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Abstract

Speech emotion recognition is essential for obtaining emotional

intelligence which affects the understanding of context and

meaning of speech. The fundamental challenges of speech emo-

tion recognition from a machine learning standpoint is to ex-

tract patterns which carry maximum correlation with the emo-

tion information encoded in this signal, and to be as insensi-

tive as possible to other types of information carried by speech.

In this paper, a novel recurrent residual temporal context mod-

elling framework is proposed. The framework includes mixture

of multi-view attention smoothing and high dimensional feature

projection for context expansion and learning feature represen-

tations. The framework is designed to be robust to changes in

speaker and other distortions, and it provides state-of-the-art re-

sults for speech emotion recognition. Performance of the pro-

posed approach is compared with a wide range of current archi-

tectures in a standard 4-class classification task on the widely

used IEMOCAP corpus. A significant improvement of 4% un-

weighted accuracy over state-of-the-art systems is observed.

Additionally, the attention vectors have been aligned with the

input segments and plotted at two different attention levels to

demonstrate the effectiveness.

Index Terms: speech emotion recognition, attention networks,

computational paralinguistics

1. Introduction

Emotion in speech is a fundamental trait in human communi-

cation that reflects the meaning and intent. Emotion classifi-

cation raises the question about ‘what is said’ and ‘how it is

said’. There are mainly two different approaches for represent-

ing emotions, i.e. categorical and dimensional. In categori-

cal representation, the emotions exist as discrete labels such as

happy, angry, sad etc. whereas the dimensional approach em-

phasises on understanding emotions in terms of valence and

arousal. In this work, it has been assumed that emotion is a

categorical perception representing discrete sensory events.

Speech emotion recognition (SER) tasks require a front-end

for extracting features that hold emotion attributes while be-

ing robust to changes in time, frequency, speaker, medium and

other external distortions. In practice, the most popular features

are Opensmile [1], eGeMaps [2], MFCCs [3] and filterbanks

[4]. These features are used with different classifiers such as

hidden Markov models (HMMs) [5], support vector machines

(SVMs) [6], deep belief networks (DBNs) [7] and deep neural

networks (DNNs), and treated as a standard categorical classifi-

cation task. DNNs learn task-specific abstract feature represen-

tations by filtering out unnecessary information and improving

generalisation [8, 9, 10]. Research has suggested representation

learning by modelling mid to long-term sequence dependencies

[11, 12, 13].

The distinction about ‘what is said’ and ‘how it is said’ is

not overly clear for SER tasks as it has not been well defined.

Typically, emotion is represented in either a categorical or a di-

mensional annotation scheme. Although the duration or the po-

sition of emotion are not well defined in a sentence, it is clear

that emotion is built upon on either short-term or long-term con-

text [12, 13, 14].

Here, a novel model for speech emotion classification is

proposed, which performs a deep level feature transformation.

It learns different task-specific feature representations from ut-

terances and performs feature transformation in a high dimen-

sional space. This is followed by projection to the original fea-

ture vector. The feature projection aims to remove task-specific

bias in the feature space. The experimental results show the

effectiveness of the proposed computational model, leading to

state-of-the-art results on the IEMOCAP [15] corpus in a 4-

class setting.

The rest of this paper is organised as follows. The previous

work related to this paper is discussed in Section 2. In Section

3, the components of our framework, i.e. long short term neu-

ral networks (LSTMs) and the proposed multi-projection self-

attention network, mixture of multi-view attention (MOMA),

are described. Section 3 also presents and explains the pro-

posed architecture in terms of representation learning and the

motivations behind it. In Section 4, the experimental setup is

explained, and the results are presented along with a discussion

in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Different context modelling techniques have been proposed for

SER tasks, as mentioned in Section 1. In this paper, acoustic

context expansion has been carried out with high dimensional

multi-instance feature projection. Philosophically, it has sim-

ilarity with the context expansion technique in feature-space

minimum phone error (fMPE) [16, 17]. Sequential and hybrid-

hierarchical models were proposed to learn deep feature rep-

resentations [12, 14], and task-specific feature clusters [13].

