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ABSTRACT Although the non-coherent direction of arrival (DOA) estimation problem can be solved by

sparse phase retrieval algorithms, known reference signals are required to deal with the inherent ambiguity

issue of this approach. To avoid the use of reference signals, an effective array structure employing two

uniform linear arrays is proposed (although other array structures are possible, such as the circular array),

based on which a phase retrieval problem employing group sparsity is formulated. It is then replaced by

its convex surrogate alternative by applying the majorization-minimization technique and the proximal

gradient method is employed to solve the surrogate problem. The proposed algorithm is referred to as fasT

grOup sparsitY Based phAse Retreival (ToyBar). Unlike the existing phase-retrieval based DOA estimation

algorithm GESPAR, it does not need to know the number of incident signals in advance. Simulation results

indicate that the proposed algorithm has a fast convergence speed and a better estimation performance is

achieved.

INDEX TERMS DOA estimation, phase retrieval, group sparsity, dual-arrays, majorization-minimization,

proximal gradient.

I. INTRODUCTION

Direction of arrival (DOA) estimation has various applica-

tions such as radar, sonar and wireless communications [1].

Traditionally, the phase information is assumed to be avail-

able at the array of sensors andmany proposed high resolution

DOA estimation algorithms often rely on this assumption,

such asMUSIC [2], ESPRIT [3] and those based on compres-

sive sensing [4]–[6]. However, in real applications, the phase

information may not be reliable due to various reasons

and in the extreme case, we may only have the magnitude

information.

For such a non-coherent DOA estimation problem, a sparse

phase retrieval algorithm called GESPAR is modified to

solve it [7], [8], where the inherent ambiguity issue of

non-coherent measurements was resolved using a reference

signal when only one unknown source impinges upon the

array. With more unknown signals, more reference signals

are required. To reduce the number of required reference

signals to one for multiple incident signals in [9], a method

was proposed to firstly estimates the frequency component

of non-coherent measurements, and then a high gain refer-
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ence signal (12 dB over unknown signals) is employed to

identify the DOA of unknown signals. Alternatively, with

a normal gain reference signal, a dual-array structure was

proposed to reduce the number of required reference signals

to one in [9], but its estimation accuracy relies on its fre-

quency resolution, which requires a large number of measure-

ments. In addition, this method fails to utilize the information

of multiple snapshots jointly to improve its performance.

In [10], it was proved that the gap between non-coherent

and coherent DOA estimation would be small if the number

of sensors is large and then it employed a sparse phase

retrieval algorithm called Phaselift to find the direction from

non-coherent measurements. An approximation expression

of Cramér-Rao bound (CRB) of non-coherent DOA estima-

tion for one unknown incident signal by assuming a large gain

reference signal was presented in [11], [12].

All the aforementioned methods require at least one refer-

ence signal at one end of the interested angle area with pre-

cisely known DOA in order to remove the ambiguities arising

from non-coherent measurements, which is a challenge in

practical operations [13], [14].

In this paper, firstly the ambiguities related to non-coherent

measurements are revisited. Apart from the well-known
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mirroring and spatial shift ambiguities, a new ambiguity issue

called spatial order ambiguity is identified for the first time

and discussed in detail and a solution to avoid this ambiguity

is to limit the inter-sensor spacing of the employed uniform

linear arrays (ULAs) to be less than a quarter of the signal

wavelength for the normal DOA range of [−90◦, 90◦]. This
is consistent with previous observation that with the standard

half-wavelength spacing, the DOA range of the signals is

limited to either [0, 90◦] or [−90◦, 0]. Secondly, to avoid the
mirroring and spatial shift ambiguities, a dual-array structure

without the need of any reference signals for multiple imping-

ing sources is proposed with a detailed derivation to show its

working. In essence, it utilizes the non-linear property of the

sinusoidal function, and a unique DOA result is guaranteed

with two sets of sinusoidal difference values. This part of

the work was partially presented in our earlier conference

paper [15]. Compared to [15], the mirroring ambiguity in the

estimation process is solved in a different way in this version

to explain the separate estimation method more clearly.

Thirdly, the non-coherent DOA estimation problem based

on the proposed dual-array structure is represented as a

joint group sparsity phase retrieval problem. The idea

of phase retrieval via majorizaion-minimization technique

(PRIME) [16] is then employed to formulate the problem

as a group Least Absolute Shrinkage and Selection Opera-

tor (LASSO) problem, which can be solved by the proximal

gradient. Nesterov acceleration is further implemented to

improve the proposed algorithm. We refer to this algorithm

as Fast jOint Group Sparse PhAse Retrieval (ToyBar). With

the proposed dual-array structure and the ToyBar algorithm,

no reference signals are required when there are more than

one incident signals; a reference signal is required in the

scenario with only one incident signal, but the DOAof the ref-

erence signal can be arbitrary and unknown to the estimator.

The remaining part of the paper is structured as follows.

Sec. II introduces the non-coherent signal model and the

ambiguities of non-coherentmeasurements. Detailed analysis

of the proposed dual-array structure for avoiding the mirror-

ing and spatial shift ambiguities is presented in Section III.

The proposed ToyBar algorithm is given in Section IV. Sim-

ulation results are provided in Sec. IV and conclusions are

drawn in Sec. V.

II. SIGNAL MODEL WITH TWO LINEAR ARRAYS

A. DATA MODEL

The proposed array structure consists of two ULAs with

an adjacent sensor spacing d as shown in Fig. 1, where

the second array has a known angle θ̌ to the first one. The

area of interest [−90◦, 90◦] is considered with respect to the

broadside of each array. The number of sensors of the first

array is N , while the second is M and since one sensor is

shared between them, there are M + N − 1 sensors in total.

