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Abstract

For multiple change-points detection of high-dimensional time series, we provide
asymptotic theory concerning the consistency and the asymptotic distribution of the
breakpoint statistics and estimated break sizes. The theory backs up a simple two-
step procedure for detecting and estimating multiple change-points. The proposed
two-step procedure involves the maximum of a MOSUM (moving sum) type statistics
in the first step and a CUSUM (cumulative sum) refinement step on an aggregated
time series in the second step. Thus, for a fixed time-point, we can capture both the
biggest break across different coordinates and aggregating simultaneous breaks over
multiple coordinates. Extending the existing high-dimensional Gaussian approxima-
tion theorem to dependent data with jumps, the theory allows us to characterize the
size and power of our multiple change-point test asymptotically. Moreover, we can
make inferences on the breakpoints estimates when the break sizes are small. Our
theoretical setup incorporates both weak temporal and strong or weak cross-sectional
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dependence and is suitable for heavy-tailed innovations. A robust long-run covariance
matrix estimation is proposed, which can be of independent interest. An application
on detecting structural changes of the U.S. unemployment rate is considered to illus-
trate the usefulness of our method.

Keywords: multiple change points detection; temporal and cross-sectional dependence;
Gaussian approximation; inference of break locations
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1 Introduction

Statistical inference of structural breaks in mean is an important subject to study, and in-

volves estimating the trend functions, detecting and locating abnormal changes and making

inferences on the break estimators. Breaks may arise in various applications in different

fields, such as in network analysis, biology, engineering, economics and finance, among oth-

ers. Specific examples are anomaly of network traffic data caused by attacks (Lévy-Leduc

and Roueff (2009)), recurrent DNA copy number variants in multiple samples (Zhang et al.

(2010)), abrupt changes in household electrical power consumption (Harlé et al. (2016)) and

minimum wage policy changes analysis (Chen et al. (2017)), etc. In those data scenarios,

temporal and cross-sectional dependence for large-dimensional data might pose challenges

to statistical analysis.

To formulate our problem, we assume that observation vectors Y1, Y2, . . . , Yn follow the

model,

Yt = µ(t/n) + ǫt, t = 1, 2, . . . , n, (1)

where (ǫt)t is a sequence of zero-mean p-dimensional stationary noise vectors and µ(·) =

(µ1(·), µ2(·), . . . , µp(·))⊤ : [0, 1] → R
p is a vector of unknown trend functions. In this way,

the data generating process is trend stationary. We will model breaks occurring on the

vector of trend functions µ(t/n). Notably, we assume that the trend function satisfies

µ(u) = f(u) +

K0
∑

i=1

γi1u≥ui
, (2)

whereK0 is an unknown integer representing the number of breaks; f(·) (f(·) = (f1(·), f2(·),
. . ., fp(·))⊤ : [0, 1] → R

p) is a vector of smooth trend functions; uks with 0 < u1 < u2 <

. . . < uK0
< 1 are the time stamps of the change-points with |ui − uj| ≫ b, where b is the
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bandwidth parameter; and γk ∈ R
p are the jump vectors with size |γk|∞ (|.|∞ is the infinity

norm) at point uk. Note that the jump sizes are characterized in terms of the infinity

norm; therefore, we do not require simultaneous jumps for all entities 1 ≤ j ≤ p, and

some coordinates of γk can be zero. Namely, we will focus on the largest jump (i.e., |γk|∞)

happening in the cross-sectional dimension for any fixed time point k (cf. Theorem 2), and

this is of particular interest when the jumps are sparse. In case many series jump at the

same time, we further propose a refined method, which aggregates all the contemporaneous

jumps (cf. Theorem 4). In most of the change-point settings, the smooth part of the trend

functions is zero (i.e., f ≡ 0). This means that the trend functions are piecewise constant

for each coordinate. In contrast, our model is more flexible and realistic, since we allow the

mean functions to vary smoothly instead of staying at the same level between break-points.

The goal of this paper is to provide theory for structural break inference. We first

detect the existence of breaks. We then deliver theorems to test for the existence of breaks,

identify their change-point uk, calibrate sizes of the breaks, i.e. |γk|∞, 1 ≤ k ≤ K0, and

construct confidence intervals for the estimated break points. Our theorem allows us to

consider a multiple change-point test based on a threshold method on the maximum of

generalized MOSUM statistics. We derive the asymptotic distribution of the test statistics

including estimated breaks sizes, and the estimated breakpoint locations (cf. Theorem

3, 4 ii) ). The results provide solid foundations for conducting statistical inferences for

multiple change-point estimation in high dimensional time series. Moreover, we consider a

further aggregation step targeting at simultaneous breaks, and also this step gives us finer

consistency rates of the break location estimation.

Multiple change-point detection can be classified into two categories, i.e. model se-

lection and testing. The traditional model selection method, for example BIC, has the

drawback of computational inefficiency, which can be improved by some recent LASSO
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type penalization procedure, see for example, Killick et al. (2012), Tibshirani and Wang

(2007), Li et al. (2016) and Lee et al. (2016). Regarding multiple change-point detection

via testing, a classical method utilises an exhaustive search, which examines all the pos-

sible breakpoints combination. An exhaustive search is very time consuming and some

dynamic technique and improved versions are invented, see for instance Bai and Perron

(1998, 2003) and Jackson et al. (2005). A very popular approach is the binary segmen-

tation introduced in Scott and Knott (1974). However its power might suffer for certain

alternatives. This drawback can be handled by the wild binary segmentation algorithm de-

veloped in Fryzlewicz (2014) and Cho and Fryzlewicz (2015). Moreover, Fryzlewicz (2018)

recently introduces a bottom-up algorithm to overcome the disadvantage of the classical

binary segmentation.

Detection using the MOSUM statistics is another popular way for multiple change-

point analysis; see, for example, Hušková and Slabỳ (2001) for i.i.d data; Wu and Zhao

(2007) and Eichinger and Kirch (2018) for general temporal dependent data. Preuss et al.

(2015) deal with multivariate time series for structural breaks in covariance. A MOSUM

procedure has the advantage of computation simplicity and can avoid issues due to multiple

testing in multiple break inference. A possible drawback is that MOSUM introduces a new

bandwidth parameter. Such an issue can be dealt with through a multi-scale MOSUM,

which uses multiple bandwidths; see, for instance Meier et al. (2019). Eichinger and Kirch

(2018) provide a comprehensive theoretical analysis of multiple change-point detection

using MOSUM analysis including the distribution theory of the estimated breakpoint. Our

work can be viewed as a generalization of their work on the high-dimensional case as we

adopt a MOSUM type of statistics in our first step.

Change-point detection for high-dimensional time series has recently drawn a lot of

attention due to the increasing number of applications. In particular, we shall consider

5

Electronic copy available at: https://ssrn.com/abstract=3378221



the case of p → ∞. Even in the simplest setup of a mean-shift model, large p may pose

challenge to change-point detection. It is common to consider aggregation, either over the

original time series or certain transformed statistics of individual time series and to convert

the problem to a one-dimensional analysis. For instance, targeting at sparse breaks, Cho

and Fryzlewicz (2015) propose a sparse binary segmentation which concerns an l1-based

aggregation with a hard threshold, and Wang and Samworth (2018) consider sparse singular

value decomposition based on the CUSUM statistics. Moreover, there are a few other work

looking at l2-based aggregation of statistic: Bai (2010) evaluates the performance of a least

square estimation of a single breakpoint with distribution theory on the break location

estimates without assuming cross sectional dependency; Zhang et al. (2010) extend the

method in Olshen et al. (2004); Enikeeva and Harchaoui (2019) and Liu et al. (2019)

regard the detection of change-points in a high-dimensional mean vector as a minimax

testing problem. For a single break point in time and targeting at sparse break coordinates,

Jirak (2015) studies a CUSUM type statistic for each coordinate and then takes maximum

of them, and asymptotic theory is provided to facilitate the simultaneous inferences of

the breakpoint estimation. Cho (2016) proposes a double-CUSUM algorithm, etc. For a

single change-point in time, distribution theory is still available in a few works, see for

example Bai (2010). When it comes to multiple change points detection, the majority of

the aforementioned work focus on developing novel algorithms, and a complete distribution

theory is not readily available due to the complexity of the problem. An exception is Jirak

(2015). Compared to Jirak (2015), we are taking a different path in terms of an algorithm

using the MOSUM and an aggregation step with refined rates of estimator achieved. We

thus provide a new angle to conduct inferences in multiple change-point analysis for high-

dimensional time series.

It shall be noted that as there are already many novel algorithms developed, we do
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not claim a total superiority of ours. The algorithm proposed here is a generalization or

modification of the existing methods, which facilitates us to obtain a complete theory and

good theoretical rates. Nevertheless, our aggregation step is different and complement to

existing algorithms. For example, one main difference with the aggregation step is that we

project based on the estimates in the first step. Cho and Fryzlewicz (2015) and Wang and

Samworth (2018) use other approaches to find the best projection direction.

To summarize, we provide theory for a two-step multiple change-point procedure. We

prove consistency results as well as distribution theorems for breakpoint location estimation,

which is crucial for inference of breakpoints. The aggregation step can help us to achieve

good rates of the breakpoint estimation. We deliver general theoretical results that allow

heavy-tailed distribution and general spatial-temporal dependency assumption on the error

term, and we do not require the mean function to be a piece-wise constant (i.e. f ≡ 0).

The detection procedure is not computationally expensive, as we only need to evaluate

the statistic once for each point t. Additionally, we consider the estimation of the long-

run covariance matrices. This paper is structured as follows. Section 2 construct a test

and deliver its asymptotic performance for testing the existence of change-points. Section

3 introduces the two-step algorithm for inference on break estimation. The associated

consistency and asymptotic distribution theorems are also covered in this section. Long-

run covariance matrix estimation is derived in Section 4. Simulation results are in Section

A in supplementary materials and an application on U.S. unemployment rate is given in

Section 5. Detailed proofs are presented in Section B in the supplementary materials.

Notations: For a constant k > 0 and a vector v = (v1, . . . , vd)
⊤ ∈ R

d, we denote

|v|k = (
∑d

i=1 |vi|k)1/k, |v| = |v|2 and |v|∞ = maxi≤d |vi|. For a matrix A = (aij)1≤i≤m,1≤j≤n,

we define the spectral norm |A|2 = max|v|=1 |Av| and the max norm |A|max = maxi,j |ai,j|.
For a function f, we denote |f |∞ = supx |f(x)|. We set (an) and (bn) to be positive number
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sequences. We write an = O(bn) or an . bn(resp. an ≍ bn) if there exists a positive constant

C such that an/bn ≤ C(resp. 1/C ≤ an/bn ≤ C) for all large n, and we denote an = o(bn)

(resp. an ∼ bn), if an/bn → 0 (resp. an/bn → 1). For two sequences of random variables

(Xn) and (Yn), we write Xn = oP(Yn), if Xn/Yn → 0 in probability.

2 Testing the existence of change-points

In this section, we provide a test for the existence of breaks. Considering our observations

generated by the model in (1) and (2), we would like to test the null hypothesis,

H0 : γ1 = γ2 = . . . = γK0
= 0,

which corresponds to the case of no breaks, against the alternative of the existence of at

least one break i.e. HA : ∃k ∈ 1, · · · , K0, γk 6= 0. It shall be noted that we do not need to

assume the number of breaks (K0) to be bounded, but to rather restrict on the separation

between breakpoints (c.f. Assumption 2.4).

In Subsection 2.1, we derive our test statistic. Its asymptotic property is given in

Subsection 2.2. In Subsection 2.3, we derive the performance of the test based on Gaussian

approximation, which provides the theoretical foundation for calculating the size and power

of the test.

2.1 Test statistic

In this subsection, we introduce the test statistics and some intuition. Recall that our trend

function µ(u) can be disentangled into two parts, namely a smooth transition part f(u)

and a jump part γi{u ≥ ui}. We can define the jump vector at point u as a gap between
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the right-side function µ(r)(u) and the left-side function µ(l)(u), which is

J(u) = µ(r)(u)− µ(l)(u), where we define µ(r)(u) = lim
t↓u

µ(t) and µ(l)(u) = lim
t↑u

µ(t).

Due to the smoothness of the constitutes of f(.), the gap function J(u) = 0 when there is

no jump, and J(u) = γk when u = uk. A natural way to test the existence of change-points

is to check whether the gap is zero (i.e. J(u) = 0). To this end, we need µ̂(r)(u) and µ̂(l)(u),

which are estimates of µ(r)(u) and µ(l)(u). We propose to adopt the local linear estimation

technique, see Fan and Gijbels (1996).

