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Abstract 16 

Uncertainty in urban drainage modelling studies presents challenges to decision makers with 17 

limited investment resources attempting to achieve regulatory compliance for intermittent 18 

discharges from Combined Sewer Overflows. This paper presents the development of a new 19 

decision-making approach to address two key challenges encountered when attempting to 20 

manage sewer overflows, these are (i) the implications of different risk preferences of 21 

individuals for investment decisions; and (ii) how to utilize information on uncertainties in 22 

system performance predictions due to input or parameter uncertainty while comparing 23 

decision alternatives. The developed decision-making approach uses a multi-objective 24 

decision formulation to analyse the trade-off between investment and predicted system 25 

performance under uncertainty while accounting for risk preferences of the individual 26 

decision maker. The proposed uncertainty based decision-making approach is able to 27 

incorporate any threshold-based regulatory criteria for intermittent sewer overflows and is 28 

illustrated using a case study catchment in Luxembourg. The results from this case study 29 

highlight the significant impact of individuals’ risk preferences on the level of investment 30 
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recommended to comply with threshold-based regulatory criteria. It was demonstrated that 31 

differing levels of risk-averseness can result in a substantial increase in investment cost for 32 

solutions that are regulatory compliant. This paper demonstrates the need for water 33 

companies to rigorously define a corporate risk preference strategy to ensure consistent 34 

investment decisions across their operations; otherwise, individual preferences may cause 35 

significant over-investment to meet the same regulatory goals.  36 

 37 

 38 
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1. Introduction 43 

Environmental regulators may impose performance standards for the operation of overflow 44 

structures in combined sewer systems, which release excess wastewater to receiving water 45 

bodies when the flow capacity of the urban drainage system is exceeded. For example, the 46 

Urban Pollution Management Manual in the United Kingdom specifies concentration-duration-47 

frequency based criteria for ammonia concentrations and dissolved oxygen (DO) levels to 48 

mitigate ecological impacts caused by combined sewer overflow (CSO) spills (Foundation for 49 

Water Research, 2012). However, the criterion to evaluate the performance of CSOs is not 50 

uniform across EU countries (De Toffol, 2006; Dirckx et al., 2011; Milieu, 2016). For example, 51 

in Belgium, Denmark and Netherlands, regulations based on annual overflow frequency are 52 

enforced while in Germany the criterion for CSO spills considers the overflow volume (Dirckx 53 

et al., 2011). Water utilities are required to comply with the regulations applicable to their 54 

country, and failing to do so can result in financial penalties and reputational damage, e.g. the 55 

UK water utility Thames Water was recently fined 20 million pounds for releasing untreated 56 

sewage via overflows in contravention of its discharge consents (Environment Agency, 2017).  57 
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Therefore, the successful management of sewer systems involves investment and operational 58 

decisions which are often risk-averse in character because they aim to “eliminate” the risk of 59 

non-compliance. More specifically, such decision-making aims to identify, test and implement 60 

solutions or strategies which minimize the risk of non-compliance, while satisfying constraints 61 

such as available budgets, land use and other planning or technical system constraints. 62 

Hydrodynamic network models are often used to assess the performance of the proposed 63 

solutions and strategies (Delelegn et al., 2011). However, it has been established that there is 64 

significant predictive uncertainty when using such hydrodynamic models (e.g. Deletic et al., 65 

2012; Schellart et al., 2010; Thorndahl and Willems, 2008). Yu et al. (2017) mentioned that in 66 

addition to the system performance modelling uncertainty, uncertainty in cost estimation also 67 

poses challenges in finding optimal solutions that satisfy the objectives and constraints set by 68 

the decision maker. Several studies which explicitly account for modelling uncertainty when 69 

making decisions to mitigate the negative impact of CSO spills have been reported (e.g. Reda 70 

and Beck (1997), Portielje et al. (2000), Korving et al. (2009), Meng et al. (2016)). Lin et al. 71 

(2020), Mohammadiun et al. (2018), Yu et al. (2017), and Zhang et al. (2019) are recent studies 72 

which applied uncertainty based evaluation of decision alternatives for the mitigation of flood 73 

risk from urban sewer systems. 74 

Although the aforementioned studies have incorporated uncertainty in the prediction of urban 75 

drainage processes in some form, they have not fully captured the uncertainty in the system 76 

performance. For example, Reda and Beck (1997) only considered extreme values and Korving 77 

et al. (2009) used the probability of exceeding a threshold. Meng et al. (2016) did consider the 78 

standard deviation of total ammonia concentration in the wastewater treatment plant effluent 79 

to reflect the stability of the treatment process, but only to reflect the variation in total ammonia 80 

concentration within a time series for different operational scenarios. Mohammadiun et al. 81 

(2018) implemented a stochastic formulation for the design of urban drainage systems using 82 
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blockage probability and probability of the failure, as the measure of resilience under stochastic 83 

conditions. However their approach only uses probability estimates and does not capture 84 

detailed information on uncertainty. Similarly, Yu et al. (2017) applied a stochastic 85 

optimization model for urban drainage design by applying chance constrained programming. 86 

The uncertainty arising from the simulation models is handled by limiting the total surcharge 87 

volume to an acceptable value by specifying a risk level as probability value. Zhang et al. 88 

(2019) applied a surrogate model based optimization to aid design for urban flood mitigation. 89 

They accounted for uncertainty arising from surrogate models and compared the surrogate 90 

model based optimization results to results from a 2D dynamic flood model using different 91 

rainfall scenarios. Lin et al. (2020) implemented a multi-objective optimization based design 92 

of urban drainage systems for protection against flooding. In order to make the design resilient 93 

against future uncertainties, they minimized the standard deviation of the maximum water 94 

depths in pipes. Similar to the studies mentioned before the representation of uncertainty by 95 

the use of standard deviation does not account for any asymmetry or the extremes of the 96 

distribution of predicted performance. 97 

The probability of exceeding a threshold only indicates the chance that this threshold will be 98 

exceeded, however, it does not provide any information about the magnitude of the exceedance 99 

beyond the threshold. Studies such as Moreno-Rodenas et al. (2019) and Rico-Ramirez et al. 100 