Assume that there are K narrowband signals sk with

the same wavelength λ impinging from directions θk ,

k = 1, 2, . . . ,K , respectively. The two corresponding

FIGURE 1. The dual-array structure with a shared sensor.

received signal vectors at time index p are expressed as

x1[p] = A1(θ )s[p],

x2[p] = A2(θ )s[p], (1)

where p = 1, · · · ,P and x1[p] = [x1,1[p], · · · , xN ,1[p]]
T ∈

C
N×1 and x2[p] = [x1,2[p], · · · , xM ,2[p]]

T ∈ C
M×1 are

measurements at first and second sub-arrays separately. s[p]

is the source signal vector expressed as

s[p] = [s1[p], s2[p], · · · , sK [p]]
T , (2)

A1(θ ) and A2(θ ) are steering matrices of the first and

the second arrays, respectively. Their columns, A1(θk,1) and

A2(θk,2), for k = 1, . . . ,K , are the corresponding steering

vectors,

A1(θk,1) = [1, e−j2π
d
λ
(sin θk,1), · · · , e−j(N−1)2π d

λ
(sin θk,1)]T ,

A2(θk,2) = [1, e−j2π
d
λ
(sin θk,2), · · · , e−j(M−1)2π d

λ
(sin θk,2)]T ,

(3)

where θk,1 and θk,2 are arriving angle of the kth signal with

respect to the broadside of the first and second arrays respec-

tively. For noisy non-coherent measurements, we use the

following data model

y1[p] = |A1(θ )s[p]| + n1

y2[p] = |A2(θ )s[p]| + n2, (4)

where n1 and n2 are random Gaussian noise vectors, while

| · | is the element-wise absolute value operation.

B. AMBIGUITIES

Reconstructing signals from (4) suffers from three ambigui-

ties [17] and two of them would affect the DOA estimation

results: one is mirroring and the other is spatial shift.

For mirroring, it refers to the phenomenon that the con-

jugated version of the original sources from the angles

[−θ1, · · · , −θK ] will generate a set of measurements with the

same magnitude as the original sources from [θ1, · · · , θK ].

For the spatial shift ambiguity, it refers to the case that

the received array signals are phase shifted by an unknown

amount φ as follows

x̌n = e−jnφxn =
K

∑

k=1

ske
−jnα sin(θk )e−jnφ, (5)

where xn is the measurement at the n − th sensor with

n = [0, . . . ,N − 1], α = 2π d
λ
, the time index p has been

dropped for convenience, and the effect of noise has been

ignored. In this case, with the same set of source signals,

a set of DOA angles, θ̈k satisfying sin θ̈k = sin θk + φ
α
for all

k , would generate the same magnitude-only measurements.

VOLUME 9, 2021 26793
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One interesting property of this ambiguity is that, the DOA

angle order stays the same, i.e. with sin θ1 < sin θ2 < · · · <

sin θK , we also have sin θ̈1 < sin θ̈2 < · · · < sin θ̈K and

this ambiguity will not affect the relevant sinusoidal distance

1sθ,kk ′ = (sin θk + φ
α
) − (sin θk ′ + φ

α
), k 6= k ′ due to the

common phase shift involved for all DOA angles. As a result,

with magnitude-only measurements, only the sinusoidal dif-

ference 1sθ,kk ′ can be measured.

However, there is another ambiguity which has not been

discussed in literature yet and we call it ‘‘spatial order ambi-

guity’’, as this ambiguity will change the spatial order of the

impinging signals, i.e. with sin θ1 < sin θ2 < · · · < sin θK we

cannot have sin θ̈1 < sin θ̈2 < · · · < sin θ̈K . Next, we discuss

it in detail and show that this ambiguity can be avoided by

limiting the adjacent sensor spacing to λ/4.

For this new ambiguity problem, we consider the following

measurement with the same magnitude as xn in (5)

x̌n = e−jnφ
K

∑

k=1

ske
−jn2πbk e−jnα sin θk

=
K

∑

k=1

ske
−jnα(sin θk+ φ

α
+ bkλ

d ), (6)

where bk is an arbitrary integer. To avoid spatial aliasing,

normally we assume d = λ/2. Then, (6) becomes

x̌n =
K

∑

k=1

ske
−jnα(sin θk+ φ

α
+2bk ). (7)

Without the bk term, the maximum value of
φ
α
which can give

a valid shift will be 2, i.e. shifting a signal from −90◦ to 90◦;
if it is larger than 2, the new shifted value will be larger than 1,

which is not valid for sin θ . Similarly, the minimum value for
φ
α
will be −2 and as a result we would have −2 ≤ φ

α
≤ 2.

Consider the original DOA angles are ordered as sin θ1 <

sin θ2 < . . . < sin θK and with a shift by −2 ≤ φ
α

< 0, some

of the DOA angles, such as sin θg, g = 1, · · · ,G(G < K ) are

shifted to the left outside of the valid sinusoidal range so that

sin θk + φ
α

< −1, for k ≤ G, while for the remaining angles,

we still have −1 ≤ sin θk + φ
α

≤ 1; then, we can choose

bk = 0 for G < k ≤ K and bk = 1 for k ≤ G. As a result,

we would have −1 ≤ (sin θk + φ
α

+ 2bk ) ≤ 1 for k ≤ G,

which is valid angle values. However, in this case, we can see

that the order of the new set of angles θ̈k , satisfying sin θ̈k =
sin θk + φ

α
+ 2bk for all k will be different from the original

one, i.e. we will not have sin θ̈1 < sin θ̈2 < · · · < sin θ̈K any

more and the sinusoidal difference of the original signals has

changed. The net result is that the first G signals are shifted

to the right side of the valid angle range, while the remaining

signals are shifted to the left.

