vi} for
0 ≤ i ≤ ℓ. Formally speaking, the set si consists of vertices in T and it is not a state. How-
ever, there is an obvious one-to-one correspondence between sets of tree vertices and states
so we can view such a set as a state whenever it is convenient. For each i such that 1 ≤ i ≤ ℓ,
there is some j < i such that ⟨vj , vi⟩ ∈ ET since ν is a topological sorting of the tree T .

190

Approximability of Monotone Planning

Hence, there is an action ai ∈ A such that pre(ai) = {vj} and eff(ai) = {vi}, since ET ⊆ E
by definition of DSTs. Furthermore, pre(ai) ⊆ sj so sj ⊆ si−1 and si = si−1 ∪ eff(ai). This
holds for all i such that 1 ≤ i ≤ ℓ so let ω = ⟨a1, . . . , aℓ⟩, which must then be a plan with
state sequence ⟨s0, . . . , sℓ⟩ from s0 = {r}. It is immediate that w(ω) = w(T).

c) Instance PD can be constructed from D in polynomial time and it follows from (a)
that an optimal DST for D can be extracted from an optimal plan for PD in polynomial
time.

It follows that this construction is a polynomial reduction that preserves optimal solu-
tions.

Theorem 22. LOP(1+, 1+) and COP(1+, 1+) cannot be approximated within log2−ε |V |
for any ε > 0, unless NP ⊆ ZTIME(npolylog(n)).

Proof. Assume NP ̸⊆ ZTIME(npolylog(n)). We prove the COP case by a reduction from
HKDST. Let ε > 0 be an arbitrary constant and suppose there is a polynomial-time
algorithm A that approximates COP(1+, 1+) within log2−ε |V |. Let D be an arbitrary in-
stance of HKDST with input graph H = ⟨V,E⟩, root vertex r and terminal set V . Let
PD = ⟨V,A, {r}, V ⟩ be the corresponding Strips (1+,1+) instance according to the con-
struction in Lemma 21. Since A can approximate COP(1+, 1+) within log2−ε |V |, it can
thus also approximate HKDST within log2−ε |V |. However, this contradicts Lemma 16. It
follows that A cannot exist and, thus, that COP(1+, 1+) cannot be approximated within
log2−ε |V |.

Proof of the LOP case by reduction from the class X of COP instances resulting from
the reduction from HKDST above. Let ε > 0 be an arbitrary constant and suppose there
is a polynomial-time algorithm A′ that approximates LOP(1+, 1+) within log2−ε |V |. Let
P = ⟨V,A, {r}, V ⟩ be an arbitrary instace of X and let PR = ⟨VR, AR, {r}, V ⟩ be the chain
reduction of P. Note that PR is a Strips(1+, 1+) instance since the instances in X are
Strips(1+, 1+) instances. Without loss of generality, assume the graph H satisfies that
|E| < |V |2, since loops can be removed, and that |E| ≥ |V |−1, since D is otherwise trivially
unsolvable. Then P satisfies that |V | − 1 ≤ |A| < |V |2 and w(A) ≤ |A||V | < |V |3. Applying
Proposition 18 then yields that

|VR| = |V |+w(A)− |A| ≤ w(A) + 1 ≤ |V |3.

By assumption, A′ can approximate LOP(X) within log2−ε |VR| and the class X is poly-
nomially bounded, so it follows from Lemma 20 that A′ can be used together with the
reduction to approximate COP(X) within log2−ε |V |3. Furthermore,

log2−ε |V |3 = 32−ε log2−ε |V | ≤ 9 log2−ε |V |

and there is some ε′ > 0 such that 9 log2−ε |V | ≤ log2−ε′ |V | for large |V |. However,
then COP(X) can be approximated within log2−ε′ |V |, which contradicts Theorem 15. It
follows that A′ cannot exist and, thus, that LOP(1+, 1+) cannot be approximated within
log2−ε |V |.

191

Bäckström, Jonsson, and Ordyniak

We have seen that the difference between the approximability of COP(1, 1+, sat) and
LOP(1, 1+, sat) is huge: the former is not approximable within an exponential bound
(given that weights are sufficiently large) while the latter is approximable within a linear
bound. We will see in the next section that there is no corresponding gap when comparing
COP(1+, ∗+) and LOP(1+, ∗+) since both problems can be approximated within |V |ε for
arbitrary ε > 0.

4.2.3 Approximability of Strips(1+, ∗+) Instances

The goal of this section is to prove that COP(1+, ∗+) is approximable within |V |ε for
arbitrary ε > 0. Once again, the proof is based on Steiner trees; the result is proven by a
reduction to the Directed Group Steiner Tree problem (Charikar et al., 1999).

Directed Group Steiner Tree (DGST)
Type: Minimization problem.
Instance: A directed graph G = ⟨V,E⟩, a root vertex r ∈ V and a set C = {g1, . . . , gk},
where gi ⊆ V for all i (1 ≤ i ≤ k). The gi sets are called groups. Each edge e ∈ E has a
non-negative weight w(e).
Solution: A subgraph T = ⟨VT , ET ⟩ of G that is an arborescence with r as root and that
contains at least one vertex from each group in C.
Measure: The sum w(T) of edge weights in ET .

