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Designing bioinspired green nanosilicas using
statistical and machine learning approaches†

Luc Dewulf, Mauro Chiacchia,‡ Aaron S. Yeardley, Robert A. Milton,

Solomon F. Brown and Siddharth V. Patwardhan *

The in vitro bioinspired synthesis of silica, inspired from in vivo biosilicification, is a sustainable alternative to

the conventional production of high value porous silicas. The short reaction time, mild reaction conditions

of room temperature and its use of benign precursors make this an eco-friendly, economical and scalable

route with great industrial potential. However, a systematic optimisation of critical process parameters and

material attributes of bioinspired silica is lacking. Specifically, statistical approaches such as design of

experiments (DoE) and global sensitivity analysis (GSA) using machine learning could be highly effective but

have not been applied to this “green” nanomaterial yet. Herein, for the first time, a sequential DoE strategy

was developed with pre-screening experiments to outline the feasible design space. A successive screening

using 23 full factorial design determined that from the initially investigated three factors (the ratio of the

reactant concentrations, pH, and precursor concentration), only the first two were statistically significant

for silica yield and surface area. The subsequent concatenated optimisation using central composite design

located a maximum yield of 90 mol% and a maximum surface area of 300–400 m2 g−1. Since for successful

commercialisation, high yields and large specific surface areas are desirable, their simultaneous

optimisation was also achieved with high predictability regression models. For complementation, a

variance-based GSA was successfully applied to bioinspired silica for the first time. This method rapidly

identified key parameters and interactions that control the physicochemical properties and provided

insights in the wide parameter space, which was validated by the extensive DoE campaign. This work is the

starting point in holistically modelling the multidimensional factor–response relationship over a large

experimental space in order to complement efforts for resource-efficient product and process

development and optimisation of bioinspired silica and beyond.

1. Introduction

Silica is amongst the top traded commodity chemicals

worldwide,1,2 and it is the most mass-produced nanomaterial

both in Europe and worldwide3,4 for applications in

pharmaceuticals, cosmetics, foodstuffs and coatings to name

a few sectors. The bottom-up synthesis of silica

nanomaterials, from smaller molecules to structures of 1 to

100 nm, has prominent examples such as the MCM-41, SBA-
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Design, System, Application

Despite many studies on bioinspired silica and its vast potential in many applications, efforts for a systematic optimisation of its properties, such as the

silica yield and surface area, have been missing. Given the lack of clarity over the factor–response relationship, the tailored synthesis of silica towards ideal

process parameters and desired material attributes has been held back, which in turn has been a barrier to its production, despite its potential to provide

sustainable manufacturing of high-value porous nanomaterials. This work integrated design of experiments and machine learning tools, harnessing the

capabilities of both techniques that have been identified as a research frontier for inorganic materials synthesis. The application of a novel sequential

strategy, presented in this manuscript, in combination with a machine learning approach to bioinspired silica is of significant novelty. Employing this

unique DoE strategy in combination with multivariate analysis enabled constructing reliable models with good predictability. Machine learning using the

Sobol' index was successfully applied to bioinspired silica for the first time. This work is the starting point in holistically modelling the complex

multidimensional synthesis of bioinspired silica to complement sustainable and resource-efficient product and process optimisation and development of

this nanomaterial.
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15 and Stöber silicas, which however require harsh synthesis

conditions such as high temperatures, toxic solvents and

reagents of high purity and cost.5,6 The drive for greener yet

economical silica nanomaterials calls for a paradigm shift

away from conventional manufacturing routes.

One particular technique of sustainable silica production

was inspired by the 550 million-year-old biosilicification

process producing diatoms (microalgae) of well-defined

structures in nature. This is achieved by using highly-

specialised organic biomolecules, especially amines, that act

as catalysts, templates, and scaffolds.7,8 Learning from

biology, bioinspired silica synthesis has been developed by

us and others as a hybrid sol–gel/precipitation route that

mimics the natural silicification process and employs the

same or structurally similar reactants.9 Specifically, in

bioinspired silica synthesis, an amine additive is dissolved in

water together with a silicon source, which in solution is

present as silica monomers (Fig. 1). Addition of acid then

causes the monosilicic acid to condense and polymerise to

form oligomers, which subsequently undergo growth and

maturation to a solid silica “polymer” that precipitates. This

method has been extensively reported and reviewed

elsewhere;2,6,8,10,11 below a brief summary of investigations

relevant to the optimisation and modelling of this synthesis

is provided.

Recent investigations sought to gain a better

understanding of this chemistry and the relationship

between reaction conditions (factors) and materials

physicochemical properties (responses) in order to optimise

the bioinspired silica synthesis in a twofold way. On the one

hand, for developing commercial products with profitability,

critical process parameters need to be maximised. Although

rarely appraised in this area of research, the yield has been

identified as a crucial measure, and for this type of silica it is

conventionally expressed as the molar percentage of

elemental silicon in the final polymeric silica product

(mol%).12 On the other hand, optimisation must enable

control of critical materials attributes, such as its porosity, so

as to manufacture silica with predictable properties and

consistent quality. Porosity is a key parameter for most

porous nanomaterials where a material's specific surface area

is used commonly.13,14

Previous literature found that properties of bioinspired

silica depended on multiple synthesis parameters such as the

pH, the type of amine additive, the type of silicon precursor,

the ratio of the concentrations of the silicon precursor and

amine additive (Si : N), the reagent concentration ([Si]), and

the reaction time, amongst others.11 Generally, the silica

yield increased from initially 0 to 100 mol% with decreasing

Si : N ratio and increasing reaction time.15–17 Small straight

chain amines such as tetraethylenepentamine (TEPA), as well

as polymeric ones such as poly(ethylene imine) (PEI) were

found to produce yields of around 50 mol%.11,18 Annenkov

et al. investigated how two different sizes of poly(vinyl amine)

(PVA) affected the concentration of silicic acid monomers

over a certain time range15 and their results showed that the

initial silicic acid concentration decreased with increasing

reaction time. Although, a direct correlation to the yield

could not be established, the data suggests that the yield

generally increased with increasing reaction time.

The silica yield response, studied by Patwardhan and

Perry,16 observed that the silica yield increased with reaction

time. As the Si : N ratio and [Si] were changed

simultaneously, no conclusions could be drawn for those

two factors individually, apart from a 100 mol% silica yield

at 5 min reaction time, regardless of the factor levels.

Manning et al. investigated how the silica yield changed

when the type of additive and the reaction pH were both

varied.11 They found that the amount of coagulated silica

decreased from 66 to 47 mol% when decreasing the pH

from 7 to 6.65.