Variants of attention-based mechanisms have been proposed

which performed significantly better than the previous models

[18, 19, 16]. One of the possible reasons why attention mod-

els outperform others is that the models learn the biases for a

specific task, or group of tasks, leading to improved generalisa-

tion. Recently, a sequence and attention-based domain adver-

sarial system was presented in [20] which investigated whether

the information in acted datasets can be learnt to benefit emo-

tion prediction for natural datasets and achieved state-of-the-art

results.

3. Representation Learning

The features over time are extracted using a bi-directional

long short-term memory network (BLSTM). Then, multiple in-
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stances of attention vectors are computed which are projected

on to a representation space derived from the same features.

The final ‘smoothed’ projection is applied to attain bias in the

original feature space expansion.

3.1. BLSTM Encoder

Long short-term memory (LSTM) networks use the left to right

temporal order of the sequence, whereas studies show that fu-

ture or forward contexts are useful for context-sensitive se-

quence modelling [21, 22]. BLSTMs model the input sequence

forward and backwards in two separate recurrent neural net-

works (RNNs) as a way to exploit the contextual information

from the past and the future [21]. Applying these networks, a

temporal feature distribution over the sequence can be obtained

in the encoder layer which is stacked. This can be expressed by

y
fwd[t, h] = [LSTM

(

y
t[h], yfwd[t, h− 1]

)

] (1)

y
bck[t, h] = [LSTM

(

y
t[h], ybck[t, h+ 1]

)

] (2)

y[t, h] = [yfwd[t, h], ybck[t, h]] (3)

where t is the timesteps, h is hidden dimensions, The output y
is stacked over time to form a matrix Y ∈ R

(T×h).

3.2. Mixture of Multi-View Attention (MOMA)

Self-attention networks can flexibly learn representations for

long-term inter-sequence dependencies [23]. In this work, the

basic attention block is similar to [14, 24]. First, a global con-

textualised attention mean M is calculated by computing the

global mean across time. The mean is then repeated as the same

temporal domain length as Y to form a matrix which has same

size as Y. Both Y and M are projected on to fully-connected

layers, namely Wh and Wm. These fully-connected layers are

multiplied to find non-local positional dependencies and the re-

sult is projected to another fully-connected layer, We, to pro-

duce the attention vector over time frames.

E = tanh (WhY ) ∗ tanh (WmM) (4)

aatt1 = Softmax (We ∗E) (5)

where E is positional dependency or self-attention between Wh

and Wm, and aatt1 is the attention. This attention is projected

onto Y as Y ′ and added as a skip connection with Y. The skip

connection reduces the degradation problem and helps the net-

work attain iterative non-local feature learning [25, 26]. The

schematic diagram is shown in Figure 1.

Y = Y
′ + Y (6)

Next, multiple attention blocks can be applied, and each of

these blocks has different initialization. These are projected to

a common space through a control parameter. This acts like

an attention mixture model and is referred to as MOMA. All

the spaces are derived from the same source Y . However, they

learn different representations.

En = tanh (Whn
Y ) ∗ tanh (Wmn

M)∀n = 1, 2, 3 (7)

an = Softmax (Wen ∗En)∀n = 1, 2, 3. (8)
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Figure 1: Schematic diagram of the MOMA architecture.

where n is the number of attention units and an is attention at

the nth attention block. Each of Whn
and Wmn

are initialized

differently but they share a common representation space, Y .

This means different instances of E1, E2, E3 are obtained from

a common representation space. The projection is controlled

using γ1, γ2, γ3 as seen in Equation 9. Here Whn
, Wmn

and

Wen are fully-connected layers and the network weights are

trained through back-propagation.

aatt2 =

3
∑

n=1

(γn · an) (9)

where aatt2 is the attention output from the MOMA attention

blocks and n is the number of attention blocks in MOMA layer.

Each of these attention vectors are time aligned with the input

segment in the network.