Given a Strips instance P = ⟨V,A, I,G⟩ and v ∈ V , we let (A)v denote the actions in
A such that v ∈ eff(a). Furthermore, we let eff(A′) = {v ∈ eff(a) | a ∈ A′} for arbitrary
A′ ⊆ A.

Theorem 23. COP(1+, ∗+) can be approximated within O(|G \ I|ε) (and consequently
within O(|V |ε)) for arbitrary ε > 0.

Proof. Charikar et al. (1999) have proved that DGST is approximable within O(|C|ε) for
any ε > 0. It is thus sufficient to prove that there is a polynomial-time reduction from
COP(1+,*+) to DGST that preserves optimal solutions. We prove this by a reduction in
two steps. The first step enables us to always use the initial state ∅—this simplifies the
reduction to DGST that is carried out in the second step.

Let P = ⟨V,A, I,G⟩ be an arbitrary Strips(1+, ∗+) instance. For the first step, con-
struct the corresponding Strips instance PI = ⟨V,AI ,∅, G⟩, where AI = A ∪ {aI} and aI

is defined as aI : ∅
0⇒ I. We have previously excluded zero weights from Strips instances

but we make an exception here for improved readability. Note that a zero weight is used
only for the new action that is not present in the original action set A. Clearly, an ac-
tion sequence ⟨a1, . . . , aℓ⟩ is a plan for P if and only if ⟨aI , a1, . . . , aℓ⟩ is a plan for PI , and
w(⟨aI , a1, . . . , aℓ⟩) = w(⟨a1, . . . , aℓ⟩).

For the second step, let D be a corresponding DGST instance defined by a directed graph
H = ⟨AI , E⟩, the root vertex aI and a collection C of subsets of AI defined as follows:

• E = {⟨a, b⟩ | a, b ∈ AI and pre(b) ⊆ eff(a)}, i.e. E contains the edge ⟨a, b⟩ for each
pair of actions a, b such that a can provide the precondition for b.

• The weights on E are defined such that w(⟨a, b⟩) = w(b) for each edge ⟨a, b⟩ ∈ E.

192

Approximability of Monotone Planning

• C = {(AI)v | v ∈ G}, i.e. for each goal atom v ∈ G, a DGST for D must contain at
least one vertex a ∈ AI such that v ∈ eff(a).

In the sequel, we use the same convention as in the proof of Theorem 21: there is an
one-to-one correspondence between sets of tree vertices and states, and we view sets of tree
vertices as states whenever convenient. We claim that:

(a) If ω is an optimal plan for PI , then D has a DGST T such that w(T) = w(ω).
(b) If T is an optimal DGST for D, then PI has a plan ω such that w(ω) = w(T).
(c) D can be computed from PI in polynomial time.

Proofs of these claims follow:
(a) Suppose ω = ⟨a1, . . . , aℓ⟩ is an optimal plan for PI and ⟨s0, . . . , sℓ⟩ is the state

sequence for ω from s0 = ∅. We can assume that a1 = aI without losing generality. Let
AT = {a1, . . . , aℓ} and define the edge set ET on AT as follows. For each i, where 1 < i ≤ ℓ,
it must hold that pre(ai) ⊆ si−1 since ω is a plan. Furthermore, P is a (1+,*+) instance
so either pre(ai) = ∅ or pre(ai) = {v}. In the first case, pre(ai) ⊆ sj for any j such
that 0 ≤ j ≤ ℓ, so choose j = 1. In the second case, we know that pre(ai) ⊆ si−1 but
pre(ai) ̸⊆ s0 = ∅, so there is some smallest j such that 0 < j < i, v ∈ sj and v ∈ eff(aj)
(note here that monotonicity implies that once variable v is a member of state sj , then sj is
a member of all succeeding states). In either case, let ⟨aj , ai⟩ ∈ ET . Now, let T = ⟨AT , ET ⟩.
There is obviously a path in T from a1 to ai for every i such that 1 < i ≤ ℓ. However, for
each such i, there is exactly one j such that ⟨aj , ai⟩ ∈ ET , so there is exactly one path from
a1 to each ai, i.e. T is a directed tree with a1 as root.

It further holds that G ⊆ eff(ω) = eff(AT) since s0 = ∅. Hence, for every v ∈ G, there
is some a ∈ AT such that v ∈ eff(a), i.e. a ∈ (AI)v. It follows that T is a DGST for D and
it is immediate that w(T) = w(AT \ {aI}) = w(AT) = w(ω).

(b) Suppose T = ⟨AT , ET ⟩ is an optimal DGST for DP. Let ωI = ⟨a1, . . . , aℓ⟩ be an
arbitrary topological sorting of T . By definition, T is a directed tree with aI as root, so
a1 = aI . Furthermore, T is directed away from the root, so for every i, where 1 < i ≤ ℓ, there
is some j such that 1 ≤ j < i and ⟨aj , ai⟩. However, T is a subgraph of H so ⟨aj , ai⟩ ∈ E,
i.e. pre(ai) ⊆ eff(aj). Hence, pre(ai) ⊆ si−1 according to Lemma 3. Furthermore, AT

contains at least one action a ∈ g for each group g ∈ C, i.e. it contains at least one action
a ∈ Av for every v ∈ G. Hence, G ⊆ eff(AT) and, thus, G ⊆ sℓ. It follows that ω is a plan
for P. Obviously, w(ω) = w(AT) = w(AT \ {aI}) = w(T).
(c) Immediate.