The local linear estimates of µ̂(l)(u) and µ̂(r)(u) at the point u = i/n are of the following

weighted form

µ̂
(l)
i := µ̂(l)(i/n) =

i−1
∑

t=i−bn

wi−tYt and µ̂
(r)
i := µ̂(r)(i/n) =

i+bn
∑

t=i+1

wt−iYt, (3)

with weights

wi = wi,b = wb(0, i/n), i ≥ 1, w0 = 0. (4)

The weight functions are defined as

wb(u, v) =
K((v − u)/b)[S2(u)− (u− v)S1(u)]

S2(u)S0(u)− S2
1(u)

, Sl(u) =
n

∑

i=1

(u− i/n)lK((i/n− u)/b),

(5)

where K(.) is a kernel function and b is a bandwidth with b → 0 and bn → ∞. It is worth

noting that the estimator in (3) is equivalent to adopting a one-sided kernel function, i.e.

K(u){u ≥ 0} to fix the boundary estimation issue for the kernel estimation method.

If there is no jump around the time point u = i/n, the gap estimate Ĵ(i/n) = µ̂
(l)
i − µ̂

(r)
i

would be small for all coordinates. Otherwise if for some entity 1 ≤ j ≤ p, the gap estimate
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|Ĵj(i/n)| is large, there might exist a jump around time i/n at coordinate j. Note that the

test statistics is in fact of a MOSUM type, and we replace the uniform kernel for MOSUM

by a local linear one to adapt for slowly varying trends f(u) in (2).

To conduct the breakpoint detection with p → ∞, we consider the maximum of the gap

statistics. Furthermore, we need to standardize our test statistics in order to get a regular

limit distribution. To obtain the long-run variance matrix involved in the standardization,

we need to specify the error process, as in model (1). We would like to make a general

temporal and cross-sectional dependence assumption. This is a crucial issue, since for time

series data, dependence is the rule rather than the exception. Specifically, we let

ǫt =
∑

k≥0

Akηt−k, (6)

where ηt ∈ R
p̃ are independent and identically distributed (i.i.d.) random vectors with

zero mean and a identity covariance matrix. Ak(k ≥ 0)s are coefficient matrices in R
p×p̃

such that ǫt is a proper random vector, and p ≤ p̃ ≤ cpp, for some constant cp > 1. If

Ai = 0 for all i ≥ 1, then the noise sequences are temporally independent; if p = p̃ and

matrices Ai are diagonal, then the sequences become the model in Bai (2010), which is

spatially independent. The VMA(∞) process is very general and includes many important

time series models such as a vector autoregressive moving averages (VARMA) model, i.e.

(1−
s

∑

j=1

ΘjBj)Xi = Xi −
s

∑

j=1

ΘjXi−j =
t

∑

k=1

Ξkηi−k,

where Θj and Ξk are real matrices such that det(1 −∑s
j=1 Θjz) is not zero for all |z| ≤ 1

and B is the backshift operator.

Correspondingly, we define the sum of the coefficient matrix to be S =
∑

k≥0 Ak. The

long-run covariance matrix for the error process is

Σ = SS⊤. (7)
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We denote Σ = (σi,j), 1 ≤ i, j ≤ p, and

Λ = diag(σ
1/2
1,1 , σ

1/2
2,2 , . . . , σ

1/2
p,p ). (8)

Following the previous intuition of the effect of jumps on the gap statistics Ĵ(.), we consider

the test statistic

Tn = max
bn+1≤i≤n−bn

|Vi|∞, where Vi = Λ−1(µ̂
(l)
i − µ̂

(r)
i ). (9)

Note that we consider the normalized statistic as multiplying the jump estimates Ĵ(i/n) =

µ̂
(l)
i − µ̂

(r)
i by Λ−1 since the long-run variances σj,j for different coordinates 1 ≤ j ≤ p can

be very different.

2.2 Properties of the test statistics

We shall show the asymptotic properties of our test statistics Tn in (9) in this subsection.

First we analyze the mean of the normalized jump estimators, i.e. EVi. Intuitively, we

can decompose the level of our jump estimator EVi into two parts, one is the commonly

encountered bias term for the nonparameteric kernel estimators of the smooth trend func-

tions, and the other is induced by jumps on the deterministic trend, which is denoted as

di. Recall τk = nuk, the definition of wi in (4) for i = 1, 2, . . . , bn, and wi = 0 for i = 0

and i > bn. We denote Ωi as a set of indices indicating the break locations within the bn

neighborhood around time i, namely Ωi =
{

k
∣

∣|i− τk| ≤ bn, 1 ≤ k ≤ K0

}

. For a time point

i with at least one break around Ωi 6= ∅, we define the weighted break size to be,

di = (1−
|i−τk|
∑

t=1

wt)Λ
−1γk, k = argminj∈Ωi

|i− τj|, (10)

and for the rest of locations i, let di = 0. We further stack di over all breakpoints that

are of interest, which is denoted by d = (d⊤bn+1, d
⊤
bn+2, . . . , d

⊤
n−bn)

⊤. It should be noted that

under the null, d = 0.

11

Electronic copy available at: https://ssrn.com/abstract=3378221



If τi − τj = n(ui − uj) ≍ n, for any i, j, then for large n, the cardinality of Ωi is at most

one, i.e. |Ωi| ≤ 1. Actually this can be relaxed to min1≤i 6=j≤K0
|τi − τj| ≫ bn. We denote

the smooth part of the local linear estimate as

f̂
(l)
i =

i−1
∑

t=i−bn

wi−tf(t/n) and f̂
(r)
i =

i+bn
∑

t=i+1

wt−if(t/n).

By Fan and Gijbels (1996), under some smoothness conditions, the bias part of the es-

timated smooth functions would be of the order b2, which goes to zero by assumption,

i.e.

max
bn+1≤i≤n−bn

|Λ−1(f̂
(l)
i − f̂

(r)
i )|∞ = O(b2). (11)

Given the definition of our model Yi = µ(i/T ) + ǫi, di can be expressed as

di = E
{

Λ−1
(

(µ̂
(r)
i − µ̂

(l)
i )− (f̂

(r)
i − f̂

(l)
i )

)}

= E
{

Vi − Λ−1(f̂
(r)
i − f̂

(l)
i )

}

. (12)

Combining (11) and (12), EVi can be approximated by the part induced by jumps γks, as

|EVi − di|∞ = |Λ−1(f̂
(r)
i − f̂

(l)
i )|∞ = O(b2). (13)

Let us now consider the Vi − EVi part. We observe that the centered statistics can be

expressed as a weighted sum of the error term, namely

Vi − EVi =
i−1
∑

l=i−bn

wi−lΛ
−1ǫl −

i+bn
∑

l=i+1

wl−iΛ
−1ǫl. (14)

To approximate its distribution, we introduce a scaling matrix for variance of the limit

distribution. Recall S =
∑

k≥0 Ak and define a block matrix G⋄ = (G⋄
i,l)bn+1≤i≤n−bn,1≤l≤n ∈

R
(n−2bn)p×np̃ with components as p× p̃ dimension matrices,

G⋄
i,l =











wi−lΛ
−1S, if i− bn ≤ l ≤ i− 1,

−wl−iΛ
−1S, if i+ 1 ≤ l ≤ i+ bn,

(15)
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and elsewhere zero. We let z be a Gaussian vector in R
np̃ with zero mean and identity

covariance matrix. We set G⋄
i,· to be (G⋄

i,1, G
⋄
i,2, . . . , G

⋄
i,n). It can be shown that G⋄

i,·z has

a similar covariance structure as Vi − EVi. We shall use the distribution of |G⋄
i,·z|∞ to

approximate the distribution of |Vi − EVi|∞. Combining this approximation with the bias

term in (13), we shall expect that for each time point i, our normalized break test statistics

can be approximated by the maximum of a Gaussian vector centered at di, i.e.,

P(|Vi|∞ ≤ u) ≈ P(|di +G⋄
i,·z|∞ ≤ u).

We now let the statistics go over all the time points, and recall Tn = maxbn+1≤i≤n−bn |Vi|∞.

Then we shall expect

P(Tn ≤ u) ≈ P(|d+G⋄z|∞ ≤ u), (16)

and equivalently

P(Tn ≤ u) ≈ P(|d+ Z|∞ ≤ u), (17)

where Z = (Z⊤
bn+1, Z

⊤
bn+2, . . . , Z

⊤
n−bn)

⊤ and (Zi)bn+1≤i≤n−bn is a sequence of centered Gaus-

sian vectors in R
p with covariance matrices Qi,j,

Qi,j = ̟i,jΛ
−1ΣΛ−1 and ̟i,j =

n
∑

l=1

w|i−l|w|j−l|sign(i− l)sign(j − l). (18)

To see the equivalence between (16) and (17), let

Q = (Qi,j)bn+1≤i,j≤n−bn = G⋄G⋄⊤.

Then Z is a Gaussian vector with zero mean and covariance matrix Q. Note that

Zi
d
= G⋄

i,·z and Z
d
= G⋄z. (19)

This transformation from G⋄z to Z is to show that the involved Gaussian process only

depends on the long-run covariance matrix Σ and the weight functions.

The above argument will be rigorously formulated in Theorem 1 in the next subsection.
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2.3 Gaussian approximation

In this subsection, we provide the formal theory supporting our test. We first present

necessary assumptions. The following is to guarantee the smoothness of the trend functions

µj(u) when no break occurs.

Assumption 2.1. Function fj ∈ C2[0, 1] with max1≤j≤p |f ′
j|∞ ≤ cf , max1≤j≤p |f ′′

j |∞ ≤ cf

for some constant cf > 0.

Additionally, to ensure the property of our kernel estimation, we need conditions on the

kernel function.

Assumption 2.2. The kernel K(.) ≥ 0 is symmetric with support [−1, 1], |K|∞ < ∞ and
∫ 1

−1
K(x)dx = 1. Also assume K(x) has first-order derivative with |K ′|∞ < ∞. Let b → 0

and bn → ∞.

We also set conditions on the regularity of the long-run covariance matrix and the

dependency strength of the noise sequence.

Assumption 2.3. (Lower bound for the long run variance) σj,j ≥ cσ, 1 ≤ j ≤ p for some

finite constant cσ > 0.

We need enough separation between adjacent breakpoints.

Assumption 2.4. (Separation) Assume min1≤i,j≤K0
|τi − τj| ≫ bn.

It is worth noting that Assumption 2.4 implies that the number of breaks K0 shall not

exceed the order 1/b.

Assumption 2.5. (Dependence strength) max1≤j≤p

∑

k≥i |Ak,j,·|2/σ1/2
j,j ≤ cs(i∨1)−β, where

β > 0 is some constant and Ak,j,· is the jth row of Ak.
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Assumption 2.5 is a very general spatial and temporal dependence condition and em-

braces many interesting processes. It requires an algebraic decay rate of the temporal

dependence. However, the cross-sectional dependence does not need to be weak; and in

fact, it can be strong such that it has a factor structure. We provide an example as follows.

Example 1. Assume that ηt, η
′
t ∈ R

p are i.i.d random vectors with zero mean and covari-

ance matrix Ip. Let

ǫt = Ft + Zt, with Zt =
∑

k≥0

Λkηt−k and Ft =
∑

k≥0

vf⊤
k η

′
t−k, (20)

where Λk = diag(λk,1, . . . , λk,p), v = (v1, . . . , vp)
⊤ and fk = (fk,1, . . . , fk,p)

⊤. Here Ft is the

factor term and Zt,j are independent for different j. Then the long-run variances for Zt,j

and Ft,j are σZ,j = (
∑

k≥0 λk,j)
2 and σF,j = |∑k≥0 fk|22v2j , respectively. If for some constant

c > 0,

∑

k≥i

|λk,j|/σ1/2
Z,j ≤ ci−α and

∑

k≥i

|fk|2|vj|/σ1/2
F,j ≤ ci−α, (21)

then Assumption 2.5 holds with β = α. To see this, we note |Ak,j,·|2 = (λ2
k,j + |fk|22v2j )1/2,

and σj,j = σ2
Z,j + σ2

F,j. Hence,

∑

k≥i

|Ak,j,·|2 ≤
∑

k≥i

(|λk,j|+ |vj||fk|2) ≤ ci−α(σ
1/2
Z,j + σ

1/2
F,j ) ≤

√
2ci−ασ

1/2
j,j .

�

Assumption 2.6. (Finite moment) The innovations ηi,j are i.i.d. with µq = ‖η1,1‖q < ∞
for some q ≥ 4.

Assumption 2.7. (Sub-exponential) The innovations ηi,j are i.i.d. with µe = Eea0|η1,1| <

∞, for some a0 > 0.
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Assumptions 2.6 and 2.7 put tail assumptions on the distribution of the noise sequences.

Given the above-mentioned conditions, we provide the main Gaussian approximation theo-

rem, which is essential for the asymptotic distribution of our test statistics Tn. Our theorem

extends the Gaussian approximation theory in Chernozhukov et al. (2013a, 2017), which

build on the Stein’s method and the anti-concentration bounds. Markedly, our theory is

developed for modeling dependent data. To this aim, one important technical non-triviality

lies in handling the spatial-temporal dependency of the trend stationary high-dimensional

processes. We derive the corresponding concentration inequalities based on m-dependence

approximation of the underlying processes. Compared to the existing results on Gaus-

sian approximation for time series, for example Zhang et al. (2017), our setting works for

non-centered Gaussian approximation that accommodates our interest for time series with

breanks.

