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We introduce different types of quenches to probe the non-equilibrium dynamics and multiple
collective modes of bilayer fractional quantum Hall states. We show that applying an electric field
in one layer induces oscillations of a spin-1 degree of freedom, whose frequency matches the long-
wavelength limit of the dipole mode. On the other hand, oscillations of the long-wavelength limit of
the quadrupole mode, i.e., the spin-2 graviton, as well as the combination of two spin-1 states, can
be activated by a sudden change of band mass anisotropy. We construct an effective field theory to
describe the quench dynamics of these collective modes. In particular, we derive the dynamics for
both the spin-2 and the spin-1 states and demonstrate their excellent agreement with numerics.

Introduction. A paradigmatic property of condensed
phases of matter is the existence of a collective mode
– coherent oscillations of the medium – which governs
the system’s low-energy physics [1]. The Feynman-Bijl
ansatz [2] or “single-mode approximation” (SMA) is an
elegant formulation of this idea, originally applied to un-
derstand the emergent phonon and roton excitations in
liquid helium. The same idea has found applications in
correlated systems, such as the plasmon modes in three-
dimensional electron systems [3, 4] and one-dimensional
(1D) quantum spin systems [5–11]. Recent progress in
tensor networks has enabled accurate descriptions of col-
lective modes in both 1D and 2D lattice systems [12, 13].

Collective excitations are also ubiquitous in strongly-
correlated topological phases in two-dimensional electron
gases (2DEGs), which are experimentally observed in the
regime of the fractional quantum Hall (FQH) effect [14].
While there has been much focus on understanding the
properties of charged excitations of FQH phases, fueled
by their exotic properties such as fractional charge and
fractional statistics [15–17], recently there has been a
resurgence of interest in the neutral collective modes
of FQH systems, some of which are also accurately de-
scribed using the SMA [18–22]. In comparison with 1D or
topologically-trivial systems, the FQH collective modes
are endowed with additional physical properties, which
makes their physics much richer. For example, it has re-
cently been realized that the long-wavelength limit of the
Girvin-MacDonald-Platzman (GMP) mode [18, 19] ex-
hibits an emergent quantum geometry [23–25]. This ge-
ometric degree of freedom has been dubbed FQH “gravi-
ton” since it carries angular momentum L = 2, reminis-
cent of the spin-2 elementary particle [21, 24, 26, 27]. The
conventional probes of FQH collective modes by inelas-
tic light scattering [28–31] are limited to finite momenta
k, thus they can only indirectly measure the graviton
which emerges in k → 0 limit. In contrast, recent works
in single-layer FQH systems [32, 33] have shown that the

graviton can be directly excited in a dynamical quench
experiment, where the band mass tensor of the 2DEG
is suddenly made anisotropic or the magnetic field is
abruptly tilted (see also a recent proposal using surface
acoustic waves [34]).

Despite this progress in understanding the dynamics
of the collective mode in single-layer FQH systems, many
interesting new questions arise in multicomponent FQH
systems [35], such as FQH bilayers. The additional layer
degree of freedom gives rise to multiple collective exci-
tations [20, 36–38], thereby presenting a new avenue to
study the non-equilibrium dynamics of FQH systems. In
this Letter, we show that FQH bilayers provide a ver-
satile platform to probe the dynamics of individual or
coupled collective modes with rich topological and geo-
metric properties. We report the investigation of an FQH
bilayer system of bosons at total filling ν = 2/3, which
hosts two collective modes: a spin-2 excitation (gravi-
ton or quadrupole) and a spin-1 (dipole) excitation. We
design two types of quench protocols corresponding to
the change of mass tensor and the application of an elec-
tric field, which are shown to excite either the individual
modes or their combination. We support these findings
using extensive exact diagonalization calculations of the
real-time evolution of the FQH bilayer system and for-
mulating a field-theoretic description of the quench.

Model. We consider a bilayer FQH system at total
filling ν = 2/3 on the square torus with N bosons and
Nφ = N/ν magnetic flux quanta. We label the two layers
by σ =↑, ↓, and neglect interlayer tunneling. Hence, the
number of bosons in each layer, Nσ, is conserved and
we focus on the density-balanced case with pseudospin
Sz ≡ 1

2
(N↑−N↓) = 0. We assume that the bosons reside

in the lowest Landau level (LLL), and their interaction
is described by the Hamiltonian

H =
∑

q

∑

σ,σ′=↑,↓

V̄ σ,σ′

q : ρσqρ
σ′

−q : . (1)
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Here ρσq =
∑Nσ

j=1 e
iq·Rσ

j is the LLL-projected density op-

erator in layer σ, with Rσ
j the jth particle’s guiding cen-

ter coordinate [39], V̄ σ,σ′

q is the Fourier transform of the
interaction, and :: denotes normal ordering.

The Fourier transform of the interaction is a prod-
uct of the Coulomb potential and the LLL form fac-
tors, V̄ σ,σ′

q = V σ,σ′

q Fσ
q F

σ′

q . The intralayer potentials are

V ↑↑
q = V ↓↓

q = 2π/|q|, and the interlayer interaction is

V ↑↓
q = (V ↓↑

q )∗ = (2π/|q|)e−|q|deiq·s, where d is the inter-
layer distance, and s = (sx, sy) is the relative displace-
ment between the bosons in different layers. Throughout
this work we quote energies in units of e2/(εℓB), where
the magnetic length ℓB =

√

~c/eB and ε is the dielec-
tric constant of the host material. The quantity d/ℓB
can be varied by changing the magnetic field, while s can
be tuned by applying an electric field in one layer. The
form factor Fσ

q = exp[−(gσm)abqaqbℓ
2
B/4] depends on the

band mass tensor in each layer gσm [23] (we use Einstein’s
summation convention). The 2 × 2 unimodular matrix
gσm measures the mass anisotropy in layer σ which is in-
duced, e.g., by tilting the magnetic field. In the isotropic
case we have gσm = 1, where 1 is the 2×2 identity matrix.