Unlike yield, the Brunauer–Emmett–Teller (BET) surface

area13 has been widely reported. Short chain and polymeric

amines produced a range of surface areas from 10 to 700

m2 g−1.19,20 However, the BET surface area generally

decreased with increasing mixing time, whereas the yield

increased with reaction time, highlighting a typical

optimisation problem whereby the best compromise between

different responses must be found.21,22 Belton et al. reported

the BET surface area of bioinspired silica which was prepared

by varying a range of factors.21–23 They found that the surface

area reduced (e.g. from ∼700 to 400 m2 g−1 or even to 0

m2 g−1) with either increasing additive length (with or

without changing the amines per molecule) or decreasing Si :

N ratio. As the three factors (amine type, reaction time, and

silicon to nitrogen ratio) were investigated one-factor-at-a-

time (OFAT), it was not possible to estimate how the surface

area varied with a simultaneous change in all three factors.

Many other studies on bioinspired silica did not investigate

the BET surface area as their focal point and therefore only

Fig. 1 Schematic representation of the bioinspired silica synthesis pathway. Condensation of silica monomers, mediated by self-assembly and

catalysis of amine additives, produces silica oligomers which subsequently further grow into solid polymeric silica particles that precipitate out of

the reaction suspension.

MSDEPaper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

4
 M

ar
ch

 2
0
2
1
. 
D

o
w

n
lo

ad
ed

 o
n
 3

/9
/2

0
2
1
 2

:4
1
:1

2
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



Mol. Syst. Des. Eng.This journal is © The Royal Society of Chemistry and IChemE 2021

reported individual values, which is insufficient to develop

predictive models.

Other parameters such as the pH and [Si], which have

known influences on the kinetics, reaction mechanism and

silica formation pathways24 were generally kept constant

within and between different studies and thus the effect of

those factors and the impact of the interplay between them

on the yield and BET surface area remains unknown. Table 1

summarises recent literature on the optimisation of

bioinspired silica. It reveals that studies were unsuccessful in

holistically optimising silica by accounting for multiple

factors, as the experiments were unsystematic and also did

not attempt to optimise several responses simultaneously.

Moreover, previous studies aimed to gain a qualitative

understanding and experiments were carried out in an OFAT

or univariate way. This is likely due to a complex nature of

the parameter space and interdependencies, which in turn is

a barrier to unlock the potential of bioinspired silica. As such

an empirical quantitative understanding can be gained by

more systematic experimentation.

Beyond bioinspired silica, conventional types of silica

nanomaterials were previously successfully developed using

organised statistical approaches, in particular design of

experiments (DoE), which allows product and process

optimisation by sound mathematical evidence. As part of the

DoE framework, efficient designs determine the combination

of synthesis factors and factor levels for each treatment in

order to provide a robust groundwork of experimental results

(observations) with the least amount of experiments

necessary. After the experiments, the statistical analysis

employs multivariate statistical methods to determine the

significance of synthesis factors and their interactions. A

powerful advantage is the possibility to construct linear

regression models to establish empirical relationships for

prediction of product responses as a function of synthesis

factors.25

Full and fractional factorial designs have been successfully

used previously to screen the synthesis of Stöber silica,30–32

SBA-15,33 and silica via dissolution precipitation.34 Whereas

factorial designs are regarded as resource-efficient for

identification of significant synthesis factors, they often do

not contain a sufficiently large number of treatments for

response modelling with more precise second-order

regression polynomials. As such, more elaborate central

composite designs were used to model the complex

relationship between multiple synthesis factors and product

property responses for sol–gel silica.35,36 However, the risk

with using designs that necessitate many treatments at an

early stage of the optimisation process is that not all factors

might be statistically significant, and thus the resulting

models may be unnecessarily complex. Experimentation was

performed more efficiently with the stepwise approach used

for zeolite-X and mesoporous TUD-1 silica, in which compact

screening designs were employed upfront for factor selection,

followed by more detailed designs for modelling the

remaining few significant factors.37,38 A holistic DoE strategy

could have reduced the numbers of required trials further by

re-using some of the treatments from the screening study for

the optimisation by concatenating both designs. Additionally,

it must be noted that all DoE studies constructed the

regression models with the design factor levels, which might

have differed slightly from the factor levels attained during

Table 1 A summary of literature on bioinspired silica showing selected examples where a range of factors were investigated and corresponding

responses

Additivea Si precursorb Si : N (mol mol−1) pH [Si] (mM) Time (min) Observation Ref.

Silica yield
PVA-238, PVA-1100 Na2SiO3·9H2O 1.5 10 10 0–1440 n/ac 15
PEHA Na2SiO3·9H2O 0.5, 1, 2 6.5, 7 20–40 0–5 Max 100 mol% 16
PEI TMOS n/ac n/ac 2.3 40 12–15 mol% 26
PDPA23–PDMA68 TMOS 1057 7.2 185 20 58 mol% 18
PEHA, TETA, DETA, PEI Na2SiO3·5H2O 1 7 30 5 47–66 mol% 27

Silica BET surface area
MEDA, DETA, SPDN, TETA, SPN, TEPA, PEHA SiCat, TMOS 1.7–0.08 7 30 1440–10 080 0–700 m2 g−1 21
MEDA, DA4, DA6, DA8, DA10 SiCat 1 6.8 30 1440–10 080 400–700 m2 g−1 22
Poly(ethylene amine), propylamine SiCat 1 6.8 30 1440 0–650 m2 g−1 23
TETA, TEPA, PEHA Na2SiO3·5H2O 1 7 30 5 12.8–15.6 m2 g−1 19
DETA, TETA, TEPA, PEHA Na2SiO3·5H2O 1 7 30 2 19–37 m2 g−1 28
PEHA Na2SiO3·5H2O 2 7 30 5 45 m2 g−1 12
PEHA Na2SiO3·5H2O 1 2–7 30 5 30–300 m2 g−1 29
PEI TMOS n/ac n/ac 2.3 40 71 m2 g−1 26

a PVA-238 = poly(vinyl amine) 238 units, PVA-1100 = poly(vinyl amine) 1100 units, PEHA = pentaethylenehexamine, PEI = poly(ethylene imine),
PDPA23–PDMA68 = poly(2-(diisopropyl-amino)ethyl methacrylate)-block-2-(dimethylamino)ethyl methacrylate, TETA = triethylenetetramine, DETA
= diethylenetriamine, MEDA = monoethylenediamine, SPDN = spermidine, SPN = spermine, TEPA = tetraethylenepentamine, DA4 =
1,4-diaminobutane, DA6 = 1,6-diaminohexane, DA8 = 1,8-diaminooctane, DA10 = 1,10-diaminodecane, propylamines = N,N′-(bis-3-
diaminopropyl)-1,3-diaminopropanes. b Na2SiO3·9H2O = sodium metasilicate nonahydrate, TMOS = tetramethyl orthosilicate, Na2SiO3·5H2O =
sodium metasilicate pentahydrate, SiCat = dipotassium tris(1,2-benzenediolato-O,O′)silicate. c Not available or could not be calculated from the
data provided.
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the experiments. More realistic models could have made use

of actual factor levels instead.