(2015) have shown that the uncertainty in sewer system simulation outputs were generally 101 

found to have asymmetrical distributions. In the case of CSO spills, the environmental impact 102 

not only depends on the number of CSO spill events but also on the size and duration of each 103 

failure and the pollutant concentration and loads released. The authors argue that in this field a 104 

decision maker is likely to prefer asymmetry in a system’s performance. The preference for 105 

asymmetry relates to the sensitivity of the receiving water body. A receiving water body highly 106 

sensitive to incoming pollutant loads may drive the decision maker to prefer a negatively 107 
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skewed distribution which does not have a long tail of rare but impactful events. A less risk-108 

averse individual, however, may accept a small chance of a high negative impact in order to 109 

reduce the overall risk of failure.  110 

Unlike existing studies, this paper fully utilizes the information provided by the uncertainty 111 

quantification process by including information on skewness and the magnitude of the tail of a 112 

probability distribution of a system performance measure. In doing so, this paper aims to 113 

develop a new decision-making approach, which accounts for decision makers’ risk 114 

preferences using information on uncertainty in the sewer system’s predicted performance.  115 

In this new approach, the decision model uses a multi-objective formulation to reflect both the 116 

decision maker’s objectives as well as his/her risk-averseness. As far as the authors are aware, 117 

the inclusion of risk preferences when accounting for uncertainty in making decisions for the 118 

management of intermittent CSO spills has not been reported before, and can have considerable 119 

implications for investment costs. Key contributions of this paper are: (i) identifying the 120 

characteristics of probability distributions to represent the risk preference of the decision 121 

maker, and (ii) analysing the implications of the risk preference of the decision maker on the 122 

investment decisions in the presence of conflicting objectives using uncertain system 123 

performance predictions.  124 

The proposed decision-making approach is demonstrated using data from a case study 125 

catchment located in the North-West of Luxembourg.  126 

 127 

 128 

2. Background and Methodology 129 

2.1. Background 130 
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One of the most popular approaches for risk-averse decision-making has been the mean-131 

variance approach developed by Markowitz (1952) for investment portfolio selection in the 132 

field of finance. This approach assumes that variance of the rate of return can be used as a 133 

measure of risk and that the decision maker should search for a selection with minimum 134 

variance for an expected rate of return on investment. In the context of this study, the desired 135 

decision criterion can be translated to a minimum variance for a given expected number of 136 

CSO spill events above a regulatory threshold. A bi-objective decision problem can be 137 

formulated to search for solutions which result in minimum mean and minimum variance of 138 

the number of predicted spill events. However, the mean-variance approach has certain 139 

limitations. It assumes that statistical distributions are Gaussian and that minimising variance 140 

penalizes distributions equally at both tails. For CSO spill events, the number of failures is 141 

usually defined as a threshold to the number of events (n) exceeding an allowed number of 142 

CSO spills in a defined time period, or a threshold exceeding an allowed number of events 143 

which are causing one or more water quality indicators to exceed a regulatory limit (for 144 

example, duration high ammonia concentration levels in the receiving water). As the method 145 

works for any threshold, a threshold is defined simply as ‘T’. Hence, the decision maker would 146 

desire to limit the spread only on the right side of the probability distribution of n, i.e. to limit 147 

high values of n because only values of n greater than the threshold T would result in a breach 148 

of the regulatory requirements.  149 

The issue of non-normal distributions can be dealt with by considering the skewness of the 150 

distribution as one of the decision criteria such as adopted in the Mean-Variance-Skewness 151 

approach proposed by Konno and Suzuki (1995) for investment portfolio selection. Konno and 152 

Suzuki (1995) argued that skewness of the distributions had a significant influence on the 153 

optimal selection of decision alternatives and proposed that the decision maker should prefer 154 

to maximise the skewness to optimise the rate of return on investment. However, unlike the 155 
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rate of return on financial investments, the reasoning for the decision maker’s preference to 156 

maximise skewness may not be so apparent for CSO spill events that cause regulatory failure. 157 

It can be argued that both types of asymmetry have distinct strengths and weaknesses in the 158 

context of managing water quality failure caused by intermittent CSO spills. For example, a 159 

small probability of a large number of spills may not be very significant when regulations only 160 

focus on a number of spills, and/or because these spills may be small in size. However, if the 161 

regulations are related to receiving water quality parameters and/or volume of spills, a small 162 

chance of a single huge event that destroys particular species of aquatic life in the receiving 163 

water could be a significant concern. 164 

A positively skewed distribution (Fig 1a) will have a lower mode compared to a negatively 165 

skewed distribution, which means the most likely realizations of spill events n will be less than 166 

that of a negatively skewed distribution. Therefore, a decision maker who is more concerned 167 

about the most likely value of the number of CSO spill events and is prepared to absorb the 168 

small chance of high values of n (i.e. a long tail of the distribution of n), would prefer a 169 

positively skewed distribution. On the contrary, a decision maker who seeks to limit the 170 

possibility of very high values of n would prefer a negatively skewed distribution. Such a 171 

decision maker can be considered more risk-averse because their goal is to seek protection 172 

against the occurrence of very high number of CSO spills (i.e. avoiding long right tail) rather 173 

than limiting the most likely number of spill events.   174 

 175 



8 

 

 176 

Fig. 1. (a) Difference in skewness for distributions with identical mean and variance. (b) Illustration of 177 