It follows that this construction is a polynomial reduction from COP(1+, ∗+) to DGST
that preserves optimal solutions.

5. Non-admissible Heuristics

We consider non-admissible heuristics in this section, i.e. heuristics that are allowed to
overestimate the cost. We are consequently interested in heuristic functions h that satisfy

h∗(P, s)
c(|V |)

≤ h(P, s) ≤ d(|V |) · h∗(P, s)

193

Bäckström, Jonsson, and Ordyniak

for some functions c, d. Non-admissible heuristics are not very useful for cost-optimal plan-
ning but they are frequently used in satisficing and suboptimal planning—a well-known
example is the non-admissible hFF heuristic used in the FF planning system (Hoffmann &
Nebel, 2001).

Given a LOP instance P = (V,A, I,G) and a function p : N → N, let Pp denote a
LOP instance consisting of the union of p(|V |) disjoint copies of P. Here, a disjoint copy
P′ = (V ′, A′, I ′, G′) of P = (V,A, I,G) is an instance where each variable has been renamed
so that V ∩ V ′ = ∅ and A, I,G have been modified accordingly. Given two planning
instances P = (V,A, I,G) and P′ = (V ′, A′, I ′, G′) such that V ∩ V ′ = ∅, the union of P
and P′ is the planning instance P′′ = (V ′′, A′′, I ′′, G′′) where V ′′ = V ∪ V ′, A′′ = A∪A′, the
initial state I ′′ is defined such that it combines I and I ′ over the variable set I ′′, and G′′ is
defined analogously. Note the following:

1. if P is an LOP(a, b) instance, then Pp is an LOP(a, b) instance,

2. Pp contains p(|V |) · |V | variables,

3. if p is a polynomial, then Pp can be computed in polynomial time, and

4. OPT (Pp) = p(|V |) ·OPT (P).

Theorem 24. Arbitrarily choose 0 < ε, ε′ < 1 such that ε′ + ε · ε′ + ε3 < 1. Assume there
is a function h from LOP(1, 1+, sat) instances to the integers such that

OPT (P)
|V |ε

≤ h(P) ≤ |V |ε′ ·OPT (P).

Then h is not polynomial-time computable unless P = NP. In particular, if h satisfies

OPT (P)
|V |ζ

≤ h(P) ≤ |V |1−ζ ·OPT (P)

for any 0 < ζ < 1, then h is not polynomial-time computable unless P = NP.

Proof. Let p : N → R denote the function p(x) = xε. Given a Strips instance P, the
instance Pp is, formally speaking, not defined since the defintion require the co-domain of
p to contain integers only. To simplify the presentation of the proof, we carry on viewing p
as a function from N to R: we note that 0 ≤ |p(x)−⌊p(x)⌋| < 1 and this minimal difference
is irrelevant for the proof.

Let P = ⟨V,A, I,G⟩ denote an arbitrary LOP(1, 1+, sat) instance. We know that Pp

contains |V | · |V |ε variables so

OPT (Pp)

(|V | · |V |ε)ε
≤ h(Pp) ≤ (|V | · |V |ε)ε′ ·OPT (Pp) ⇒

OPT (P) · |V |ε

(|V | · |V |ε)ε
≤ h(Pp) · |V |ε ≤ (|V | · |V |ε)ε′ ·OPT (P) · |V |ε ⇒

194

Approximability of Monotone Planning

OPT (P)
(|V |ε)ε

≤ h(Pp) · |V |ε ≤ (|V | · |V |ε)ε′ ·OPT (P) · |V |ε ⇒

OPT (P) ≤ h(Pp) · |V |ε3 ≤ (|V | · |V |ε)ε′ ·OPT (P) · |V |ε · |V |ε2

Recall that Pp is polynomial-time computable. Now, Theorem 11 implies that h is not
polynomial-time computable since this would enable us to approximate LOP(1,1+) within
|V |ε′+ε·ε′+ε3 in polynomial time even though ε′ + ε · ε′ + ε3 < 1

For the second part of the theorem, we need to find out when (1−ζ)+ζ(1−ζ)+ζ3 < 1.
The inequality can be rewritten as ζ3 < ζ2 so it always holds when 0 < ζ < 1.

Theorem 24 naturally carries over to less restricted problems such as LOP(∗, ∗+, sat)
and COP(∗, ∗+, sat). If we restrict ourselves to positive preconditions, then we get slightly
weaker results.
Theorem 25. Assume there is a function h from LOP(2+, 1+) instances to the integers
such that

OPT (P)
logk |V |

≤ h(P) ≤ gc(|V |) ·OPT (P)

for some k ≥ 0 and c < 1/2. Then h is not polynomial-time computable unless P = NP.
Proof. We use the same assumption as in the proof of Theorem 24: logk |V | is not necessarily
an integer but this causes no problem in the proof. We see that

OPT (Plogk |V |)

logk(logk |V | · |V |)
≤ h(Plogk |V |) ≤ gc(|V |) ·OPT (Plogk |V |) ⇒

OPT (P) · logk |V |
logk(logk |V | · |V |)

≤ h(Plogk |V |) ≤ gc(|V |) ·OPT (P) · logk |V | ⇒

OPT (P) ≤ h(Plogk |V |) · logk(logk |V | · |V |)
logk |V |

≤ gc(|V |) ·OPT (P) · logk(logk |V | · |V |)

We know from the paper by Watel and Weisser (2016) that gc grows faster than every
polylogarithmic function. This implies that

OPT (P) ≤ h(Plogk |V |) · logk(logk |V | · |V |)
logk |V |

≤ gc′(|V |) ·OPT (P)

when c < c′ < 1/2 and the instances under consideration contains sufficiently many vari-
ables. Recall that Plogk |V | is polynomial-time computable when k is fixed. Now, Theorem 14
implies that h is not polynomial-time computable since this would enable us to approximate
LOP(2+,1+) within gc′(|V |) in polynomial time.