For small interlayer distances, d . ℓB , the ground state
of the bosonic ν = 2/3 FQH bilayer is described by the
Halperin (221) state [40], an incompressible fluid with
total momentum k = 0. At large values of d, the system
transitions to two decoupled ν = 1/3 states, each being a
bosonic analog of the composite fermion Fermi liquid [41,
42]. We are interested in probing the non-equilibrium
behavior of the (221) system using a global quench of
the system’s Hamiltonian. In our calculations we fix d =
0.4ℓB . Initially the system is in the ground state |Ψ0〉 of
H0 ≡ H(g↑,↓m = 1, s = 0) in the (221) phase. At time
t = 0, we suddenly modify the Hamiltonian H0 → H ′,
and let the system evolve according to the Schrödinger
equation |Ψ(t)〉 = e−iH′t|Ψ0〉.
The sudden change of the Hamiltonian defines the

quench, and we consider two protocols: (i) applying elec-
tric field in a single layer [Fig. 1(a)], which is equivalent to
changing s = 0 → s′ 6= 0; and/or (ii) changing the mass
tensor gσm = 1→ gσm

′ 6= 1 to add anisotropy in both layers
[Fig. 1(b)], where gσm

′ is taken to be diagonal for simplic-
ity. We find that the essential features of post-quench
dynamics are independent on precise values of s′ and gσm

′

as long as the ground state of H ′ ≡ H(gσm = gσm
′, s = s′)

remains in the (221) phase, which we assume below.

The key to understanding the dynamics lies in the ex-
cited states of H(gσm, s). A typical energy spectrum of
the (221) system on the torus is shown in Fig. 1(c). The
ground state is in the k = 0 momentum sector, and there
are two excitation modes above it. On the sphere, the up-
per mode starts from the total angular momentum L = 2
and hence is termed a quadrupole mode [18, 19], while
the lower mode starts from L = 1 and forms a dipole ex-
citation. We note that the dispersion of these two modes
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FIG. 1. (a) Instantaneous application of an electric field E
in one layer induces dynamics in the relative displacement
between FQH droplets in the two layers. (b) Instantaneous
change of the mass tensors in both layers (or, equivalently, a
sudden tilt of the magnetic field B) induces dynamics in the
intrinsic anisotropy [32], which describes the shape of flux-
particle composites of the underlying FQH state. (c) Coulomb
spectra of N = 6, 8, 10 bosons on the torus for d = 0.4ℓB
showing the quadrupole and dipole collective modes. Dashed
lines trace out these collective modes as a guide to the eye.

is not sensitive to the precise values of gσm and s. In the
language of field theory, the two modes are described us-
ing a degree of freedom that carries spin-2 and spin-1,
respectively, in the long-wavelength limit. In the con-
text of SMA, the long-wave limits of the quadrupole and
dipole modes can be obtained by acting on the ground
state with ρSq = (ρ↑q + ρ↓q)/

√
2 and ρAS

q = (ρ↑q − ρ↓q)/
√
2,

respectively [20, 36, 38]. As our quench protocols pre-
serve translation symmetry, only eigenstates with k = 0

are involved in the dynamics.

Electric-field quench. Let us first consider the quench
in which we apply an electric field instantaneously in one
layer while keeping gσm in both layers isotropic. For sim-
plicity, we consider an electric field in the x-direction,
whose effect can be captured by changing the interlayer
displacement from (0, 0) to (s, 0), with s 6= 0 (the electric
field also lifts the degeneracy of the LLL orbitals, but
this effect is negligible for the system sizes we study).
We compute the post-quench fidelity F (t) = |〈Ψ0|Ψ(t)〉|
to monitor the dynamics. We find that F (t) oscillates
regularly with a single dominant frequency, as shown in
Fig. 2(a) for s = 0.1ℓB , and this frequency is almost
the same for different system sizes and other small s. To
extract this frequency, we plot the discrete Fourier trans-
form |F(ω)| of F (t) in Fig. 2(b). We see that |F(ω)| has
a sharply pronounced peak at ω ≈ 0.12 which is in excel-
lent agreement with the energy of the spin-1 dipole mode
in the long-wavelength limit [see Fig. 1(c)].

As shown in Fig. 1(c), the entire dipole mode lies be-
low the continuum of the energy spectrum. This allows
us to readily identify the coherent oscillations under the
applied electric field with the dipole mode. This will not
be the case with other types of quenches considered be-
low. To unambiguously identify the modes excited by a
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FIG. 2. (a) The fidelity F (t) and (b) its discrete Fourier
transform |F(ω)| for the quench driven by tuning interlayer
displacement from (0, 0) to (s, 0) with s = 0.1ℓB . The in-
set of (b) shows the normalized spectral function Ī0,1(E) =
I0,1(E)/

∫

I0,1(E)dE for isotropic systems with zero interlayer
displacement. Markers in the main figure and curves in the
inset with the same color refer to the same system size.

quench, we construct appropriate spectral functions and
look for peaks in it. In the dipole case, we use the spec-
tral function of an operator carrying spin-1 evaluated in
the k = 0 sector. A natural choice for such an operator is
the V0,1 generalized pseudopotential [43], adapted to the

bilayer case i.e., V̂0,1 =
∑

q V̄0,1(q) : (ρ↑qρ
↓
−q − ρ↓qρ

↑
−q) :

with V0,1(q) ∝ iqx. The corresponding spectral function
I0,1(E) is

I0,1(E) =
∑

j

δ(E − ǫj + ǫ0)|〈j|V̂0,1|0〉|2. (2)