Another important strategy to identify and optimise key

factors is through a sensitivity analysis, which characterises

the relationship between the model's inputs and outputs.39

Sensitivity analysis can be split into three key approaches:

screening,40,41 local sensitivity analysis42,43 and global

sensitivity analysis (GSA).44,45 Specifically, GSA is powerful

because it quantifies the variation of the model output, fully

exploring the input space within the entire parameter

domain. The most popular GSA method is a variance-based

decomposition analysis that calculates Sobol' sensitivity

indices.44–47 However, the calculations require a significant

number of data points evaluations to ensure convergence of

integrals to a satisfactory precision level. Therefore, in a wide

range of disciplines, surrogate models are used to reduce the

number of evaluations by directly interrogating the model.

For example, polynomial chaos expansion was used for CO2

pipeline safety,48 artificial neural networks studied

combustion kinetics,49 and Gaussian processes (GPs)

analysed lithium ion battery safety.50 However, their

application in materials chemistry is rarely reported.

As can be seen, efforts for a systematic optimisation of

bioinspired silica properties, such as the silica yield and BET

surface area, have been unfruitful so far. Given the lack of

clarity over the factor–response relationship, the tailored

synthesis of silica towards ideal process parameters and

desired material attributes has been held back, which in turn

has been a barrier to its commercialisation, despite its

potential to provide sustainable manufacturing of high-value

porous nanomaterials. As shown in the literature above, DoE

has been employed for similar silica syntheses, but most

studies conducted a single standalone type of design and

rarely combined multiple ones in an integrated strategic

approach.

As a result of these limitations, this work aims to, for the

first time, quantitatively model the multivariate input–output

relationship between the factors (pH, Si : N, [Si]) and the

responses (silica yield, silica BET surface area) for the

bioinspired silica synthesis. A novel methodical sequential

strategy was devised consisting of pre-screening, screening,

and optimisation experiments shown in Fig. 2, with the aim

of not only synthesising a sustainable silica material, but also

of rendering the material's product development pathway

more resource-efficient. Further, we also apply the GSA

methodology for the first time to bioinspired silica in order

to explore its suitability and compare the results with the

DoE outcomes for complementation and cross-validation.

While there may be other techniques for multi-dimensional

modelling, they can generally be described as statistical

methods (e.g. multivariate or Bayesian approaches) and/or

machine learning approaches (e.g. artificial neural networks,

GPs).51 The combined use of DoE with GSA was reported for

the identification of significant parameters in in silico

simulation of cell growth in batch reactors,52 in silico

modelling of metabolic networks,53 and for

biopharmaceuticals freeze-drying,54 leaving a research gap in

its application to materials synthesis. Indeed, the integrated

employment of specifically DoE and machine learning tools,

harnessing the capabilities of both techniques, has been

identified as a research frontier for inorganic materials

synthesis.55 This review also mentions that, owing to more

input variables such as synthesis and process history, and

more output variables including structure and texture,

materials synthesis generally faces more complexity than

small molecules preparation. As such, the application of a

novel sequential strategy in combination with a machine

learning approach to bioinspired silica is of significant

novelty.

2. Materials and methods
2.1 Design of experiments methodology

Fig. 2 shows a unique methodical DoE strategy developed,

which was divided into three experiments:

1. A pre-screening experiment to locate a feasible design

space (Fig. 3a),

Fig. 2 Holistic design of experiments strategy for the bioinspired silica

synthesis. Each of the three consecutive experiments (pre-screening,

screening and optimisation) were conducted in four consecutive steps:

design selection according to the algorithm partly adapted from ref.

56, experimental design, bioinspired silica synthesis, and statistical

analysis. The designs are detailed further in Fig. 3 and the text. The

“Decision” involved identifying if there is a curvature to the responses

and if there were any unimportant factors, see text for details.
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2. a screening experiment using a full factorial design

(FFD) to identify the significant synthesis factors (Fig. 3b),

and

3. an optimisation experiment for regression modelling

using a central composite design (CCD), Fig. 3c and d.

Each of the three experiments was conducted in four

consecutive steps: first the type of design was chosen based

on the DoE algorithm partly adapted from ref. 56. Secondly,

the experimental design was constructed, then bioinspired

silica (BIS) was synthesised and characterised according to

the treatments prescribed by the design and according to the

method described in section 2.2, and finally the measured

observations were statistically analysed using methods

appropriate for the purpose of each experiment. These four

steps were completed for one experiment (e.g. pre-screening)

before the next experiment was commenced (e.g. screening).

At the initial stage, the pre-screening experiment (shown in

a red box in Fig. 2) used a semi-systematic approach using two

additives to visually identify under which conditions of the Si :

N and [Si] factors the synthesis produced bioinspired silica

(also shown in Fig. 3a and Table S1 in the ESI†). For the

subsequent screening experiment, a 23 full factorial design (3

factors each at 2 levels) was selected with the additional factor

pH at levels pH 6 and 8, resulting in the blue cube in Fig. 2

(also shown in Fig. 3b). The combination of factors and levels

is also tabulated in Table 2 and runs were carried out randomly

to avoid bias. After synthesis, for segregation of the significant

from the insignificant factors for both responses, evidence was

drawn from an effects analysis, an analysis of variance

(ANOVA), and a residual analysis as described below.

After this point, the algorithm contained a decision gate,

and because the screening experiment revealed interacting

factors causing curvature in the silica yield and BET surface

area responses, a subsequent optimization experiment was

justified. The benefit of sequential experimentation became

apparent here. As described in the discussion below (section

3.2), the [Si] factor was identified to be an unimportant factor

and was hence removed, allowing the central composite design

to be run with one less factor. For the optimisation design, the

distance between the centre and the outer point was α = 1.414,

hence superimposing the CCD onto the FFD at the high level

of [Si] was possible. This enabled the reuse of four treatments

from the previous experiments, as can also be seen from

Fig. 3c and Table 2. If a CCD had been chosen to run

immediately without a preceding FFD, 15 treatments would

have been required, whereas sequential experimentation and

design concatenation required only 13 treatments to screen

and optimise the silica synthesis. Experimental efficiency of

this methodical strategy could be expected to increase with an

increasing number of factors investigated.

In order to mathematically relate the significant factors to

the responses, second-order linear regression models were

constructed of the form

y = β0 +
P

βixi +
P

βijxixj +
P

βiix
2
i (1)

where y is the response, β0 is the intercept of the regression

plane with the y axis, βi are the regression coefficients of the

main factors, βii are the regression coefficients of the

quadratic main factors, βij are the regression coefficients of

the factor interactions, and xi and xj are the regressor

variables of the factors or factor interactions.57 Model

selection of the 31 possible regression models per response

was performed with the all possible or best subsets regression

technique.58 Finally, with use of response surfaces and

overlaid contour plots, the bioinspired silica synthesis could

be optimized towards maximum yield or porosity individually,

or towards a best compromise between the two responses.

