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Background: The presence of nuclear ground states with stable reflection-asymmetric shapes is supported by rich
experimental evidence. Theoretical surveys of odd-multipolarity deformations predict the existence of pear-shaped
isotopes in several fairly localized regions of the nuclear landscape in the vicinity of near-lying single-particle shells
with ∆ℓ = ∆j = 3.

Purpose: We analyze the role of isoscalar, isovector, neutron-proton, neutron-neutron, and proton-proton mul-
tipole interaction energies in inducing the onset of reflection-asymmetric ground-state deformations.

Methods: The calculations are performed in the framework of axial reflection-asymmetric Hartree-Fock-
Bogoliubov theory using two Skyrme energy density functionals and density-dependent pairing force.

Results: We show that reflection-asymmetric ground-state shapes of atomic nuclei are driven by the odd-
multipolarity neutron-proton (or isoscalar) part of the nuclear interaction energy. This result is consistent with
the particle-vibration picture, in which the main driver of octupole instability is the isoscalar octupole-octupole
interaction giving rise to large E3 polarizability.

Conclusions: The necessary condition for the appearance of localized regions of pear-shaped nuclei in the nuclear
landscape is the presence of parity doublets involving ∆ℓ = ∆j = 3 proton or neutron single-particle shells. This
condition alone is, however, not sufficient to determine whether pear shapes actually appear, and – if so – what
the corresponding reflection-asymmetric deformation energies are. The predicted small reflection-asymmetric
deformation energies result from dramatic cancellations between even- and odd-multipolarity components of the
nuclear binding energy.

I. INTRODUCTION

While the vast majority of atomic nuclei have either
spherical or ellipsoidal (prolate or oblate) ground-state
(g.s.) shapes, some isotopes exhibit pear-like shape de-
formations that intrinsically break reflection symmetry.
Experimental evidence for such shapes comes from char-
acteristic properties of nuclear spectra, nuclear moments,
and electromagnetic matrix elements [1, 2]. Pear-shaped
even-even nuclei display low-energy negative-parity exci-
tations that are usually attributed to octupole collective
modes. For that reason, pear-shaped nuclei are often re-
ferred to as “octupole-deformed.”

There are two regions of g.s. reflection-asymmetric
shapes that have been experimentally established over
the years: the neutron-deficient actinides around 224Ra
and the neutron-rich lanthanides around 146Ba. Nuclear
theory systematically predicts these nuclei to be pear-
shaped (see Ref. [3] for a recent survey of theoretical
results). Other regions of pear-shaped nuclei predicted
by theory, i.e., lanthanide nuclei around 200Gd as well as
actinide and superheavy nuclei with 184 < N < 206 are
too neutron rich to be accessible by experiment [3–7]. In
general, deformation energies associated with reflection-
symmetry breaking shapes are much smaller than those
related to stable ellipsoidal shapes [8, 9]. Consequently,
for octupole-deformed nuclei, beyond mean-field meth-
ods are needed for a quantitative description, see, e.g.,
Refs. [10–13].

According to the single-particle (s.p.) picture, the ap-
pearance of pear-shaped deformations can be attributed
to the mixing of opposite-parity s.p. shells [14, 15]. In
the macroscopic-microscopic (MM) approach, the macro-
scopic energy favors spherical shapes. Therefore, stable
refection-asymmetric shape deformations obtained in the
MM method [9, 16] can be traced back to the shape po-
larization originating from proton and neutron s.p. lev-
els interacting via parity-breaking fields. Since shell cor-
rections are computed separately for protons and neu-
trons, the results are usually interpreted in terms of
deformation-driving proton or neutron shell effects. The
proton-neutron interactions are indirectly considered in
the macroscopic energy with the assumption of identi-
cal proton and neutron shape deformation parameters,
which follow those of the macroscopic term.

In general, in the description based on the mean-field
approach, nuclear shape deformations result from a cou-
pling between collective surface vibrations of the nu-
cleus and valence nucleons. Such a particle-vibration
coupling [17] mechanism can be understood in terms of
the nuclear Jahn-Teller effect [18, 19]. The tendency
towards deformation is particularly strong if the Fermi
level lies just between close-lying s.p. states. In such
a case, the system can become unstable with respect
to the mode that couples these states. Simple esti-
mates of the particle-vibration coupling (Jahn-Teller vi-
bronic coupling) for the quadrupole mode (multipolar-
ity λ = 2) [20, 21] demonstrate that its contribution to
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the mass quadrupole moment at low energies doubles the
quadrupole moment of valence nucleons. The Hartree-
Fock (HF) analysis [22, 23] confirmed this estimate. It
showed that the main contribution to the quadrupole
deformation energy comes from the attractive isoscalar
quadrupole-quadrupole term, which can be well approx-
imated by the neutron-proton quadrupole interaction.
When it comes to reflection-asymmetric deformations,