195

Bäckström, Jonsson, and Ordyniak

6. Fixed-Parameter Tractability

The results in the previous sections indicate that bounding parameters like action weight
and the number of preconditions and/or effects is not sufficient for obtaining polynomial-
time approximation algorithms with good performance, and certainly not for identifying
polynomial-time solvable cases. It is thus natural to consider other parameters that are
more powerful. We consider two parameters δ and χ in this section. Let P = ⟨V,A, I,G⟩
denote an arbitrary Strips instance.

Parameter δ. Let δ(P) = maxv∈V |{a ∈ A | eff(a) ∩ {v, v} ̸= ∅}|, i.e. δ is the maximum
number of actions that affects a variable.

Parameter χ. Define X(P) = {a, b ∈ A | a ̸= b and eff(a) ∩ eff(b) ̸= ∅} and let χ(P) =
|X(P)|.

The parameters measure, in different ways, how many actions in total that may cause
combinatorial explosion during action selection. The intuitive difference between δ and χ
can be viewed as follows: δ is a local property that is applicable directly on the variable
level while χ is a global property that takes the full set of actions into account. Instances
satisfying δ(P) = 1 or χ(P) = 0 are often referred to as post-unique or establisher-unique
in the literature (Bäckström & Nebel, 1995; Cooper et al., 2014). We let Strips(∗, ∗, P)
denote the full set of post-unique instances. Post-unique instances are known for having
favourably computational properties (Bäckström & Nebel, 1995; Bäckström et al., 2015)
and at the same time being sufficiently powerful for modelling certain interesting industrial
applications: for instance, chemical and pharmaceutical examples are presented by Cooper
et al. (2012, 2013). However, post-uniqueness often make modelling difficult and it is thus
desirable to identify restrictions that are easier to work with—bounded δ or χ are obvious
candidates.

The parameter δ has been considered previously in the literature, cf. the article by Bäck-
ström et al. (2015). It is, for instance, known that LOP(∗, ∗) is fixed-parameter tractable in
the parameter δ and the plan length k—this problem can be solved in O(((δ ·k)k+1+ δ)|V |)
time. Plan length is a useful parameter in many contexts but it is, for obvious reasons, not
particularly relevant when considering heuristics that are supposed to estimate plan length.
Our first result (Section 6.1) shows that δ in isolation is not sufficient for fixed-parameter
tractability: the problem LOP(1+, 1+) is NP-hard even when restricted to δ = 2. We note
that Bylander (1994, Corr 3.4) has proved that LOP(1+, 1+) is NP-hard but his proof
seems difficult to generalise to the case when δ = 2.

Our second result (Section 6.2) shows that χ is a better parameter for fixed-parameter
tractability: we prove that COP(∗, 1+) is solvable in 2χ(P) · poly(||P||) time. We recall
that LOP(1+, 1+) is NP-hard so COP(∗, 1+) is obviously an intractable problem. We
remark that the result only holds for unary actions, i.e. actions that only affects one
variable. Instances based on unary actions have a long and interesting history in planning:
many tractable subclasses of planning only work for unary actions and many heuristic
functions make a relaxation to unary actions—in particular, heuristics that exploit acyclic
causal graphs (such as the original heuristic used by the FD planner (Helmert, 2006)) are
inherently based on unary action relaxations. Finally, one should note that LOP(∗, 1, P) is

196

Approximability of Monotone Planning

NP-hard (Bäckström & Nebel, 1995) so monotonicity is an essential property: the result
cannot be generalised to non-monotone planning even in the case when χ is fixed to 0.

6.1 The Parameter δ

We show that LOP(1+, 1+) is NP-hard even if we only consider instances where the pa-
rameter δ is bounded by 2. The basis for this result is the Vertex Cover problem.

Vertex Cover
Type: Decision problem.
Instance: An undirected graph G = (V,E) and an integer K ≥ 0.
Question: Does there exist a set V ′ ⊆ V such that |V ′| ≤ K and for each {u, v} ∈ E,
{u, v} ∩ V ′ ̸= ∅?

Theorem 26. LOP(1+, 1+) is NP-hard even when restricted to instances with δ = 2.

Proof. Let ⟨(V,E),K⟩ be an arbitrary instance of Vertex Cover where V = {v1, . . . , vk}.
Define the Strips instance P = ⟨W,A,∅, G⟩ such that

• W = V ∪ E,

• G = E,

and A contains the following actions:

• seti : ∅ ⇒ vi, for all i (1 ≤ i ≤ n)

• ei : {vi} ⇒ {e} and ej : {vj} ⇒ {e} for all e = {vi, vj} ∈ E.