Probability of Exceedance and Buffered Probability of Exceedance for a threshold T on the number of spill 178 

events n. 179 

Considering variance as a measure of risk in the Mean-Variance-Skewness approach does not 180 

address the risk of exceeding a threshold T imposed by environmental regulations. The 181 

probability of failing this set criterion can be calculated as the Probability of Exceedance 182 

(POE). If n is a random variable representing the number of CSO spill events and T is the 183 

threshold set to determine CSO emission failure, POE for threshold T can be defined as 184 

POE(𝑛) = P(𝑛 > 𝑇) (1) 

However, the POE and the threshold T do not fully describe the shape of heavy-tailed 185 

distributions, they do not provide any information on the magnitude of n in the tail beyond 186 

threshold T. Uryasev (2014) proposed a measure called the Buffered Probability of Exceedance 187 

(bPOE) to reflect the magnitude of the probability in the tail beyond the threshold T. The POE 188 

gives the likelihood that the threshold T will be exceeded whereas, the bPOE gives the 189 

likelihood that the average of the distribution’s upper tail will be equal to the threshold T (Davis 190 

and Uryasev, 2016). Consider a quantity W in the uncertain range of n such that 𝑇 = E[𝑛|𝑛 >191 𝑊], where E[𝑛|𝑛 > 𝑊]  is the conditional expectation of the number of spill events n exceeding 192 
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W (Fig. 1b). From Mafusalov and Uryasev (2014) and, Davis and Uryasev (2016), the bPOE 193 

for threshold T can be defined as:  194 

bPOE(𝑛) = P[𝑛 > 𝑊] (2) 

Since, T ≥ W, there exists an inequality between bPOE and POE which can be expressed as, 195 

POE(𝑛) ≤ bPOE(𝑛) (3) 

The inequality in (3) implies that the bPOE is a conservative estimate of the POE because it 196 

accounts for the magnitude of the tail in addition to the probability (Fig. 1b). Hence, it will be 197 

a better measure than the POE if the decision maker is risk-averse and is interested in 198 

comparing the tail performance of the distribution of the number of CSO spills for modelled 199 

engineering interventions to limit the occurrence of CSO emission failure.  200 

 201 

2.2. Methodology 202 

Building on the previous arguments, a decision model is proposed where the decision maker is 203 

seeking to minimize the risk of non-compliance with environmental regulations while 204 

minimizing the intervention cost. The proposed decision model has four objectives: (i) 205 

Minimizing the expected value of the number of CSO spill events E[n]; (ii) Minimizing the 206 

bPOE for a defined threshold on the number of CSO spill events; (iii) Maximizing or 207 

Minimizing the skewness of the distribution of n; and (iv) Minimizing the cost of any proposed 208 

engineering intervention.  209 

Since the preference for the shape of the distribution (objective iii) is specific to this application 210 

and an individual’s risk behaviour, two versions of the decision model (D1 and D2) are 211 

proposed to reflect the differing preferences for the skewness in the context of managing the 212 

impact of CSO emission failures. Since the decision models D1 and D2 seek solutions which 213 
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minimise the bPOE value which is an indicator of risk, both D1 and D2 can be considered as 214 

risk-averse decision models. 215 

2.2.1. Formulation of the multi-objective decision model 216 

This section presents the mathematical formulation of the proposed risk-averse decision model. 217 

Consider a quantity n = f(s, u) which represents the performance of a combined sewer system 218 

model with decision variables s ∈ S where S is the decision space, and uncertain inputs and 219 

parameters u ∈ U. Let us assume that uncertain inputs and parameters u represent the 220 

uncertainty in the modelling of the sewer system performance n defined on the uncertainty 221 

space U. For a given s ∈ S, uncertain inputs and parameters u will result into random 222 

realizations of the quantity of interest n which can be represented by ns = fs (s, u). 223 

Two risk-averse decision models D1 and D2, are posed as multi-objective problems: 224 

D1 : {  
  min𝑠∈𝑆 E[f𝑠(𝑠, 𝑢)]  min𝑠∈𝑆 bPOE(f𝑠(𝑠, 𝑢))max𝑠∈𝑆 skewness(f𝑠(𝑠, 𝑢))min𝑠∈𝑆 cost(𝑠)  (4) 

D2 : {  
  min𝑠∈𝑆 E[f𝑠(𝑠, 𝑢)]  min𝑠∈𝑆  bPOE(f𝑠(𝑠, 𝑢))min𝑠∈𝑆 skewness(f𝑠(𝑠, 𝑢))min𝑠∈𝑆 cost(𝑠)  (5) 

                                     subject to           u ∈ U  

A decision maker may have biased i.e. have unequal preferences for the individual objectives; 225 

however, the objectives in D1 and D2 are treated as equally preferable to each other. 226 

Consequently, the decision maker may apply their preferences for the objectives a posteriori.  227 

2.2.2. Pareto Non-dominance 228 
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The multi-objective formulation of D1 or D2 will not necessarily lead to a single optimal 229 

solution due to the conflicting nature of the objectives. Hence, the decision model searches for 230 

non-dominated solutions in the decision space S. The dominance of one solution to the other is 231 

established by determining the Pareto optimality of the decision variables in the decision space 232 

S against the individual objectives. A Pareto optimal solution can be defined as the solution for 233 

which improvement of one objective is not possible without worsening at least one of the other 234 

objectives. The dominance of one solution to the other can be defined as follows: 235 

For two solutions s1 and s2 ∈ S, s1 dominates s2 if and only if  236 

𝑠𝑖1 ≥ 𝑠𝑖2   ∀𝑖 
                                                       and  𝑠𝑖1 > 𝑠𝑖2 for at least one objective in 𝑖  (6) 

where 𝑖 is the set of objectives. 237 

Therefore, a solution s* is Pareto optimal such that there exists no s ∈ S which satisfies the 238 

following inequalities:  239 

𝑠𝑖∗ ≥ 𝑠𝑖    ∀ 𝑖 
                                                       and  𝑠𝑖∗ > 𝑠𝑖 for at least one objective in 𝑖  (7) 