the leading particle-vibration coupling is the one due to
the octupole mode (multipolarity λ = 3). This cou-
pling generates a vibronic Jahn-Teller interaction be-
tween close-lying opposite-parity s.p. orbits that may re-
sult in a static reflection-asymmetric shape. For g.s. con-
figurations of atomic nuclei, such pairs of states can be
found just above closed shells and involve a unique-parity
intruder shell (ℓ, j) and a normal-parity shell (ℓ−3, j−3)
around particle numbers Noct = 34, 56, 88, and, 134 [1].
Indeed self-consistent calculations systematically predict
pear shapes for nuclei having proton and neutron num-
bers close to Noct.
To understand the origin of reflection-asymmetric g.s.

deformations, in this study we extend the quadrupole-
energy analysis of Refs. [22, 23] to odd-multipolarity
shapes. To this end we decompose the total Hartree-
Fock-Bogoliubov (HFB) energy into isoscalar, isovector,
neutron-neutron (nn), proton-proton (pp), and neutron-
proton (np) contributions of different multipolarities.
This paper is organized as follows. In Sec. II we esti-

mate the octupole polarizability and coupling strengths
of the octupole-octupole interaction. Section III de-
scribes the multipole decomposition of one-body HFB
densities and the HFB energy. The results of our analy-
sis calculations and an analysis of trends are presented in
Sec. IV. Finally, Sec. V contains the conclusions of this
work.

II. SIMPLE ESTIMATE OF LOW-ENERGY

OCTUPOLE COUPLING

In this section, we follow Refs. [20, 21], which used a
schematic particle-vibration coupling Hamiltonian con-
sisting of a spherical harmonic-oscillator one-body term
and a multipole-multipole residual interaction. This
model was used in the early paper [22] in the context of
quadrupole deformations. The model Hamiltonian with
the octupole-octupole interaction is

Ĥ = Ĥ0 +
1

2
κ0Q̂0Q̂0 +

1

2
κ1Q̂1Q̂1, (1)

where Q̂0 = Q̂n + Q̂p and Q̂1 = Q̂n − Q̂p are single-
particle octupole isoscalar and isovector operators, re-
spectively, and Ĥ0 is a spherical one-body harmonic-
oscillator Hamiltonian. For the case of high-frequency oc-
tupole oscillations (giant octupole resonances), the cou-
pling constants of the isoscalar and isovector octupole-
octupole interactions, κ0 and κ1, respectively, can be

written as:

κ0 = −
4π

7

Mω2
0

A〈r4〉
, κ1 =

πVsym

A〈r6〉
, (2)

where ω0 is the oscillator frequency, Vsym is the repulsive
symmetry potential (∼ 130MeV), and M is the nucleon
mass. Since the isovector coupling constant κ1 is positive,
the g.s. neutron and proton deformations are expected
to be similar, as assumed in the MM approaches.
Within the Hamiltonian (1), the g.s. octupole polariz-

ability of the nucleus is given by [20]

χ3,τ = −
κτ

κτ + C
(0)
3

, (3)

where τ = 0 or 1 and C
(0)
3 is the restoring force pa-

rameter. There are two types of octupole modes involv-
ing s.p. transitions with ∆N = 1 or 3, where N is the
principal oscillator quantum number. The corresponding
restoring-force parameters are:

C
(0)
3 (∆N = 1) =

16π

21

Mω2
0

A〈r4〉
, (4)

C
(0)
3 (∆N = 3) = 3C

(0)
3 (∆N = 1). (5)

By using the estimate in [20]

Vsym

Mω2
0

≈ 2.9
〈r4〉

〈r2〉
, (6)

one obtains:

χ3,0(∆N = 1) = 3, χ3,0(∆N = 3) = 1/3. (7)

The isovector octupole polarizabilities are obtained in a
similar way by assuming a uniform density distribution:

χ3,1(∆N = 1) = −0.78, χ3,1(∆N = 3) = −0.54. (8)

While the collective octupole modes couple the ∆N =
1 and 3 transitions, the low-frequency mode is primarily
associated with the ∆N = 1 excitations. At low ener-
gies, associated with nuclear ground states, the strength
coefficients in Eq. (2) should be renormalized by factors
(1 + χ3,τ ) to account for the coupling to high-energy
octupole collective vibrations. We indicate them by
κ̃τ = (1 + χ3,τ )κτ . Following Ref. [22], we rearrange the
octupole-octupole Hamiltonian into nn, pp, and np parts
with the coupling constants