Note that P is a Strips(1+, 1+) instance with δ = 2. We claim that P has a solution of
length at most K + |E| if and only if ((V,E),K) is a yes-instance.

Assume first that ((V,E),K) is indeed a yes-instance with cover V ′ = {vi1 , . . . , vip}.
Then, ⟨seti1 , seti2 , . . . , setip⟩ concatenated with a suitable sequence of |E| ek actions is a
valid plan for P. This plan has total length p+ |E| ≤ K + |E|.

Assume instead that P has a solution ω with length at most K + |E|. This implies that
p ≤ K actions seti1 , . . . , setip are included in ω. Hence, V ′ = {vi1 , . . . , vip} is a vertex cover
of G that contains at most p ≤ K vertices.

6.2 The Parameter χ

We will now prove that COP(∗, 1+) can be solved in 2χ(P) ·poly(||P||) time and, consequently,
that it admits a fixed-parameter tractable algorithm when considering parameter χ. The al-
gorithm for COP(*,1+) is presented in Figure 4. It is a brute-force algorithm that generates
all sets of actions that may be used in a plan, checks whether the corresponding instance
is post-unique, and if so solves it using an algorithm for COP(∗, 1+, P). We simplify the
presentation of the algorithm and the forthcoming proofs by using the following convention:
unsolvable instances are assigned the optimal value ∞. An immediate consequence of the
2χ(P) ·poly(||P||) bound is that COP(∗, 1+) restricted to instances with χ(P) ≤ k log(|V |) can
be solved in polynomial time for arbitrary fixed k. Another consequence is that COP(∗, 1+)

197

Bäckström, Jonsson, and Ordyniak

restricted to instances with χ(P) ≤ |V |1−ε can be solved in subexponential time for arbitrary
fixed ε > 0.

We begin by presenting a tractability result for COP(∗, 1+, P). We postpone proving
this lemma until Section 6.3.

Lemma 27. COP(∗, 1+, P) can be solved in polynomial time.

Theorem 28. COP(∗, 1+) can be solved in 2χ(P) · poly(||P||) time.

Proof. The algorithm presented in Figure 4 clearly meets the time complexity requirement
since OPT (P′) can be computed in polynomial time by Lemma 27.

Let P = ⟨V,A, I,G⟩ be a Strips(∗, 1+) instance. If OPT (P) = ∞, i.e. P has no solution,
then OPT (⟨V,A′, I, G⟩) = ∞ for every A′ ⊆ A. This implies that the algorithm will return
the correct value ∞.

Assume instead that OPT (P) <∞ and suppose that ω = ⟨a1, . . . , an⟩ is an optimal plan.
Let B = {a1, . . . , an}. We claim that ⟨V,B, I,G⟩ is post-unique. To see this, we assume to
the contrary that there are two distinct actions ai, aj in ω such that eff(ai) ∩ eff(aj) ̸= ∅.
The actions ai and aj are unary so eff(a1) = eff(a2). That both a1 and a2 occur in an
optimal plan contradicts Lemma 3(c).

Every post-unique subset of A is enumerated in line 4 so, in particular, the set B
will occur in this enumeration. We conclude,that the algorithm return the optimal value
OPT (⟨V,B, I,G⟩) since c (the value that is computed in line 6) equals w(ω).

1 function χ-Plan(⟨V,A, I,G⟩)
2 let X := X(P) and A′ := A \X
3 let c := ∞
4 for every X ′ ⊆ X s.t. P′ = ⟨V,A′ ∪X ′, I, G⟩ is post-unique
6 let c := min(c,OPT (P′))
7 return c

Figure 4: Algorithm for solving COP(*,1+)

6.3 Tractability of COP(∗, 1+, P)

We will now prove that COP(∗, 1+, P) can be solved in polynomial time (Lemma 27). The
bulk of the proof is devoted to proving that COP(∗, 1+, P) is polynomial-time equivalent
to LOP(∗, 1+, P). In the final step, we merely verify that the algorithm for SAS+-IAO
(Jonsson & Bäckström, 1998) is suitable for solving LOP(∗, 1+, P).

Let P = ⟨V,A, I,G⟩ be a COP(∗, 1+, P) instance and define v+ = {a ∈ A | v ∈ eff(a)}.
Since P is post-unique, it follows that 0 ≤ |v+| ≤ 1 for every v ∈ V . We use an auxiliary
function NA (where NA stands for necessary actions) for giving the proof of Lemma 27
a clearer structure. The definition of NA can be found in Figure 5. Given an instance P
of COP(∗, 1+, P), NA is intended to generate a set of actions that must be members of
any plan for P. It achieves this by a fixed-point computation where actions are iteratively
added to the set N . We prove correctness in the next lemma and we note that there are
similarities with landmarks (Keyder et al., 2010).

198

Approximability of Monotone Planning

1 function NA(⟨V,A, I,G⟩)
2 if there is a v ∈ G such that v ̸∈ I and v+ = ∅ then reject
3 N :=

∪
{v+ | v ∈ G and v ̸∈ I}

4 N ′ := ∅
5 while N ̸= N ′ do
6 N ′ := N
7 if there exists a ∈ N such that v ∈ pre(a) and v ∈ I then reject
8 if there exists a ∈ N such that v ∈ pre(a), v ̸∈ I and v+ = ∅ then reject
9 if there exists a ∈ N such that v ∈ pre(a), v ̸∈ I and v+ ̸= ∅ then N := N ∪ {v+}
10 return N

Figure 5: Greedy algorithm for computing necessary actions

Lemma 29. If ω = ⟨a1, . . . , am⟩ is a plan for the COP(∗, 1+, P) instance P = ⟨V,A, I,G⟩,
then NA does not reject P and NA(P) ⊆ {a1, . . . , am}.