For example, consider K = 2 signals with θ1 = −30◦,
θ2 = 90◦ and

φ
α

= −2. After this shift, sin θ̈2 = sin θ2 −
2 = −1 and sin θ̈1 = sin θ1 − 2 = −2.5. Obviously, θ2
is shifted to −90◦ and θ̈1 does not exist. However, with half

wavelength spacing, b1 can be chosen as 1, which leads to

sin θ̈1 = sin θ1 − 2 + λ
d

= −0.5. As a result, the solution is

θ̈2 = −90◦ and θ̈1 = −30◦. It can be seen that the order of

DOA has changed as sin θ̈2 < sin θ̈1 as well as the sinusoidal

difference (from 1sθ,21 = 1.5 to 1s̈θ,21 = 0.5), but they still

share the same magnitude measurement.

We have a similar conclusion if we consider the shift to the

left with 0 <
φ
α

≤ 2. This ambiguity cannot be solved by

adding reference signals as the spacing in sine value among

the new set of DOA angles will be different.

However, it can be resolved by reducing inter-sensor spac-

ing d to d ≤ λ
4
. In the limit, we choose d = λ

4
. Then

x̌n =
K

∑

k=1

ske
−jn2πbk e−jnα(sin θk+ φ

α
+4bk ). (8)

With −2 ≤ φ
α

≤ 2, for any value of bk 6= 0, we always have

| sin θk + φ

α
+ 4bk | > 1, (9)

which means it is not a valid choice for any physical DOA

angle. As a result, we can only have bk = 0, i.e. we have

avoided the spatial order ambiguity. Note here, we have

assumed −2 ≤ φ
α

≤ 2, but
φ
α
can take any value outside

this range; however, if it does take a value outside this range,

it will be reduced to within this range by choosing an appro-

priate integer value for bk in 4bk .

Therefore, in order to avoid this ambiguity, d is now chosen

to be less than or equal to λ/4 instead of λ/2 for the normal

angle range of interest [−90◦, 90◦].

III. PROPOSED DOA ESTIMATION METHODS

In this section, based on the dual-array structure, one method

is presented first by estimating the set of DOAs relative to

each subarray, which also shows that the dual-array structure

is capable of solving the inherent shift and mirroring ambigu-

ities. Then, a more effective joint group sparsity based DOA

estimation method is proposed.

A. SEPARATE ESTIMATION METHOD

With the specific array structure, the area to be estimated for

the first array is set as [−90◦ + θ̌ , 90◦] while for the second
array it is [−90◦, 90◦ − θ̌ ], i.e. the common angle range of

interest of both arrays, which is then uniformly divided into

G (G ≫ K ) grid points and two corresponding overcom-

plete steering matrices Ã1 and Ã2 are constructed with each

column representing a steering vector of a potential incident

angle

Ã1 = [a(−90◦ + θ̌ ), . . . , a(90◦)],

Ã2 = [a(−90◦), . . . , a(90◦ − θ̌ )], (10)

Accordingly, the signal vector s[p] is replaced by two

G × 1 sparse vectors s̃1[p] = [s1,1[p], · · · , sG,1[p]]
T

and s̃2 = [s1,2[p], · · · , sG,2[p]]
T , where only K entries

at the corresponding incident angles are supposed to be

non-zero. For the multiple-snapshot case, measurements of

both arrays are expressed as Y1 = [y1[1], · · · , y1[P]]

and Y2 = [y2[1], · · · , y2[P]], where P is the number
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of snapshots. Signal matrices are defined as S̃1 =
[s̃1[1], · · · , s̃1[P]] and S̃2 = [s̃2[1], · · · , s̃2[P]], and they can

be reconstructed by

min
S̃1

‖Y1 − |Ã1S̃1|‖2F , s.t. ‖S̃1[p]‖2,0 ≤ K ,

min
S̃2

‖Y2 − |Ã2S̃2|‖2F , s.t. ‖S̃2[p]‖2,0 ≤ K , (11)

where K , ‖ · ‖2,0 and ‖ · ‖F represents the number of incident

signals, l2,0 norm and Frobenius norm, respectively. For the

l2,0 norm of a matrix, it take the l2 norm of its row vectors,

then form a new column vector, and finally take the l0 norm

of the new column vector.

The above problem can be solved by applying the modified

GESPAR algorithm [7] or the ToyBar algorithm proposed in

the next section to each subarray individually. By solving the

problem, the sinusoidal difference of all impinging signals

of the first sub-array 1sθ,kk ′,1 = sin θk,1 − sin θk ′,1 and

the second sub-array 1sθ,kk ′,2 = sin θk,2 − sin θk ′,2 are then

obtained; however, they suffer from ambiguities as described

in Section II-B and true DOAs cannot be found directly. The

sinusoidal differences between smallest and largest incident

signals impinging on the first and second arrays, 1sθ,max,1

and 1sθ,max,2, have the following relationship with the four

real DOA angles θK ,1, θ1,1, θK ,2, θ1,2

1sθ,max,1 = sin(θK ,1) − sin(θ1,1),

1sθ,max,2 = sin(θK ,2) − sin(θ1,2) (12)

One condition for the above equations is that angle range

of the signals of interest of the first array should be

limited between −90◦ + θ̌ and 90◦. Given θ̌ , we also

have

θK ,2 = θK ,1 − θ̌

θ1.2 = θ1,1 − θ̌ , (13)

where sin θ1 < sin θ2 < · · · sin θK . From (12) and (13), we

have

cos(θK ,1) − cos(θ1,1) = (1sθ,max,1 − (1sθ,max,2)

cosθ̌
)/ tan θ̌

(14)