κ̃nn = κ̃pp = κ̃0 + κ̃1, κ̃np = κ̃0 − κ̃1. (9)

By assuming the average values of octupole polarizabili-
ties χ3,0 ≈ 2 and χ3,1 ≈ −0.4, the ratio of the coupling
constants becomes:

κ̃nn

κ̃np
=

κ̃pp

κ̃np
≈ 0.27. (10)

We can thus conclude that the octupole-octupole np in-
teraction may indeed be viewed as being responsible for
the development of the octupole deformation.
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III. MULTIPOLE EXPANSION OF DENSITIES

AND HFB ENERGY

In self-consistent mean-field approaches [24–26] with
energy-density functionals (EDFs) based on two-body
functional generators, the total energy of a nucleus is
expressed as:

E = Tr(Tρ) + 1
2Tr(Γρ) +

1
2Tr(Γ̃ρ̃). (11)

Here T is the kinetic energy operator, Γ and Γ̃ are mean
fields in particle-hole (p-h) and particle-particle (p-p)
channels, respectively, and ρ and ρ̃ are one-body p-h and
p-p density matrices, respectively. (Instead of using the
standard pairing tensor [24], here we use the “tilde” rep-
resentation of the p-p density matrix [27].) The mean

fields Γ and Γ̃ are defined as

T + Γ =
δE

δ′ρ
, (12)

Γ̃ =
δE

δ′ρ̃
, (13)

where δ′ denotes the variation of the total energy that
neglects the dependence of the functional generators on
density, that is, the mean fields (12) and (13) do not
contain so-called rearrangement terms [25].

A. Multipole decomposition

As observed in Ref. [22], the density matrices and mean
fields can be split into different multipole components as

ρ = ρ[0] + ρ[1] + ρ[2] + ρ[3] + . . . (14a)

ρ̃ = ρ̃[0] + ρ̃[1] + ρ̃[2] + ρ̃[3] + . . . , (14b)

Γ = Γ[0] + Γ[1] + Γ[2] + Γ[3] + . . . (14c)

Γ̃ = Γ̃[0] + Γ̃[1] + Γ̃[2] + Γ̃[3] + . . . , (14d)

where ρ[λ], ρ̃[λ], Γ[λ], and Γ̃[λ] are rank-λ rotational com-

ponents of ρ, ρ̃, Γ, and Γ̃, respectively. Traces appearing
in Eq. (11) are invariant with respect to unitary transfor-
mations, and, in particular, with respect to spatial rota-
tions. Therefore, the traces act like multipolarity filters
projecting the total energy on a rotational invariant. In
this way, when the multipole expansions (14) are inserted
in the expression for the total energy (11), only diagonal
terms remain:

E = E[0] + E[1] + E[2] + E[3] + . . . , (15)

where

E[λ] =
1
2Tr(Γ[λ]ρ[λ]) +

1
2Tr(Γ̃[λ]ρ̃[λ]). (16)

In the above equation, we add the kinetic energy to the
monopole energy E[0] since T is a scalar operator which
implies Ekin = Tr(Tρ) ≡ Tr(Tρ[0]). Therefore we define

E[0] = Ekin + 1
2Tr(Γ[0]ρ[0]) +

1
2Tr(Γ̃[0]ρ̃[0]). (17)

When parity symmetry is conserved, only even-λ mul-
tipolarities appear in Eqs. (14) and (15). In Refs. [22,
23], this allowed for analyzing the monopole (λ = 0),
quadrupole (λ = 2), and higher even-λ components.
In the present work, we analyze broken-parity self-
consistent states and focus on the reflection-asymmetric
(odd-λ) components of the expansion. As our multipole
expansion is defined with respect to the center of mass
of the nucleus, the integral of the isoscalar dipole density
ρ[1], namely, the total isoscalar dipole moment, vanishes
by construction. Nevertheless, the dipole density ρ[1] and
dipole energy E[1] can still be nonzero.

In the spherical s.p. basis, the expansions (14) can be
realized by the angular-momentum coupling of basis wave
functions. Since the HFB equation is usually solved in a
deformed basis, an explicit basis transformation is then
needed. Moreover, the direct angular-momentum cou-
pling does not benefit from the fact that Skyrme EDFs
only depend on (quasi)local densities, which is the prop-
erty that greatly simplifies the HFB problem. Inspired
by the latter observation, in this work, we determine
the multipole expansions of (quasi)local densities and
(quasi)local mean fields directly in the coordinate space.