Theorem 1. (Gaussian approximation for the test statistics) Under Assumptions 2.1-2.5

and b5nlog(np) = o(1).

(i) If Assumption 2.6 holds and

np(bn)−q/2(log(np))3q/2 = o(1), (22)

(ii) If Assumption 2.7 holds and

(bn)−1(log(np))max{7,2(1+β)/β} = o(1), (23)

then we have

sup
u∈R

∣

∣P(Tn ≤ u)− P(|d+ Z|∞ ≤ u)
∣

∣ → 0. (24)
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Remark 1. (Allowed dimension) One key theoretical insight is that we explicitly show the

trade-off between the tail assumption of the innovations and the allowed dimension of the

time series p relative to the sample size n in the above theorem. In particular, when we

have exponential tail assumption on the distribution of the innovations, we allow an ultra

high dimension setup indicating p to be at an exponential rate with respect to n. And when

we have only finite moment assumptions, we can allow p to be at a polynomial order with

respect to n. Specifically, for Theorem 1 case (i), we allow p to be of some polynomial order

of n, and its order depends on the value of q. For some ν1 > 0 and 0 < ν2 < 1/2, assume

p ≍ nν1 and b ≍ n−ν2 . If ν1 + ν2 < q/2− 1 and ν2 > 1/5, then conditions in case (i) hold.

It is easy to see that the bigger the moment q is, the larger the allowance of the dimension

p. The moment condition 2.6 depends on q which characterizes the heavy tailedness of the

noise, larger q means thinner tails. For case (ii), we can allow p to be exponential in n, i.e.

the ultra high dimensional scenario. For instance, for some ν1 > 0 and 1/5 < ν2 < 1, we

can set p ≍ en
ν1 and b ≍ n−ν2 . If ν1 < 5ν2 − 1 and ν1 max{7, 2(1 + β)/β} < 1 − ν2, then

conditions in case (ii) hold. �

It is not hard to understand the size and power implication of Theorem 1 to our test.

Under the null hypothesis, we have d = 0, then for any prefixed significant level α ∈ (0, 1),

we have the critical value of our test as qα i.e. the quantile of the Gaussian limit distribution,

qα = inf
r≥0

{r : P(|Z|∞ > r) ≤ α}. (25)

As from the Gaussian approximation result in (24), we have the approximated sizes of the

test statistics,
∣

∣

∣P(Tn > qα)− P(|Z|∞ > qα)
∣

∣

∣ → 0.

We shall reject the null hypothesis at the significant level α, if the test statistics exceed the

critical value i.e. Tn > qα.

17

Electronic copy available at: https://ssrn.com/abstract=3378221



To evaluate our testing power, consider the alternative that if not all γk = 0, then

d is non-zero. We have the following corollary for the power, which is a straightforward

consequence of Theorem 1.

Corollary 1. (Power) Under conditions in Theorem 1 (i) or (ii). The testing power is

βα − P(|d+ Z|∞ ≥ qα) = o(1).

Thus, we can see that the power of our test would depend on the vector d, the size of

which is determined by the true jump sizes i.e. γks.

3 Estimation and inference of breaks

In this section, we show how to estimate the number of change-points, the time stamps, the

spatial coordinates and the sizes of the structural breaks. We summarize the key steps of the

adopted two step procedure for the multiple change-point detection. The main reason for

a two-step estimation is to achieve an optimal rate of consistency for our break estimation.

The first step can be regarded as an extension of the MOSUM l∞ aggregation. Namely,

in our first step, we conduct a “rough” estimation though a MOSUM type statistic as in

Equation (9), and we can draw a conclusion on the existence of a break. In case it exists,

we obtain a “rough” estimate of the change-points locations. In the second step, we refine

our jump estimates based on a one-dimensional aggregated time series. The aggregation

can be viewed as a projection using information on the jump estimators from the first step.

To be more specific, within each time region around the kth breakpoint, we can aggregate

data by a weighted sum of different coordinates whose weights are determined by the

first step jump size estimators (γ̂k). Instead of looking at the biggest break at one time

point, the aggregated change-point statistics carry more information regarding significant
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jumps across contemporaneous locations, and would thus provide better precision. In the

following, we introduce the first “rough” estimation step and its properties in Subsection

3.1. We further improve the first step in Subsection 3.1 through an aggregated statistics ,

which is proposed and analyzed in Subsection 3.2.

3.1 The “rough” estimation step

We define the sizes of the breakpoints at time k as

|Λ−1γk|∞.

Here, we normalize γk by the long-run standard deviations for the same reason as Vi in (9).

Intuitively, the noise fluctuation levels for different locations can be very different, and at

one location, a break can be significant due to purely high noise level without normalization.

We define the minimum size of breaks over time as

δ⋄ = min
1≤k≤K0

|Λ−1γk|∞. (26)

In the following, we outline the steps of our testing, detecting and estimation procedure.

Step 1. For significance level α, we test the existence of jumps based on the critical value

qα in (25). If we find no significant breaks, then we cannot reject the null H0. In case

our test statistic exceeds the critical value, we reject H0 and acknowledge the existence of

breaks, then we proceed to step 2.

Step 2. To detect the change-points, we collect all the time stamps with the jump statistics

|Vτ |∞ exceeding a threshold value w†, namely, A1 = {bn + 1 ≤ τ ≤ n − bn : |Vτ |∞ > w†},
where Vτ is defined in (9). Let τ̂1 be the time point τ in A1 that maximizes the test

statistics |Vτ |∞. We further eliminate a 2bn neighborhood of time points around τ̂1 from

A1 to create A2. Then we find the next point in A2 that maximize |Vτ |∞, and repeat the
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same operation until the set Ak is empty. Namely, for k ≥ 1, we let the kth estimated

break point be denoted as τ̂k = argmaxτ∈Ak
|Vτ |∞ and Ak+1 = Ak \ {τ : |τ − τ̂k| ≤ 2bn}.

We denote the maximum number of breakpoints as K̂0, with K̂0 = maxk≥1{k : Ak 6= ∅}.
Step 3. Given the detected breakpoints in Step 2, we calculate the break sizes over time.

We denote the window size to be M = bn,

γ̂k = µ̂
(l)
τ̂k−M − µ̂

(r)
τ̂k+M and δ̂⋄ = min

1≤k≤K̂0

|Λ−1γ̂k|∞. (27)

It is worth noting that in this algorithm, we only need to calculate the gap statistics

|Vτ |∞ once for each point. Hence, it is not time consuming regardless of the true number of

breakpoints. In Step 1, we test the existence of the breaks. In Step 2, we use the estimated

|Vτ |∞ for all the points from bn + 1 to n − bn and select the points that are beyond the

threshold w. Intuitively, the points in A1 would contain the break indices, as well as points

in their neighborhood where estimates are contaminated by the breaks. Therefore in Step

2, we find the local maximums and discard points around them. In Step 3, we estimate the

sizes of the change-points and calculate their minimum values.

In the following, we shall provide consistency results of estimates of the break numbers,

locations and break sizes in Theorem 2; and derive asymptotic distribution of break sizes

in Theorem 3.

We need to first impose the minimum jump size condition on the break size as

Assumption 3.1. Let δ⋄ ≫ max
{√

log(pn)/(bn), b
}

.

It can be seen that the break size requirement is related to the dimensionality of the

time series, the number of observations available and the bandwidth parameter. The larger

the sample n, the smaller the requirement for δ⋄ due to the better approximation of the

trends. In the following theorem, we show that we would asymptotically obtain the right
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number of breaks. Moreover, we can bound the errors of the estimated break locations and

the break sizes. The threshold ω† shall be set as a high quantile of its limited Gaussian

distribution to ensure the consistent estimation of the breaks.

Theorem 2. We assume conditions in Theorem 1 (i) or (ii) hold, and Assumption 3.1. If

δ⋄/2 ≥ ω† ≥ 2c′w(bn)
−1/2

√

log(pn), where c′w is the constant defined as (bn
∑n

i=0 w
2
i )

1/2 →
c′w, then

(i) P(K̂0 = K0) → 1.

(ii) |τ̂k − τk∗| = OP{log(np)/δ⋄2}, where k∗ = argmini|τ̂k − τi|.

(iii) |Λ−1(γ̂k−γk∗)|∞ = OP((bn)
−1/2log(np)1/2+b), which indicates |δ̂⋄−δ⋄| = OP((bn)

−1/2log(np)1/2+

b).

Result (i) indicates that the number of breaks can be consistently estimated, (ii) suggests

that the estimated break dates uk can be consistently determined in view of uk = τk/n and

(iii) shows that the break sizes can be consistently recovered. The convergence rate of

the break sizes is dependent on the bandwidth b, sample size n and the dimension of the

time series p. It shall be noted that the consistency rate of τ̂k depends on the break size

δ⋄, which depends only on the maximum break size for any fixed time. Therefore having

several large breaks simultaneously would not improve the break size estimation.

Given the consistency of the breakpoints, we can obtain a distribution theory that

facilitates us in making inferences on the break sizes. Let Z̃ be a Gaussian vector in R
p

with zero mean and covariance matrix

Q̃ := Qbn+1,bn+1 = 2
bn
∑

t=1

w2
tΛ

−1ΣΛ−1. (28)
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Theorem 3. (Break size inference) Assume conditions in Theorem 2 and b3nlog(np) =

o(1). We have

sup
u∈R

|P(|Λ−1(γ̂k − γk∗)|∞ ≤ u)− P(|Z̃|∞ ≤ u)| → 0, where k∗ = argmini|τ̂k − τi|.

This theorem indicates that the maximum of the difference between the estimated jump

size γ̂k and the true jump size γk can be approximated by the maximum of a Gaussian

random vector with the same asymptotic variance-covariance structure. Based on Theorem

2 (ii) and Theorem 3, we can construct the confidence interval for γk. We set

α = P(|Z̃|∞ ≥ q) and θ = (σ
1/2
1,1 , σ

1/2
2,2 , ..., σ

1/2
p,p )

⊤. (29)

Then the confidence interval for vector γk∗ at level α is (γ̂k − qθ, γ̂k + qθ).

3.2 The refined aggregation step

The estimation in the first step is only driven by |γk|∞, i.e. the maximum size of jumps

at a time point τk. Therefore it is only sensitive to the biggest jump across all the time

series at the same time. In case there are multiple simultaneous time series jumps, it

would be beneficial to modify our procedure to aggregate all of the series with a jump.

This enlightens us to propose a two-stage method: first, we follow the steps in the previous

subsections to detect the “rough” timing of the jumps and the estimated jump sizes; second,

for each bn neighborhood of a change-point estimate τ̂k obtained from step one, we update

the change-point estimates according to a newly aggregated time series. The time series is

calculated with a weighted sum of simultaneous observations corresponding to significant

jump locations and the weights are based on the jump size estimates in the first step. The

aggregation returns a one-dimensional time series with richer information on the cross-

sectional jumps.
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We denote Sk to be the set of series that jump at location τk, that is

Sk = {1 ≤ j ≤ p | γk,j 6= 0}, (30)

where γk,j is the jth coordinate of γk. Detailed steps of the aggregation are formulated as

follows:

Stage 1. Apply Steps 1-3 in Subsection 3.1 to obtain τ̂k and γ̂k, k = 1, 2, . . . , K̂0. For some

w† > 0, let the estimation of Sk be

Ŝk =
{

1 ≤ j ≤ p
∣

∣|(Λ−1γ̂k)j| ≥ w†
}

. (31)

In practice, w† can be chosen to be large enough to ensure that we can detect all the jumps

with probability 1 as in Theorem 2.

Stage 2. For |t− τ̂k| ≤ 2bn, we let

Xt =
∑

j∈Ŝk

(Λ−1γ̂k)j(Λ
−1Yt)j. (32)

Note that after the modification, for all the jump locations, the new time series Xt would

only contain positive sized jumps i.e.
∑

j∈Ŝk
(Λ−1γ̂k)

2
j . This step can be understood

as a projection of the high-dimensional observations Λ−1Yt according to the direction of

Λ−1γ̂k(j ∈ Ŝk). This is similar to the idea of Wang and Samworth (2018).

Based on the aggregated time series Xt, the refined change-point locations can be de-

tected through a CUSUM type of test statistics, for k = 1, 2, . . . , K̂0,

τ̃k = argmax|t−τ̂k|≤bn

(

τ̂k+2bn
∑

s=τ̂k−2bn

Xs
t− τ̂k + bn

4bn+ 1
−

t−1
∑

s=τ̂k−2bn

Xs

)

√

4bn+ 1

(t− (τ̂k − 2bn) + 1)(τ̂k + 2bn− t)
.