Here it has been hypothesized that by projecting the mixture

of attention scores in to the common feature space, the model

is learning loosely correlated task-specific attention represen-

tations and by adding them the model performs smoothing to

improve robustness. To investigate this hypothesis, attention

vectors are extracted and analysed with the input segments to

investigate attention in the intermediate hierarchies (Figures 2-

5). In this work, the γ1, γ2, γ3 are initialised randomly. This

layer obtains the non-local dependencies.

3.3. Proposed Architecture

The overall architecture of the proposed framework is shown in

Figure 1. The model is a hierarchical attention structure with
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LSTMs. The LSTM processes long term temporal sequential

dependencies and produce an abstract sequential feature repre-

sentations. The attention layers attain positional dependencies

to capture dynamic acoustic cues.

The BLSTM Encoder contains two hidden layers of

512 nodes each. It outputs a stacked matrix of size

[number of frames]×1024. This output of size 1024 is fed into

the first attention layer Attention Layer 1. The attention mech-

anism is computing a context vector of size 128. The attention

projection is of size [number of frames] × 1024).

The output from the encoder and the attention projection are

added as residual skip connections and passed to the MOMA

layer with three attention blocks i.e. Attention 1 Layer2, At-

tention 2 Layer2, Attention 3 Layer2. Each block in Attention

Layer 2 process it individually and projects it with a control

parameter γ. Finally, these attention heads are added, and the

result is projected to 1024 nodes. The Attention Layer 2 obtains

task-specific high dimensional features from Attention Layer 1’s

output feature space and performs smoothing on task-specific

multi-view attention. The components are explained in Section

3.2. The Wy’s, Wm’s and We’s are fully-connected neural

layers and along with the γ’s they are trained through back-

propagation. This is then passed to the emotion classifier which

linearly projects to the number of classes. The cross-entropy

loss function is applied, which is preceded by a softmax layer.

4. Experimental Setup

4.1. Dataset

The IEMOCAP corpus [15] is used for validating the proposed

framework. The corpus contains utterances from ten speakers

(five male and five female) over 12 hours. The sessions are

dyadic (between two speakers) and either scripted or impro-

vised for eliciting emotions. Four sessions, containing a total

of eight speakers, are used for training. The remaining session,

which contains two speakers, is used for testing. In the liter-

ature it is common for IEMOCAP to be evaluated with four

classes: happy, sad, anger and neutral (where happy is com-

bined with excitement) [27]. The utterances are split into a

training set of 4290 samples (Sessions 1-4) and a test set of

1241 samples(Session 5). This is referred to as IEM4 in this

paper and in [20].

4.2. Features

Experiments in [13, 20] showed that the sequence model based

systems performed best with 23-dimensional log-Mel filterbank

features which hence applied to the MOMA system as well.

4.3. Implementation

The Adam optimiser [28] is applied to the proposed model with

the initial learning rate of 0.0001. As Adam adaptively opti-

mises the learning rate, the PyTorch approach of ReduceLROn-

Plateau has been investigated. The optimum patience setting

was found to be 4 epochs with a multiplicative factor of 0.1.

Transfer learning mechanisms are not used.

4.4. Evaluation

Unweighted accuracy (UA) and the weighted accuracy (WA)

are used to evaluate the results. The UA calculates accuracy in

terms of the total correct predictions divided by total samples,

which gives equal weight to each class. As IEM4 is imbalanced

across the emotion classes, the WA is calculated as well, which

Method UA% WA%

Factor analysis [31] - 56.1

CNN LSTM [29] 59.4 -

CNN RecCap [12] 58.2 -

CNN GRU-SeqCap [12] 59.7 -

Attention Pool [30] 71.8 -

Convolutional self-attention [32] 76.3 68.8

MULTIMODAL: Attention [18] 78.0 -

MOMA 80.5 74.8

Table 1: Performance of the MOMA model compared to base-

lines evaluted on the IEM4 dataset in terms of UA and WA.

weighs each class according to the number of samples in that

class:

UA =
TP + TN

P +N
, WA =

1

2
(
TP

P
+

TN

N
) (10)

where P is the number of correct positive instances (equivalent

to TP+FN ) and N is the number of correct negative instances

(equivalent to TN + FP ).