2.2 Experimental methods

2.2.1 Chemicals. Sodium metasilicate pentahydrate (Na2-

SiO3·5H2O, ≥95%), sulfuric acid (97%), ammonium molybdate

tetrahydrate (99.98%), hydrochloric acid (37%), sodium

hydroxide pellets (NaOH, ≥98%), and branched poly(ethylene

imine) (PEI, Mw = ∼25000, Mw/Mn = ∼2.5; Mw: weight-average

molecular weight, Mn: number-average molecular weight) were

purchased from Sigma Aldrich; tetraethylenepentamine (TEPA,

≥95%), and anhydrous oxalic acid (98%) from Acros; and

hydrochloric acid solution (1 M), 4-methylaminophenol sulfate

(metol, 99%), and anhydrous sodium sulfite (98%) from Fisher.

All chemicals were used as received without further

purification. Water was purified to 15 MΩ in-house.

2.2.2 Synthesis and characterisation. For each of the pre-

screening, screening, and optimization experiment the

complete four-step synthesis of bioinspired silica was carried

out as shown in the strategy (Fig. 2) and described

elsewhere.10,11 Sodium silicate and amine were weighted out

and dissolved in water to meet their levels prescribed by the

design (designed levels). Upon thoroughly mixing them using a

magnetic bar, a pre-determined amount of 1 M hydrochloric

Fig. 3 Graphical representations of the experimental designs. (a) Pre-

screening experiment, (b) full factorial design of the screening

experiment, (c) concatenated screening and optimisation design, and

(d) central composite design of the optimisation experiment.
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acid was dosed in a single aliquot with an autotitrator (902

Titrando, Metrohm, 3-point calibrated) under constant stirring

to make up a final reaction volume of 150 mL. pH after 5

minutes from the point of addition of acid was recorded. As

the statistical analysis used herein can account for minor

experimental deviations from the designed factor levels, all

measurements of reagent masses, liquid volumes and final pH

were recorded so that actual levels of Si : N, pH and [Si] were re-

calculated for more realistic data analysis. The white particle

suspension at the end of the reaction (after 5 min) was

centrifuged for 15 min at 5000 rpm (Sorvall ST16, Thermo

Fisher Scientific). After the first centrifugation, supernatant

was collected for determination of the silica yield and

precipitated silica was washed with fresh water and centrifuged

a total of three times before being dried at 60 °C for 1 week.

The silica yield was evaluated using an adaptation of the

silicomolybdic acid spectrophotometric method.24 The

molybdate reagent was prepared by dissolving 1 g of

ammonium molybdate tetrahydrate with 6 mL 37%

hydrochloric acid and making up to 100 mL with water. The

reducing agent was prepared by dissolving 10 g oxalic acid,

3.35 g metol, 2 g anhydrous sodium sulfite and 50 mL

sulfuric acid with the balance water to make 500 mL of

solution. For determination of unreacted monomeric silicic

acid at the end of the reaction, 10 μL of supernatant was

added to 3 mL water and 0.3 mL molybdate reagent. After

exactly 15 minutes, 1.6 mL reducing agent was added and the

assay left to develop overnight, before absorbance

measurement at 810 nm against a linear calibration curve.

For the determination of oligomeric and precipitated

Table 2 Treatments, silica yield and BET surface area from the synthesis of bioinspired silica with TEPA. When concatenating the designs, the last four

treatments of the FFD were used for the CCD together with the remaining five treatments

Treatment

Factors Responses

pH (−) Si : N (mol mol−1)
[Si]
(mM)

Silica
yield
(mol%)

Silica
BET
surface
area
(m2 g−1)

Design
level

Actual
levela

Design
level

Actual
levela

Full factorial design
(Treatments 1–9)

1 6 — 0.5 — 30 54 46
6 — 0.5 — 30 54 52

2 8 — 0.5 — 30 72 15
8 — 0.5 — 30 58 13

3 6 — 2 — 30 12 118
6 — 2 — 30 24 184

4 8 — 2 — 30 70 18
8 — 2 — 30 70 14

5 6 5.82 0.5 0.50 60 40 105 Central composite design
(Treatments 5–13)6 5.72 0.5 0.50 60 35 98

6 8 8.01 0.5 0.50 60 90 31
8 8.02 0.5 0.50 60 89 30

7 6 5.95 2 2.00 60 19 264
6 5.98 2 2.00 60 24 397

8 8 8.04 2 2.00 60 86 16
8 8.00 2 2.00 60 87 17

9 5.59 5.58 1.25 1.25 60 31 182
5.59 5.58 1.25 1.25 60 23 217

10 8.41 8.45 1.25 1.25 60 88 22
8.41 8.45 1.25 1.25 60 87 20

11 7 6.87 0.19 0.19 60 90 33
7 6.84 0.19 0.19 60 90 33

12 7 7.05 2.31 2.31 60 80 46
7 7.00 2.31 2.31 60 74 47

13 7 7.01 1.25 1.25 60 80 46
7 7.00 1.25 1.25 60 81 56

a Actual factor levels replaced with a dash (—) were irrelevant since the full factorial design assumed factor levels to be fixed.
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“polymeric” silica, supernatant or the precipitate were first

depolymerised to monomeric silicic acid by heating for 1

hour at 80 °C with an equal volume of 2 M NaOH before

being subjected to the same silicomolybdic acid

spectrophotometric method. The BET surface area of the dry

silica samples was determined by nitrogen adsorption

analysis at 77 K (TriStar II 3020, Micromeritics), after

overnight degassing at 105 °C. In alignment with the relevant

standards, the BET isotherm was applied to the relative

pressure range 0.05 ≤ p/p0 ≤ 0.3 where completion of the

monolayer was expected.59,60

2.3 Global sensitivity analysis methodology

This work utilises a GP surrogate model to calculate the

Sobol' indices as a variance-based GSA technique. Sobol'

indices describe how much of the variance of an output can

be decomposed into terms that are dependent on the input

factors.61 Each input factor has different levels of Sobol'

indices corresponding to the amount of inputs that the

variance is expressed by. The first-order Sobol' index (Si)

corresponds to the amount of variance solely attributable to a

factor xi. Whereas total Sobol' index (STi ) expresses the whole

effect of xi including its interactions with all other input

factors. Thus, the effect due to interactions with the

remaining input factors is calculated by the difference

between STi and Si.