(33)

After we update the break points estimation, we can construct confidence intervals for

the updated breakpoints estimates τ̃k. We denote the long-run correlation matrix to be
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(σ̃i,j)i,j = Λ−1ΣΛ−1, where Σ is the long run covariance matrix for ǫt. We let Σ̃k = (σ̃i,j)i,j∈Sk

be the sub covariance matrix corresponding to coordinates in Sk at time τk and let the

standardized significant break sizes γ̃k = (Λ−1γk)i∈Sk
. We define two objects involved in

the limit distributions of the breaks, i.e.,

ak = |γ̃k|22 and ς2k = γ̃⊤
k Σ̃kγ̃k. (34)

Then ς2k is the long-run variance for the sequence
∑

j∈Sk
(Λ−1γk)j(Λ

−1ǫt)j. For the aggre-

gated jump estimation, we alternatively define the minimum jump size across different

locations and time points as

δ† = min
1≤k≤K0

min
j∈Sk

|(Λ−1γk)j|.

Then δ† ≤ δ⋄ and it functions similarly as δ⋄ to capture the identifiable jump size of the

time series. We shall put the same assumption on δ† as on δ⋄. It is worth noting that δ† is

the minimum jump size to ensure the consistency of our break estimation.

Assumption 3.2. Let δ† ≫ max
{√

log(pn)/(bn), b
}

.

In the following corollary, we show that we can consistently recover the locations of the

series with a jump for each change-point. It can be directly derived from Theorem 2 (iii).

Corollary 2. We assume conditions in Theorem 1 (i) or (ii) hold, and Assumption 3.2.

If δ†/2 ≥ w† ≫ (bn)−1/2log(np)1/2 + b, then for any k we have

P(Ŝk = Sk) → 1.

In addition, we provide a theorem that allows us to make inference on the estimated

break-dates τ̃k.
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Theorem 4. (Aggregated break estimation) Assume conditions in Corollary 2, and that

for some constants c1, c2 > 0,

c1 ≤ λmax(Λ
−1ΣΛ−1)/λmin(Λ

−1ΣΛ−1) ≤ c2. (35)

Recall definition of ak and ςk in (34). Then we have for any fixed k,

(i) |τ̃k − τk∗ | = OP(ς
2
k/a

2
k).

(ii) In addition, if Assumption 2.5 holds with β > 1, then we have

τ̃k − τk∗
D→ (ςk/ak)

2argmaxr(−2−1|r|+W(r)),

where W(r) is a two-sided Brownian motion, that is W(r) = W1(r), if r > 0, and W(r) =

W2(−r), if r ≤ 0, and W1, W2 are two independent Brownian motions.

Remark 2. We shall note that the consistency rate of τ̃k is improved compared to the

results for τ̂ in Theorem 2 ii). ak which is an l2 aggregation of simultaneous significant

break sizes, plays a role in the rate of convergence of τ̃k. For instance, if we assume that

there are s breaks which are of size δ > 0 in the cross-sectional dimensional, then ak = sδ2.

If moreover there is no cross-sectional correlation, i.e., Σ̃k = I, then we may expect τ̃k to

be consistent so long that 1/(sδ2) → 0, while τ̂k can be not consistent. Thus the rate of

τ̃k will be better than τ̂ . Moreover, the long-run variance also plays a critical role in the

rate of convergence. For example, when the variance part of the limit distribution satisfies

ς2k ≤ |Σ̃k|2ak, if |Σ̃k|2/ak = o(1) then by Theorem 4 (i), we have τ̃k → τk in probability. If Σ̃k

is a d-banded matrix, |Σ̃k|2 ≤ (|Σ̃k|1|Σ̃k|∞)1/2 ≤ d. We can derive that |τ̃k−τk| = OP(d/ak).

�

To illustrate the insight of Remark 2, we compare the performance of a simple model

with N (0, 0.1) and one breakpoint placed at τ0 = 50. Figure 3.2 shows the histogram of
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τ̂ − τ0 and τ̃ − τ0 respectively. The jump-size for all breaks are the same, with the value

1.6
√

log(np)(τ0)
−1/3. As the dimension p grows, we see the significant improvement of the

performance of τ̃ relative to that of τ̂ .

From Theorem 4, with estimates of ak and ςk, we can construct a 100(1−α)% confidence

interval for τ̃k:
(

τ̃k − ⌊q̂′1−α/2⌋ − 1, τ̃k + ⌊q̂′α/2⌋+ 1
)

, (36)

where q′1−α/2 (q′α/2) is 1− α/2 (α/2)th quantile of the limit distribution of the break point

τ̃k, i.e. argmaxr{−2−1ak|r| + ςkW(r)} and q̂′α/2(q̂
′
1−α/2) are estimates of the quantiles. ⌊·⌋

denotes the floor function. q′1−α/2 (q′α/2) can be calculated following Stryhn (1996). Alter-

natively, we can also simulate the critical values.

4 Long-run covariance matrix

In the previous sections, we assume that Σ is known. However, this is unrealistic in

practice, as we mostly do not know the long-run covariance matrix. Thus, an estimation

of the long-run covariance matrix is needed in Gaussian approximation. A simpler version

of this problem was considered by Politis et al. (1999) and Lahiri (2003), who allow for

a constant mean of the random vector. More generally, Chen and Wu (2017) consider

the high-dimensional situation with smooth trends. However, this does not fit directly to

our interest due to the possible existence of the breakpoints. We then propose a robust

covariance matrix estimation motivating from the M-estimation method in Catoni et al.

(2012). It is worth noting that due to the jumps, our method shall be different from the

classical covariance matrix estimation. Our long-run variance-covariance matrix estimation

is complementary to the recent article on high-dimensional robust matrix method under

independence settings in Fan et al. (2017).
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(d) p = 150

Figure 1: Histogram of τ̂−τ0(left) and τ̃−τ0(right) for n = 100, p = 10, 30, 100, 150,K0 = 1.

The number of breaks in the cross-sectional dimension are s = 1, 5, 20, 30 respectively, and

there are 100 simulation samples. (a) describes the case with p = 10, s = 1; (b) describes

the case with p = 30, s = 5; (c) describes the case with p = 100, s = 20; and, (d) describes

the case with p = 150, s = 30.
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First of all, to account for temporal dependency, we group our observations into blocks of

the same size m, for some m ∈ N. We denote the number of blocks N1 = ⌊(n−m)/m⌋, and
the observation indices within a block k is set to be Ak = {t ∈ N : km+1 ≤ t ≤ (k+1)m},
and we let

ξk =
∑

t∈Ak

Yt/m,

be the average observations within the block Ak. Without jumps, a natural estimate of the

long-run covariance matrix is

N1
∑

k=1

(m/2)(ξk − ξk−1)(ξk − ξk−1)
⊤/N1.

Note that we take the difference ξk − ξk−1 to cancel out the trends, as the trend function

µ(·) is smooth, and the aggregated difference between two consecutive blocks can be shown

to be of order m/n, which vanishes when m/n → 0. However, this estimator can be greatly

contaminated by the jumps. Thus a robust covariance matrix estimation is needed. We

borrow the framework of Catoni (2012), who considers a new robustM - estimation method.

We extend the method for estimating our long run covariance matrix.

We denote ξk = (ξk,1, ξk,2, . . . , ξk,p)
⊤ and let

σ̂i,j,k = m(ξk,i − ξk−1,i)(ξk,j − ξk−1,j)/2, k = 1, 2, . . . , N1. (37)

For some αi,j > 0, we denote the M - estimation zero function of our variance-covariance

matrix to be

hi,j(u) =

N1
∑

k=1

φαi,j
(σ̂i,j,k − u)/N1, (38)
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where φα(x) = α−1φ(αx) and

φ(x) =







































log(2), x ≥ 1,

−log(1− x+ x2/2), 0 ≤ x ≤ 1,

log(1 + x+ x2/2), −1 ≤ x ≤ 0,

−log(2), x ≤ −1.

(39)

Remark 3. Function |φ(·)| is bounded by log(2) and is Lipschitz continuous with the

Lipschitz constant bounded by 1. Also note that the function has envelopes of nice form,

−log(1− x+ x2/2) ≤ φ(x) ≤ log(1 + x+ x2/2). (40)

�

We set the estimates of the components of the long-run covariance matrix σ̂i,j to be the

solution to hi,j(u) = 0 (if more than one root, pick one of them). We can collect all the

estimates of the variance and covariances and organize them into the variance covariance

matrix,

Σ̂ = (σ̂i,j)1≤i,j≤p and Λ̂ = (σ̂
1/2
1,1 , σ̂

1/2
2,2 , . . . , σ̂

1/2
p,p ). (41)

We denote σ̄i,i = 2
∑

N1/4≤k≤3N1/4
σ̂i,i,k/N1 and let the αi,j in (38) be σ̄

1/2
i,i σ̄

1/2
j,j (m/bn)1/2.

Theorem 5. (Long-run variance precision) We assume that Assumption 2.5 holds with

β ≥ 1.5 and let

ς = |Λ−1(Σ̂− Σ)Λ−1|max.

Then we have ςlog(np)2 → 0 in probability under either one of the following two conditions:
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(i) Assuming conditions in Theorem 1 (i), p ≤ cnv with v < q/4− 1/2 and some c > 0,

we take m = min{n1−4v/(q−2), (bn)1/2}.

(ii) Assuming conditions in Theorem 1 (ii), we take m = min{b−1, (bn)1/2}.

By the above theorem, for the diagonal values, we have max1≤i≤p |σ̂i,i−σi,i|/σi,i = oP(1).

Let Q̂ be the same as Q in (18), with Σ therein replaced by Σ̂ in (41). We denote Ẑ as

the Gaussian vector with covariance matrix Q̂, then by Theorem 5 and Lemma 3, |Ẑ+ d|∞
converges to |Z + d|∞ in distribution. Thus, all previous results are still valid with Σ̂ as

well.

5 Application

As an application, we analyze the monthly the unemployment rate data in 20 U.S. states

(namely, Alabama, Arizona, California, Colorado, Florida, Georgia, Illinois, Indiana, Ken-

tucky, Michigan, Mississippi, New Jersey, New York, North Carolina, Ohio, Pennsylvania,

Texas, Virginia, Washington and Wisconsin). The data time span is from January 1976

to September 2018, and the data source is Bureau of Labor Statistics from Department of

Labor in the United States (https://www.bls.gov/). Figure 2 displays the 20 time series of

unemployment rate. Although from a long time span and on an overall level, we do not see

obvious abrupt structural changes, it would be still of great interest to consider detected

changes induced by some well-known exogenous shocks, such as the subprime mortgage

crisis in 2007-2008. It is understood that there will be likely a smooth cyclical trend as-

sociated with the unemployment time series, as they mostly rise during a recession and

fall during periods of economics prosperity, following the business cycle. Further studies

on whether the shock induced by recessions creates a significant structural change in the

unemployment rate should be performed.
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Figure 3 shows the estimated robust long-run correlation matrix using the method in

Section 4. One sees some significant values in the correlations between residuals in different

states. We can see that the correlations across different locations are not negligible, however

our method is robust against the underlying spatial-temporal dependency.

Figure 4 plots the estimated breakpoints and the confidence intervals around them. We

see that the estimated breaks τ̃k using the CUSUM statistics in Equation (33) pick up the

breaks earlier than the estimates obtained from the non-aggregated method i.e. τ̂k. We

can see that our method can identify important dates such as the financial crisis period

starting in Jan, 2009. Moreover, τ̃k tends to detect earlier dates of structure changes than

the observed averaged peaks in the time series. Other time-points with significant jumps

detected are January 1977, October 1981, January 1991 and October 2001. There are a

few recession periods documented by the national bureau of Economics Research, namely

November 1973 to March 1975, July 1981 to November 1982, July 1990 to March 1975,

July 1981 to November 1982, July 1990 to March 1991 and March 2001 to November 2001.

All the break-dates of the unemployment structure happen during or slightly before the

recession periods, featuring a close relationship between the structure change of unemploy-

ment rate and the economic cycles. This implies that economic recessions indeed bring

significant structural changes in unemployment rates across all the states.
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Figure 2: Plot of Unemployment rate of 20 U.S. states
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Figure 4: Plot of estimated breakpoints τ̃k(τ̂k) (red lines) and their confidence intervals

(dotted black lines). τ̃k (upper panel), τ̂k (lower panel). The blue time series line represents

the average unemployment rate over states under consideration.
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SUPPLEMENTARY MATERIAL

A Simulation

In this section, we conduct a simulation study to evaluate the accuracy of our method. The

discrete version of the model can be written as:

yit = uit +

K0
∑

j=1

γjit{t ≥ τj}+ ǫit, (42)

i = 1, · · · , p, t = 1, · · · , n.
We use cross validation to select the bandwidth and the block parameter. The detailed

testing procedure is summarized as follows in line with the descriptions in Section 2.