Note that the bilayer V̂0,1 is defined to be antisymmet-
ric with respect to the layer index because all layer-
symmetric terms vanish for V0,1(q). As V̂0,1 couples the
ground state with excited states with Lz = 1 (spin-1),
the peaks in I0,1(E) correspond to spin-1 eigenstates. We
show I0,1(E) in the inset of Fig. 2(b) for isotropic systems
with s = 0 (very similar data are obtained for weakly
anisotropic systems with small s). Indeed, I0,1(E) has a
sharp peak at E ≈ 0.12, agreeing with the lowest-excited
state in the k = 0 sector. This further confirms that the
long-wave limit of the spin-1 dipole mode governs the
electric-field-driven quench dynamics.
Mass anisotropy quench. We now turn to the quench

driven by mass anisotropy. In this case, we drive the
quench by keeping s = 0 and changing the mass tensors
gσm in both layers from 1 to diag{α, 1/α} with α > 1 at
t = 0. In single-layer FQH systems, the quench dynamics

driven by mass anisotropy is dominated by a single spin-
2 degree of freedom, which was identified with the long-
wave limit of the GMP mode [32]. Since bilayer FQH
systems have multiple neutral excitations, we expect the
dynamics of bilayer mass-anisotropy quench to be richer
than the single-layer case.
Like in the electric-field quench, we first study the fi-

delity F (t), shown in Fig. 3(a) for α = 1.3. It is clear
that F (t) now oscillates with multiple frequencies. To
extract the dominant frequencies we plot the discrete
Fourier transform |F(ω)| of F (t) in Fig. 3(b). Indeed
we observe several pronounced peaks that are insensi-
tive to small variations in α. As changing the mass ten-
sor leads to quadrupolar (spin-2) deformations of FQH
droplets [32, 43], we expect these dominant frequencies to
correspond to spin-2 degrees of freedom in the k = 0 sec-
tor of H ′. To substantiate this quantitatively, we utilize
the spectral function of a spin-2 operator in the k = 0 sec-
tor. We choose the operator V̂0,2 =

∑

q V̄0,2(q) : ρ
S
qρ

S
−q :

with V0,2(q) ∝ q2x−q2y, which is the bilayer generalization
of the V0,2 generalized pseudopotential [43]. Its spectral
function I0,2(E) is defined analogously to Eq. (2). As
shown in Fig. 3(c), the positions of peaks in I0,2 indeed
match those in |F(ω)|. Thus all dominant frequencies
in the post-quench dynamics correspond to spin-2 eigen-
states in the k = 0 sector of H ′.
What is the physical interpretation of the multiple

spin-2 states observed in the dynamics? On the one hand,
the long-wave limit of the quadrupole mode, i.e., the bi-
layer spin-2 graviton, should definitely contribute. As
suggested by the exact energy spectrum in Fig. 1(c), the
quadrupole mode approaches the energy E ≈ 0.25−0.3 in
the long-wave limit, and there are indeed corresponding
sharp peaks in |F(ω)| [cyan-shaded area in Fig. 3(b)].
The splitting of these peaks is due to “fragmentation”
of the spin-2 graviton mode into several states in finite
systems, a feature which is also observed in single-layer
systems [32]. On the other hand, although the long-
wave limit of the spin-1 dipole mode cannot couple to
the quench, a suitable combination of two spin-1 states
can be excited by it. Two spin-1 states can form a bound
state with spin-2, whose energy is slightly reduced from
twice the spin-1 energy. The spectrum shown in Fig. 1(c)
and results of the electric-field quench suggest that the
dipole mode goes to E ≈ 0.12 in the long-wave limit,
thus a bound state of two dipoles, with energy E < 0.24,
could appear in the post-quench dynamics. Remarkably,
we indeed observe a sharp peak at that energy in |F(ω)|
[orange-shaded area in Fig. 3(b)].

Curiously, in addition to the bilayer spin-2 graviton
and the bound state of two spin-1s, we also see peaks in
|F(ω)| at a much higher frequency ω ≈ 0.45−0.5 [purple
shaded area in Fig. 3(b)]. In principle, higher multiples
of the elementary spin-1 and spin-2 modes may be ex-
pected to appear in the dynamics, but their contribution
to the spectral function is expected to be significantly
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FIG. 3. (a) The fidelity F (t) for the quench driven by tuning the mass tensors in both layers from 1 to diag{α, 1/α} with
α = 1.3 for d = 0.4ℓB . (b) The discrete Fourier transform |F(ω)| of F (t). The three types of dominant frequencies, i.e., the
combination of two spin-1 modes (orange), the bilayer spin-2 graviton (ctan), and the spin-2 state in a single layer (purple),
are indicated by shaded areas and arrows. (c) The normalized spectral function Ī0,2(E) = I0,2(E)/

∫

I0,2(E)dE for isotropic
systems with zero interlayer displacement (very similar data are obtained for weakly anisotropic systems with small s).

reduced. Moreover, we find these higher-frequency peaks
become sharper and move to higher frequencies with in-
creasing d when the two layers are progressively more
decoupled [42]. Hence, we identify this spin-2 excitation
with that of a single-layer ν = 1/3 bosonic system.

Effective field theory. Similar to the single-layer case,
the bilayer spin-2 graviton can be described by the bi-
metric theory [24]. Here we outline the effective theory
describing the new collective spin-1 mode. The theory is
a spin-1 counterpart of the bimetric theory with a vector
degree of freedom vi that quantifies relative displacement
of layers, described by the Lagrangian

L = −ǫijviv̇j −M |v|2 + E−
i vi , (3)

where E−
i is the difference between electric fields applied

to the layers and M determines the gap of the spin-1
mode. The quench is simulated by suddenly switching
on E−

i at t = 0 and solving classical equations of motion
[32, 44]. Assuming that the quench is along x direction,
i.e., E−

y = 0, the equations of motion stemming from
Eq. (3) are single harmonics

vx(t) = A[1− cos(Mt)], vy(t) = A sin(Mt), (4)

where the amplitude of oscillations is determined by the
quench strength, A = E−

x /(2M).
Dynamics of vi coming from Eq. (4) can then compared

to a numerical simulation, where vi(t) is determined by
a brute force search over a large set of precomputed trial
(221) states |Ψtrial(s)〉, i.e., the ground state of the Hamil-
tonianH(g↑,↓m = 1, s). When the overlap |〈Ψ(t)|Ψtrial(s)〉|
is maximized (and sufficiently close to unity), we expect
vi(t) = si. In Fig. 4, we show dynamics of vi for various
weak quench strengths and compared to Eq. (4). Fitting
the first oscillation in Fig. 4 against Eq. (4), we find a re-
markable agreement between numerically exact dynam-
ics and field-theory predictions up to moderate times.
The frequency M returned by the fit matches the en-
ergy ≈ 0.12 of the k = 0 spin-1 state, and the oscillation
amplitude is given by A = 2s. With increasing quench

strength or at longer times, we observe deviations from
simple harmonic oscillations, which we believe is caused
by effects like fragmentation of the long-wave limit of the
dipole mode and the interaction between spin-1 states.