The calculation of Sobol' indices is performed through a

decomposition method presented by Sobol'62 which evaluates

each term through multidimensional integrals that require a

large sampling cost.63 Therefore, this work encapsulated the

experimental data from Tables 2 and S1† using a machine

learning technique to produce a model that captures the

behaviour in a cheaper, simpler framework. GP regression

predicts the model response (silica yield or silica BET surface

area) by taking a (1 × 3) row vector of input factors x (pH, Si :

N, [Si]) and returns a Gaussian random variable y, through

calculations using the predictive equations presented by

Yeardley et al.64 Within the predictive equation, the

automatic relevance determination (ARD) kernel function

expresses the correlation between responses to input

samples65 as follows:

k x′; xð Þ :¼σ2f exp −
x − x′ð ÞΛ − 2

x − x′ð ÞT

2

� �

(2)

where Λ is a (3 × 3) diagonal positive definite length-scale

matrix. The GP surrogate model uses the experimental data

to learn the mapping from training inputs X to the observed

response y. Regression uses the learned model to make

predictions and so requires the optimisation of 3 + 2

hyperparameters, constituting of Λ, σf and σe, through the

maximum marginal likelihood p[y|X] using the ROMCOMMA

software library.66 The mean of the conditional GP is then

used to calculate the Sobol' indices resulting in semi-analytic

Sobol' indices as shown by the mathematical details

described elsewhere.50

3. Results and discussion
3.1 Pre-screening experiment

The aim of the stepwise strategy was to first find a suitable

range of factors that were commonly employed and to

identify the best performing additive, before employing other

factors in the study. Therefore, initially a pre-screening

campaign with 56 experiments was performed using two

additives – poly(ethylene imine) (PEI) and tetraethylenepenta-

mine (TEPA), see Table S1† and Fig. 3a. The syntheses were

performed by varying the silica precursor concentrations

between 2 and 193 mM and the Si : N ratio from 16 to 1/16,

while keeping the pH at 7 according to previous

methods.11,17 As polymers and small molecules exhibit

different mechanisms in the formation of bioinspired silica

due to the effects from polymeric chain conformation,

dynamic cooperative assembly between additive and silicates,

and increased density of cationic charge,67,68 here we discuss

qualitatively the results obtained from PEI and TEPA

separately. These results feed into the DoE by identifying

areas in the reaction space (not) to focus on. With the use of

PEI (Fig. 4a), yields of up to 100% were observed with highest

surface area reaching ∼440 m2 g−1. Two scenarios were

clearly identified where no precipitation occurred. They

include low Si : N ratios (<0.09 or <1/11), i.e. high additive

concentrations and low precursor concentration ([Si] ≈ 2

mM). This finding is supported by the literature where high

concentration of additive has resulted in stabilisation of

silica oligomers, leading to reduced or no precipitation even

after centrifugation.21 While it is known that precursor

concentrations much lower than 20 mM does not lead to

significant precipitation within the 15 min synthesis

Fig. 4 Yield and surface areas obtained from samples listed in Table

S1† using (a) PEI or (b) TEPA as the additive. Samples 17 and 45 show

results from identical repeats (samples 17–28 and 45–56 respectively

for PEI and TEPA as show in Table S1†).
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timescales used herein,69 2 mM is close to equilibrium

solubility of silica and hence lack of precipitation at this

concentration is expected.70 In order to assess the experimental

errors associated with the synthesis and characterisation,

samples 17–28 were prepared with identical conditions. The

results show that while the average yield of 93 mol% was highly

reproducible (with a low standard deviation of 4 mol%), the

average surface area of 158 m2 g−1 was spread wider (standard

deviation = 58 m2 g−1). Although a similar systematic study has

not been reported before, previous experience suggests that

variation in surface areas of bioinspired silica obtained from

polymeric additives is not surprising due to the effects from

polymeric solubility, conformation and assembly, which are

not yet fully understood.

In the case where TEPA was used as the additive, most

samples produced silica precipitate except for very low [Si]

(sample no. 41 and 42 in Table S1†) or very high Si :N (sample

no. 39 and 40). Although high yields were obtained with TEPA,

they did not reach 100% as observed for PEI (Fig. 4b). This

supports the literature findings that generally, cationic

polymers are more effective in flocculating and precipitating

silica when compared to smaller amines.67,71 Further, samples

obtained using TEPA were generally low in surface area, again

consistent with the literature.21 Sample no. 45–56 were

identical and used for measuring the experimental errors.

Unlike the case of PEI, when TEPA was used, the

reproducibility was much higher (average yield = 80 ± 6 mol%

and average surface area 35 ± 4 m2 g−1). Based on these

findings of the pre-screening study, prior knowledge of the

system described in the literature above, and a profitability

analysis described elsewhere,12 a narrow feasible screening

region was constructed, which is depicted with a blue box in

Fig. 3a, which is bound by the levels of 0.5 and 2 mol mol−1 for

the Si :N factor, and 30 and 60 mM for the [Si] factor.

3.2 Screening experiment

Moving from the pre-screening campaign, as described in the

methods section above, a novel DoE approach was developed

using a full factorial design (FFD) followed by a central

composite design (CCD), leading to 13 “treatments” in total

(see Table 2), each run in duplicate. This was followed with

optimisation (described in section 3.3). These stages are also

shown in Fig. 3b–d, indicating the reaction space mapped

herein. Briefly, in addition to [Si] and Si : N, pH as a third

factor was also included. pH is known to affect silica

synthesis,24 however, it has not been systematically varied

before in the context of bioinspired silica. Each factor was

investigated at two levels. Due to the variability observed

when using PEI, the screening study was focussed on TEPA.

The responses observed for each treatment are tabulated in

Table 2, which were first visualised in Fig. 5 and then used in

a detailed statistical analysis described below.

Fig. 5 depicts the experimental results for the treatments

of the screening and optimisation experiment for the yield

and surface area responses. Fig. 5a shows the distribution of

silica species – the monomer, oligomers and the polymer (or

the precipitate). Of these, only the polymeric silica precipitate

Fig. 5 Experimental observations of the screening and optimisation

experiments. (a) Distribution of silicate species, (b) the BET surface

areas for each treatment, and (c) the yield and surface area data from

part (a) and (b) plotted together.
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was used as the silica yield response. These results indicate

that generally a low pH leads to low yield, either due to poor

conversion of monomers (e.g. treatments 1 and 3) or

stabilisation of oligomers (e.g. treatments 5, 7 and 9). The

precipitates collected were dried and then analysed using N2

adsorption followed by BET analysis to obtain specific surface

areas. A typical nitrogen adsorption–desorption isotherm

obtained for bioinspired silica is shown in Fig. S1.† The

general shape of the isotherm and the hysteresis over the

entire relative pressure range suggests a product with

heterogeneous texture and a mixture of micro-, meso- and

macropores. The BET surface areas calculated for each

treatment are shown in Fig. 5b. When the yields and surface

areas are superimposed in a single graph (Fig. 5c), it becomes

clear that there is a tension between these two responses (e.g.

see treatment 6 vs. 7). We will return to this point in the

optimisation section below.