Step 1 (Long-run covairance estimation.) We estimate the long-run covariance matrix

Σ̂ = (σ̂i,j) and its diagonal matrix Λ̂. We first calculate σ̂i,j,k in (37) and we let σ̂i,j

be the solution of hi,j(u) = 0 as in (38).

Step 2 (Q− matrix relates to critical values.) We construct the block matrix Q̂ = (Q̂i,j),

where Q̂i,j is Qi,j in (18), with Σ and Λ therein replaced by Σ̂ and Λ̂ respectively.

Step 3 (Calculating critical values.) We generate i.i.d. Gaussian vectors Ẑ(i), i =

1, 2, . . . N, with the covariance matrix Q̂; and we obtain q̂α which is the empirical

(1 − α) quantile of the |Ẑ(i)|∞ over several samples and it can be viewed as an esti-

mate of qα in (25).

Step 4 (Testing the existence of jump.) We construct T̂n as Tn in (9) with Λ replaced

by Λ̂. We reject the null hypothesis that there is no jump at level α if T̂n is larger

than q̂α.
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Step 5 (Detecting significant break-points.) Supposing that we reject the null in Step

4, we will continue with the following steps. To detect the significant jumps, we

construct |V̂t|∞ for t = bn + 1, bn + 2, . . . , n − bn, where V̂t is the same as Vt in (9)

with Λ therein replaced by Λ̂. Let A1 = {τ : |V̂τ |∞ > w†}. w† can be set as q̂α with

α to be small (e.g. α = 0.0001).

Step 6 (Stamping multiple breaks) In the case of multiple significant breaks in Step 5, we

sequentially locate the multiple change-points following steps in Section 3.1. To be

more specific, for k ≥ 1, we let τ̂k = argmaxτ∈Ak
|V̂τ |∞ and Ak+1 = Ak \{τ : |τ− τ̂k| ≤

2bn}. Then the estimate of the number of breaks is K̂0 = maxk≥1{k : Ak 6= ∅}.

Step 7 (Estimating the sizes of breaks) We construct γ̂k as in Step 3 in Subsection 3.1.

We set the estimates of the sizes of the jumps as δ̂k = |Λ̂−1γ̂k|∞ and their minimum

as δ̂⋄ = min1≤k≤K̂0
δ̂k.

Step 8 (Constructing confidence intervals for the sizes) We construct q̃α as in (29).

Let

θ̂ = (σ̂
1/2
1,1 , σ̂

1/2
2,2 , ..., σ̂

1/2
p,p )⊤. Then the confidence interval for vector γk∗ at level 2α is

(γ̂k − q̃αθ̂, γ̂k + q̃αθ̂).

Step 9 (Aggregated jump location estimation and confidence interval construc-

tion) Construct aggregated jump location estimates τ̃k as in (33). The confidence

interval for τk is (τ̃k − x, τ̃k + x), where x is the 1− α/2 quantile of the distribution

argmaxr(−2−1â2k|r| + ς̂kW(r)) and âk (resp. ς̂k) is ak (resp. ςk) with Λ, Σ and γk

replaced by their estimations.

We first report a few results with a known variance-covariance matrix. We put it under

rather simple settings for checking the performance of the algorithm with respect to different

2

Electronic copy available at: https://ssrn.com/abstract=3378221



p = 20, 50, 100, and150, n = 100. Therefore, Step 2 of the above-mentioned algorithm is

omitted. We also include the cases with strong cross-sectional dependence with factor

structure and no cross sectional dependence. In particular, we consider different kinds of

data generating processes. We choose a) fi(u) = −i2/p2+u2 and b) fi(u) = sin(2πu+ i/p).

Let uit = fi(t/n). ǫt is taken to follow 1) an i.i.d. standard normal distribution, 2) a VAR(1)

model, with a randomly simulated coefficient matrix (maximum eigenvalue smaller than

1) and 3) a factor structure together with a VAR(1) noise. In case 2), the factor loading

and factors are generated with i.i.d. N(0, 1). We set K0 = 10 breaks for all cases, and we

increase the number of breaks in the cross-sectional dimension as the dimension increases,

i.e. s = 1, 5, 20, 30. We set the break size to be 3/log(np).

Figure 5 shows the simulated data with the model corresponding to the case a),1),ii). We

evaluate our simulation performance over 1000 samples. We report the averaged difference

between the estimated number of breaks and the true break points (AD) (|K̂0 − K0|) as

in Table 1. The averaged distances between the breaks
∑K̂0

k=1 |τ̃k − τ ∗k |∞ (AM) are shown

in Table 2. We notice that as the dimension and the the number of breaks in the cross-

sectional dimension grow, the estimation performance improves.

For the unknown covariance, we report results for the cases n = 500, 1000 and p = 20, 30.

The break-locations are selected to start at time-point 100 and are distanced by 100, and

the break sizes are set to be either i) γjit = 0.05 for i = 5, 10 or ii) γjit = (
√
t/log(pn)).

The estimation accuracy with covariance estimation is included in Tables 3 and 4. And

the averaged coverage probabilities of the confidence interval for the breaks (AC) are in

Table 5 at the confidence level of 90%. We do not consider p larger than n, as our long-run

variance estimation has not been extended for the use of a high-dimensional setting. A

further extension of our estimation to high-dimensional long -run variance estimation can

be considered. As the sample sizes increase, the estimation precision is improved. We

3
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Table 1: AD averaged over 1000 samples in different simulation scenarios, and their stan-

dard deviations in bracket.

p = 20, n = 100 p = 50, n = 100

1) 3) 1) 3)

a) 0.152 (0.033) 0.187 (0.046) 0.121 (0.024) 0.125 (0.029)

b) 0.155 (0.041) 0.193 (0.054) 0.119 (0.025) 0.126 (0.028)

p = 100, n = 100 p = 150, n = 100

a) 0.098 (0.015) 0.117 (0.021) 0.072 (0.013) 0.078 (0.014)

b) 0.093 (0.017) 0.124 (0.025) 0.084 (0.016) 0.090 (0.019)

Table 2: AM/n averaged over 1000 samples in different simulation scenarios, and their

standard deviations in bracket.

p = 20, n = 100 p = 50, n = 100

1) 3) 1) 3)

a) 0.046 (0.016) 0.057 (0.025) 0.033 (0.012) 0.041 (0.015)

b) 0.048 (0.019) 0.060 (0.028) 0.036 (0.014) 0.040 (0.018)

p = 100, n = 100 p = 150, n = 100

a) 0.015 (0.007) 0.023 (0.009) 0.011 (0.003) 0.017 (0.008)

b) 0.019 (0.008) 0.028 (0.011) 0.012 (0.003) 0.020 (0.007)
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Table 3: AD averaged over 1000 samples in different simulation scenarios, and their stan-

dard deviations in bracket.

2* p = 20, n = 500 p = 30, n = 1000

1) 2) 1) 2)

2*a) i) 0.035 (0.010) 0.046 (0.014) 0.029 (0.005) 0.030 (0.007)

ii) 0.028 (0.011) 0.043 (0.015) 0.024 (0.004) 0.027 (0.006)

2*b) i) 0.038 (0.012) 0.039 (0.012) 0.023 (0.004) 0.029 (0.003)

ii) 0.023 (0.008) 0.032 (0.011) 0.026 (0.003) 0.028 (0.002)

can see that our method is robust against different data simulation scenarios, and we can

achieve good level of accuracy with our method. In particular, the spatial and temporal

dependency in the error term would not affect our estimation.

Figure 6 shows the plot of the estimated robust long-run covariance matrix (right)

against the true one (left). On an overall level, we see that the true correlation matrix has

been precisely recovered, as the patterns of these two plots look the same. We also report

the distance between our robustly estimated variance-covariance matrix and the true one in

Table 6. The estimation precision of the long-run variance-covariance matrix is maintained

across different data-generating processes.
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Table 4: AM/n averaged over 1000 samples in different simulation scenarios, and their

standard deviations are in brackets.

2* p = 20, n = 500 p = 30, n = 1000

1) 2) 1) 2)

2*a) i) 0.044 (0.018) 0.056 (0.015) 0.033 (0.011) 0.038 (0.009)

ii) 0.027 (0.014) 0.033 (0.013) 0.021 (0.008) 0.026 (0.007)

2*b) i) 0.045 (0.017) 0.057 (0.018) 0.028 (0.004) 0.035 (0.006)

ii) 0.039 (0.012) 0.037 (0.014) 0.016 (0.003) 0.023 (0.004)

Table 5: AC in different simulation scenarios over all the estimated break-points and sam-

ples.

2* p = 20, n = 500 p = 30, n = 1000

1) 2) 1) 2)

2*a) i) 0.692 0.676 0.833 0.824

ii) 0.719 0.708 0.856 0.833

2*b) i) 0.685 0.673 0.847 0.810

ii) 0.741 0.715 0.889 0.872
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Table 6: Averaged difference between the variance-covariance and the true matrix. (L1

norm divided by p(p− 1)/2).

2* p = 20, T = 500 p = 30, T = 1000

1) 2) 1) 2)

2*a) i) 0.005 0.008 0.003 0.007

ii) 0.004 0.006 0.003 0.005

2*b) i) 0.006 0.009 0.003 0.005

ii) 0.004 0.007 0.002 0.004

B Proof

B.1 Some useful Lemmas

Lemma 1 (Basic properties of the weights). We assume Assumption 2.2. We define κi =
∫ 1

0
xiK(x)dx with finite κ1, κ2, κ

2
1 6= κ2κ0. Then by Fan and Gijbels (1996), the weights of

the local linear estimator take the following form

wi =
κ2 − κ1i/(bn)

κ2κ0 − κ2
1

K(i/(bn))

bn
+O((bn)−2).

We have the following results which holds uniformly over i. There exist strictly positive

constants cw, c
′
w, c

′′
w only depending on kernel K(.), such that

bn max
0≤i≤n

|wi| ≤ cw, max
|i−j|≤m

|wi − wj| ≤ cw
m

(bn)2
,

(bn
bn
∑

i=0

w2
i )

1/2 → c′w, and
bn

k

k
∑

i=1

wi ≥ c′′w, k ≤ bn. (43)
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Proof. We only show the last one, since the rest are similar and easier. Note

bn
k

∑

i=1

wi/k = F (k/(bn)) +O((bn)−1), where F (t) =
κ2

∫ t

0
K(x)dx− κ1

∫ t

0
xK(x)dx

(κ2κ0 − κ2
1)t

.

Define the numerator function as g(t) = κ2

∫ t

0
K(x)dx − κ1

∫ t

0
xK(x)dx. We can see that

g(0) = 0, g(1) > 0, and the derivative function g′(t) = (κ2−κ1t)K(t), which is strictly larger

than 0 before κ2/κ1 and less than 0 afterwards. Therefore we have F (x) > 0 on (0, 1]. In

addition, we note F (0+) = κ2K(0)/(κ2κ0 − κ2
1) > 0 and F (1) = 1. Thus inft∈(0,1] F (t) > 0

in view of F (t) is a continuous function.

Lemma 2 (Burkholder (1988), Rio (2009)). Let q > 1, q′ = min{q, 2}. Let MT =
∑T

t=1 ξt,

where ξt ∈ Lq are martingale differences. Then

‖MT‖q
′

q ≤ Kq′

q

T
∑

t=1

‖ξt‖q
′

q , where Kq = max((q − 1)−1,
√

q − 1).

B.2 Asymptotic results for Gaussian vector

Lemma 3 (Comparison). Let X = (X1, X2, . . . , Xv)
⊤ and Y = (Y1, Y2, . . . , Yv)

⊤ be two

centered Gaussian vectors in R
v and let d = (d1, d2, . . . , dv)

⊤ ∈ R
v. We denote ∆ =

max1≤i,j≤v |σX
i,j − σY

i,j|, where we define σX
i,j = E(XiXj) (resp. σY

i,j = E(YiYj)). Assume

that Yis have the same variance σ2 > 0. Then we have

sup
x∈R

∣

∣

∣P
(

|X + d|∞ ≤ x
)

− P
(

|Y + d|∞ ≤ x
)

∣

∣

∣ . ∆1/3log(v)2/3, (44)

where the constant involved in . only depends on σ.

Proof. It suffices to show for any d ∈ R
v,

sup
x

∣

∣

∣
P(max

1≤i≤v
(Xi + di) ≤ x)− P(max

1≤i≤v
(Yi + di) ≤ x)

∣

∣

∣
. ∆1/3log(v)2/3.
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To this end, we define

F ∗
β (z) = β−1log

(

v
∑

j=1

exp(β(zj + dj))
)

.