With axial symmetry assumed, particle density ρ(r)
can be decomposed as [28]

ρ(r) =
∑

J

ρ[λ](r)YJ,M=0(Ω), (18)

where

ρ[λ](r) =

∫

dΩρ(r)Y ∗

J,M=0(Ω). (19)

An identical decomposition can be carried out for all
isoscalar (t = 0) and isovector (t = 1) (quasi)local p-
h densities [29] ̺t ≡ {ρt, τt, ∆ρt, Jt,∇ · Jt}, plus local
neutron (q = n) and proton (q = p) pairing densities ρ̃q.
The p-h densities depend on neutron and proton densities
in the usual way:

̺0 = ̺n + ̺p, ̺1 = ̺n − ̺p. (20)

Our strategy is to use the energy-density expression for
the time-even total energy (11),

E =

∫

d3r

{

~2

2m
τ0(r) +H(r) + H̃(r)

}

, (21)

where the standard Skyrme energy densities read [29, 30]:

H(r) =
∑

t=0,1

Ht(r), (22a)

H̃(r) =
∑

q=p,n

H̃q(r), (22b)
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and where

Ht(r) = Cρ
t ρ

2
t (r) + C∆ρ

t ρt(r)∆ρt(r)

+ Cτ
t ρt(r)τt(r) + CJ

t J
2
t (r) (23a)

+ C∇J
t ρt(r)∇ · Jt(r),

H̃q(r) =
1
4Vq

[

1− V1

(

ρ(r)

ρ0

)γ]

ρ̃2q(r). (23b)

For simplicity, the Coulomb energy is not included in
Eq. (21); it will be discussed later.

It is convenient to rewrite the energy densities (23) in

terms of local p-h and p-p potentials as

Ht(r) = Vt(r)ρt(r) +
∑

ij

Vtij(r)Jtij(r), (24a)

H̃q(r) = Ṽq(r)ρ̃q(r), (24b)

where

Vt(r) = Cρ
t ρt(r) + C∆ρ

t ∆ρt(r)

+ Cτ
t τt(r) + C∇J

t ∇ · Jt(r), (25a)

Vtij(r) = CJ
t Jtij(r), (25b)

Ṽq(r) =
1
4Vq

[

1− V1

(

ρ(r)

ρ0

)γ]

ρ̃q(r), (25c)

with indices i, j denoting the components of the spin-
current tensor density Jtij(r) in three dimensions. In
analogy to Eqs. (18) and (19), we then determine the
multipole expansions of the local potentials (25). In this
way, the total energy (15) can be decomposed into mul-
tipole components:

E[λ] =

∫

d3r





∑

t=0,1







Vt[λ](r)ρt[λ](r) +
∑

ij

Vtij[λ](r)Jtij[λ](r)







+
∑

q=p,n

Ṽq[λ](r)ρ̃q[λ](r)



 . (26)

Finally, the same strategy can be applied to the
Coulomb energy, which contributes to the multipole
terms of Eq. (15) through the multipole expansions of
direct and exchange potentials:

ECoul
[λ] =

∫

d3r
[

1
2V

dir
[λ] (r) +

3
4V

exc
[λ] (r)

]

ρp[λ](r), (27)

where

V dir(r) = e2
∫

d3r′
ρp(r

′)

|r − r
′|
, (28)

V exc(r) = −e2
[

3
πρp(r)

]

1
3 . (29)

B. Isospin and neutron-proton energy

decomposition

In the isospin scheme, the total energy can be written
as

E = Et=0 + Et=1 + ECoul + Epair, (30)

where

Et = Ekin δt0 +

∫

d3rHt(r), (31a)

Epair =
∑

q=p,n

∫

d3rH̃q(r). (31b)

Note that the kinetic energy Ekin is included in the
isoscalar energy Et=0. The Coulomb energy ECoul is
separated out because the Coulomb interaction breaks
the isospin symmetry. The pairing functional is not
isospin invariant either as the neutron and proton pairing
strengths differ.

By decomposing the isoscalar and isovector p-h den-
sities ̺t into the neutron and proton components (20),
the total energy can be expressed in the neutron-proton
scheme [22]:

E = Ekin + Enn + Epp + Enp. (32)

In Eq. (32), the individual Eqq′ components (q, q′ = n or
p):

Eqq′ =

∫

d3r
[

Hqq′(r) + δqq′H̃q(r)
]

, (33)

are defined through the energy densities Hqq′ and H̃q,
which are bilinear in the densities ̺q or ρ̃q. Note that the
Coulomb energy ECoul is included in the proton energy
Epp. As discussed earlier, all the energy terms entering
the isospin and neutron-proton decompositions can be
expanded into multipoles.
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IV. RESULTS