In order to identify which of the synthesis factors and

their interactions caused a statistically significant change in

the yield and surface area, an effects analysis, an analysis of

variance, and a residual analysis were performed. In

Fig. 6a and d, the “main effects” of factors relative to each

other were compared in an effects plot, which is customarily

constructed as a set of straight lines where the slope of the

line is a direct indication of the importance of the factor.57 A

“main effect” is the difference between the average

observations at the high and low level of a factor. For

example, the value of the main effect of pH on silica yield

was 32.8 mol% at low pH and 77.8 mol% at high pH. Fig. 6a

evidences that the pH had the largest effect on the silica

yield, which increased positively with increasing pH. The Si :

N ratio impacted the yield in the opposite direction, but to a

lesser extent, while the almost negligible variation of the

yield with a change in [Si] suggests that this factor could be

insignificant within the range of the reaction space

considered herein. Similarly, the BET surface area (Fig. 6d)

was most heavily impacted by the pH, but the trend was in

opposite direction to the yield. This highlighted again the

tension between the two desired outcomes and hence the

need to find an optimum between yield and surface area.

Both Si : N and [Si] positively influenced the surface area, i.e.

increasing these factors increased the surface area. However,

the effects were indiscernible from each other by visual

inspection, which is a drawback of main effects plots and

hence further analysis was performed with interaction plots

and half-normal probability plots (Fig. 6b, c, e and f).

In the interaction effects plots (Fig. 6b and e), lines

representing two factors that are severely not parallel or

even intersecting (although the latter is not a requirement)

indicate opposing or synergistic effects between two factors.

The greater the difference between their slopes, the higher

the intensity of their interactions. When two lines are

parallel or almost parallel, then the interaction of two

factors is insignificant. The less the difference between their

slopes, the less the intensity of their interactions. For the

silica yield (Fig. 6b), the Si : N × pH and the pH × [Si]

interactions were found to be important, given the

differences in the slopes of the lines shown, while the Si : N

× [Si] interaction was insignificant. A similar pattern

emerged for the surface area (Fig. 6e), but it was unclear

whether the pH × [Si] interaction was significant. In order

to confirm the important factors and their interactions, the

Fig. 6 Effects plots for the silica yield (a–c) and BET surface area (d–f). (a and d) Main effects plot, (b and e) interaction effects plot, and (c and f)

half-normal probability plot.
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effects analysis was concluded by half-normal probability

plots (Fig. 6c and f). In such analysis, factors and their

interactions with negligible effects (shown in blue) are

normally distributed and lie on a straight line, whereas

significant factors (shown in red) are non-normally

distributed and lie far apart from the normal distribution

line. Again, for both the silica yield and surface area, pH

stood out as an important factor. However, a more

quantitative method in addition to this qualitative graphical

analysis is required to objectively assign statistical

significance to the other factors and their coupled effects.

To complement the visual effects analysis shown in Fig. 6,

an ANOVA (Table 3) was conducted for both responses. The

basis of the ANOVA was an F-test, which compared the

amount of variability present between and within treatments,

analogously to a signal-to-noise ratio, and which is

summarised in the p-value. In order to be 99% confident that

a given factor or interaction is statistically significant, the

level of confidence was set to α = 0.01. Thus, a factor or

interaction was deemed significant if p < 0.01. As the

F-distribution was based on a normal distribution, normality

of the experimental observations was checked with normal

probability plots of residual (Fig. S2 and S3†). Since no gross

departure from normality was detected, the ANOVA was

considered a valid and applicable technique.

From the ANOVA of the yield and surface area, the Si : N,

pH, and Si : N × pH factors were found to be significant. This

also confirmed that the change in silica yield resulting from

the intentional variation of Si : N and pH was more

significant than any random experimental error. The only

difference is that for silica yield, the pH × [Si] interaction

emerged as an additional significant effect, although the [Si]

factor was not important on its own (p = 0.021 > 0.01).

According to non-hierarchy, it is indeed possible that a factor

exhibits no significant main effect but is involved in a large

factor interaction.72,73 On the other hand, for surface area,

the [Si] factor was marginally significant on its own (p = 0.01

0.01), and certainly not significant when in an interaction.

This statistical analysis of systematically designed

experimental campaign identified statistically significant

effects and further helped to reduce the number of synthesis

factors for further optimisation. As such, based on the effects

analysis, ANOVA, and non-hierarchy principle, the Si : N ratio

and pH were selected for the consecutive optimisation

experiment discussed below.

3.3 Optimisation experiment

The objective of the optimisation experiment was to obtain a

mathematical model of appropriate complexity for the

purpose of predicting and optimising both the yield and

surface area. The statistical analysis employed linear

regression modelling and a best subsets regression model

selection to find the most suitable relationship between a

given response (yield or surface area), and the factors

identified earlier to be statistically relevant (Si : N and pH).

The [Si] factor was found unimportant during the screening

experiment and was therefore held constant during

optimisation. For both responses, the 31 possible regression

models of different complexity were calculated in the form of

eqn (1), using the observations from Table 2 as input. We

Table 3 ANOVA for identification of significant synthesis factors for the silica yield and silica BET surface area responses based on α = 0.01

Factor

Yield (mol%) Surface area (m2 g−1)

SSa DFb MSc F-Value p-Value Significant? SSa DFb MSc F-Value p-Value Significant?

Si : N 616 1 616 25.37 0.001 Yes 25 418 1 25 418 18.44 0.003 Yes
pH 8158 1 8158 336.06 0.000 Yes 77 038 1 77 038 55.90 0.000 Yes
[Si] 199 1 199 8.18 0.021 No 15 509 1 15 509 11.25 0.010 No
Si : N × pH 729 1 729 30.01 0.001 Yes 29 331 1 29 331 21.28 0.002 Yes
Si : N × [Si] 39 1 39 1.60 0.242 No 3131 1 3131 2.27 0.170 No
pH × [Si] 735 1 735 30.27 0.001 Yes 11 575 1 11 575 8.40 0.020 No
Si : N × pH × [Si] 196 1 196 8.09 0.022 No 5171 1 5171 3.75 0.089 No
Error 194 8 24 8 1378
Total 10 866 15 15

a Sum of squares. b Degrees of freedom. c Mean square.

Fig. 7 Selection of the linear regression model for the silica yield (a)

and surface area (b) by employing the best subsets regression method.

Parity plots of the selected regression models are shown for (c) the

silica yield and (d) the silica BET surface area responses.
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used the actual factor levels as input instead of the design

factor levels as they allowed the construction of more realistic

regression models. This approach is rarely reported for DoE-

based experimentation. However, the benefits from using our

approach are clear from the fact that results from the

modelling between design and actual differed by up to 50%

even though the input values did not differ greatly, and

sometimes the actual level was identical to the designed level.