Proof. Let B = {a1, . . . , am}. The instance P is post-unique so 0 ≤ |v+| ≤ 1 for every v ∈ V .
We prove the result by induction over the number p of loops in lines 5–9. Let Ni denote
the set N after i loops have been performed. We prove that N0 ⊆ N1 ⊆ · · · ⊆ Np ⊆ B and
that NA does not reject during the computation of N1, . . . , Np.
Base case. p = 0. First note that NA cannot reject P in line 2: v+ ̸= ∅ since ω is a solution
to P. Thus, the set N0 has been properly computed. It is obvious that N0 ⊆ B since the
actions in N are the only actions that can achieve the goals in G\I due to post-uniqueness.
Induction hypothesis. Np−1 ⊆ B.
Induction step. We show that Np ⊆ B by analysing lines 7-9.
Line 7. If there exists a ∈ Np−1 such that v ∈ pre(a) and v ∈ I, then ω cannot be a valid
plan for P. We know that a ∈ B by the induction hypothesis and we also know that no
action can make the variable v false due to monotonicity. Thus, the algorithm cannot reject
in this line.
Line 8. If there exists a ∈ Np−1 such that v ∈ pre(a), v ̸∈ I and v+ = ∅, then ω cannot be
a valid plan for P: we know that a ∈ B by the induction hypothesis but the preconditions
of a cannot be achieved.
Line 9. If there exists a ∈ Np−1 such that v ∈ pre(a) and v ̸∈ I, then there is exactly one
action (due to post-uniqueness) in A that can achieve the precondition v and this action
is contained in v+, so Np = Np−1 ∪ {v+}. Since Np−1 ⊆ B by the induction hypothesis, it
follows that Np ⊆ B, too.

Next, we verify that NA is a monotonic function with respect to the goal state.

Lemma 30. Let P = ⟨V,A, I,G⟩ be a COP(∗, 1+, P) instance. If NA does not reject P,
then NA(P) =

∪
p∈G NA(⟨V,A, I, {p}⟩).

Proof. It is obvious from the algorithm that NA(P) ⊇ NA(⟨V,A, I, {p}⟩) for every p ∈ G,
and, consequently,

NA(P) ⊇
∪
p∈G

NA(⟨V,A, I, {p}⟩).

199

Bäckström, Jonsson, and Ordyniak

We prove that NA(P) ⊆
∪

p∈G NA(⟨V,A, I, {p}⟩). Let a′ denote an arbitrary action in
NA(P). We show inductively that there exists a g ∈ G such that a′ ∈ NA(⟨V,A, I, {g}), and
this readily implies that NA(P) ⊆

∪
p∈G NA(⟨V,A, I, {p}⟩). We do this by induction over n

where n is the number of loops the algorithm makes before a′ is added to N .
Base case. n = 0. If a′ is added to N in line 3, then there exists a goal g such that
a′ ∈ NA(⟨V,A, I, {g}) and {a′} ⊆

∪
p∈G NA(⟨V,A, I, {p}⟩).

Induction step. Assume the claim holds for n = k, k ≥ 0. We show that it holds for
n = k + 1, too. In this case, a′ is added to N in line 9 of the algorithm. Then there exists
an action a ∈ N such that a′ establishes one of a’s preconditions, and a was added to N
after at most k loops. The induction hypothesis implies that there exists a g ∈ G such that
a ∈ NA(⟨V,A, I, {g}). Consequently, a′ ∈ NA(⟨V,A, I, {g}) ⊆

∪
p∈G NA(⟨V,A, I, {p}⟩).

We continue by strengthening Lemma 29 with the aid of Lemma 30: given an instance
P, we show a strong correspondence between the actions in NA(P) and the actions in a
shortest plan for P.

Lemma 31. If ω = ⟨a1, . . . , am⟩ is a shortest plan for the COP(∗, 1+, P) instance P =
⟨V,A, I,G⟩, then NA(P) = {a1, . . . , am}.

Proof. We know from Lemma 29 that NA does not reject P. We prove the claim by induction
over the number of goals t.
Base case. If t = 0, then the plan is empty and NA(P) = ∅.
Induction hypothesis. Assume the hypothesis holds for t = p−1, i.e. every shortest plan for
an instance ⟨V,A, I,G⟩ with |G| = p− 1 contains exactly the actions in NA(⟨V,A, I,G⟩).
Induction step. Consider a shortest plan ω = ⟨a1, . . . , am⟩ for P = ⟨V,A, I,G⟩ where |G| = p.
Let s denote the state that the final action am is applied to, and let s′ = s∩G. Exactly one
goal g ∈ G does not hold in s′ since the final action in a shortest plan always sets a goal and
we are restricted to unary actions. Post-uniqueness imply that there is only one action that
can achieve this goal, namely am. In particular, this implies that am ∈ NA(⟨V,A, I, {g}⟩)

By the induction hypothesis, every shortest plan for ⟨V,A, I,G \ {g}⟩ contain exactly
the actions in NA(⟨V,A, I,G \ {g}⟩) so

{a1, . . . , am−1} = NA(⟨V,A, I,G \ {g}⟩) ⇒

{a1, . . . , am−1, am} = NA(⟨V,A, I,G \ {g}⟩) ∪ {am} ⇒

{a1, . . . , am−1, am} ⊆ NA(⟨V,A, I,G \ {g}⟩) ∪NA(⟨V,A, I, {g}⟩

since am is the only action that achieves g. We apply Lemma 30 and obtain

{a1, . . . , am} ⊆ NA(⟨V,A, I,G⟩).