To describe the spin-2 bound state of the spin-1 modes
we must include the interaction term, Lint ∝ |v|4, into
Eq. (3). It is then straightforward to show that 〈vivj〉
behaves as a spin-2 mode and responds to the geometric
quench, leading to an extra peak in Fig. 3(b).

Discussion. In this work, we explored the quench dy-
namics of collective modes in bilayer ν = 2/3 systems
of bosons. We proposed and numerically simulated two
quench protocols which excite neutral degrees of free-
dom in the system. The quench driven by an electric
field applied in one layer induces oscillations of the long-
wavelength limit of the spin-1 dipole collective mode.
More interestingly, the quench driven by mass anisotropy
not only activates the spin-2 quadrupole mode but also
single-layer spin-2 excitation and a combination of two
spin-1 dipole modes. While in this paper we presented
results for systems of bosons, all of our conclusions also
hold for FQH systems of fermions.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
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FIG. 4. Exact dynamics of the interlayer displacement v in
the x (dots) and y directions (circles) for N = 10 bosons
after quenches driven by tuning the interlayer displacement
from (0, 0) to (s, 0) with s = 0.1ℓB , 0.15ℓB , 0.2ℓB . The dashed
curves are fits to Eq. (4).
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Direct access to the spin-1 mode in the spectrum of
bilayer states suggests a variety of new problems related
to the geometric aspects of FQH and exact calculations
of correlation functions [23, 45–51]. Namely, which corre-
lations functions are sensitive to the mode, and can any
of them be computed with the help of existing methods?

Our quench protocols provide an opportunity to exper-
imentally measure the collective modes of FQH states at
long wavelengths in a way that complements the inelas-
tic light scattering [28–31] and current noise measure-
ments [52]. In fact, the quench protocols proposed in
this work, in particular the counterflow electric field, can
be implemented with the existing technology. The main
challenge would be resolving the dynamics on short time
scales in solid-state materials, which would be naturally
resolved in other platforms, e.g., cold atoms in optical lat-
tices forming a fractional Chern insulator [53–55]. Our
results are also of direct relevance to more complex FQH
systems with non-Abelian topological order, which also
host multiple types of neutral excitations [56, 57]. It
would be interesting to design quench protocols and ef-
fective theories to probe different collective modes at long
wavelengths as well as the combination (or interaction)
between them.
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[84] A. C. Balram, C. Tőke, and J. K. Jain, Luttinger theo-
rem for the strongly correlated Fermi liquid of composite
fermions, Phys. Rev. Lett. 115, 186805 (2015).

[85] A. C. Balram, A non-Abelian parton state for the
ν = 2 + 3/8 fractional quantum Hall effect, arXiv
e-prints , arXiv:2010.08965 (2020), arXiv:2010.08965
[cond-mat.str-el].

[86] B. Yang and A. C. Balram, Elementary excitations in
fractional quantum hall effect from classical constraints,
(2019), arXiv:1907.09493 [cond-mat.str-el].



8

SUPPLEMENTARY MATERIAL

In this Supplementary Material, we provide additional numerical data for the quench dynamics of ν = 2/3 bilayer
bosons. We then use the composite-fermion (CF) exciton and single-mode approximation (SMA) to predict the two
neutral collective modes of the system – the quadrupole mode and the dipole mode. By comparing with the spectra
obtained from exact diagonalization, we find that the CF exciton describes the collective modes much better than
SMA at finite momenta. We present numerical evidence that the bilayer forms a compressible state at large layer
separations, consisting of two decoupled ν = 1/3 CF liquids of bosons. Finally, we outline an effective theory to
describe the bound state of two spin-1 degrees of freedom.

MASS-ANISOTROPY QUENCH FOR VARIOUS INTERLAYER DISTANCES

Here we present additional numerical data for mass-anisotropy quenches in Coulomb interacting systems at various
interlayer distances d. As in the main text, the initial state is chosen to be the isotropic Coulomb ground state with
zero interlayer displacement s. The mass tensors in both layers are suddenly tuned from 1 to diag{α, 1/α} to drive
the quench, while the interlayer displacement is kept at zero.

In Fig. S1, we show the Fourier transform of post-quench fidelity, the spectral function I0,2, and the exact Coulomb
spectrum at d/ℓB = 0, 0.2, 0.6 and 0.8. The energy spectrum has two common features for these different values of
d: (i) the ground state is in the k = 0 momentum sector and (ii) there are clear quadrupole and dipole collective
modes. The spectra thus suggest that the system is in the (221) phase for d ≤ ℓB . For all the values of d considered
here, we find clear evidence that the quench induces coherent dynamics of not only the bilayer spin-2 graviton (the
cyan-shaded areas in Fig. S1), but also the bound state of two spin-1s, denoted spin-1×spin-1, which carries spin-2
(the orange-shaded areas in Fig. S1). We arrive at this conclusion by comparing the peak positions in the Fourier
transform |F(ω)| of the post-quench fidelity and the k → 0 limit of the collective modes in the exact spectrum. In
contrast, at d = 0, we only observe a single sharp peak in |F(ω)|, which matches the energy of the bilayer spin-2
graviton [Fig. S1(a)]. However, because the energies of the bilayer spin-2 graviton and the spin-1×spin-1 bound state
should be close to each other in this case (the graviton energy is E ≈ 0.35 − 0.4 and the spin-1 energy is E ≈ 0.21)
[Fig. S1(c)], this peak presumably also includes a contribution from the spin-1×spin-1 bound state.