The selection of the most appropriate regression model

was then performed graphically using the best subsets

regression method for the yield (Fig. 7a) and the BET surface

area (Fig. 7b). The plots show the maxima of three

coefficients of multiple determination for models containing

2 to 6 terms. R2 always increases with additional model

terms, thus models with the peak R2 values might be too

complex. Instead, the adjusted R2 (R2adj) accounts for

statistically significant terms and decreases in value if

redundant terms are present in the model. Similarly, the

prediction R2 (R2pred) evaluates how well a given model

predicts a response by removing a particular observation,

fitting a model to the remaining observations and testing

how precisely the model predicts that missing observation. It

is also highest for the model with the greatest predicting

capabilities, which does not necessitate to be the most

complex correlation.57

Given the fact that models left of the peak R2adj and R2pred
are generally underfitting, and models right of these values

tend to overfit the experimental data, the most appropriate

models were chosen to be the models with 5 terms, which

yielded the following correlations:

Yield (mol%) = −701.6 − 59.8 × Si : N + 211.8 × pH + 7.3 × Si : N

× pH − 14.1 × pH2 (3)

BET surface area (m2 g−1) = 1556.3 + 631.0 × Si : N − 471.7

× pH − 84.1 × Si : N × pH + 35.7

× pH2 (4)

For the silica yield model, all types of R2 statistics were above

0.93, giving great confidence in the appropriateness of the

selected equation, whereas for the silica BET surface area,

the three R2 values were between 0.70 and 0.85, indicating

that 70 to 85% of the trend in porosity was explained by the

model. The validity of the regression models was checked

with parity plots shown in Fig. 7c and d, which depict the

experimental observations against the observations predicted

by the chosen model. The general proximity of the data points

to the x = y parity line suggested that the models were robust

for the bioinspired silica system over the range studied.

Three-dimensional representation of regression models

allowed direct visualization of the trend in silica yield (Fig. 8a)

and BET surface area (Fig. 8b) and of the close fit between

experimental observations (black spheres) and the response

surface. Further, literature values were also plotted, which

compared very well with the models. This robust prediction of

the effect of synthesis factors on product characteristics and

Fig. 8 Three-dimensional response surfaces of the selected

regression models for (a) the silica yield and (b) the BET surface area.

Black spheres represent the data collected herein while other points

show additional literature values obtained from (i) ref. 16, (ii) ref. 11, (iii)

ref. 19 and (iv) ref. 29. (c) Overlaid contour plot of the model for silica

yield (blue) and silica BET surface area (red) for optimisation of both

responses simultaneously. The grey region enables to synthesise silica

with the constraints that the yield should exceed 60 mol% and the BET

surface area should exceed 100 m2 g−1.
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optimisation of the bioinspired silica system was only

possible with this holistic model accounting for multiple

factors over a large experimental range. The only literature

exception was the red points in Fig. 8a where the yields from

continuous flow tubular reactors16 exceeded the predictions.

As continuous processes generally show better yields, this

underestimation of yield using our models developed from

small scale batch experiments is not unexpected.

Fig. 8a and the model shown in eqn (3), in alignment with

the earlier analysis, shows that the silica yield was most

drastically affected by the pH and increased from 20 mol% at

pH 5.5 to 80 mol% at pH 8.5. The impact caused by the Si : N

factor was less pronounced and the yield increased only

slightly with decreasing Si : N. The surface area plateaued at

about 50 m2 g−1 and increased steeply with decreasing pH

and increasing Si : N. Although these observations are

consistent with the literature,1,8,9 this study incorporated

both factors simultaneously and hence was able to explain

the trend in greater detail accounting for interactions

between factors. For example, the strong curvature of the

model towards the top right-hand corner for surface area

(Fig. 8b) was indicative of a strong Si : N × pH interaction.

From a mechanistic perspective, eqn (3) and (4), and

Fig. 8a and b show a strong influence of pH on both

responses. There are three factors that are likely to contribute

to this pH dependency. Firstly, the rate of silica formation

decreases with the pH below ∼pH 8 (i.e. the reaction is slow

at low pH), while it is maximum at around pH 7–8 (p177 of

ref. 24). We have shown this mechanism is also valid for

bioinspired silica,69 while in the present work, we have

discovered the quantitative relationships. Secondly, silica

particle growth follows distinct pathways at acidic and basic

pH (p174 and p519 of ref. 24). At acidic pH, formation of a

network of primary particles leads to higher surface areas. At

higher pH, individual particles grow without forming a

network, thereby forming low surface area particles. Finally,

as bioinspired silica synthesis is driven by the protonation

and deprotonation of the additives, eqn (3) and Fig. 8a show

a significant role of pH in controlling the yield. At higher pH,

the silicates are highly negatively charged, leading to stronger

interactions with the additive (positively charged amines). At

low pH, these interactions diminish due to the protonation

of ≡Si–O− ions to ≡Si–OH. These interactions between the

pH and amine (Si : N) are clearly identified by the models

(eqn (3) and (4)).

This multidimensional study visualised the interplay

between factors, which traditional experimentation techniques

failed to achieve. As a result, unlike any previous studies, the

maximum economic viability of the process could be obtained

with the maximum silica yield of 90 mol%, achieved at Si : N =

0.5 mol mol−1 and pH = 7.6. Such direct prediction of process

chemistry was not available prior to this work. The maximum

surface area of 300–400 m2 g−1 was achieved for silica

synthesised at Si : N = 2molmol−1 and pH = 5.5.

From comparison of the two response surface plots, it was

observed that the silica yield and surface area increased in

opposite directions, that is, the silica yield had its maximum

in the top left-hand corner, while the BET surface area was

highest in the top right-hand corner. Although in some

circumstances maximization of individual responses is

required, for which the optimum conditions have been

stated, frequently an optimum compromise between

responses is required for profitable operations at the same

time as meeting customer demands. An overlaid contour plot

was constructed in Fig. 8c for a typical scenario, where

manufacturing bioinspired silica becomes economically

viable at yields >60 mol%,12 with surface area >100 m2 g−1.

The intersection of these two criteria is shown as the grey

shaded region. Due to the two models' high precision, this

response library enables the prediction of the optimised

synthesis conditions required to produce silica with desired

attributes, which in the present case would be for example

Si : N = 2 and pH = 6.75.

3.4 Global sensitivity analysis using machine learning

As described in section 2.3, a machine learning technique

was used to efficiently conduct a GSA to support the DoE

study in decision making of the relevant synthesis factors.

Therefore, the GP surrogate model was validated using leave-

one-out cross-validation ensuring inaccuracies were not

carried through to the Sobol' indices.