Solving the multi-objective decision problem D1 or D2 by searching for non-dominated 240 

solutions as per Eq. 6 and 7 will result in a set of Pareto optimal solutions s*. The approach is 241 

illustrated using a case study. 242 

 243 

 244 

3. Case Study: The Haute-Sûre Catchment in Luxembourg 245 
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The case study catchment  is part of the Haute-Sûre catchment located in the North-West of 246 

Luxembourg. The case study catchment has a combined sewer system, serving the urban area 247 

of Goesdrof with a single CSO structure composed of a storage tank and a weir to divert excess 248 

flows during intense rainfall events towards a tributary of the Sûre river. The CSO structure 249 

currently has a storage volume of 190 m3 and the case study catchment size is 36 ha with an 250 

impervious area of 25 ha. This catchment is selected because the receiving water body is 251 

considered sensitive to the high ammonium and ammonia concentrations and thus exhibits 252 

aspects common in many situations in which investment may be required to better manage 253 

intermittent discharges in line with regulatory requirements. Further details of the case study 254 

catchment are given in Torres-Matallana et al., (2018) 255 

 256 

3.1. Compliance with the environmental regulations 257 

The uncertainty of the predicted ammonium concentration in the CSO emission is estimated 258 

and applied in the risk-averse decision model to find solutions which reduce the risk of 259 

regulatory failure caused by ammonium in the sewer overflows and also attempt to minimise 260 

cost. The concentration-duration-frequency based criterion used as a compliance tests was 261 

originally specified by the Austrian water wastewater association (ÖWAV) for receiving 262 

surface waters and is applied in this case study as an indicative emission quality standard 263 

(ÖWAV-Regelblatt 19, 2007), This standard is more restrictive than standards defined in 264 

several other European countries. The criterion for acute ammonia toxicity comprises separate 265 

thresholds for cyprinid and salmonid aquatic species. According to the ÖWAV guidelines, the 266 

maximum allowable number of CSO spill events failing this criterion for acute ammonia 267 

toxicity is 1 per year. This case study applies a dilution ratio to the predicted CSO spill 268 

ammonium concentration in order to account for the reasonably expected dilution of the CSO 269 

spill with the receiving water body. Morgan et al. (2017) list a range of dilution ratios which 270 



13 

 

indicate the significance of stormwater overflows (SWO) to different types of receiving water 271 

bodies. They report a dilution ratio < 2:1 for SWOs with high significance, between 2:1 and 272 

8:1 for medium significance while dilution ratio would be in the upwards of 8:1 for SWOs with 273 

low significance. For the purpose of demonstrating the decision methodology, this paper uses 274 

a value of 4 as a reasonable indicative dilution ratio for representing the dilution of CSO spills 275 

by flows in receiving waters. 276 

  277 

3.2. The EmiStatR model 278 

The performance of proposed solutions is evaluated using an open-source CSO water quality 279 

simulator EmiStatR, This scalable and highly computationally efficient simulator had been 280 

specifically developed to obtain water quantity and quality predictions with a similar level of 281 

accuracy compared to the results from complex mechanistic hydrodynamic models, such as 282 

InfoWorks. Its computationally efficiency made it ideal for studies in which computationally 283 

intense Monte Carlo based approaches were used to quantify the impact of uncertainty.. 284 

EmiStatR has therefore been used in earlier studies that investigated the propagation of input 285 

and model parameter uncertainties in the simulation of NH4-N concentration in CSO spills 286 

(Torres-Matallana et al., 2018). The EmiStatR simulator uses six main components to simulate 287 

CSO spill quantity and quality: (i) Computation of dry weather flow; (ii) Definition of water 288 

quality characteristics of the dry weather flow; (iii) Computation of wet weather flow in the 289 

sewer network with contributions from urban and rural runoff; (iv) Definition of water quality 290 

characteristics of urban and rural wash-off; (v) Computation of combined sewage flow and 291 

characteristics of water quality variables in the combined sewage flow; and (vi) Computation 292 

of CSO spill volume and NH4-N concentration and load. 293 
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A comprehensive description of the EmiStatR model can be found in Torres-Matallana et al. 294 

(2018) including the model calibration and validation approaches. The hydraulic calibration 295 

data set, contained three rainfall/spill events and consisted of detailed precipitation and CSO 296 

water level observations from 15 May 2011 to 3 June 2011 with the temporal resolution 297 

aggregated to 10 min to ensure identical temporal resolution in simulated and observed data. 298 

The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2009) was 299 

used for calibration. The calibrated model displayed good agreement with the CSO water level 300 

observations in the calibration data set with a Nash-Sutcliffe Efficiency, NSE of 0.95.   301 

The hydraulically calibrated EmiStatR model was validated using observations of precipitation 302 

and water level at the CSO storage chamber, at aggregated 10 minute intervals containing nine 303 

rainfall/spill events collected from 3 June 2011 to 7 July 2011. The EmiStatR model displayed 304 

a reasonable agreement (NSE = 0.78) with the observations in the validation data set. 305 

Additional validation of the hydraulic performance of the calibrated EmiStatR model included 306 

a comparison against a detailed hydrodynamic sewer network model of the catchment built and 307 

calibrated using InfoWorks ICM 7.5 covering an entire year (2010) at 10 minutes resolution, 308 

including 16 CSO spill events. For this validation period, the EmiStatR simulations of CSO 309 

volume displayed good agreement (NSE = 0.79) with the InfoWorks ICM model. This suggests 310 

that the EmiStatR can be used as a suitable rapid hydrodynamic simulation tool to demonstrate 311 

the proposed decision-making approach, with the advantage that EmiStatR is deployed as a 312 

scalable parallel simulator that allows multi-core simulation with a lower computational 313 

demand when it is compared to a detailed hydrodynamic sewer network model. 314 

In the absence of water quality observations in CSO spills, the EmiStatR was further validated 315 

against water quality predictions using the calibrated InfoWorks ICM model for this catchment. 316 