With increasing d, we find that a third dominant frequency in |F(ω)| emerges [the purple-shaded areas in Fig. S1].
As shown in the main text, peaks appear at E ≈ 0.45 at d = 0.4ℓB , with comparable heights to those corresponding
to the bilayer spin-2 graviton and the spin-1×spin-1 bound state. With increasing d, these peaks become sharper
and slowly move towards a higher frequency [see Figs. S1(g) and S1(j)]. We find that these peaks exist even at very
large d where the system is no longer in the (221) phase, suggesting that they are unrelated to excitations of the
(221) state. To understand this high-energy degree of freedom, which appears only at relatively large d, we track its
position in |F(ω)| up to d = 5ℓB . In this case, the corresponding peaks have moved to E ≈ 0.5 − 0.55 [Fig. S2(a)].
For such a large d the two layers are nearly decoupled and each layer forms a ν = 1/3 bosonic state. Thus, for
comparison, we study the mass-anisotropy quench in single-layer ν = 1/3 bosonic systems. Similar to the bilayer
case, we change the mass tensor of the single-layer system from 1 to diag{α, 1/α} with α = 1.3 to drive the quench,
with the initial state chosen as the single-layer isotropic Coulomb ground state. Note that the initial state is chosen
as the global ground state, i.e., it may not necessarily have k = 0. Remarkably, we also observe pronounced peaks at
E ≈ 0.5 − 0.55 in |F(ω)| of quenches in single-layer systems [Fig. S2(b)]. This confirms that the high-energy degree
of freedom, which starts to emerge around d ≈ 0.5ℓB and exists all the way to the decoupled limit when d → ∞, is a
spin-2 excitation within a single layer. As we show below, the bilayer system in the decoupled limit is two copies of the
ν = 1/3 CF liquid (CFL) of bosons, so this spin-2 excitation is expected to be a geometric distortion of the bosonic
CFL. Remarkably, signatures of this single-layer excitation could be detected in the system’s dynamical response even
across the quantum phase transition driven by changing d.

We also notice that some dominant frequencies of the bilayer system in the large-d limit are absent in the dynamics
of the corresponding single-layer system (Fig. S2). These frequencies correspond to bilayer eigenstates that are
combinations of two single-layer states with different momenta from that of the single-layer ground state, which we
cannot probe in the single-layer quench due to the momentum-preserving feature of our quench protocol.

We have also checked the electric-field quench of the (221) system for various d including d = 0. The results are
very similar to those shown in the main text for d = 0.4ℓB , i.e., the dynamics is governed by a single frequency
corresponding to the spin-1 long-wave limit of the dipole mode.
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Ī 0
,2
(E

)

(b), d = 0

N = 8

N = 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
kℓB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

∆
E

(c), d = 0

N = 6

N = 8

N = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

|F
(ω
)|

spin-1×spin-1 bilayer spin-2

(d), d = 0.2ℓB

N = 8

N = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
E

0

5

10

15

20

25

30

35

40
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FIG. S1. (a,d,g,j) The discrete Fourier transform |F(ω)| of the fidelity for the quench driven by tuning the mass tensors in
both layers from 1 to diag{α, 1/α} with α = 1.3. (b,e,h,k) The normalized spectral function Ī0,2(E) = I0,2(E)/

∫

I0,2(E)dE
for isotropic systems with zero interlayer displacement. (c,f,i,l) The exact energy spectrum. Here we consider N = 6, 8, 10
Coulomb interacting bosons at (a-c) d = 0, (d-f) d = 0.2ℓB , (g-i) d = 0.6ℓB and (j-l) d = 0.8ℓB .

COMPOSITE-FERMION EXCITON VERSUS SINGLE-MODE APPROXIMATION

In this section, we discuss two approximate constructions of the collective modes for bilayer bosonic systems at a
total filling of ν = 2/3. We shall describe the construction of the wave function of the modes using both the composite
fermion theory [58] and the single-mode approximation (SMA) [18, 19]. The CF theory gives a good description of
the modes at all values of the dimensionless wave vector kℓB for small layer separations d [59–62]. On the other
hand, the SMA provides a good description of the collective modes for small d only in the long-wavelength limit, i.e.,
kℓB → 0. The CF states are most readily constructed in Haldane’s spherical geometry [63]. Unless otherwise stated,
all our calculations in this section are carried out in spherical geometry. For the sake of completeness, we will provide
a primer on the CF theory next.
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FIG. S2. (a) The discrete Fourier transform |F(ω)| of the fidelity for the quench driven by tuning the mass tensors in both
layers from 1 to diag{α, 1/α} with α = 1.3. Here we consider N = 8, 10 bilayer ν = 2/3 Coulomb interacting bosons at d = 5ℓB .
(b) The discrete Fourier transform |F(ω)| of the fidelity for the quench driven by tuning the mass tensor from 1 to diag{α, 1/α}
with α = 1.3. Here we consider N = 4, 5 Coulomb interacting bosons for a single-layer ν = 1/3 system.

Primer on the composite fermion theory

A vast majority of the FQHE phenomenology in the lowest Landau level (LLL) is captured in terms of emergent
topological particles called composite fermions, which are bound states of electrons and an even number (2p) of
quantized vortices [58, 61]. The CF theory postulates that a system of interacting electrons at filling factor ν =
ν∗/(2pν∗ + 1) of the LLL can be mapped onto a system of weakly interacting composite fermions at filling factor
ν∗ of CF-LLs (termed ΛLs). In particular, integer filling of CF-LLs, i.e ν∗ = n, leads to FQHE of electrons at
ν = n/(2n + 1). The mapping to integer quantum Hall effect (IQHE) leads to the following Jain wave functions for
FQHE states [58]:

Ψα
ν= ν∗

2ν∗+1

= PLLLΦ
2
1Φ

α
ν∗ . (S1)

Here α labels the different eigenstates (to keep the notation simple, we shall suppress the label α from here on in),
Φν∗ is the wave function of non-interacting electrons at ν∗ and PLLL implements projection to the LLL. Throughout
this section, we carry out projection to the LLL using the Jain-Kamilla method [60, 64], details of which can be found
in the literature [61, 65–67]. This projection scheme, which is directly applicable to only fermionic states, allows us
to access fairly large system sizes well beyond the reach of exact diagonalization.