A criterion for the calculated Sobol' indices has been set

to assign a qualitative level of importance for each factor and

its interactions. A total Sobol' index value STi was calculated

for each factor. A maximum value of STi = 1 shows i

corresponds to 100 % of the response's variance. Whereas a

minimum value of STi = 0 shows i has a negligible impact on

the response. For the factor i, the importance of itself and

Fig. 9 The Sobol' indices for the factors and their interactions with

respect to the yield (red) and the surface area (blue). Indices over the

dashed line (at 0.2) are considered important, those below the dotted

line (at 0.02) are unimportant and those in between are considered as

marginally important.
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each interaction is known by splitting the factors STi into i's

first-order Sobol' index value Si, plus its interactions with j Sij
and k Sik, plus the interactions between all three factors Sijk
as shown below in eqn (5):

STi = Si + Sij + Sik + Sijk (5)

Therefore, a factor or its interaction was considered very

important if its corresponding Sobol' index value is greater

than 0.20. Whereas it was considered not important if the

Sobol' index value was below 0.02. Anything in between was

considered marginally important. For example, if Sij = 0.09

then the interaction between i and j is considered marginally

important. The GSA results for each factor with respect to the

yield and surface area are shown in Fig. 9 and Table 4 with

comparisons to the DoE results.

From Fig. 9 (red bars), it can be seen that the yield is

strongly dependent on the Si : N ratio and the interactions Si :

N × pH and Si : N × [Si]. GSA also predicted that pH and [Si]

could be marginally important, however, their Sobol' indices

were very close to the “low” cut-off (0.02). Further, GSA

identified the three factor interactions as somewhat

important for the silica yield. When considering the surface

area, GSA analysis suggests that only Si : N × pH and the three

factor interactions are important, while other factors were

found not to be important at all or marginally important

(Fig. 9, blue bars). When comparing the GSA results with the

DoE outcomes (Table 4), there are good agreements. For

example, both methods identified Si : N × pH interaction as a

key factor for controlling both the silica yield and the surface

area. This is a valuable outcome as it provides a single factor

that can be used in experimental optimisation of two key

properties of silica. There are some factors where a weak

disagreement between DoE and GSA results is seen. For

example, while the DoE analysis suggested that pH × [Si] is

important for the silica yield, the Sobol' index identified this

interaction as not important. Similarly, for the surface area,

the three-parameter interaction was not considered to be

important based on DoE analysis, while it had one of the

highest Sobol' index. Such differences between these two

methods are expected as they employ fundamentally different

mathematical analyses (classical regression and machine

learning). Further, the different approaches in defining

significance or non-significance using p-values or Sobol'

indices and their respective thresholds could add to the

discrepancies (p = 0.01 for DoE, Si = 0.02 and 0.2 for GSA).

While the methodologies developed herein have been

successfully applied for green nanomaterials for the first

time, it is clear that further refinements will be beneficial. A

wider range of input factor levels with more treatment

replicates would enable to cover a wider design space while

gaining a better estimate of the variance. Additionally, not all

potentially relevant synthesis factors could be investigated in

this study, such as reaction time, temperature, and mixing

regime. For the GSA, it would be beneficial to extend this to

wider ranges of key factors and use more data which has a

normal distribution. Given the similarity of the DoE

approach to a nested quadrature (Clenshaw–Curtis) method,

in future studies, it may be possible to calculate the Sobol'

indices directly without needing a GP. Optimisation of the

DoE directly with a GP approach could likely be beneficial

such that experiments could be focussed to where it is

statistically ‘optimal’ for producing a GP representation.74

A comparison of DoE and GSA is novel for nanomaterials. As

a consequence of this comparison, we have identified interesting

aspects and they need future work. There is little literature

comparing the application of DoE ANOVA with GSA.55 This is

likely because the two techniques appeal to different

communities, and the focus has been either on the practicalities

of implementation (i.e. when should one method be used over

the other75) or application of DoE to improve GSA (largely

ignoring other ANOVAs).76 Given that the two techniques are

now in quite widespread, but largely non-overlapping, use across

a range of applications, a direct comparison from the application

of both techniques to the same problem is highly fruitful. To the

authors' knowledge the only occurrence of machine learning for

silica production was by Paulson et al. (published a few months

ago).76 However, they optimised a single response (particle size)

for the flame spray pyrolysis (not using green synthesis) using a

GP surrogate model. This, in combination with the findings

from a recent review,55 highlight the novelty of our approach

using machine learning for sensitivity analysis with the

sequential DoE strategy. This comparison may lead to a

potentially significant area of future research (not least to the

disparate communities employing the two techniques), which

our findings aim to point toward and initiate.

Although the potential for improvement has been

identified, the present findings are transferable beyond this

work. Future research in the area of bioinspired silica

synthesis will benefit from identification of the significant

synthesis factors and the nonlinear trends in pH and Si : N,

as identified by both the DoE and GSA method. In addition,

these results provide a foundation to explore larger scale

and/or various reactor geometries in order to enable scale-up

of this sustainable synthesis. Applications of bioinspired

silica will value the accurate mapping of the factor-response

Table 4 Summary of results from both methods used herein. A traffic

light system is used, indicating which parameters/interactions were

important for each the yield and the surface area: green = very important,

amber = marginally important and red = not important
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relationship at different scales to guide research towards an

optimum direction. The combined use of DoE and GSA for

inorganic materials synthesis is a research frontier, aiming to

tackle the complexity inherent to materials design. Having

highlighted above the benefits and difficulties of a combined

method, this work thus acts as one of the earliest case

studies at the interface of DoE and GSA for inorganic

materials synthesis that has wider applicability.

4. Conclusion

This study aimed at establishing robust factor-response

relationships to optimise and predict two properties of

bioinspired silica (yield and surface area) as a function of

three synthesis parameters (silicon-to-nitrogen concentration

ratio Si : N, pH, and precursor concentration [Si]). This study

confirmed that solid polymeric bioinspired silica only

precipitates out of the reaction suspension within a certain

Si : N and [Si] range, beyond which no precipitate forms. In

order to minimise the number of required experiments, a

sequential design of experiments strategy was developed with

a pre-screening, a screening, and an optimisation

experiment. In addition, global sensitivity analysis (GSA)

using Sobol' index was successfully applied to this case of

green nanomaterials for the first time. The main new

findings from this work are as follows:

• The 23 full factorial design and subsequent statistical

analysis efficiently identified that, within the design space

investigated, only the Si : N and pH factor were significant for

the responses (as summarised in Table 3).

• Expanding the factorial design to a central composite

design and employing multivariate analysis enabled to

construct reliable empirical regression models for each

response with good predictability (R2 = 96% for yield, R2 =

85% for surface area).

• 3D response surface and overlaid contour plot

visualizations identified the synthesis conditions for

maximum yield or surface area individually, or for both

responses simultaneously towards an optimum.

• GSA-based method was shown to rapidly provide

insights in a wide parameter space and supported the

extensive DoE campaign.

• Specifically, GSA identified key parameters and

interactions between factors that control the physicochemical

properties of nanomaterials, thus demonstrating a strong

potential of GSA in green chemistry and engineering in

conjunction with classical statistics.

We believe this work is the starting point in holistically

modelling the complex multidimensional synthesis of

bioinspired silica to complement sustainable and resource-

efficient product and process optimisation and development

of this nanomaterial.
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