The systems we studied are even-even barium, radium
and uranium isotopes. They are predicted to have stable
pear shapes at certain neutron numbers [3]. For com-
parison, we also calculate ytterbium isotopes which have
stable quadrupole but no reflection-asymmetric deforma-
tions. We performed axial HFB calculations using the
code hfbtho (v3.00) [31] for two Skyrme EDFs given
by SLy4 [32] and UNEDF2 [33] parameterizations. We
used the mixed-pairing strengths of Vn = −325.25MeV
and Vp = −340.06MeV (SLy4) and Vn = −231.30MeV
and Vp = −255.04MeV (UNEDF2). For UNEDF2, we
did not apply the Lipkin-Nogami treatment of pairing;
instead, we took the neutron pairing strength Vn to re-
produce the average experimental neutron pairing gap for
120Sn, ∆n = 1.245 MeV. The proton pairing strength Vp

was adjusted proportionally based on the default values
of Vn and Vp.
In the first step, we performed parity-conserving

calculations by constraining the octupole deformation
to zero and determined the corresponding equilibrium

quadrupole deformation β
(0)
2 . At the fixed value of β

(0)
2 ,

we varied β3 from 0.0 to 0.25. In the hfbtho code,
multipole constraints are actually applied to quadrupole
(Q20) and octupole (Q30) moments related to β2 and β3

through

β2 = Q20/

(

√

16π

5

3

4π
AR2

0

)

,

β3 = Q30/

(

√

16π

7

3

4π
AR3

0

)

,

(34)

where A is the mass number, R0 = 1.2 fm×A1/3, and

Q20 =
〈

2z2 − x2 − y2
〉

,

Q30 =
〈

z
(

2z2 − 3x2 − 3y2
)〉

.
(35)

Figure 1 shows reflection-asymmetric deformation en-
ergies ∆E(β3) = E(β3)−E(β3 = 0) determined for 224Ra
and 146Ba obtained in this way. We see that UNEDF2
gives a higher octupole deformability than SLy4 in both
nuclei. This is consistent with the results of Ref. [3].

A. Multipole expansion of the deformation energy

The convergence of the multipole expansion (15) pro-
vides a check on the accuracy of our results. In Fig. 2,
we show the energy difference,

Ediff(λ) =

λ
∑

λ′=0

E[λ′] − E (36)

for 224Ra at two values of the octupole deformation,
β3 = 0.05 and 0.15. We see that at β3 = 0.15, the multi-
pole components decrease exponentially with λ, with the

β3

∆
E

 (
M

eV
)

UNEDF2

SLy4

146Ba

224Ra

FIG. 1. The deformation energies, ∆E(β3) = E(β3)−E(β3 =
0), as functions of β3 for 224Ra (dashed lines) and 146Ba (solid

lines) calculated at β
(0)
2 with the SLy4 (circles) and UNEDF2

(triangles) EDFs.

λ

E
d

if
f 

 (
M

eV
)

224Ra, SLy4

β3=0.15

β3=0.05

FIG. 2. Convergence of Ediff(λ) (36) for
224Ra computed with

SLy4 at β3=0.05 (dashed line) and 0.15 (solid line).

monopole component off by about 150MeV and the sum
up to λ = 9 exhausted up to about 20 keV. At a small
octupole deformation of β3 = 0.05, high-order contri-
butions decrease. As expected, the octupole component
brings now less energy as compared to the quadrupole
one. The results displayed in Fig. 2 convince us that cut-
ting the multipole expansion of energy at λ = 9 provides
sufficient accuracy.

Figure 3 shows how the reflection-asymmetric deforma-
tion energy builds up. It presents the four leading mul-
tipole components ∆E[λ](β3) = E[λ](β3) − E[λ](β3 = 0),
for λ = 0−3, of the deformation energies shown in Fig. 1.
We can see that the pattern of contributions of different
multipolarities is fairly generic: it weakly depends on the
choice of the nucleus or EDF. Figure 3 clearly demon-
strates that the main driver of reflection-asymmetric
shapes is a strong attractive octupole energy ∆E[3]. The
attractive dipole energy ∆E[1] is much weaker. The
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SLy4 UNEDF2

146Ba

224Ra

∆
E

[λ
] 
(M

eV
)

β3

[3]
 

[1]
 

[2]
 

[0]
 

(a) (b)

(c) (d)

FIG. 3. Multipole components, ∆E[λ](β3) = E[λ](β3) −

E[λ](β3 = 0), of the total deformation energy shown in Fig. 1,
plotted for λ = 0 − 3 as functions of the octupole deforma-

tion β3 at β
(0)
2 . Upper (lower) panels show results for 224Ra

(146Ba) obtained with the SLy4 (left) and UNEDF2 (right)
EDFs.

monopole and quadrupole energies are repulsive along
the trajectory of β3 (with a fixed quadrupole deforma-

tion β
(0)
2 ) and essentially cancel the octupole contribu-

tion. Indeed, one can note that while individual multi-
pole components can be of the order of tens of MeV, the
total reflection-asymmetric deformation energy shown in
Fig. 1 is an order of magnitude smaller. Therefore, the fi-
nal reflection-asymmetric correlation results from a large
cancellation between individual multipole components,
and even a relatively small variation of any given com-
ponent can significantly shift the net result. In addition,
as discussed in Sec. IVC below, higher-order multipole
components (λ > 3) can be important for the total en-
ergy balance.