The comparison of EmiStatR and InfoWorks ICM hydraulic and water quality simulations 317 

were done using a 1 year-long rainfall timeseries with 10-minute resolution. A good agreement 318 
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was found between the EmiStatR and the InfoWorks ICM model for simulating CSO spill 319 

volume (NSE = 0.78) and ammonium load (NSE = 0.82).   320 

3.2.1. Decision variables 321 

To limit the number of CSO spill events failing the criterion defined in section 3.1, two types 322 

of solutions are considered: changing the storage capacity of the tank at the CSO and a 323 

reduction in impervious area through the provision of permeable paving to replace 324 

impermeable surfaces (Table 1). Combinations of solutions are then modelled and evaluated 325 

against emission failure criterion and cost. For storage tank capacity, 4 values: 100 m3, 500 m3, 326 

900 m3 and 1700 m3 have been selected. These values have been selected as such to enable the 327 

evaluation of the performance of storage volume over a range that is expected to show a wide 328 

range of failures relative to regulatory requirements. This case study evaluates the decision 329 

model at impervious area values 20 ha, 23 ha and 25 ha. Similar to the selected range for storage 330 

tank capacity, a limited, but reasonable range of impervious area reduction from 25 ha to 20 ha 331 

was used. These choices for the decision space are specific to this case study.  332 

3.2.2. Cost of the decision variable s 333 

Detailed information about the capital cost of storage tanks and permeable paving is not 334 

available for Luxembourg, estimates from the UK are therefore used in this study. The 335 

construction of storage tanks can cost in the range of £1,400 - £2,000/m3 for areas outside 336 

London whereas the implementation of permeable paving can cost approximately from £250 - 337 

£350/m2 (Digman, 2018). Costs can vary depending on the construction company and 338 

catchment characteristics, such as location, property values and urban density. Fixed average 339 

values of solution costs i.e. £1,700/m3 for the storage tank and £300/m2 for the permeable 340 

paving have been used in this study to estimate the cost of the decision variable s, as the quality 341 

of the cost data provided did not allow a robust estimate of cost uncertainty to be made. No 342 
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uncertainty is considered for the cost estimate for any solution, this was deemed reasonable 343 

given the quality of the cost data and that the main aim of the study was to examine the 344 

influence of predictive model uncertainty on risk perception. 345 

3.2.3. Definition of uncertain inputs and parameters 346 

Table 1 presents the list of inputs and parameters that could be considered uncertain for the 347 

Goesdorf sewer system. The list contains all the input parameters for which data was available 348 

to characterise uncertainty in their estimates. Measured data to characterise any temporal 349 

variability of the ammonium concentration in the surface runoff for this catchment is not 350 

available. Hence, uncertainty in this variable for this catchment could not be quantified and 351 

accounted for. Welker (2007) reported the ammonium concentration in surface runoff to be at 352 

1mg/l as a representative value for a catchment in Germany following an extensive literature 353 

survey of pollutant concentrations in surface runoff. In the absence of more information on 354 

ammonium concentration in surface runoff for a catchment in Luxembourg, this paper uses the 355 

value of 1mg/l which could be considered suitable for a European catchment subject to similar 356 

farming regulations and practices.  357 

Before the uncertainty propagation, probability distribution functions of the selected inputs are 358 

characterised to define the input uncertainty (Heuvelink et al., 2007). For the concentration of 359 

ammonium in the wastewater flow CNH4,s as a variable for uncertainty propagation, it is possible 360 

to simulate CNH4,s by an autoregressive order one AR(1) model (Box & Jenkins, 2008): 361 

𝑦𝑡 = 𝜇1 +𝜑1(𝑦𝑡−1 − 𝜇1) + 𝑤𝑡 ,     𝜑1 ≠ 0     (8) 

where y = Univariate variable CNH4,s; t = Time; μ1 = Mean of the simulated variable; φ1  = 362 

Constant coefficient of autocorrelation; wt = Gaussian white noise time series with mean zero 363 

and variance σw
2.   364 

 365 
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Table 1. List of uncertain and decision variables.  366 

Variable Assumed to be 
uncertain? 

(yes/no) 

Definition of uncertainty 

Uncertain Inputs and Parameters   

Wastewater – Dry Weather   
  Pollution NH4-N, CNH4,s [ g/(PE·d)] yes Autoregressive modela calibrated 

on measured data 
   
Rainwater   
  Precipitation time series, P [mm/Δt] yes Multivariate Autoregressive modelb 

calibrated on measured data 
   

Catchment data   
  Runoff coefficient for impervious area, Cimp [-] yes N(0.8, 0.05) truncated at 0 and 1c 

  Runoff coefficient for pervious area, Cper [-] yes N(0.3, 0.05) truncated at 0 and 1c 
   