Using trigonometric identities, from (12) and (14), the sum

of the smallest and largest angles θS = θ1,1 + θK ,1 is given

by

θS = 2atan

1sθ,max,2

cos θ̌
− (1sθ,max,1)

(1sθ,max,1 tan θ̌ )
. (15)

The largest angle θK is then derived from (12) and (15) as

sin(
2θK ,1 − θS

2
) = 1sθ,max,1

2 cos(θS/2)
. (16)

By (15) and (16), we obtain

θK ,1 = asin(
1sθ,max,1

2 cos(θS/2)
) + θS

2
,

θ1,1 = θS − θK ,1. (17)

After obtaining sin θ1 and sin θK , the corresponding

1sθ,max,1 and 1sθ,max,2 are removed from the estimated

results and the second largest pair of signals sin θ2 and

sin θK−1 becomes the largest pair, which can be determined

by re-applying (17). If the number of incident signals is even,

all DOAs of remaining signals can be identified by repeating

this procedure.

However, if there are odd number of incident signals,

the (k̃ = K+1
2

)-th signal is left after the above process

and may still suffer from the mirroring ambiguity, which

means 1s
θ,k̃1,1 could represent either sin θk̃,1 − sin θ1,1 or

sin θK ,1 − sin θk̃,1.

As a result, with the different sinusoidal distance 1s
θ,k̃1,1

between θ1,1 and θk̃,1, there are two possible solutions: the

true DOA θk̃,1 and its mirroring versions θ k̃,1:

θk̃,1 = asin(1s
θ,k̃1,1 + sin(θ1,1)),

θ k̃,1 = asin(sin(θK ,1) − 1s
θ,k̃1,1). (18)

Similarly, there are also two possible solutions on the sec-

ond array: true DOA θk̃,2 and its mirroring version θ k̃,2.

Defining 21 = [θk̃,1, θ k̃,1] and 22 = [θk̃,2, θ k̃,2] and with

a known inter-array angle θ̌ , the DOA of the k̃-th DOA will

be identified by the intersection of 22 − θ̌ and 21 as θk̃,1 =
21 ∩ (22 − θ̌ ).

Thus, based on the dual-array structure, all DOAs can be

identified with non-coherent measurements unambiguously

without the need of reference signals.

B. JOINT GROUP SPARSITY BASED METHOD

The above subsection indicates that, the magnitude-only

measurements of the dual-array carry enough information

to uniquely identify the DOAs of the impinging signals.

Thus, instead of estimating two sets of sinusoidal differences

1sθ,kk ′,1 and 1sθ,kk ′,2 separately and then working out their

true values, an effective joint group sparsity based method is

proposed to find the DOAs directly.

The measurements at the dual-array can be expressed

jointly as

Y = |AS| + N, (19)

where Y =
[

YT
1 ,YT

2

]T
, S =

[

s[1], · · · , s[p]
]

,

N =
[

NT
1 ,NT

2

]T
, and A =

[

AT
1 ,AT

2

]

. Since the first sensor

is shared, when forming A and Y, we can choose to remove

the corresponding rows of A2 and Y2.

Consider the sparse steering matrix defined in (10), it is

obvious that incident signals from an arbitrary arriving angle

would share the same spatial support of Ã1 and Ã2, although

the DOAs with respect to each of them are different. As a

result, for a sparse overcomplete representation, (19) can be

expressed as

Y = |ÃS̃| + N, (20)

where S̃ =
[

s̃[1], · · · , s̃[P]
]

and the measurement matrix Ã

is defined as

Ã = [ÃT
1 , ÃT

2 ]
T . (21)
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Finally, the joint group sparsity based non-coherent DOA

estimation problem can be formulated as follows

min ||S̃‖2,0
s.t. ‖Y − |ÃS̃|‖2F < ε (22)

where ε is the upper bound of the reconstruction error.

Since the l0 norm is noncovex, its relaxed version l1 norm is

employed instead [18], and the resulting estimation problem

can be solved by the following unconstrained optimisation

problem

min
S̃

‖|ÃS̃| − Y‖2F + ρ‖S̃‖2,1, (23)

where ρ is the regularization parameter, and the ‖ · ‖2,1 is l2,1
norm, which promotes the row sparsity of S̃ by taking the l2
norm of its row vectors, forming a new column vector, and

finally taking the l1 norm of the new column vector.

Clearly, the first term in objective function (23) is

non-convex and results in the optimization problem NP-hard.

However, this non-convex problem can be replaced by a

surrogate convex function via the majorization-minimization

(MM) method. Under the MM framework, a non-increasing

property hold as [16], [19]

f (sq+1) ≤ g(sq+1|sq) ≤ g(sq|sq) = f (sq), (24)

where f (s) is the original function, q indicates the iteration

index and g(s|sk ) is the majorization function satisfying

g(s|sq) ≥ f (s), ∀s,
g(sq|sq) = f (sq). (25)

By applying the PRIME technique [16], this non-convex

problem can be majorized by a surrogate function. Consid-

ering the problem (23) with one snapshot and dropping the

time index p for convenience, we have

min
s̃

‖|Ãs̃| − y‖22 + ρ‖s̃‖1. (26)

By following the same approach in [16], the above mini-

mization problem (26) can be reformulated as

min
s̃

N
∑

i=1

(|ãis̃|2 − 2yi|ãis̃| + |yi|2) + ρ‖s̃‖1

= min
s̃

N
∑

i=1

(|ãis̃|2 − 2yi|ãis̃|) + ρ‖s̃‖1, (27)

where ãi represents the i-th row of the steering matrix

Ã, and yi is the i-th component of y. According to the

Cauchy-Schwarz inequality, it has

Re(ãis̃(s̃
q)H ãHi ) ≤ |ãis̃||ãis̃q|, (28)

where Re(·) represents real part of its variable. Thus, (27) can
be majorized as

min
s̃

N
∑

i=1

(|ãis̃|2 − 2|yi|
Re(ãis̃(s̃

q)HAH
i )

|ãis̃q|
) + ρ‖s̃‖1, (29)

which can be formulated as

min
s̃

‖Ãs̃ − cq‖22, with cq = y ⊙ ejarg(Ãs̃
q), (30)

where ⊙ denotes the Hadamard product, s̃q is a known com-

plex vector and arg(·) represents the phase of its variable

applied element-wise.