B. Isospin and neutron-proton structure of the

octupole deformation energy

To analyze the origin of the octupole energy ∆E[3], in
Fig. 4 we show its isospin and neutron-proton compo-
nents as defined in Eqs. (31a) and (33). Again, a generic
pattern emerges. In all cases, the octupole energy is al-
most equal to its isoscalar part ∆Et=0

[3] . The isovector

energy ∆Et=1
[3] is indeed very small, even if the studied

nuclei have a significant neutron excess; this is consis-
tent with the simple estimates of Sec. II. The contribu-
tion from the pairing energy ∆Epair

[3] is also practically

negligible. In the neutron-proton scheme, the np com-
ponent always clearly dominates the nn and pp terms.
The latter two are very small for UNEDF2 and hence
∆E[3] ≈ ∆Et=0

[3] ≈ ∆Enp
[3] for this EDF. For SLy4, the

nn and pp terms provide larger contributions to the oc-
tupole deformation energy, accompanied by a reduction
of the np term. Regardless of these minor differences be-

∆
E

[3
] 
(M

eV
)

β3

(a) (b)

(c) (d)

SLy4 UNEDF2

146Ba

224Ra

FIG. 4. Similar to Fig. 3 but for different isospin and neutron-
proton components of the octupole energy ∆E[3].

tween the EDFs, we can safely conclude that it is the
isoscalar octupole component (or the np octupole energy
component) that plays the dominant role in building up
the nuclear octupole deformation.

C. Reflection-asymmetric deformability along

Isotopic chains

At this point, we are ready to study structural
changes that dictate the appearance of nuclear reflection-
asymmetric deformations. The results shown in Figs. 3
and 4 tell us that a mutual cancellation of near-parabolic
shapes of different components of the deformation en-
ergy results in a clearly non-parabolic dependence of the
total deformation energy, as seen in Fig. 1. Therefore,
to track back the positions and energies of the equilib-
rium reflection-asymmetric deformations to the proper-
ties of specific interaction components is not easy. To this
end, we analyze the properties of reflection-asymmetric
deformabilities of nuclei, that is, we concentrate on the
curvature of reflection-asymmetric deformation energies
at β3 = 0. To investigate the variation of the reflection-
asymmetric deformability with neutron number, we per-
formed SLy4-HFB calculations for the isotopic chains of
even-even 138−152Ba, 214−232Ra, and 216−234U isotopes,
which are in the region of reflection-asymmetric insta-
bility, as well as 166−180Yb, which are expected to be
reflection-symmetric [3]. In Fig. 5 we show the baseline

quadrupole deformations β
(0)
2 . For the Ba, Ra, and U

isotopic chains, spherical-to-deformed shape transitions
are predicted slightly above the neutron magic numbers.
The considered open-shell Yb isotopes are all predicted
to be well deformed.
As a quantitative measure of the octupole deformabil-

ity, we analyze the deformation energy ∆E = E(β3 =
0.05) − E(β3 = 0) calculated at a small octupole defor-
mation of β3 = 0.05, with the quadrupole deformation
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β 2
( β

3=
0)

Neutron number

(a) (b)

(c)

(d)U

Ba Ra

Yb

FIG. 5. Equilibrium quadrupole deformations β
(0)
2 as func-

tions of N for the isotopic chains of (a) Ba, (b) Ra, (c) U,
and (d) Yb computed with the SLy4 EDF.

(a) (b)

(c) (d)

Neutron number

∆E
 (

M
eV

)

U

Ba Ra

Yb

FIG. 6. Similar to Fig. 5 but for the deformation energy
∆E = E(β3 = 0.05)− E(β3 = 0).

fixed at β
(0)
2 . We have checked that for different energy

components, curvatures ∆E/β2
3 are stable within about

1% up to β3 = 0.05, so values of ∆E taken at β3 = 0.05
constitute valid measures of the octupole stiffness. In
Fig. 6 we show the values of ∆E calculated for the four
studied isotopic chains. We see that the negative val-
ues of ∆E delineate regions of neutron numbers where
reflection-asymmetric deformations set in in Ba, Ra, and
U isotopes [3].