Replace the Fβ(·) in the proof of Theorem 2 in Chernozhukov et al. (2015) by F ∗
β (z). Then

by the argument in equation (10) in Chernozhukov et al. (2015), we have

P

(

max
1≤i≤v

(Xi + di) ≤ x
)

≤ P

(

max
1≤i≤v

(Yi + di) ≤ x+ δ + β−1log(v)
)

+ c(δ−2 + βδ−1)∆,

where c is some absolute constant. Then by Lemma 4, we have

P

(

max
1≤i≤v

(Xi + di) ≤ x
)

− P

(

max
1≤i≤v

(Yi + di) ≤ x
)

. (δ + β−1log(v))
√

log(v) + (δ−2 + βδ−1)∆,

where the constant in . only depending on σ. Take β = δ−1log(v) and δ = log(v)1/6∆1/3.

Same argument can be applied in the other direction, and the desired result follows.

Lemma 4 (Nazarov (2003)). Let X = (X1, X2, . . . , Xv)
⊤ be a centered Gaussian vector in

R
v. Assume E(X2

i ) ≥ b for some b > 0 and all 1 ≤ i ≤ v. Then for any e > 0 and d ∈ R
v,

sup
x∈R

P

(

∣

∣|X + d|∞ − x
∣

∣ ≤ e
)

≤ ce
√

log(v), (45)

where c is some constant depending only on b.

B.3 Proof of Theorem 1

The proof of Theorem 1 is quite involved. We shall first provide some intuitive ideas of the

proof strategy. We define

Iǫ := max
bn+1≤i≤n−bn

∣

∣

i−1
∑

t=i−bn

wi−tΛ
−1ǫt −

i+bn
∑

t=i+1

wt−iΛ
−1ǫt + di

∣

∣

∞
. (46)
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By (13) and (14) we have

|Tn − Iǫ| ≤ max
bn+1≤i≤n−bn

|EVi − di|∞ = O(b2). (47)

Thus we only need to work on Iǫ. For some m > 0, let a truncated version of the error term

be defined as

ǫt,m =
m−1
∑

k=0

Akηt−k.

Consider the m-dependent approximation Iǫ,m of Iǫ, where Iǫ,m is Iǫ with ǫt replaced by

ǫt,m. Then we have Iǫ ≈ Iǫ,m for large m. Let Iz,m be Iǫ,m with ηt therein replaced by

zt, where (zt, t ∈ Z) are i.i.d. Gaussian vectors with zero mean and identity covariance

matrix in R
p̃. Since Iǫ,m can be rewritten into the format of the maximum of summation

of independent vectors, by the Gaussian approximation theorem in Chernozhukov et al.

(2017), the distributions of Iǫ,m and Iz,m are close. We complete the proof by showing that

the distributions of Iz,m and |Z + d|∞ are close, and the continuity of the maximum of a

non-centered Gaussian distribution.

Proof. We now proceed with the formal argument. We shall first focus on case (i). Let

m = (bn)1/(β+1), for any α > 0,

P
(

(bn)1/2Tn ≤ u
)

≤ P
(

(bn)1/2|Tn − Iǫ,m| ≥ α
)

+ P
(

(bn)1/2Iǫ,m ≤ u+ α
)

and

P
(

(bn)1/2|Z + d|∞ ≤ u
)

= P
(

(bn)1/2|Z + d|∞ ≤ u+ α
)

− P
(

u < (bn)1/2|Z + d|∞ ≤ u+ α
)

.

10

Electronic copy available at: https://ssrn.com/abstract=3378221



Hence

sup
u∈R

[

P
(

(bn)1/2Tn ≤ u)− P((bn)1/2|Z + d|∞ ≤ u
)

]

≤P

(

(bn)1/2|Tn − Iǫ,m| ≥ α
)

+ sup
u∈R

∣

∣

∣P(Iǫ,m ≤ u)− P(|Z + d|∞ ≤ u)
∣

∣

∣

+ sup
u∈R

P

(

∣

∣(bn)1/2|Z + d|∞ − u
∣

∣ ≤ α
)

=: I1 + I2 + I3.

For the I1 part, |Tn − Iǫ,m| ≤ |Tn − Iǫ| + |Iǫ − Iǫ,m|. Recall (47), then |Tn − Iǫ| ≤ c0b
2

for some constant c0 > 0. We define α′ = 2c1 max{(bn)−1/2(np)1/q, 1}m−β+β/q, where the

constant c1 is the one to be defined in Lemma 5. Then by Lemma 5, we have

P((bn)1/2|Iǫ − Iǫ,m| ≥ α′) = o(1).

Hence for α = α′ + c0(bn)
1/2b2, I1 = o(1).

For the I2 part, we note that

I2 ≤ sup
u∈R

|P(Iǫ,m ≤ u)− P(Iz,m ≤ u)|+ sup
u∈R

|P(Iz,m ≤ u)− P(|Z + d|∞ ≤ u)| =: I21 + I22.

By Lemma 7 (1), we have I21 = o(1). By Lemma 8, I22 = o(1). Hence I2 = o(1).

For the I3 part, the diagonal entities in bnQ take the same value i.e. σ⋄2 = 2bn
∑bn

i=1 w
2
i ,

which by (43), converges to 2c
′2
w > 0 , where c′w is a finite constant. By Lemma 4

I3 . αlog(np)1/2 = o(1).

The desired result follows by combining the I1-I3 parts and a similar argument for the other

side of the inequality.

For case (ii), we have the same decomposition I1-I3. For the I1 part, we define α =

c1log(np)
1/2m−β + c0(bn)

1/2b2, for some constant c1 > 0. Then by Lemma 6, I1 = o(1). For

I2 part, by Lemma 7 (2) and Lemma 8, we have I2 = o(1). For I3, same argument can be

applied. Combining the rates of I1-I3, we obtain the desired result.
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Lemma 5 and 6 give us concentration inequalities for the m-dependent approximation

of Iǫ.

Lemma 5 (m-dependent approximation for polynomial case). Assume conditions in The-

orem 1 (i). For some m > 0 and u > 0, we have

P
(

(bn)1/2|Iǫ − Iǫ,m| ≥ u+ c1(bn)
−1/2(np)1/qm−β

)

≤ c2(e
−c3u2m2β

+ npm−qβ(bn)−q/2u−q),

where c1, c2, c3 are some positive constants only depending on q, cp, cw, cs, µq.

Proof. We note that Iǫ − Iǫ,m can be bounded by

|Iǫ − Iǫ,m| ≤ max
bn+1≤i≤n−bn

(

∣

∣

i−1
∑

t=i−bn

wi−tΛ
−1(ǫt − ǫt,m)

∣

∣

∞
+
∣

∣

i+bn
∑

t=i+1

wt−iΛ
−1(ǫt − ǫt,m)

∣

∣

∞

)

=: I1 + I2.

We let Ei,l =
∑i−1

t=(i−bn)∨(l+m) wi−tΛ
−1At−l, then I1 can be rewritten into

I1 = max
bn+1≤i≤n−bn

1≤j1≤p

∣

∣

∣

∑

l≤i−m−1
1≤j2≤p̃

Ei,l,j1,j2ηl,j2

∣

∣

∣
, (48)

where Ei,l,j1,j2 is the (j1, j2)th entity of matrix Ei,l and ηl,j2 is the j2th entity of ηl. Since

ηl,j2s are independent for different (l, j2), by Lemma A.2 in Chernozhukov et al. (2013b),

for u > 0,

P(
√
bnI1 ≥ 2

√
bnEI1 + u) ≤ e−u2/(3σ2) +Kqu

−qHq, (49)

where Kq is some constant only depending on q,

σ2 = bn max
bn+1≤i≤n−bn

1≤j1≤p

∑

l≤i−m−1
1≤j2≤p̃

E(Ei,l,j1,j2ηl,j2)
2,
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and

Hq = (bn)q/2
∑

l≤n−bn−m−1
1≤j2≤p̃

E



 max
(bn+1)∨(l+m+1)≤i≤n−bn

1≤j1≤p

|Ei,l,j1,j2ηl,j2 |q


 .

Then we start to analyze the rates of the objects involved in (49). We define Ei,l,j1,· to

be the j1th row of Ei,l. For the σ2 part, by Assumption 2.5 and (43),

|Ei,l,j1,·|2 ≤
∑

t≥l+m

wi−tσ
−1/2
j1,j1

|At−l,j1,·|2 ≤ cwcsm
−β/(bn), (50)

and therefore

∑

l≤n−bn−m−1

|Ei,l,j1,·|2 ≤
i−1
∑

t=i−bn

∑

l≤t−m

wi−tσ
−1/2
j1,j1

|At−l,j1,·|2 ≤ cwcsm
−β. (51)

Combining the above arguments and recall that Eη2i,j = 1, we have

σ2 ≤ bn max
bn+1≤i≤n−bn

1≤j1≤p

(

∑

l≤i−m−1

|Ei,l,j1,·|2 max
l≤n−bn−m−1

|Ei,l,j1,·|2
)

≤ (cwcs)
2m−2β. (52)

For the Hq part, by Assumption 2.5 and (43), maxi,j1,j2 |Ei,l,j1,j2 | ≤ cwcs((1 − l) ∨
m)−β/(bn). Recall that p̃ ≤ cpp. Then we have

Hq ≤ (bn)q/2
∑

l≤n−bn−m−1
1≤j2≤p̃

[cwcs((1− l) ∨m)−β/(bn)]qµq
q

≤ (cwcs)
qµq

q(bn)
−q/2p̃

(

∑

−m≤l≤n−bn−m

m−βq +
∑

l<−m

(1− l)−βq
)

≤ c0(bn)
−q/2npm−βq,

(53)

where c0 = 3cp(cwcs)
qµq

q.

For EI1 part, note that EI1 ≤ ‖I1‖q. By Lemma 2, we have

EI1 ≤
(

∑

i,j1

E(|
∑

l,j2

Ei,l,j1,j2ηl,j2 |q)
)1/q

≤
(

∑

i,j1

(

(q − 1)
∑

l

|Ei,l,j1,·|22µ2
q

)q/2
)1/q

.
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Thus by (50) and (51) we have

EI1 . (bn)−1/2m−β(np)1/q, (54)

where the constant in . only depends on cw, cs, µq, q. Our conclusions follows by applying

(52), (53) and (54) into (49) and a similar argument for I2.

Lemma 6 (m-dependent approximation for exponential case). We assume conditions in

Theorem 1 (ii). We have

P
(

(bn)1/2|Iǫ − Iǫ,m| ≥ u
)

≤











2npe−a1m2βu2

, if u < a2(bn)
1/2m−β,

2npe−a3mβ(bn)1/2u, if u ≥ a2(bn)
1/2m−β,

where a1, a2, a3 are some positive constants only depending on a0, cw, cs, µe.

Proof. Recall the definition of I1 and I2 in the proof of Lemma 5. Let e∗ = cwcsm
−β/(bn)

and c∗ = a0/e
∗. Then by (50), EecEi,l,j1,j2

ηl,j2 < ∞, for any 0 < c ≤ c∗, and we have

E(ecI1) ≤
∑

bn+1≤i≤n−bn
1≤j1≤p

E









exp
{

c
∑

l≤n−bn−m−1
1≤j2≤p̃

Ei,l,j1,j2ηl,j2

}

+ exp
{

− c
∑

l≤n−bn−m−1
1≤j2≤p̃

Ei,l,j1,j2ηl,j2

}









=: I11 + I12.

Since Eηi,j = 0, for Ei,l,j1,j2 6= 0, we have

E(ecEi,l,j1,j2
ηl,j2 ) = 1 +

E(ecEi,l,j1,j2
ηl,j2 − 1− cEi,l,j1,j2ηl,j2)

c2E2
i,l,j1,j2

c2E2
i,l,j1,j2

≤ 1 +
E(ec

∗e∗|ηl,j2 | − 1− c∗e∗|ηl,j2 |)
(c∗e∗)2

c2E2
i,l,j1,j2

≤ 1 +
µe

a20
c2E2

i,l,j1,j2
,
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where the first inequality is because that for any x > 0, the function gx(t) = (etx−1−tx)/t2

increases on t ∈ (0,∞), and et − t ≤ e|t| − |t|. We define c′ = µe/a
2
0, and the rate of I11 is

derived as follows,

I11 ≤
∑

i,j1

∏

l,j2

(1 + c′c2E2
i,l,j1,j2

) ≤
∑

bn+1≤i≤n−bn
1≤j1≤p

exp
{

c′c2
∑

l≤n−bn−m−1
1≤j2≤p̃

E2
i,l,j1,j2

}

,

≤ np exp
{

c2c1m
−2β/(bn)

}

,

where c1 = c′c2wc
2
s, the second inequality is due to 1 + x ≤ ex for any x ≥ 0, and the last

inequality is by (52). Same bound can be derived for I12. We note that

P(I1 ≥ u) ≤ e−cu
E(ecI1) ≤ e−cu(I11 + I12).