Thus, applying the same approach described in (30) col-

umn by column to the objective function, the original objec-

tive function (23) is majorized as

min
S̃

‖ÃS̃ − Cq‖2F + ρ‖S̃‖2,1, (31)

where

Cq = Y ⊙ ejarg(ÃS̃
q). (32)

Since (31) is convex, it can be solved by the proximal gradient

method [20], [21], which aims at solving problems in the form

of

min
S̃

F(S̃) + G(S̃), (33)

where both F(S̃) and G(S̃) are convex and F(S̃) is differen-

tiable. Then, this method iteratively refines its solution by

S̃q+1 = proxλG(S̃
q − λ∇F(S̃q)), (34)

where λ is the stepsize and ∇F(S̃q) = 2ÃH (ÃS̃q − C) is the

gradient of F(S̃). The proximal operator prox is defined as

proxλG(S̃) = argmin
Z

(
1

2λ
‖Z − S̃‖2F + G(Z)). (35)

Therefore, substituting the first term of object function (23)

as F(S̃) and second term as G(S̃), S̃q+1 can be obtained by

solving the following problem

S̃q+1 = argmin
Z

{‖ 1

2λ
‖Z − (S̃q − λ∇F(S̃q))‖2F + ρ‖Z‖2,1}.

(36)

Since G(S̃) = ‖ ·‖2,1 is separable as ‖S̃‖2,1 =
∑G

i=1 ‖s̃i‖2,
where s̃i represents the i-th row of S̃, the proximal operator

can be applied to each row independently as [22], [23]

s̃
q+1
i = argmin

zi

{γ ‖zi‖2 + 1

2λ
‖zi − (s̃

q
i − λ∇F(s̃qi ))‖22},

(37)

where zi is the i-th row of Z,

∇F(s̃qi ) = 2(ÃH )i(ÃS̃
q − Cq), i = 1, · · · ,G, (38)

is the i-th row of∇F(S̃q), and (ÃH )i is the i-th row of ÃH . This

is equivalent to applying the row-wise proximal operator of

l2 norm to (36), which has an analytical solution as [23]

s̃
q+1
i = (s̃

q
i − λ∇F(s̃qi )) max(1 − ρλ

‖s̃qi − λ∇F(s̃qi )‖2
, 0).

(39)

The positions of non-zero rows of the reconstructed signal

matrix S̃q correspond to DOAs of incident signals.

C. CONVERGENCE ANALYSIS

The non-convex group sparse phase retrieval problem

is replaced by a convex surrogate via the majorization-

minimization technique. If the second inequality of (24)

holds, we have

‖ÃS̃q+1 − Cq‖2F + ρ‖S̃q+1‖2,1
≤ ‖ÃS̃q − Cq‖2F + ρ‖S̃q‖2,1, (40)
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and thus the generated sequence S̃q will at least converge to

a stationary point.

Following the convergence analysis of the proximal gra-

dient method in [24], [25], next we give an analysis of the

derived algorithm.

Consider the general model (31), F(S) = ‖ÃS̃−Cq‖2F and

G(S̃) = ρ‖S̃‖2,1. The smallest Lipschitz constant of F(S) is

the Hessian of it, which is equal to L = 2λmax(A
HA). Thus,

if λ ≤ 1
L
, for any S̃q, F(S̃q+1) is upper bounded by [24],

F(S̃q+1) ≤ F(S̃q) + Re(< ∇F(S̃q), S̃q+1 − S̃q >)

+ 1

2λ
‖S̃q+1 − S̃q‖2F , (41)

where < ·, · > represents Frobenius inner product and

Re(·) represents real part of its variable. Since the l2,1
norm is also convex, for S̃q, there should be a subgradient

V ∈ ∂‖S̃q+1‖2,1, which satisfies
G(S̃q+1) ≤ G(S̃) − Re(< V, S̃ − S̃q+1 >). (42)

Therefore, using (41) and (42), the upper bound of the objec-

tive function (31) is given by

F(S̃q+1) + G(S̃q+1) ≤ F(S̃q) + G(S̃q)

−Re(< V, S̃q − S̃q+1 >) + Re(< ∇F(S̃q), S̃q − S̃q+1 >)

+ 1

2λ
‖S̃q+1 − S̃q‖2F . (43)

The sequence S̃q is generated by the proximal gradient

method, which can be written as

S̃q+1 = proxλg(S̃
q − λ∇F(S̃q))

= argmin
Z

(G(Z) + 1

2λ
‖Z − (S̃q − λ∇F(S̃q)‖2F )

= argmin
Z

(G(Z) + F(S̃q)+ < ∇F(S̃q),Z − S̃q >

+ 1

2λ
‖Z − S̃q‖2F ). (44)

The last equality is obtained by ignoring constant terms unre-

lated to Z.