The Jain wave functions of Eq. (S1) can be readily generalized to multi-component systems, where the components
could refer to spin, orbital, layer, valley, subband, etc. degrees of freedom. Let us first consider the case of spinful
systems. We first write the net filling factor of CFs as ν∗ = ν∗↑ + ν∗↓ , where ↑ and ↓ denote the up and down spins
respectively. The Slater determinant Φν∗ ≡ Φν∗

↑
,ν∗

↓
is then simply given as a product of two Slater determinants one

for each spin, i.e., Φν∗ = Φν∗
↑
Φν∗

↓
. This leads us to the following Jain wave functions for spinful electrons in the LLL:

Ψ
ν=

(ν∗
↑
+ν∗

↓
)

2(ν∗
↑
+ν∗

↓
)+1

= PLLLΦ
2
1({z})Φν∗

↑
({z↑})Φν∗

↓
({z↓}). (S2)

At a given filling factor, one can construct states with different spin-polarizations. The spin-phase diagram of many
fractional quantum Hall states in the LLL has been worked out in detail using the above wave functions [61, 67–73].
The above wave functions are also applicable to bilayer systems in the limit where the layer separation d/ℓB → 0.

For bilayer systems (with the top and bottom layers denoted by ↑ and ↓) with a finite layer separation we consider
the following class of CF wave functions [74]:

Ψν= 2ν′

mν′+1

=
∏

i,j

(z↑i − z↓j )
mΦν′({z↑})Φν′({z↓}), (S3)

where we have assumed that both layers are at the same filling ν′ and m is the number of interlayer zeroes. The
Halperin (l, l,m) states [40] are obtained as a special case of Eq. (S3) when each of the layers is at a Laughlin filling
of ν′ = 1/l [15]. A detailed phase diagram of composite fermion states in bilayer systems was recently worked out in
Ref. [75].
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FIG. S3. Overlap of the exact lowest Landau level Coulomb ground state with the Halperin (221) state for bosons at ν = 2/3
for N = 12 bosons at flux 2Q = 16 as a function of the layer separation d/ℓB .

Analogous states for bosons can be constructed by dividing the above fermionic wave function by the full Jastrow
factor Φ1({z}) =

∏

i<j(zi − zj). Strictly speaking, the bosonic states PLLLΦ1Φn and Φ−1
1 [PLLLΦ

2
1Φn] differ in the

details of how the projection to the LLL is implemented. We expect that such details do not significantly change the
nature of the state [76]. Moreover, it is only for the state Φ−1

1 [PLLLΦ
2
1Φn] that the Jain-Kamilla projection method

can be applied, which then allows us to access large system sizes as we shall show below.
Of particular interest to us is the state of bosons at total filling ν = 2/3. Using the above prescription, the wave

function of this system is given by

Ψ2/3 = Φ1Φ1↑,1↓ =
∏

i<j

(zi− zj)
∏

i<j

(z↑i − z↑j )
∏

i<j

(z↓i − z↓j ) =
∏

i<j

(z↑i − z↑j )
2
∏

i<j

(z↓i − z↓j )
2
∏

i,j

(z↑i − z↓j ) ≡ ΨHalperin221

2/3 . (S4)

In Fig. S3 we show the overlap of the exact lowest Landau level Coulomb ground state with the Halperin (221) state
for N = 12 bosons as a function of the layer separation d/ℓB . The Halperin (221) state gives a good description
of the ground state at small to intermediate layer separations d. Its overlap with the exact Coulomb ground state
monotonically decreases with d. Although the exact lowest Landau level Coulomb ground state at finite d does not
have a good total pseudospin S, the Halperin (221) is a pseudospin-singlet, i.e., has S = 0. For small values of
the anisotropy and electric fields, i.e, weak quenches, we expect the state of the system to be in the same phase as
described by the above wave function [77].

Collective modes from the composite fermion theory

For the bosonic bilayer system at ν = 2/3 whose ground state lies in the phase described by the wave function
of Eq. (S4), the low-energy neutral excitations are obtained by creating a single CF exciton (a particle-hole pair of
composite fermions). We expect to see two gapped collective modes that arise from a symmetric and anti-symmetric
combination of CF exciton states in the two layers (see Fig. S4). The symmetric mode, which carries total pseu-
dospin S = 0, starts from total orbital angular momentum L = 2 in the spherical geometry and hence is termed a
“quadrupole” mode (The symmetric state at L = 1 is killed upon projection to the LLL.). The anti-symmetric mode,
which carries total pseudospin S = 1, starts from L = 1 in the spherical geometry and hence is termed a “dipole”
mode.

The CF theory allows us to write down wave functions for these modes which enables a calculation of their energies
for large system sizes. The schematic shown in Fig. S4(a) corresponds to the wave function:

ΨS=0,L
2/3 = [Φ1 ({z})]−1

[

PLLLΦ
2
1({z})

(

Φexciton,L
1,↑ ({z↑})Φ1,↓({z↓}) + Φ1,↑({z↑})Φexciton,L

1,↓ ({z↓})
)]

, (S5)

and that in Fig. S4(b) corresponds to

ΨS=1,L
2/3 = [Φ1 ({z})]−1

[

PLLLΦ
2
1({z})

(

Φexciton,L
1,↑ ({z↑})Φ1,↓({z↓})− Φ1,↑({z↑})Φexciton,L

1,↓ ({z↓})
)]

. (S6)



12

a) b)

FIG. S4. Schematic representation of the symmetric [left panel a)] and anti-symmetric [right panel b)] collective modes arising
from CF excitons in the bilayer system of bosons (fermions) at total filling of ν = 2/3 (ν = 2/5) .
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FIG. S5. Exact (dashes) and composite fermion (dots) spectra for N = 10 bosons on the sphere at a layer separation of
d/ℓB = 0 (left panel) and 0.4 (right panel). The bosonic 2/3 Halperin (221) state shown in red has total orbital angular
momentum L = 0 and total pseudospin angular momentum S = 0. For the exact results, we show the (i) lowest energy states
at L = 0 = S and L = 1 = S and the lowest energy states with S = 0 and S = 1 at L = 2, 3, · · · , N/2 for d = 0 and (ii) lowest
energy states at L = 0, 1 and the two lowest energy states at L = 2, 3, · · · , N/2 for d > 0.