We define c⋄ = bnm2βu/(2c1). Hence if c⋄ < c∗, then P(I1 ≥ u) ≤ 2npe−u2m2βbn/(4c1); if

c⋄ ≥ c∗, then P(I1 ≥ u) ≤ 2npeµebn−a0/(cwcs)bnmβu. The proof for I2 is similar and therefore

omitted.

Lemma 7. Let m → ∞ and m/(bn) → 0.

(1) Assume conditions in Theorem 1 (i), we have

sup
u∈R

|P(Iǫ,m ≤ u)− P(Iz,m ≤ u)|

.(bn)−1/6log7/6(pn) + ((np)2/q/(bn))1/3log(pn),

where the constant in . only depends on cw, c
′
w, cs and µq.

(2) Assume conditions in Theorem 1 (ii), we have

sup
u∈R

|P(Iǫ,m ≤ u)− P(Iz,m ≤ u)| .(bn)−1/6log(pn)7/6,

where the constant in . only depends on cw, c
′
w, cs, a0 and µe.
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Proof. First we consider the case of (1). We denote

Di,l =

(i−1)∧(m+l−1)
∑

t=(i−bn)∨l

wi−tΛ
−1At−l, and D∗

i,l =

(i+bn)∧(m+l−1)
∑

t=(i+1)∨l

wt−iΛ
−1At−l. (55)

Then Iǫ,m can be rewritten into

Iǫ,m = max
bn+1≤i≤n−bn

∣

∣

∣

∑

i−m+1−bn≤l≤i−1

Di,lηl −
∑

i−m+2≤l≤i+bn

D∗
i,lηl + di

∣

∣

∣

∞
.

Let N0 = (n − 2bn)p and N1 = (n + m − 1)p̃. Let G = (Gi,l)i,l, bn + 1 ≤ i ≤ n − bn,

2−m ≤ l ≤ n, be a block matrix in R
N0×N1 with

Gi,l =























Di,l if i−m+ 1− bn ≤ l ≤ i−m+ 1,

Di,l −D∗
i,l if i−m+ 2 ≤ l ≤ i− 1,

−D∗
i,l if i ≤ l ≤ i+ bn,

(56)

and elsewhere zero. We define di,j1 to be the j1th entity of di, N2 = bnN1 and Gi,l,j1,j2 be

the (j1, j2)th entity of Gi,l. Then

N
1/2
2 Iǫ,m = max

bn+1≤i≤n−bn
1≤j1≤p

∣

∣

∣

∑

2−m≤l≤n
1≤j2≤p̃

gi,l,j1,j2 +N
1/2
2 di,j1

∣

∣

∣, where gi,l,j1,j2 = N
1/2
2 Gi,l,j1,j2ηl,j2 .

(57)

For any r ≤ q, we denote

Mr := max
bn+1≤i≤n−bn

1≤j1≤p

θij1,r, where θrij1,r :=
∑

2−m≤l≤n
1≤j2≤p̃

E|gi,l,j1,j2 |r/N1 =
n

∑

l=2−m

|Gi,l,j1,·|rrµr
rN

r/2
2 /N1.

By Assumption 2.5 and (43), for any r ≥ 2,

|Di,l,j1,·|r ≤ |Di,l,j1,·|2 ≤ cwcs/(bn), and similarly |D∗
i,l,j1,·

|r ≤ cwcs/(bn). (58)
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Then by (56), maxi,l,j1 |Gi,l,j1,·|r ≤ 2cwcs/(bn). Since Gi,l is zero for l < i −m + 1 − bn or

l > i+ bn,

Mr ≤ (4cwcsµr)(N1/bn)
1/2−1/r. (59)

Especially, for r = 2, Mr ≤ c1 where c1 = 4cwcsµ2. By (55), for i − bn ≤ l ≤ i −m, and

Sm =
∑m−1

k=0 Ak,

Gi,l = Di,l =
m+l−1
∑

t=l

wi−tΛ
−1At−l = wi−lΛ

−1S + wi−lΛ
−1(Sm − S) +

l+m−1
∑

t=l

(wi−t − wi−l)Λ
−1At−l.

Therefore by Assumption 2.5 and (43), we can derive

∣

∣|Gi,l,j1,·|2 − wi−l

∣

∣ = σ
−1/2
j1,j1

wi−l

∑

k≥m

|Ak,j1,·|2 + σ
−1/2
j1,j1

l+m−1
∑

t=l

|wi−t − wi−l||At−l,j1,·|2

≤ cwcsm
−β/(bn) + cwcsm/(bn)2.

Note
∑m

i=1 w
2
i bn = O(m/(bn)) = o(1). Thus by (43),

min
bn≤i≤n−bn

1≤j1≤p

θij1,2 ≥ min
bn≤i≤n−bn

1≤j1≤p

(

i−m
∑

l=i−bn

|Gi,l,j1,·|22µ2
2N2/N1

)1/2

≥ c′wµ2 − o(1) ≥ c1, (60)

some constant c1 > 0. Since maxi,l,j1,j2 |Gi,l,j1,j2 | ≤ 2cwcs/(bn),

max
l,j2

E(max
i,j1

|gi,l,j1,j2 |q) = max
i,l,j1,j2

|Gi,l,j1,j2N
1/2
2 |q ≤ (2cwcs)(N1/(bn))

q/2.

Note

Bn := max
{

M3
3 ,M

2
4 ,
(

max
l,j2

E(max
i,j1

|gi,l,j1,j2 |q)
)1/q

}

. (N1/(bn))
1/2,
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where the constant in . only depends on cw, cs, µq. By Proposition 2.1 in Chernozhukov

et al. (2017) we have

sup
u∈R

|P(N1/2
2 Iǫ,m ≤ u)− P(N

1/2
2 Iz,m ≤ u)|

.
(

B2
nlog

7(pn)/N1

)1/6
+
(

B2
nlog

3(pn)/N
1−2/q
1

)1/3

.(bn)−1/6log7/6(pn) + ((np)2/q/(bn))1/3log(pn).

For part (2), letM = log2(µe)∨1, andB′
n = (2cwcsM/a0)(N1/(bn))

1/2. Since maxi,l,j1,j2 |Gi,l,j1,j2 | ≤
2cwcs/(bn), we have

max
i,l,j1,j2

E(egi,l,j1,j2/B
′

n) ≤ 2.

Note

Bn := max{M3
3 ,M

2
4 , B

′
n} . (N1/(bn))

1/2.

Apply the same argument as for part (1) with this new Bn, then Proposition 2.1 in Cher-

nozhukov et al. (2017) leads to

sup
u∈R

∣

∣P(N
1/2
2 Iǫ,m ≤ u)− P(N

1/2
2 Iz,m ≤ u)

∣

∣ .
(

B2
nlog

7(pn)/N1

)1/6
. (bn)−1/6log7/6(pn).

Lemma 8. Assume conditions in Theorem 1 (i) or (ii), for m → ∞, m/(bn) → 0,

sup
u∈R

|P(Iz,m ≤ u)− P(|Z + d|∞ ≤ u)| .
(

m/(bn) +m−β
)1/3

log(np)2/3,

where the constant in . only depends on cw, c
′
w and cs.
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Proof. We recall thatDi,l, D
∗
i,l in (55), G = (Gi,l) in (56) andG⋄ in (15). It is not hard to see

that the covariance matrix for Iz,m is GG⊤ and the covariance matrix for Z is Q = G⋄G⋄⊤.

We let

H0 = (Gi,l) 2−m≤l≤0
bn+1≤i≤n−bn

, and H1 = (Gi,l) 1≤l≤n
bn+1≤i≤n−bn

.

Then G = (H0, H1) and

|GG⊤ −G⋄G⋄⊤|max ≤ |H0H0⊤|max + 2|(H1 −G⋄)G⋄⊤|max + |(H1 −G⋄)(H1 −G⋄)⊤|max

=: I1 + I2 + I3.

By (58), maxi,l,j |Gi,l,j,·|2 ≤ 2cwcs/(bn). Therefore

(bn)I1 ≤ (bn) max
i1,i2,j1,j2

0
∑

l=2−m

|Gi1,l,j1,·|2|Gi2,l,j2,·|2 ≤ (2cwcs)
2m/(bn).

Denote ∆i,l = Gi,l −G⋄
i,l. For i−m+ 1− bn ≤ l < i− bn, ∆i,l = Di,l, and thus |∆i,l,j,·|2 ≤

cwcs/(bn). For i− bn ≤ l ≤ i−m+ 1, we have

∆i,l = Di,l − wi−lΛ
−1S =

m+l−1
∑

t=l

(wi−t − wi−l)Λ
−1At−l − wi−lΛ

−1
∑

t≥m

At. (61)

Hence |∆i,l,j,·|2 ≤ cwcsm/(bn)2+cwcsm
−β/(bn). For i−m+1 ≤ l ≤ i−1, ∆i,l = Di,l−D∗

i,l−
wi−lΛ

−1S. Then |∆i,l,j,·|2 ≤ 3cwcs/(bn). Similarly we can bound |∆i,l,j,·|2 for i ≤ l ≤ i+ bn.

For the rest l, ∆i,l = 0. We note that |G⋄
i,l,j,·| ≤ cwcs/(bn). Consequently,

(bn)I2 ≤ (bn) max
i1,i2,j1,j2

n
∑

l=1

|∆i1,l,j1,·|2|G⋄
i2,l,j2,·

|2 . m/(bn) +m−β,

where the constant in . only depends on cw, cs. Similarly we have (bn)I3 . m/(bn)+m−β.

Combining I1-I3,

(bn)|GG⊤ −G⋄G⋄⊤|max . m/(bn) +m−β.

By (43), for any j we have bnQj,j = 2bn
∑n

i=1 w
2
i → 2c

′2
w . Then the desired result follows

from Lemma 3.
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B.4 Proof of Theorem 2

Proof of (i). Note 1−Φ(x) ≤ (2π)−1/2x−1e−x2/2, where Φ(·) is the cumulative distribution

function of a standard normal distribution. RecallG⋄
i,l in (15). LetG⋄

i,· = (G⋄
i,1, G

⋄
i,2, . . . , G

⋄
i,n)

and z be a Gaussian vector in R
np with zero mean and identity covariance matrix. Let

G⋄
i,·,j,· be the jth row of G⋄

i,·, then

P(|G⋄z|∞ ≥ u) ≤
n−bn
∑

i=bn

p
∑

j=1

P(|G⋄⊤
i,·,j,·z| ≥ u) ≤ np(2π)−1/2(σ/u)e−u2/(2σ2), (62)

where σ = |G⋄
i,·,j,·|2 = (2

∑bn
t=1 w

2
t )

1/2, which by (43) converges to (bn/2)−1/2c′w > 0. Thus

P
(

|G⋄z|∞ ≥ 2c′wlog(np)
1/2(bn)−1/2

)

→ 0. (63)

Let S := {1 ≤ i ≤ n : |i− τk| > bn, for all 1 ≤ k ≤ K0}. For any i ∈ S, di = 0. Hence by

Theorem 1,

sup
u∈R

∣

∣

∣
P
(

max
i∈S

|Vi|∞ ≥ u
)

− P
(

max
i∈S

|G⋄
i,·z|∞ ≥ u

)

∣

∣

∣
→ 0. (64)

Since maxi∈S |G⋄
i,·z|∞ ≤ |G⋄z|∞, by (63) and (64) we have P(maxi∈S |Vi|∞ ≥ ω†) → 0. Thus

we obtain

lim
n→∞

P
(

∀t ∈ A1, ∃1 ≤ k ≤ K0, |t− τk| ≤ bn
)

= 1. (65)

Recall that dτk = Λ−1γk. Since |dτk +G⋄
τk,·

z|∞ ≥ |dτk |∞ − |G⋄
τk,·

z|∞, we have

P

(

min
1≤k≤K0

|dτk +G⋄
τk,·

z|∞ ≤ ω†
)

≤ P

(

max
1≤k≤K0

|G⋄
τk,·

z|∞ ≥ min
1≤k≤K0

|dτk |∞ − ω†
)

≤ P
(

|G⋄z|∞ ≥ δ⋄ − ω†
)

.

Since δ⋄ ≥ 2ω†, P(min1≤k≤K0
|dτk + G⋄

τk,·
z|∞ ≤ ω†) → 0. Subsequently the break statistics

will be bigger than the threshold at the points of break with probability approach 1,
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P(min1≤k≤K0
|Vτk |∞ ≤ ω†) → 0 in view of

sup
u∈R

∣

∣

∣
P(|Vτk |∞ ≤ u)− P(|dτk +G⋄

τk,·
z|∞ ≤ u)

∣

∣

∣
→ 0.

Therefore we have

P(τk ∈ A1, 1 ≤ k ≤ K0) → 1. (66)

Let B(τ, r) = {t : |t− τ | ≤ r}. By (65) and (66), we have

lim
n

P

(

{τ1, τ2, . . . , τK0
} ⊆ A1 ⊆ ∪1≤k≤K0

B(τk, bn)
)

= 1.