Decision Variables   
Catchment data   
  Impervious area, Aimp [ha] no - 
   
CSO structure data   
  Volume, V  [m3] no - 

aBox et al. (2008), bTorres-Matallana, et al. (2017), cMcCuen (1998). 367 

This paper uses the available rainfall precipitation measurements from the Esch-sur-Sûre rain 368 

gauge which is located around 3.5 km away from the Goesdorf CSO structure. The rainfall 369 

time series has a resolution of 10 minutes and contains 10 year-long precipitation 370 

measurements from January 2010 until December 2019. Since the rainfall precipitation time 371 

series contains many zero values, a different approach for characterising uncertainty in the 372 

rainfall time series has to be applied. A multivariate autoregressive modelling and conditional 373 

simulation of precipitation time series from Torres-Matallana et al. (2017) is used to simulate 374 

precipitation time series in the Goesdorf catchment given a measured precipitation time series 375 

in a nearby location outside the catchment while accounting for the uncertainty that is 376 

introduced due to spatial and temporal variation in precipitation. The inherent uncertainty in 377 

the measured rainfall is considered as a function of two neighbouring stations to assess the 378 

uncertainty i.e. Dahl and Esch-sur-Sure rainfall stations are used to define the rainfall time 379 
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series at Goesdorf catchment while accounting for uncertainty. Torres-Matallana et al. (2017) 380 

note that their method does not capture the distribution tails well and in a small number of 381 

cases, results in an overestimation of the simulated precipitation.  382 

McCuen (1998) reported an indicative range of 0.25-0.40 for the runoff coefficient of pervious 383 

surfaces and a range of 0.70-0.95 for impervious surfaces. Since the runoff process from the 384 

catchment surfaces is a natural process, a symmetrical normal distribution is assumed to 385 

represent the uncertainty in the runoff coefficients. Table 1 indicates the normal distributions 386 

selected, such that about 95% of the runoff coefficient values lie in these ranges.  387 

 388 

3.3. Solving the decision model 389 

The decision space S in the current case study is discrete and finite, and comprises 12 grid 390 

points (s) for each decision model. In this case, the objective functions are evaluated at each 391 

grid point covering the decision space.  392 

Fig. 2 outlines the steps involved in identifying the Pareto optimal solutions for the decision 393 

models D1 and D2. To evaluate the objectives in Eq. (4) or (5), for each of the 12 grid points 394 

in the decision space S, ns = fs (s, u) is calculated where ns is the emission quality indicator, s 395 

is the grid point representing decision variable and u is the uncertainty defined in section 3.2.3.  396 

For each s ∈ S the uncertainty u in the inputs and model parameters listed in Table 1 are 397 

propagated through 500 Monte Carlo simulation runs for a 10 year period. The number of runs 398 

was selected after a convergence test that demonstrates this number as suitable to perform 399 

Monte Carlo simulations. For the simulation outputs CSO volume and ammonium 400 

concentration, standard deviation of the output variables at each time step from two different 401 

Monte Carlo simulations with different seed for the pseudo-number generator algorithm was 402 
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compared. Convergence tests indicated 500 Monte Carlo simulations are sufficient to obtain 403 

consistent results (NSE ≈ 0.999 for CSO volume and NSE ≈ 0.998 for NH4-N concentration).  404 

These Monte Carlo simulations result in 500 random samples of 10 year-long time series of 405 

NH4-N concentration in the CSO spill. According to ÖWAV guidelines, during 1 year the 406 

concentration of ammonia in the receiving water body due to a combined sewer overflow 407 

should not be more than 5 mg/l for one hour for cyprinid species (ÖWAV-Regelblatt 19, 2007). 408 

As per the criterion whenever the concentration of ammonia exceeds the threshold for an hour 409 

or more, it is counted as one failing CSO spill event. Two consecutive events are separated 410 

whenever, the concentration of ammonia drops below the threshold concentration. After 411 

multiplying with a dilution ratio of 4:1, this emission failure criterion is applied to the simulated 412 

NH4-N concentration time series to calculate the number of non-compliant CSO spill events 413 

for every random time series. This results in 500 random samples of the emission quality 414 

indicator ns for each s ∈ S.  415 

Individual objective functions of the decision models are calculated using the random samples 416 

of ns ∀ s ∈ S. The decision variables s are compared to each other for Pareto non-dominance by 417 

using inequality Eq. (6). All the grid points which satisfy the inequality Eq. (7) are selected as 418 

Pareto optimal solutions which represent the optimal trade-off between the individual 419 

objectives (Minimising mean of ns; Maximising or Minimising skewness of ns; Minimising 420 

bPOE, and; Minimising cost of s) set by the decision maker in D1 and D2. 421 

 422 
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 423 

Fig. 2. Steps followed to identify Pareto optimal solutions for D1 and D2. 424 

It can be argued that it would be computationally more efficient to deterministically optimize 425 

the system for cost and number of critical spills without considering model predictive 426 

uncertainties then carry out MC simulations only for the non-dominated solutions and calculate 427 

bPOE and skewness only for these solutions. However, the Pareto optimality or non-dominance 428 

of solutions will change when model predictive uncertainty is considered, therefore, any 429 

solution deemed non-dominated or Pareto optimal based on a deterministic performance 430 

indicator is unlikely to be non-dominated if model predictive uncertainty is considered and this 431 

difference justifies the use of the more computationally expensive approach. 432 

 433 

 434 

Step 1: Define

Step 3: Estimate n s = f s  (s , u ) ∀ s  ∈ S  by identifying spill events with NH4-N 

concentration > (5 × dilution ratio) mg/l for one hour, during 1 year on average

Step 4: Compute the value of objective functions in D1 and D2 ∀ s ∈ S

Step 5: Determine Pareto non-dominance relationship for D1 and D2 ∀ s ∈ S  (Eq.7)

Step 6: Identify Pareto optimal solutions for the decision models D1 and D2               

 - Objective functions for the decision models D1 and D2  (Eq. 4 and 5)

 - Emission quality indicator n s : Number of CSO spills with NH4-N concentration > 

(5 × dilution ratio) mg/l for one hour

 - Decision variables s ∈ S  (Section 3.2.1) 

 - Cost of decision variables s ∈ S  (Section 3.2.2)

 - Uncertain variables u  (Section 3.2.3)

Step 2: Propagate the uncertainty in u  to simulate NH4-N concentration in the CSO 

spills ∀ s ∈ S

 - Simulation output: NH4-N concentration in the CSO spills
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4. Results and Discussion 435 

The decision models D1 and D2 are evaluated for the case study presented in Section 3 with 436 

decision variables s defined in Section 3.2.1 and, uncertain inputs and parameters u defined in 437 