The state Φexciton,L
1 denotes the wave function of a particle-hole pair at ν = 1 with total orbital angular momentum

L.

Two particles in the same layer interact via the intralayer Coulomb interaction 1/r while two particles in different
layers interact via the interlayer Coulomb interaction 1/

√
r2 + d2. For d = 0, the total pseudospin S is a good quantum

number and can be used to label the states. For d > 0, the total pseudospin S is not a good quantum number. However,
we could still use the above states as variational states to capture the dispersion. We have evaluated the energies of
the above modes using the Metropolis Monte Carlo method for various systems with different layer separations.

We first compare the exact energies (obtained from brute-force diagonalization) of a small system of N = 10 bosons
against the above variational states in Fig. S5. At d = 0, we find that the CF modes give an excellent description of the
low-energy excitations seen in the exact Coulomb spectra. However, with increasing layer-separation, the mismatch
between the exact energies and those ascertained from the CF modes increases. Thus, the two CF modes are expected
to have good variational energies only in the regime of small layer separations, i.e., d/ℓB < 1.

Next, we turn to larger system sizes which are beyond the reach of exact diagonalization. In Fig. S5 we show the
dispersion of the CF modes for several bosonic systems at ν = 2/3. We find a nice collapse of the dispersions for
different values of N from which we can extract the thermodynamic energies of the two modes in different limits of
the wavevector kℓB . For large kℓB (ideally in the kℓB → ∞) we expect the energy of the modes to be independent
of k and the dispersions to flatten out. This is because in this limit the constituent CF excitons are far away from
each other and do not interact [78–80]. Therefore, in this regime, we anticipate that the energy of the symmetric
and anti-symmetric modes should approach each other. This is precisely what we see in the dispersion of the modes
shown in Fig. S6 with the two modes having an energy of ∆ ≈ 0.24 e2/(ǫℓB) for d = 0. For small kℓB we find the
dispersion of the two modes to be quite different from each other with the dipole mode being lower in energy than
the quadrupole one. From the plot in Fig. S6, we estimate the kℓB → 0 limit of the dipole and quadrupole mode
energies at d = 0 to be to ≈ 0.23 e2/(ǫℓB) and ≈ 0.36 e2/(ǫℓB) respectively.
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FIG. S6. (color online) Dispersion of the collective modes for N = 10 (dots), N = 18 (crosses), N = 24 (pentagrams), N = 30
(hexagrams), N = 36 (right-facing triangle), N = 40 (left-facing triangle) and N = 44 (asterisk) bosons at ν = 2/3 on the
sphere at a layer separation of d/ℓB = 0 (left panel) and 0.4 (right panel). The 2/3 Halperin (221) or ν = 2/3 bosonic Jain
CF pseudospin-singlet state shown in red has total orbital angular momentum L = 0 and total pseudospin angular momentum
S = 0. The dispersion is plotted as a function of the dimensionless momentum kℓB = (L/R)ℓB , where R =

√
QℓB is the radius

of the sphere and ℓB =
√

~c/(eB) is the magnetic length. The energies are multiplied by
√

2Qν/N , the ratio of the density of
the finite system to the density in the thermodynamic limit, to alleviate the dependence of the gap on N [81].

Collective modes from the single mode approximation (SMA)

The collective modes can also be modeled using the single-mode approximation (SMA) [18, 19] where the excitation
is created by acting with the density operator ρ(q) on the ground state and projecting the resulting state into the
LLL (or by directly acting the ground state with the projected density operator ρ̄(q)). In the SMA language, the two
low-energy neutral collective modes are obtained by acting on the ground state with the operators

ρS(q) =
ρ↑(q) + ρ↓(q)√

2
, ρAS(q) =

ρ↑(q)− ρ↓(q)√
2

(S7)

where ρ↑(q) and ρ↓(q) are the density operators corresponding to pseudospin ↑ and ↓. The quadrupole mode is the
obtained from ρS while the dipole mode is obtained from ρAS .

How do the SMA modes relate to the exact modes and the ones obtained from the CF theory? In the kℓB → 0
limit, the SMA mode is exactly equivalent to the excitation obtained from the CF theory [78, 79]. Therefore, in the
long-wavelength limit, the SMA modes obtained from ρS and ρAS correspond to the symmetric and anti-symmetric CF
exciton modes respectively. However, for other values of the momenta k, the SMA and CF exciton modes differ from
each other. For the LLL Coulomb interaction at small layer separations, the CF theory gives a better description
of the collective modes as compared to the one obtained from the SMA [78, 79]. As we see in Fig. S7, the SMA
modes continue to grow for kℓB beyond the roton minima and do not flatten out. On the contrary, one expects that
for large kℓB the dispersion flattens out and is independent of k since this regime corresponds to a far-separated
quasiparticle-quasihole pair. This effect is not captured by the SMA, as shown in single-layer FQH systems [21].

Another quadrupole mode can be constructed from the excitation containing two composite fermion excitons. For
a single component system, the two CF exciton state is known to carry the lowest energy in the kℓB → 0 limit [82].
For a two-component system, the Hilbert space of the two CF excitons is quite large. Therefore, we have not studied
it in this work and defer its investigation in detail to the future.

BILAYER STATE OF BOSONS AT ν = 2/3 AT LARGE LAYER SEPARATION

In this section we present evidence to show that the ground state of a single-layer bosonic system at ν = 1/3 is a
composite Fermi liquid of bosons. This implies that the ground state for the bilayer system of bosons at ν = 2/3 at
large layer separation, i.e., d/ℓB ≫ 1, is likely a pair of decoupled CFL of bosons, one in each layer.
To investigate the nature of the ground state of a single-layer bosonic system at ν = 1/3, we consider a system of

N bosons at the Nφ = 3(N − 1) flux quanta in the spherical geometry. This flux-particle relationship corresponds
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FIG. S7. Comparison of exact spectra with SMA levels in the symmetric and anti-symmetric channels. Here we consider
isotropic systems of N = 6, 8, and 10 bosons on the torus geometry, interacting via (a) the contact potential and (b) the
Coulomb potential with d = 0. The interlayer displacement s is zero.