We conclude that {a1, . . . , am} = NA(⟨V,A, I,G⟩) with the aid of Lemma 29.

We finally put the pieces together and prove the tractability result.

200

Approximability of Monotone Planning

Proof. (of Lemma 27) Let P = ⟨V,A, I,G⟩ be an arbitrary instance of COP(∗, 1+, P). Let
ω = ⟨a1, . . . , am⟩ be a shortest plan for P and let ψ = ⟨b1, . . . , bn⟩ be a plan for P with
minimal weight. We immediately see that w(ψ) ≤ w(ω). By Lemmas 29 and 31, we
additionally see that

{a1, . . . , am} = NA(P) ⊆ {b1, . . . , bn}.

This implies that w(ω) ≤ w(ψ) since negative weights are not allowed. We conclude that
w(ω) = w(ψ) and that COP(∗, 1+, P) can be solved by an algorithm for LOP(∗, 1+, P).

The problem LOP(∗, 1+, P) can be solved by the polynomial-time algorithm for SAS+-
IAO by Jonsson and Bäckström (1998). To verify that it is indeed applicable, we first
recall that we assume the initial state to be a total state (in the sense that every variable
has a definite value) and, consequently, we have no actions that can turn an “unknown”
variable value into a definite value. We are thus within the SAS∗ framework and are free
to use Theorem 7.8 by Jonsson and Bäckström (1998). We see that post-unicity implies
property O, unarity is property U, and monotonicity implies property A+ which in turn
implies property A. Hence, COP(∗, 1+, P) can be solved in polynomial time.

7. Discussion

We have studied computational properties of cost-optimal planning restricted to monotone
instances. Our main motivation is to obtain a better understanding of heuristics used in
search-based planning. The results reveal that approximating monotone planning is in
general NP-hard even under very liberal approximation bounds. However, the results also
reveal that the success of certain heuristics (such as local Steiner tree heuristics) can be
attributed to the fact that the underlying restricted approximation problem is easier to
approximate than the general problem. Most of our work is directed towards admissible
heuristics but many results carry over without too much effort to non-admissible heuristics.
We see that non-admissible heuristics seem to be slightly easier to approximate than their
admissible counterparts but the difference must, unfortunately, be considered fairly small.

With this in mind, we conclude that the tools of classical complexity theory are not
fully adequate for analysing these kind of problems: The coarse partitioning of problems
into tractable and NP-hard is not satisfactory since most subcases end up being NP-hard.
We remind the reader that the span in time complexity for NP-hard problems is, as far
as we know, enormous: there are problems that can be solved in subexponential 2o(n) time
and there are problems where no better bound than 2n

c (for large values of c) is known.
What one really would like to have is a more fine-grained way of studying these problems.

In response to this, we suggest that parameterised complexity may be a better tool and
we initiate a parameterised study of the complexity of monotone cost-optimal planning.
We concentrate on two simple but natural parameters δ, χ based on the number of actions
that can achieve a particular effect. The hypothesis is that they measure the amount
of non-determinism needed in the action selection process and that this is correlated to
the computational hardness of the underlying problem. We show that fixed-parameter
tractability is obtained (in the special case of unary actions) when using χ but not δ. This
emphasises that identifying the right parameters is crucial for obtaining strong bounds on

201

Bäckström, Jonsson, and Ordyniak

computational costs. Needless to say, the identification of useful parameters is a challenging
research problem.

Another challenging research direction is to connect the performance of heuristic func-
tions with their time complexity. If we simplify things slightly, then classical complexity
will only tell us that a heuristic function can achieve an approximation bound α in poly-
nomial time while computing solutions with better bounds is an NP-hard problem (which
will require superpolynomial time to solve). The switch to the parameterised setting gives
us the opportunity to view the time complexity of a heuristic function as a function of its
performance. This is clearly much more informative than the simple dichotomy that classi-
cal complexity offers us. One may illuminate this idea by considering Theorem 28. It shows
that an exact solution to the COP(∗, 1+) problem can be found in 2χ(P) · poly(||P||) time.
The natural question here is whether faster algorithms can be constructed if it is sufficient
to find an α-approximate solution. If this is indeed the case, how does the time complexity
of such algorithms depend on the choice of α?

Acknowledgements

We thank the reviewers for highly valuable input. Christer Bäckström is partially sup-
ported by the Swedish Research Council (VR) under grant 621-2014-4086. Peter Jonsson
is partially supported by VR under grant 2017-04112.