We now study ∆E[λ], the multipole components of the
total deformation energy, for the four isotopic chains
considered to see whether they could provide insights
into the neutron-number dependence of octupole defor-
mations. Figure 7 shows that the answer is far from
obvious. Indeed, we observe strong cancellations of con-
tributions coming from different multipole components of
the reflection-asymmetric deformation energy. For exam-
ple, both the repulsive monopole and attractive octupole

(a) (b)

(c) (d)

Neutron number

∆E
[λ

] 
(M

eV
)

U

Ba Ra

Yb

[3]

[1]

[2]

[0]

FIG. 7. Similar to Fig. 5 but for the deformation energies
∆E[λ] = E[λ](β3 = 0.05)− E[λ](β3 = 0) for λ = 0− 3.

components are an order of magnitude larger than the
total deformation energies shown in Fig. 6. Therefore,
we can expect that in order to understand the behav-
ior of the deformation energies, higher-order multipole
components ∆E[λ] should be considered. Indeed, it has
been early recognized that higher-order deformations can
strongly influence the octupole collectivity of reflection-
asymmetric nuclei [34–41].

(a) (b)

(c) (d)

Neutron number

∆E
[0

-λ
m

ax
] 
(M

eV
)

U

Ba Ra

Yb
0
1
2
3
4

5
6
7
8
9

FIG. 8. Similar to Fig. 7 but for the deformation energies
∆E = E(β3 = 0.05) − E(β3 = 0) with multipole compo-
nents summed up from λ = 0 to λmax. The values of λmax

are listed in the legend. The regions of deformed isotopes ex-
hibiting reflection-asymmetric instability in Fig. 6 are marked
by shading.

To better see accumulation effects with increasing mul-
tipolarity and subtle fluctuations at different orders, in
Fig. 8 we plot multipole components of the octupole de-
formability summed up to λmax. Noting dramatically
different scales of Figs. 6 and 8, we see that summations
up to about λ = 5 or 7 are needed for the results to con-
verge. Although the octupole component contributes by
far most to the creation of the reflection-asymmetric de-
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formation energy, its effect is counterbalanced by a very
large monopole component and, therefore, even higher
multipole components are instrumental in determining
the total reflection-asymmetric deformability. This as-
pect is underlined in the results shown in Figs. 9 and 10,
where we separately show analogous sums of only odd-λ
(odd parity) and even-λ (even parity) components, re-
spectively. It is clear that the octupole polarizability is
a result of a subtle balance between positive (repulsive)
effect of the even-parity multipoles and negative (attrac-
tive) effect of the odd-parity multipoles.

(a) (b)

(c) (d)

Neutron number

∆E
[1

,3
,.

.λ
m

ax
] 
(M

eV
)

U

Ba Ra

Yb

3

5

7

9

1

FIG. 9. Similar to Fig. 8 but for the cumulative sum involving
odd-λ multipoles only.

(a)

(b)

(c) (d)

Neutron number

∆E
[0

,2
,.

.λ
m

ax
] 
(M

eV
)

U

Ba

Ra

Yb

0

2
4

6
8

FIG. 10. Similar to Fig. 8 but for the cumulative sum involv-
ing even-λ multipoles only.

D. Relation to shell structure

To gain some insights into the shell effects behind
the appearance of stable reflection-asymmetric nuclear
shapes, Figs. 11 and 12 show, respectively, the s.p. level
diagrams for 176Yb and 224Ra as functions of β2. While
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(b) protons
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FIG. 11. Single-particle (canonical) neutron (top) and pro-
ton (bottom) SLy4-HFB levels as functions of β2 (β3 = 0)
for 176Yb. Solid (dashed) lines indicate positive- (negative-)
parity levels. Fermi levels εF at N = 106 and Z = 70 are
marked by dash-dotted lines. The equilibrium deformation of
176Yb is indicated by a vertical dotted line.

such diagrams cannot predict symmetry breaking effects
per se, they can often provide qualitative understanding.