Section 3.2.3. Fig. 3 shows an example of the distribution of ns in the form of a histogram for 438 

the solution (900 m3; 23 ha). Fig. 3a and 3b demonstrate the skewness present in the distribution 439 

of ns.  440 

 441 

Fig. 3. Histogram of ns for the solutions: (a) (100 m3; 25 ha); (b) (900 m3; 23 ha) 442 

Fig. 4 shows the difference in POE and bPOE for ∀ s ∈ S. It is evident how the magnitude of 443 

the tail values in the distribution of ns affects the value of bPOE. The results for Pareto optimal 444 

solutions are presented separately for the decision models D1 and D2 which reflect the different 445 

preferences for the skewness of the distribution of ns. 446 
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 447 

Fig. 4. Mean of ns vs Probability of Exceedance (POE) and Buffered Probability of Exceedance (bPOE) for ∀ s 448 ∈ S 449 

 450 

4.1. Decision model D1: Preference for positively skewed distributions of ns 451 

For decision model D1, 10 solutions were found to be Pareto optimal or non-dominated out of 452 

the 12 solutions (Fig. 5). Fig. 5a and 5b show the variation in the calculated mean of ns and 453 

bPOE respectively for all s ∈ S where the decision variable s comprises combinations of storage 454 

tank volume and impervious area. As expected, the mean of ns decreases with an increase in 455 

storage tank volume and/or a decrease in impervious area. The Pareto optimal solutions 456 

representing the optimal trade-off between the four objectives (Minimising mean of ns; 457 

Maximising skewness of ns; Minimising bPOE and Minimising cost of s) are displayed as data 458 

points in a solid black circle in Fig. 5.  459 
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 460 

Fig. 5. (a) D1: Mean of ns in the discrete decision space S; (b) D1: bPOE in the discrete decision space S 461 

It can be observed that the decrease in the mean of ns is steeper for a reduction in impervious 462 

area. For example, at the storage tank capacity of 900 m3, the mean ns reduces from 1.3 to 0.7 463 

when the impervious area is reduced from 25 ha to 20 ha. On the contrary, at the impervious 464 

area of 20 ha, the mean reduces from 0.9 to 0.5 when the storage tank capacity is increased 465 

from 100 m3 to 1700 m3. A similar trend can be observed for bPOE values (Fig. 5b). Despite 466 

the considerably higher cost associated with impervious area reduction when compared to 467 

increasing the storage tank capacity, they are non-dominated solutions due to their better 468 

performance for the uncertainty related objectives.  469 
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 470 

Fig. 6. (a) D1: Mean of ns vs Skewness of ns; (b) D1: Cost of ns vs Buffered Probability of Exceedance (bPOE) 471 

Fig. 6a shows the variation in the mean of ns vs the skewness of ns. Fig. 6b shows the cost of 472 

the decision variables vs their respective bPOE values. Pareto optimal solutions would be 473 

expected to lie towards low cost and low bPOE values however there are a few Pareto solutions 474 

which have either very high cost and low bPOE or high value of bPOE and low cost. This can 475 

be attributed to an equal preference for all the objectives which means that these solutions must 476 

have performed well for the other objectives compared to the non-optimal solutions with 477 

similar cost or similar bPOE. 478 

 479 

4.2. Decision model D2: Preference for negatively skewed distributions of ns 480 

For decision model D2, 11 solutions were found to be Pareto optimal out of 12 solutions (Fig. 481 

7). The only dominated or sub-optimal solution for D2 is (1700 m3; 23 ha) since D2 seeks to 482 

minimise the skewness value. The rest of the 11 solutions remain Pareto optimal due to their 483 

better performance in one or more objectives. The solution (1700 m3; 25 ha) performs worse 484 

for the mean, bPOE and the cost objective however it has the lowest skewness value which 485 

makes it non-dominated when one of the objectives is to minimise skewness.  486 
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 487 

Fig. 7. (a) D2: Mean of ns in the discrete decision space S; (b) D2: bPOE in the discrete decision space S 488 

This clearly demonstrates that how a poorer performing solution can become non-dominated 489 

with differing preferences of decision makers. Therefore, solutions which have a relatively high 490 

mean, are also Pareto optimal solutions because they satisfy the objective of minimizing the 491 

skewness to address desired risk preferences (Fig. 8a). However, this is more evident in Fig. 492 

8b where the Pareto optimal solutions for decision model D2 are displayed on the cost vs bPOE 493 

plot. Because of the decision maker’s objective to minimize skewness, the Pareto non-494 

dominance results in a diverse range of Pareto optimal solutions as far as only cost and bPOE 495 

are concerned. In such situations, preference for individual objectives needs to be updated to 496 

reflect the scope of the decision-making. For example, in this case study, the primary goal of 497 

the decision maker could be compliance with the environmental regulations while minimising 498 

the cost. Therefore, the Pareto optimal solutions which are closer to the lower-left region of 499 

Fig. 8b should represent the decision maker’s updated preference for the decision model D2.   500 
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 501 

 502 

Fig. 8. (a) D2: Mean of ns vs Skewness of ns; (b) D2: Cost of ns vs Buffered Probability of Exceedance bPOE 503 