References

Aghighi, M., Bäckström, C., Jonsson, P., & Ståhlberg, S. (2016). Analysing approximabil-
ity and heuristics in planning using the exponential-time hypothesis. In Proc. 22nd
European Conference on Artificial Intelligence (ECAI-2016), pp. 184–192.

Alekhnovich, M., Buss, S. R., Moran, S., & Pitassi, T. (2001). Minimum propositional proof
length is NP-hard to linearly approximate. Journal of Symbolic Logic, 66 (1), 171–191.

Bäckström, C., & Jonsson, P. (2017). Time and space bounds for planning. Journal of
Artificial Intelligence Research, 60, 595–638.

Bäckström, C., Jonsson, P., Ordyniak, S., & Szeider, S. (2015). A complete parameterized
complexity analysis of bounded planning. Journal of Computer and System Sciences,
81 (7), 1311–1332.

Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning. Computational
Intelligence, 11, 625–656.

Benton, J., Talamadupula, K., Eyerich, P., Mattmüller, R., & Kambhampati, S. (2010).
G-value plateaus: A challenge for planning. In Proc. 20th International Conference
on Automated Planning and Scheduling (ICAPS-2010), pp. 259–262.

Berman, P., Karpinski, M., & Scott, A. D. (2003). Approximation hardness of short sym-
metric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity
(ECCC), 10 (49).

Betz, C., & Helmert, M. (2009). Planning with h+ in theory and practice. In 32nd Annual
German Conference on AI (KI-2009), pp. 9–16.

202

Approximability of Monotone Planning

Bylander, T. (1994). The computational complexity of propositional Strips planning.
Artificial Intelligence, 69 (1-2), 165–204.

Byrka, J., Grandoni, F., Rothvoß, T., & Sanità, L. (2013). Steiner tree approximation via
iterative randomized rounding. Journal of the ACM, 60 (1), 6:1–6:33.

Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., & Li, M. (1999). Ap-
proximation algorithms for directed Steiner problems. Journal of Algorithms, 33 (1),
73–91.

Chvátal, V. (1979). A greedy heuristic for the set-covering problem. Mathemathics of
Operations Research, 4 (3), 233–235.

Cooper, M. C., Maris, F., & Régnier, P. (2012). Tractable monotone temporal planning. In
Proc. 22nd International Conference on Automated Planning and Scheduling (ICAPS-
2012), pp. 20–28.

Cooper, M. C., Maris, F., & Régnier, P. (2013). Relaxation of temporal planning problems.
In Proc. 20th International Symposium on Temporal Representation and Reasoning
(TIME-2013), pp. 37–44.

Cooper, M. C., Maris, F., & Régnier, P. (2014). Monotone temporal planning: Tractability,
extensions and applications. Journal of Artificial Intelligence Research, 50, 447–485.

Dinur, I., & Safra, S. (2004). On the hardness of approximating label-cover. Information
Processing Letters, 89 (5), 247–254.

Domshlak, C., Hoffmann, J., & Katz, M. (2015). Red-black planning: A new systematic
approach to partial delete relaxation. Artificial Intelligence, 221, 73–114.

Ghallab, M., Nau, D. S., & Traverso, P. (2016). Automated Planning and Acting. Cambridge
University Press.

Goldwasser, M. (1997). Complexity Measures for Assembly Sequences. Ph.D. thesis, Stanford
University, Stanford, CA, USA.

Goldwasser, M. H., & Motwani, R. (1999). Complexity measures for assembly sequences.
International Journal of Computational Geometry & Applications, 9 (4/5), 371–418.

Halperin, E., & Krauthgamer, R. (2003). Polylogarithmic inapproximability. In Proc. 35th
Annual ACM Symposium on Theory of Computing (STOC-2003), pp. 585–594.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway? In Proc. 19th International Conference on Automated Planning
and Scheduling (ICAPS-2009), pp. 162–169.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Jonsson, P. (1999). Strong bounds on the approximability of two pspace-hard problems in
propositional planning. Annals of Mathematics and Artificial Intelligence, 26, 133–
147.

203

Bäckström, Jonsson, and Ordyniak

Jonsson, P., & Bäckström, C. (1998). State-variable planning under structural restrictions:
Algorithms and complexity. Artificial Intelligence, 100 (1-2), 125–176.

Keyder, E., & Geffner, H. (2009). Trees of shortest paths vs. Steiner trees: Understanding
and improving delete relaxation heuristics. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-2009), pp. 1734–1739.

Keyder, E., Richter, S., & Helmert, M. (2010). Sound and complete landmarks for And/Or
graphs. In Proc. 19th European Conference on Artificial Intelligence (ECAI-2010),
pp. 335–340.

Kronegger, M., Ordyniak, S., & Pfandler, A. (2019). Backdoors to planning. Artificial
Intelligence, 269, 49–75.

Moshkovitz, D. (2015). The projection games conjecture and the NP-hardness of ln n-
approximating set-cover. Theory of Computing, 11, 221–235.

Pommerening, F., & Helmert, M. (2012). Optimal planning for delete-free tasks with incre-
mental LM-cut. In Proc. 22nd International Conference on Automated Planning and
Scheduling (ICAPS-2012), pp. 363–367.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 39, 127–177.

Watel, D., & Weisser, M.-A. (2016). A note on the inapproximability of the minimum
monotone satisfying assignment problem. Tech. rep. HAL-01377704, HAL Archives-
Ouverte.

204