The well-deformed nucleus 176Yb is characteristic of
a stiff octupole vibrator. Indeed, its nucleon numbers
(Z = 70, N = 106) lie far from the “octupole-driving”
numbers Noct. Due to the large deformed Z = 70 gap
around β2 = 0.32, there are no s.p. states of opposite
parity and the same projection Ω of the total s.p. angu-
lar momentum on the symmetry axis that could produce
p-h excitations with appreciable λ = 3 strength across
the Fermi level. As for the neutron s.p. levels, the low-
Ω positive-parity states originating from the 1i13/2 shell
lie below the Fermi level, which appreciably reduces the
1i13/2 ↔ 2f7/2 strength. Because of the large quadrupole
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deformations of Yb isotopes considered, the s.p. orbital
angular momentum ℓ of normal-parity orbitals is fairly
fragmented within the shell [42]. As seen in Figs. 10d
and 9d, all multipole components of ∆E for 176Yb vary
very smoothly with neutron number.
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FIG. 12. Similar to Fig. 11 but for 224Ra. Fermi levels for
even-even Ra isotopes with N = 130 − 144 are marked by
circles. They have been shifted according to the position of
the spherical 2g9/2 neutron and 1h9/2 proton shell. The equi-

librium deformation of 224Ra is indicated by a vertical dotted
line.

The Nilsson diagram shown in Fig. 12 is character-
istic of transitional neutron-deficient actinides in which
the octupole instability is expected. The unique-parity
shells, 1i13/2 proton shell and 1j15/2 neutron shell, are
of particle character, which results in an appearance of
close-lying opposite-parity pairs of Nilsson levels with the
same low Ω-values at intermediate quadrupole deforma-
tions. These levels can interact via the octupole field,
with the dominant π1i13/2 ↔ π2f7/2 and ν1j15/2 ↔
ν2g9/2 couplings.
As seen in Figs. 9 and 10, in the regions of octupole in-

stability, the monopole and quadrupole deformation en-
ergies become locally reduced while the octupole and do-
triacontapole (λ = 5) contributions to ∆E grow. Ac-
cording to our results, the effect of the dotriacontapole
term is essential for lowering ∆E around Noct. This
not surprising as the main contribution to the dotria-
contapole coupling comes from the ∆ℓ = ∆j = 3 ex-
citations [38, 40], i.e., the octupole and dotriacontapole
correlations are driven by the same shell-model orbits.
Interestingly, it is the attractive λ = 5 contribution to
∆E rather than the octupole term that exhibits the lo-
cal enhancement in the regions of octupole instability.
The shallow octupole minima predicted around 146Ba

result from an interplay between the odd-λ deformation
energies, which gradually increase with N (see Fig. 9a)
and the even-λ deformation energies, which gradually de-
crease with N (see Fig. 10b). Again, the dotriacontapole
moment is absolutely essential for forming the octupole
instability.

V. CONCLUSIONS

In this work, we used the Skyrme-HFB approach to
study the multipole expansion of interaction energies in
both isospin and neutron-proton schemes in order to ana-
lyze their role in the appearance of reflection-asymmetric
g.s. deformations. The main conclusions and results of
our study can be summarized as follows:

(i) Based on the self-consistent HFB theory, reflection-
asymmetric ground-state shapes of atomic nuclei
are driven by the odd-multipolarity isoscalar (or,
in neutron-proton scheme, np) part of the nuclear
interaction energy. In a simple particle-vibration
picture, this can be explained in terms of the very
large isoscaler octupole polarizability χ3,0(∆N =
1) = 3.

(ii) The most favorable conditions for reflection-
asymmetric shapes are in the regions of transitional
nuclei with neutron and proton numbers just above
magic numbers. For such systems, the unique-
parity shell has a particle character, which creates
favorable conditions for the enhanced ∆ℓ = ∆j = 3
octupole and dotriacontapole couplings.

(iii) The presence of high-multipolarity interaction com-
ponents, especially λ = 5 are crucial for the emer-
gence of stable reflection-asymmetric shapes. Mi-
croscopically, dotriacontapole couplings primarily
come from the same ∆ℓ = ∆j = 3 p-h excitations
that are responsible for octupole instability. Ac-
cording to our calculations, the attractive λ = 5
contribution to the octupole stiffness is locally en-
hanced in the regions of reflection-asymmetric g.s.
shapes.

In summary, stable pear-like g.s. shapes of atomic nu-
clei result from a dramatic cancellation between even-
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and odd-multipolarity components of the nuclear binding
energy. Small variations in these components, associated,
e.g., with the s.p. shell structure, can thus be instrumen-
tal for tilting the final energy balance towards or away
from the octupole instability. One has to bear in mind,
however, that the shell effect responsible for the sponta-
neous breaking of intrinsic parity is weak, as it is associ-
ated with the appearance of isolated ∆ℓ = ∆j = 3 pairs
of levels (parity doublets) in the reflection-symmetric s.p.
spectrum. In this respect, the breaking of the intrinsic
spherical symmetry in atomic nuclei (presence of ellip-
soidal deformations) is very common as every spherical
s.p. shell (except for those with j = 1/2) carries an in-
trinsic quadrupole moment that can contribute to the

vibronic coupling.
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