to the composite Fermi-liquid state of bosons, where on average the composite bosons (bound state of electrons and
an odd number of vortices) see an effective magnetic field which vanishes. The CFL state of bosons at ν = 1/3 is
described by the wave function:

Ψbosonic−CFL
1/3 = PLLLΦ

3
1Φ

Fermi−sea, (S8)

where ΦFermi−sea is the Slater determinant wave function of the Fermi-liquid state of electrons. When N = n2, the N
composite bosons completely fill the lowest n angular momentum shells thereby producing a state which is uniform
on the sphere, i.e., has L = 0. These filled-shell states can be used to construct representatives of the uniform CFL
state on the sphere leading to the following wave function [73, 83, 84]

ΨCFL
1/p = PLLLΦ

p
1Φ

filled−shell N = 4, 9, 16, 25, · · · , (S9)

where we have generalized to the ν = 1/p CFL with p odd (even) for bosons (fermions). In Table I, we show the
absolute value of the squared overlaps of the exact LLL Coulomb ground state of bosons at ν = 1/3 with ΨCFL

1/3 [see

Eq. (S9)] for N = 4 and 9 which are the only two systems accessible to exact diagonalization. We find that the
overlaps are very close to unity indicating that the ground state of bosons at ν = 1/3 is well-represented by the CFL
state. For completeness, in Table I we also show the corresponding numbers for fermions at ν = 1/2 and 1/4, where
a composite fermion Fermi liquid state has been well-established [61]. We find that the overlaps of the CFL state at
ν = 1/p with the exact LLL Coulomb ground state are comparable for the three values of p = 2, 3, 4 considered.

ν = 1/2 fermions ν = 1/3 bosons ν = 1/4 fermions

N Nφ |〈ΨLLL|PLLLΦ
2
1Φ

filled−shell〉|2 N Nφ |〈ΨLLL|PLLLΦ
3
1Φ

filled−shell〉|2 N Nφ |〈ΨLLL|PLLLΦ
4
1Φ

filled−shell〉|2

4 6 1.0000 [68] 4 9 1.0000 4 12 0.9999 [85]

9 16 0.9988 [86] 9 24 0.9955 9 32 0.9845

TABLE I. Absolute value of the squared overlaps of the filled-shell composite Fermi liquid states |PLLLΦ
p
1
Φfilled−shell〉 [see

Eq. (S9)] at ν = 1/p for p = 2, 3, 4 with the exact lowest Landau level Coulomb ground state |ΨLLL〉 for a single layer system
of N particles at Nφ = p(N − 1) flux quanta in the spherical geometry.

To further corroborate our interpretation of the 1/3 state of bosons as a CFL, we consider the exact LLL Coulomb
ground state of N bosons at Nφ = 3(N − 1) at values of N 6= n2. When N 6= n2, an angular momentum shell will be
partially occupied which would generically result in a non-uniform ground state with L > 0. In Fig. S8(b) we show
the total orbital angular momentum L of the ground state obtained from the exact diagonalization of the Coulomb
interaction in the LLL of a system of N bosons at 3(N − 1) flux quanta. Following the discussion in the previous
paragraph as expected we find a uniform (with L = 0) ground state for N = 4, 9. Interestingly, for other values of N
the total orbital angular momentum is the maximum value that can be obtained by combining the angular momenta
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of the quasiparticles or quasiholes in the topmost partially filled shell. This result is reminiscent of Hund’s rule in
atomic physics whereby the large values of L allow the particles to avoid each other maximally resulting in minimizing
their interaction energy. Analogous calculations for the 1/2 state of fermions were first carried out by Rezayi and
Read [83]. Since we find identical values of L for the 1/3 state of bosons as for the 1/2 state of fermions we conclude
that the former (just like the latter) should be described as a CFL. For completeness, we have expanded on the Rezayi
and Read calculation considering larger systems at 1/2 and also fermionic states at 1/4. These results are shown in
Figs. S8(a) and S8(c) and are fully consistent with the Hund rule.

a) b) c)

FIG. S8. The total orbital angular momentum L of the lowest Landau level Coulomb ground state at Nφ = 3(N − 1) as a
function of particle number N obtained from exact diagonalization in the spherical geometry for bosons at ν = 1/3 [center
panel b)]. For comparison, we also show the analogous plot for the fermionic systems at Nφ = p(N − 1) for a) p = 2, ν = 1/2
(left panel) and c) p = 4, ν = 1/4 (right panel). Filled symbols represent calculated values while open symbols are predictions
based on the Hund rule (see text).

INTERACTION OF SPIN-1 MODES

Here we briefly discuss the pairing of the spin-1 modes from the point of view of the effective theory. First, we
observe that the spin-1 mode itself does not respond to the geometric quench. Indeed the coupling of the spin-1 mode
directly to the spin-2 mode takes the form of a modified mass term

L = −ǫijviv̇j −Mgijvivj . (S10)

The equations of motion suggest that vi = 0 remains the solution after switching on the metric field.
In order to get a non-trivial dynamics we have to assume that the spin-1 modes interact with each other. We

consider the following interacting Lagrangian

L = −ǫijviv̇j −M |v|2 − λδijδklvivjvkvl. (S11)

The last term can be decoupled with a Hubbard-Stratonovich transformation

− λδijδklvivjvkvl −→ λ−1hijhklδ
ijδkl − 2hijvivj . (S12)

The equations of motion

hij = λvivj , (S13)

is degenerate, however δij + hij is a proper spin-2 field. The new Lagrangian takes form

L = −ǫijviv̇j −M

(

δij +
2

M
hij

)

vivj + λ−1hijhklδ
ijδkl . (S14)

Integrating out the gapped field vi is possible technically, but is not strictly legal since there is no scale separation
between the masses of vi and hij . It is, however possible to imagine running renormalization group (RG) for vi. The
RG will generate all terms for hij allowed by symmetries. In that case the low energy Lagrangian for hij will take
form

L = αǫijhikḣkj + 2βhijδ
ij + . . . , (S15)

where, α and β are unknown constants and β/α ≈ 2M determines the gap of the emergent spin-2 mode.
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