4.5. Baseline

The results are compared directly with speech emotion recogni-

tion systems that use the IEM4 dataset. Four of these baselines

process audio data only. For comparing UA, the results from

a CNN-LSTM [29] model, a deep capsule network with GRU

[12], and a deep attention pooling [30] based model are pre-

sented. The result from [31] has been cited to show WA base-

line. A multimodal system [18] carrying out SER on textual

as well as audio data is also included to show how much the

MOMA model could reach.

5. Result and Discussion

The baseline systems and performance of the proposed model

are shown in Table 1. It is clear that the proposed MOMA

model outperforms the baseline systems, including the multi-

modal approach which uses lexical and audio data, as opposed

to the MOMA only using audio data. The proposed system has

achieved 80.5% UA and 74.8% WA on segment-level training.

It can be said that the model learns speaker-independent

emotional context information. In Equations 7, 8 and 9, the

different projections on the same derived feature space Y learn

different variations of the same feature space and the γ’s make

it more flexible. As a result, the network becomes more robust

to speaker and distortion variations (see Section 5.1).

5.1. Hierarchical Attention Weights

To further show how the learned attention representations im-

prove the performance, Figures 2-5 compares the attention at

different hierarchies over the same utterance. The audio seg-

ments are mapped to the attention to show the relative positions

of the attention weights compared to the phones and words.

The projections over two utterances are shown for compar-

ison. The embeddings are extracted from two stages of the net-

work i.e MOMA1 and MOMA2. MOMA1 (Equation 5) is the

extracted attention vector embedding at Attention Layer 1 and

MOMA2 (Equation 9) is the attention embedding at Attention

Layer 2 from Figure 1. Attention Layer 2 is the mixture of

multi-view attention network.
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Figure 2: MOMA1:“Yeah, I don’t know” Figure 3: MOMA1:“Yeah”

Figure 4: MOMA2:“Yeah, I don’t know” Figure 5: MOMA2:“Yeah”

According to Section 3.2, the mixture of attention network

is learning loosely correlated task-specific attention represen-

tations because the attention blocks are projected onto a com-

mon feature space which is added in the end. Thus, it performs

smoothing and improves overall robustness which is evident in

Figures 2-5. From Figures 2 and 4, it is observed that the atten-

tion weights from Attention Layer 1 embeddings, i.e. MOMA1

are sensitive to particular regions and phones. However, Fig-

ures 3 and 5 show that the attention weights from Attention

Layer 2 embeddings, i.e. MOMA2 are well distributed over the

phone boundaries. Thus, it is evident that there are different

representations over the different stages of hierarchy in the net-

work. Also, it can be observed that the attention weights of

MOMA2 are well distributed over the phone boundaries com-

pared to MOMA1. Whereas the attention in MOMA1 is sensi-

tive to some regions, but MOMA2 is smoothed over the overall

boundary. This strongly indicates that MOMA2 is more robust

than MOMA1.

5.2. Number of Attention Blocks

Although the mixture of multi-view attention shows a signifi-

cant improvement of the attention weighting over the segments,

the optimal number of such attention blocks is unclear. In this

work, three blocks have been applied with three control param-

eters. A higher number of attention blocks may increase the

performance of the model, but it can also overfit the model due

to the higher number of parameters. Furthermore, it can cause

the degradation problem in the model. Therefore, investigating

the depth vs. width in this network for SER tasks is an important

future research direction.

6. Conclusion

In this paper, a residual mixture of multi-view attention emo-

tional context modelling technique, MOMA, using acoustic fea-

ture space expansion has been proposed. The model attains

task-specific bias in the feature representation resulting in an

improved classifier and state-of-the-art performance for this

SER task. The model also features hierarchical attention. The

interpretability of intermediate states of this particular type of

attention mechanism has been explored in order to investigate

the hypothesis that by projecting the mixture of attention scores

into the common feature space, the model is learning loosely

correlated task-specific attention spaces and by adding them,

the model performs smoothing to achieve more robustness. This

has inspired an empirical way to interpret speech-based emotion

perception in computational models by plotting the attention

weights with respect to the words and the phones. Exploring

this network to adapt to different speech-related tasks would be

interesting further work.
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