With the optimal condition of (44), if S̃q+1 exists, its

subgradient V ∈ ∂‖S̃q+1‖2,1 should satisfy

V + 1

λ
(S̃q+1 − S̃q) + ∇F(S̃q) = 0. (45)

Thus, by substituting (45) into (43), one has

F(S̃q) + G(S̃q) − F(S̃q+1) − G(S̃q+1) ≥ 1

2λ
‖S̃q − S̃q+1‖2F .

(46)

Therefore, the sequence S̃q produced by the prox-

imal gradient method is guaranteed to converge with

stepsize λ ≤ 1
L
.

D. ACCELERATION SCHEME

Since the group sparse phase retrieval problem is transformed

into a convex surrogate and solved by the proximal gradient

method, it can be further accelerated by applying theNesterov

acceleration [25], [26].

Algorithm 1 Summary (ToyBar)

Input: Ã, Y, γ , λ,

Output: S̃ (reconstructed signal).

Initialization: Set S̃0 as a random matrix, B0 = S̃0,

β0 = 1.

General steps: for q = 0, . . . , Q

1) Calculate Cq = Y ⊙ ejarg(ÃB
q)

2) Calculate S̃q+1, for i = 1,. . . ,G

Gradient: ∇F(b̃qi ) = 2(ãH )i(ÃB̃
q − Cq),

Find s̃
q+1
i as s̃

q+1
i = (b

q
i − λ∇F(bqi ))

max(1 − ρλ

‖bqi −λ∇F(bqi )‖2
, 0),

where b
q
i is the i-th row of Bq.

3) Update: βq+1 = 1+
√

1+4(βq)2

2
,

Bq+1 = S̃q+1 + βq−1

βq+1 (S̃
q+1) − S̃q.

4) q = q + 1, go to 1).

This method does not apply proximal operator to previous

S̃q+1 directly, but another point Bq+1 based on S̃q+1 and S̃q

expressed as

Bq+1 = S̃q+1 + βq − 1

βq+1
(S̃q+1 − S̃q), (47)

where

βq+1 = 1 +
√

1 + 4(βq)2

2
. (48)

The full algorithm is presented in the above Algorithm Sum-

mary, which is referred to as fasT grOup sparsitY Based

phAse Retrieval (ToyBar).

Note that, the proposed method does not work if there is

only one incident signal due to lack of sinusoidal difference

information 1sθ,kk ′ . Therefore, for such a scenario, an addi-

tional signal has to be deployed as a reference. However,

different from existing methods, DOA of the additional signal

does not need to be known in advance and its DOA will

be estimated simultaneously together with other impinging

signals.

E. MAXIMUM NUMBER OF RESOLVABLE SIGNALS

Since the idea of the proposed non-coherent DOA estimation

utilizes sinusoidal difference of two sub-arrays, themaximum

number of signals that can be distinguished depends on the

least number of sinusoidal differences that can be distin-

guished by the two individual sub-arrays. Since there are N

and M subarray sensors, respectively, traditionally they can

recovery N − 1 andM − 1 signals, and thus the dual array is

able to reconstruct min{N − 1,M − 1} signals.
However, due to the lack of phase information, from the

viewpoint of phase retrieval, less than N − 1 signals can be

constructed with N measurements. In [27], it proves that for

full sparse signals (K = G), at most G = 2N − 1 signals can

be recovered with generic measurement frame A = {An}Nn=1
if both the measurement matrix and signals are real-valued,
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where An is the n-th row of A and by generic it means A is

an open dense subset of R(C) i.e. random Gaussian matrix.

For the complex-valued scenario, [28] conjectures that N =
4G−4 generic measurements is required to recover G signals.

This conjecture has been proved in [29] forG = 2b−1, b ≥ 1.

For K -sparse signals, 4K −1 (8K −2) generic measurements

are needed for real (complex) scenarios [30].

Since the steering matrix is not generic, the above con-

dition might not hold for the non-coherent measurements

of an array. The authors in [31] show that K 2 − K + 1

measurements are required to recover K signals with Fourier

magnitude measurements by pointing out that reconstruct-

ing K -sparse signals from its magnitude measurements is

the same as recovering its auto-correlation from its Fourier

measurements. As the steering matrix has a similar structure

to the Fourier measurements matrix, similar theorem can be

derived by the same approach proposed in [31].

Theorem 1: To reconstruct a K -sparse signals s, at least

K 2 − K + 1 measurements are necessary.

Proof: Defining a vector u as

u =
[

|s|2, s1,K , . . . , sK−1,K , s∗K−1,K , . . . , s∗1,K
]T

, (49)

where sk,K = [sks
∗
k+1, sks

∗
k+2 . . . , sks

∗
K ] for k = 1, . . . ,

K − 1, and |s|2 =
∑K

k=1 |sk |2.
Then, we can find a matrix D satisfying

|Ãs̃|2 = Du, (50)

�

with

dTn =
















1

e−jnα1 sin θ1,K

...

e−jnα1 sin θK−1,K

ejnα1 sin θK−1,K

...

ejnα1 sin θ1,K
















, (51)

where 1 sin θk,K = [sin θk − sin θk+1, . . . , sin θk − sin θK ].

Therefore, recovering s̃ from its magnitude measurements is

equivalent to reconstructing u with measurement matrix D.

For an N -element array, it can recover up to K signals, with

K satisfying K 2 − K + 1 ≤ N . Note that, this is not a tight

bound and only used as a reference.

F. CRAMÉR-RAO BOUND

In this section, the CRB for non-coherent DOA estimation

is derived. Although an approximation expression of CRB

for non-cohernet DOA estimation was derived in [11], [12],

a high gain reference signal has to be applied at one end of

interested range, which is not applicable to the signal model

in this paper. Since the reconstructed signals are up to a global

phase factor, for complex signal s, the Fisher information

matrix (FIM) would be singular [32], [33]. Thus, in this work,

instead of estimating the phase information of signals, only

phase differences between signals are considered.