The decision models D1 and D2 provide the flexibility of representing other criteria in addition 504 

to the modelled system performance and cost; the decision model can be scaled up to include 505 

such criteria as objectives or constraints.  506 

  507 

4.3. Implications of risk preferences on investment decisions 508 

The proposed decision-making approach incorporates the uncertainty information in the 509 

predicted CSO’s performance variable ns through three objective parameters: mean ns, bPOE 510 

and skewness of the distribution of ns, with the cost added as a fourth objective parameter. The 511 

goal of the decision-making process is to minimise the mean and bPOE values. Different 512 

decision makers may exhibit varying degrees of risk aversion to regulatory failure and this can 513 

be accounted for in the value of the skewness of the ns distribution and the bPOE among the 514 

four objectives in selecting their preferred solution. As a result, the selected investment at the 515 

end of the decision-making process can be greatly influenced by the individual risk aversion 516 

level of the decision maker, as illustrated by an example based on the case study outputs, as 517 
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shown in Table 2. Consider an example, in which a certain value of the mean of the CSO’s 518 

performance variable ns are desired, and in each case, the financial impact of the risk aversion 519 

level of the decision maker as represented by the skewness is shown.   520 

Table 2. Illustrative investment decisions for different asymmetry preference.  521 

 Investment solution Mean ns Cost 

Example    

Minimising skewness 1700 m3 ; 23 ha 0.93 £ 8,890,000 

Maximising skewness 100 m3 ; 20 ha 0.94 £ 15,170,000 

 522 

Table 2 lists an illustrative example of comparing solutions with different preferences for 523 

skewness. In this example, the average protection, i.e. mean of ns is kept at a very similar level. 524 

If the decision-maker prefers maximising the skewness, to achieve the same protection level as 525 

someone who prefers minimising skewness, the amount of investment required would be 526 

approximately two times higher. It should be noted here that maximising skewness may not 527 

always result in more expensive solutions when trying to achieve similar protection levels. 528 

These observations are specific to this case study example only. The example illustrates the 529 

potential for significant financial impact on a water utility, which is looking to meet the 530 

regulatory requirements but does not have a consistent risk acceptance or preference policy 531 

within its organisation to moderate the risk preferences of individual decision makers.  532 

Similarly, two solutions can have identical values of POE but different values of bPOE 533 

indicating different tail magnitudes. Table 3 lists an example for illustrating the impact of tail 534 

magnitudes on an investment solution’s performance. It is evident that the solution (900 m3; 535 

25 ha) is better than the solution (100 m3; 25 ha) based on bPOE value meaning the tail of (100 536 

m3; 25 ha) has higher magnitude.  537 

 538 
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Table 3. Impact of the magnitude of tails in the distribution.  539 

Investment solution POE bPOE 

Example   

100 m3 ; 25 ha 0.28 0.37 

900 m3 ; 25 ha 0.28 0.34 

 540 

 However, if the decision maker were to compare both the solutions only based on their POE 541 

value, they would assess them as equivalent in performance.  542 

 543 

 544 

5. Conclusion  545 

Uncertainties in the simulation of the performance of urban sewer systems pose challenges to 546 

decision makers in managing the environmental impact of intermittent sewer overflows. This 547 

paper presents a rigorous risk-averse decision-making approach, which incorporates detailed 548 

information on the shape of the probability distribution in the simulation of the performance of 549 

solutions. The decision model consists of a trade-off between three objectives representing 550 

uncertainty in the system performance, with the cost of the proposed solutions as the fourth 551 

objective. 552 

Using low-order statistical moments (mean or variance) or using the probability of exceedance 553 

as a failure probability does not provide any information about the shape of the non-normal 554 

probability distribution or the magnitude of the tails of the distributions that describe the system 555 

performance in relation to regulatory thresholds. In this paper, the inclusion of skewness and 556 

bPOE as objectives enables the decision maker to compare solutions against the symmetry and 557 

tail characteristics of their uncertain performance explicitly.  558 
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Compared to the existing literature on managing sewer overflow impact, the proposed decision-559 

making approach provides decision makers with the flexibility to express their preferences for 560 

risk averseness. Decision makers can find solutions satisfying their preference by analysing the 561 

shape of the regulatory failure distribution and the level of risk acceptance under known budget 562 

constraints. The case study illustrated that utilising a rigorous decision-making approach would 563 

probably lead to considerably different investment solutions compared to approaches that do 564 

not account for the level of risk-averseness of decision makers. This shows the importance of 565 

taking into account uncertainty as well as the shape of the probability distribution of the 566 

regulatory performance indicator. The case study clearly illustrated that the level of risk 567 

averseness of an individual or a team in an organisation would have a considerable impact on 568 

any investment decision, and that this impact is of a same order of magnitude as the impact due 569 

to uncertainty in the predictive model parameters.  Differing risk preferences could result in a 570 

selection of investment solutions which cost substantially more or less for comparable values 571 

of mean or POE failure performance. 572 

This means that within the organisation of a water utility, a considerable difference in the cost 573 

of approved regulatory compliant engineering solutions can be obtained owing to risk 574 

preference of individuals or small teams within an organisation. These differences in 575 

individuals’ risk preferences have an impact of the same order of magnitude as the impact of 576 

uncertainty in the predictive model parameters. To reduce the impact of different risk 577 

preferences on individual investment decisions it is recommended to define a consistent 578 

corporate risk preference policy within a water utility. Internationally there are a number of 579 

regulatory frameworks (e.g. Water Framework Directive, NPDES CSO Control Policy, 580 

(USEPA, 1994)) that require water utilities to reduce the impact of intermittent discharges on 581 

surface waters. Integrated models are often used to demonstrate compliance with regulatory 582 

requirements. This work indicates that understanding predictive uncertainty and the role of the 583 
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risk preferences of individual decision makers could have a significant impact on the cost of 584 

such regulatory driven environmental protection programs. It is appreciated there are many 585 

more sources of uncertainty in integrated water quality models, such as uncertainty  in cost, 586 

however not all sources of uncertainty were included as the main aim of the study was to 587 

examine the impact of predictive model uncertainty on the risk preferences of individuals 588 

involved in the investment decision making process. However, the proposed methodology is 589 

flexible and can be adapted to incorporate the impact of other sources of uncertainty on 590 

investment decisions to manage systems to ensure regulatory compliance that is determined 591 

using performance thresholds. 592 

 593 
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