From (19), the probability density function is expressed as

p(Y; 8) =
P

∏

p

M+N−1
∏

n=0

1

2πσ 2
n

e(yn[p]−|ans[p]|)2/2σ 2
n , (52)

where an and yn represent the n-th row ofA andY, separately.

From the signal model the unknown parameter vector of

arriving angles, magnitude, phase difference and noise level

can be represented as

8 = [θ , |s|, 1γ , σ 2]T

θ = [θ1, . . . , θK ],

|s[p]| = [|s1[p]|, . . . , |sK [p]|],
1γ = [1γ12, 1γ13, . . . ,1γ(K−1)K ], (53)

where 1γkk ′ = γk − γk ′ , γk is the phase of the k-th signals

and σ 2 is noise power. Since there are K2−K
2

cross terms in

|ÃS̃|, there are also K2−K
2

entries in1γ . For deterministic but

unknown AS, the FIM is defined as

FIM (8) = E{∂ln
2p(Y; φ)

∂8∂8T
} (54)

The {i, j}-th entry of the FIM F is given by [34]

Fi,j =
[∂µ(8)

∂8i

]T
Ŵ−1(8)

[∂µ(8)

∂8j

]

+1

2

[

Ŵ−1(β)
∂Ŵ−1(8)

∂8i
Ŵ−1(8)

∂Ŵ−1(8)

∂8j

]

, (55)

where Ŵ−1(8) = 1
σ 2
n
IM+N−1 and IM+N−1 is the identity

matrix and µ(8) = |AS|. Since µ(8) is independent with

the noise level, we have

F =
[

F̃ 0

0 0

]

+
[

0 0

0 Fσ

]

, (56)

where the DOA related block is in F̃ and its {i, j}-th entry is

expressed as

F̃i,j =
[∂µ(8)

∂8i

]T
Ŵ−1(8)

[∂µ(8)

∂φj

]

, (57)

where (·)−1 is thematrix inverse operator. As the FIM is block

diagonal, Fσ has no effect on CRB result of DOAs. Thus,

CRB of DOAs can be determined by the inverse of F̃.

Denotes |ans| = (sHaHn ans)
1
2 = (sHAns)

1
2 and drop index

p for convenience, we have

∂|ans|
∂θk

= 1

2
(sHAns)

1
2
∂(sHAns)

∂θk

= 1

2
(sHAns)

− 1
2

(

jnα cos θks
∗
kAn(k, :)s

−jnα cos θksks
HAn(:, k)

)

= (sHAns)
− 1

2 Im
(

− nα cos θks
∗
kAn(k, :)s

)

∂|ans|
∂|s|k

= 1

2
(sHAns)

− 1
2
∂(sHAns)

∂|s|k
= 1

2
(sHAns)

− 1
2 (e−jγkAn(k, :)s

+ejγk sHAn(:, k))
= (sHAns)

− 1
2Re

(

ejγk sHAn(:, k)
)
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∂|ans|
∂1γkk ′

= 1

2
(sHAns)

− 1
2
∂(sHAns)

∂1γkk ′

= 1

2
(sHAns)

− 1
2 (−js∗kAn(k, k

′)sk ′

+jsks∗k ′An(k
′, k))

= (sHAns)
− 1

2 Im
(

sks
∗
k ′An(k

′, k)
)

, (58)

where (·)∗ is the complex conjugate operator, An(k, :) is

the k-th row of An and An(:, k) is the k-th column of An.

Substituting (58) into (56), the FIM can be obtained as

F̃ =
P

∑

p=1

1

σ 2
n

G[p]G[p]H , (59)

where

G[p] =








Im
(

diag(s[p]∗)(E ⊙ A)Hdiag(As[p])
)

ỹ[p]

Re
(

diag(e−jγ )AHdiag(As[p])]
)

ỹ[p]

−Im
(

diag{ṡ[p]}Ȧ ⊙ diag{s̈[p]}Ä
)

ỹ[p]







, (60)

with

E = [e1, . . . eK ],

ek = [0, α cos θk,1, . . . , (N − 1)α cos θk,1,

α cos θk,2, . . . , (N − 1)α cos θk,2]
T ,

ỹ[p]= diag{|As[p]|− 1
2 },

ṡ =
[

K−1
︷ ︸︸ ︷

s1[p], . . . , s1[p],

K−2
︷ ︸︸ ︷

s2[p] . . . , s2[p], . . . , sK−1[p]
]

,

Ȧ = [

K−1
︷ ︸︸ ︷

A(:, 1)T , . . . ,A(:, 1)T , . . . ,A(:,K − 1)T ],

s̈=
[

s∗2[p], s
∗
3[p], . . . , s

∗
K [p], s

∗
3[p], . . . , s

∗
K [p], . . . , s

∗
K [p]

]

,

Ä = [A(:, 2)H , . . . ,A(:,K )H , . . . ,A(:,K )H ]. (61)

The CRB associated with the DOA of signals can be

obtained by the diagonal elements of the inverse FIM F̃.

G. GRID REFINEMENT

Similar to other compressive sensing based DOA estimation

methods, the estimation results of the proposed method are

dependent on the grid size in the angle domain. A denser grid

usually leads to amore accurate DOA results, but with amuch

higher computational complexity [4].

Therefore, instead of creating a dense grid initially, a coarse

grid is firstly made; based on the DOA results, a denser

steering matrix is then built around the estimated locations

of incident signals, and the algorithm is employed again to

find a more accurate DOA.

IV. SIMULATION RESULTS

In this section, performance of the proposed ToyBar is

studied and compared with the modified GESPAR [7] for

non-coherent DOA estimation. For the modified GESPAR,

64000 iterations are used. For the proposed algorithm,

the iterations are fixed at Q = 400 and 50 random initial-

izations are used in order to find the global minimum of the

FIGURE 2. Estimation results based on the dual-array structure.

non-convex problem. Stepsize λ is set as 1/(2λmax(Ã
H Ã)).

The angle between the two subarrays is set as θ̌ = 20◦ unless
specified otherwise. Accordingly, the area of interest for the

first array is set to [−70◦, 90◦] while for the second array

it is [−90◦, 70◦], with a step size of 0.5◦ for initial DOA

estimation. After obtaining the initial DOA eastimates θ̂k ,

a new grid with stepsize 0.05◦ is formed around an interval

of θ̂ , which includes 1.5◦ to either side of it. i.e 0.05◦ spacing
within [θ̂k − 1.5◦, θ̂k + 1.5◦]. While applied the refine step

to GESPAR, the iterations halved as the number of grids

decreased. Results obtained with this refinement step are

referred to as ‘‘ToyBar-Refined’’ and ‘‘GESPAR-Refined’’ in

the following.

For the first set of measurements, the signal to noise

ratio (SNR) is 15 dB and there are K = 3 signals impinging

on the array, with incident angles −30◦, −10◦, and 50◦ (rela-
tive to the first array). The number of snapshots is 20 and the

number of sensors is M = N = 20. The spatial spectrum of

estimation results is shown in Fig. 2, where Fig. 2(a) provides

the result of ToyBar, while Fig. 2(b) is for GESPAR. The

dotted lines represent the true incident angles. It can be seen

that all 3 signals have been identified by both GESPAR and

the proposed method. However, although GESPAR provides

a sharper peak, it requires prior knowledge of the number of

incident signals, while the proposed method does not.

Next, performances of the proposed ToyBar and GESPAR

are evaluated with different SNR values ranging from 5 dB

to 25 dB with three signals identical to the first experiment in

terms of the root mean square error (RMSE), and the results
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FIGURE 3. RMSEs versus different SNR.

FIGURE 4. RMSEs versus number of snapshots.

are shown in Fig. 3, with each point obtained by averaging

over 100 trials. Clearly, both algorithms have achieved more

accurate results with increasing SNR, but the estimation of

the proposed ToyBar is slightly more accurate than GES-

PAR; besides, the refined step is able to further improve the

performance of both algorithms, but the refined ToyBar also

outperforms the refined GESPAR.

In Fig. 4, results of RMSE versus the number of snapshots

of both algorithms are provided. SNR is fixed at 15 dB but the

number of snapshots P is from 20 to 100. Each point is aver-

aged over 100 trials. Under all snapshot settings, the proposed

algorithm has a lower RMSE than the modified GESPAR.

In addition, compared to the proposed ToyBar, the modified

GESPAR is less sensitive to snapshots.

To compare the computational complexity of GESPAR

and the proposed ToyBar, the average computation time of

both algorithms with different number of snapshots is listed

in Table. 1, where the average running time of both algorithms

are under CPU I5 5200U at 2.2GHz and 4 GB RAM. It can

be seen that an increasing number of snapshots significantly

increases the running time of GESPAR and it always requires

much longer running time than the proposed method. This

is because GESPAR is a greedy algorithm and requires more

iterations to achieve a good performance; moreover, this algo-

rithm was designed for traditional phase retrieval applica-

tions, which always assume the input signal has one snapshot

and thus its modified version for multiple snapshots has to

use multiple time samples separately. By contrast, the pro-

posed algorithms exploits the multiple time samples jointly

and requires less computation time than GESPAR. Similarly,

TABLE 1. Running times versus number of snapshots.

FIGURE 5. RMSE results versus θ̌ for SNR = 15 dB.

the computational complexity of GESPAR-Refined is also

much higher than ToyBar-Refined.

Finally, the performance of the DOA esitmation results

under various angles θ̌ between the two arrays is examined.

The RMSE results versus θ̌ is shown in Fig. 5. SNR= 15 dB

and other simulation parameters are the same as the first

simulation. It can be seen that, although a larger θ̌ always

improves the estimation accuracy. the proposed Toybar has a

better performance than the modified GESPAR. In addition,

the refinement step can improve the performance of the pro-

posed ToyBar and the modified GESPAR significantly when

θ̌ is small. However, since the effective range of estimation is

restricted by θ̌ , θ̌ should be chosen carefully in order to cover

more area within [−90◦, 90◦].

V. CONCLUSION

The non-coherent DOA estimation problem with a dual-array

structure has been studied and an efficient sparse phase

retrieval algorithm called ToyBar for multiple snapshots

is proposed. By exploiting the spatial information of both

sub-arrays of the dual-array simultaneously, a joint group

sparsity based non-coherent DOA estimation problem with

multiple snapshots was formulated. This problem can be

solved by the proximal gradient method after transforming

the original non-convex problem to its convex surrogate

via the majorization-minimization. With the proposed array

structure, ambiguities associated with the magnitude-only

measurements are avoided without the need of reference

signals. Compared to the modified GESPAR, knowledge of

number of incident signals is not required for the proposed

algorithm. In addition, as demonstrated by simulations, Toy-

Bar has a better performance in terms of both computational

complexity and accuracy. One note is, recent study has shown

that other array structures such as circular arrays can also be

26800 VOLUME 9, 2021



Z. Wan, W. Liu: Non-Coherent DOA Estimation via Proximal Gradient Based on a Dual-Array Structure

employed to overcome the underlying ambiguities instead of

the proposed dual-array structure.
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