Since for k1 6= k2, |τk1 − τk2 | ≫ bn, for any k1 6= k2 and t ∈ B(τk1 , bn), for all large n,

B(t, 2bn) ∩ B(τk2 , 2bn) = ∅. Thus we complete the proof.

Proof of (ii). Let µ
(l)
i (resp. U

(l)
i ) be µ̂

(l)
i with Yi therein replaced by µ(i/n) (resp. ǫi).

Similarly we can define µ
(r)
i and U

(r)
i . Let ∆µi = µ

(l)
i − µ

(r)
i and ∆Ui = U

(l)
i −U

(r)
i . Let ∆fi

be ∆µi with µ replaced by f.

Let τ ∈ {τ1, ..., τK0
} be some break point associated with jump γ. For any t such that

|t− τ | ≤ bn, we have ∆µt = (1−∑|t−τ |
i=1 wi)γ +∆ft. Hence

Vt = Λ−1∆µt + Λ−1∆Ut

= (1−
|t−τ |
∑

i=1

wi)Λ
−1γ + Λ−1∆ft + Λ−1∆Uτ + (Λ−1∆Ut − Λ−1∆Uτ ). (67)

Let τ̂ = argmax{t:|t−τ |≤bn}|Vt|∞. The proceeding proof contains three steps.

Step 1. Let jτ = argmaxj|Vτ̂ ,j|, where Vτ̂ ,j is the jth entity of Vτ̂ . This step shows

lim inf
n

|(Λ−1γ)jτ |/δ⋄ ≥ 1.

We shall show by contradiction. By (47), |∆ft|∞ = O(b2). If |(Λ−1γ)jτ | ≤ cδ⋄, for some

c < 1, then by (67), |Vτ̂ |∞ ≤ cδ⋄ + O(b2) + |Λ−1∆Uτ̂ |∞. Let Ũt be Ut with ηi,j replaced
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by zi,j where zi,j are i.i.d standard normal random variables. Then maxt |Λ−1∆Ũt|∞ =

OP((bn)
−1/2log(np)1/2). Then by Gaussian approximation Theorem 1,

max
t

|Λ−1∆Ut|∞ = OP((bn)
−1/2log(np)1/2).

Since δ⋄ ≫ (bn)−1/2log(np)1/2, we have |Vτ̂ |∞ ≤ cδ⋄(1+ oP(1)). On the other hand, by (67),

|Vτ |∞ ≥ δ⋄ +O(b2)− |Λ−1∆Uτ |∞ = δ⋄(1 + oP(1)). These imply P(Vτ̂ < Vτ ) → 1, which is a

contradiction.

Step 2. This step shows

max
t

|Λ−1∆Uτ − Λ−1∆Ut|∞/|t− τ |1/2 = OP

{

log(np)1/2/(bn)
}

. (68)

Let t ≤ τ, the other direction can be similarly dealt with. Let (zi,j) be i.i.d. standard

Gaussian random variables. Define ∆Ũt (resp. ǫ̃t) to be ∆Ut (resp. ǫt) with ηi,j therein

replaced by zi,j. Then by Gaussian approximation Theorem 1, it suffices to show (68) with

Ut replaced by Ũt. We note that

∆Ũt −∆Ũτ =
τ−bn−1
∑

i=t−bn

wt−iǫ̃i +
t−1
∑

i=τ−bn

(wt−i − wτ−i)ǫ̃i −
τ−1
∑

i=t+1

(wi−t + wτ−i)ǫ̃i

−
t+bn
∑

i=τ+1

(wi−t − wi−τ )ǫ̃i −
τ+bn
∑

i=t+bn+1

wi−τ ǫ̃i + wτ−tǫ̃t − wτ−tǫ̃τ =:
7

∑

k=1

rk.

For r1, we have

|Λ−1r1|∞ = max
1≤j1≤p

|
∑

l≤τ−bn−1,1≤j2≤p

El,j1,j2zl,j2 |, where El =
τ−bn−1
∑

i=(t−bn)∨l

wt−iΛ
−1Ai−l,

with El,j1,j2 as the (j1, j2)th entity of matrix El. Then

max
t

(

|Λ−1r1|∞/|t− τ |1/2
)

= OP

{

log(np)1/2/(bn)
}

.
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A similar argument leads to the same bound for r3 and r5. For r2, we can rewrite

|Λ−1r2|∞ = max
1≤j2≤p

|
∑

l≤t−1

E ′
l,j1,j2

zl,j2 |, where E ′
l =

t−1
∑

i=(τ−bn)∨l

(wt−i − wτ−i)Λ
−1Ai−l.

Then similarly we have maxt |Λ−1r2|∞/|τ − t|3/2 = OP

{

log(np)1/2/(bn)2
}

. The same bound

can be derived for r4 as well. We obtain (68) by summing the above bounds up.

Step 3. Without loss of generality, assume γjτ > 0. Then by the argument in step 1, with

probability tending to 1, Vτ̂ ,jτ > 0. By Assumption 2.1, we have |∆ft−∆fτ |∞ = O(|t−τ |/n).
With probability tending to 1, by (67),

|Vτ |∞ − |Vτ̂ |∞ ≥ Vτ,jτ − Vτ̂ ,jτ ≥
|τ̂−τ |
∑

i=1

wi(Λ
−1γ)jτ −O(|τ̂ − τ |/n)− |Λ−1∆Uτ − Λ−1∆Uτ̂ |∞.

By (43), we have
∑|t−τ |

i=1 wi ≥ c′′w|t− τ |/(bn). Hence by Step 1 and Step 2 we further derive

|Vτ |∞ − |Vτ̂ |∞ ≥ c′′w|τ̂ − τ |δ⋄/(bn)−O(|τ̂ − τ |/n)−OP

(

|τ − τ̂ |1/2log(np)1/2/(bn)
)

.

Since |Vτ |∞ < |Vτ̂ |∞, we have

|τ − τ̂ | = OP{log(np)/δ⋄2}.

Proof of (iii). Recall the definition of µ
(l)
t , µ

(r)
t , U

(l)
t and U

(r)
t in the proof of (ii) andM = bn.

Since M ≫ log(np)/δ⋄2,

|µ(l)
τ̂k−M − µ((τ̂k −M)/n)|∞ = |f (l)

τ̂k−M − f((τ̂k −M)/n)|∞ = O(b).

Similarly |µ(r)
τ̂k+M − µ((τ̂k +M)/n)|∞ = O(b). Since max1≤j≤p |f ′

j| is bounded,

|µ((τ̂k +M)/n)−µ((τ̂k −M)/n)− γk∗ |∞ = |f((τ̂k +M)/n)− f((τ̂k −M)/n)|∞ = O(M/n).
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Hence

|Λ−1(γ̂k − γk∗)|∞ =
∣

∣Λ−1(µ
(r)
τ̂k+M − µ

(l)
τ̂k−M − γk∗) + Λ−1U

(r)
τ̂k+M − Λ−1U

(l)
τ̂k−M

∣

∣

∞

≤ O(b+M/n) + |Λ−1U
(l)
τ̂k−M − Λ−1U

(r)
τ̂k+M |∞. (69)

By Gaussian approximation and (63) we have

P
(

|Λ−1U
(l)
τ̂k−M − Λ−1U

(r)
τ̂k+M |∞ ≥ 2c′wlog(np)

1/2/(bn)1/2
)

→ 0.

Inserting the above equation into (69) and we obtain the desired result.

B.5 Proof of Theorem 3

Proof. We recallM = bn. Similar to (69), we have |Λ−1(γ̂k−γk∗)−Λ−1(U
(r)
τ̂k+M−U

(l)
τ̂k−M)|∞ ≤

cM/n. Therefore

sup
u∈R

∣

∣

∣
P
(

(bn)1/2|Λ−1(γ̂k − γk∗)|∞ ≤ u
)

− P
(

(bn)1/2|Z̃|∞ ≤ u
)

∣

∣

∣

≤ sup
u∈R

P
(

|(bn)1/2|Z̃|∞ − u| ≤ c(bn)1/2M/n
)

+sup
u∈R

∣

∣P(|Λ−1(U
(l)
τ̂k−M − U

(r)
τ̂k+M)|∞ ≤ u)− P(|Z̃|∞ ≤ u)

∣

∣ = I1 + I2.

We note that (bn)1/2Z̃j are i.i.d with variance 2(bn)
∑bn

t=1 w
2
t , which by (43) converges to

2c
′2
w > 0. Therefore by Lemma 4,

I1 = O{(bn)1/2(M/n)log(np)1/2} = o(1).

Let G̃ = (G̃1, G̃2, . . . , G̃n), where G̃l = wτ̂k−M−lΛ
−1S, if τ̂k −M − bn ≤ l ≤ τ̂k −M − 1,

and G̃l = wl−(τ̂k+M)Λ
−1S, if τ̂k +M + 1 ≤ l ≤ τ̂k +M + bn and elsewhere zero. Let z be

Gaussian vector in R
np̃ with zero mean and identity covariance matrix. Then G̃z

d
= Z̃. By
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the same argument as in Theorem 1 with di = 0 we have

sup
u∈R

|P(|Λ−1(U
(l)
τ̂k−M − U

(r)
τ̂k+M)|∞ ≤ u)− P(|G̃z|∞ ≤ u)| = o(1).

Thus I2 = o(1) and we complete the proof.

B.6 Proof of Theorem 4

Proof of (i). We shall condition on the event where Ŝk = Sk and |τ̂k − τk| ≪ bn. By

Theorem 2 and Corollary 2, the event would take place with probability tending to 1.

Denote εt =
∑

j∈Sk
(Λ−1γ̂k)j(Λ

−1ǫt)j, and âk =
∑

j∈Sk
(Λ−1γk)j(Λ

−1γ̂k)j. Then we have

Xt = âk1t≥τk +
∑

j∈Sk

fj(t/n)(Λ
−1γ̂k)j + εt.

Let l(t) =
√

(4bn+ 1)/(t(4bn+ 1− t)), t0 = τ̂k − 2bn, t1 = τ̂k + 2bn and

Dt =
(

t1
∑

s=t0

Xs
t− t0
4bn+ 1

−
t−1
∑

s=t0

Xs

)

l(t).

For any r > 0, we have

Dτk+r −Dτk =
(

t1
∑

s=t0

Xs
τk − t0
4bn+ 1

−
τk−1
∑

s=t0

Xs

)

(

l(τk + r)− l(τk)
)

+
(

t1
∑

s=t0

Xs
r

4bn+ 1
−

τk+r−1
∑

s=τk

Xs

)

l(τk + r) = I1 + I2.

Denote Ii(f) (resp. Ii(ε), Ii(a)) to be Ii with Xt therein replaced by f(t/n) (resp. εt,

âk1t≥τk), i = 1, 2.

Firstly, consider the f part. Note |l(τk + r)− l(τk)| . (bn)−3/2r. Thus by the continuity
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of fj, for I1 part, we have

max
j

∣

∣

∣

t1
∑

s=t0

fj(s/n)
τk − t0
4bn+ 1

−
τk−1
∑

s=t0

fj(s/n)
∣

∣

∣|l(τk + r)− l(τk)| = O((b2n)|l(τk + r)− l(τk)|)

= O(br(bn)−1/2).

Similarly we can handle the f part in I2 and therefore

|I1(f) + I2(f)| = O(br(bn)−1/2|γ̃k|1).

Secondly, let us consider the drift part.

I1(a) + I2(a)

=(t1 − τk + 1)âk
τk − t0
4bn+ 1

(

l(τk + r)− l(τk)
)

+
(

(t1 − τk + 1)âk
r

4bn+ 1
− râk

)

l(τk + r)

=− âk(τk − t0)(4bn+ 1)1/2r

(τk + r − t0)(τk − t0)(
√

(t1 − τk − r)(τk − t0) +
√

(τk − t0 + r)(t1 − τk)

≥− (bn)−1/2âk/2.

Tirdly, let us focus on the ε part. By Theorem 2 (iii), |(Λ−1γ̂k)j∈Sk
|2 = |γ̃k|2(1 + oP(1))

and thus âk = |γ̃k|2(1 + oP(1)). Then together with (35), we obtain that the long run

variance for εk is ς2k(1 + oP(1)). Hence by Theorem 1 in El Machkouri et al. (2013),

∣

∣

∣

τ̂k+2bn
∑

s=τ̂k−2bn

εs

∣

∣

∣
= OP((bn)

1/2ςklog(bn)
1/2) and

∣

∣

∣

τk+r
∑

s=τk

εs

∣

∣

∣
= OP(r

1/2ςk).

Therefore

I1(ε) = OP

(

(bn)1/2ςklog(bn)
1/2|l(τk + r)− l(τk)|

)

= OP

(

(bn)−1rςklog(bn)
1/2

)

.
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For I2 part, we have

I2(ε) =
(

t1
∑

s=t0

εs
r

4bn+ 1
−

τk+r−1
∑

s=τk

εs

)

l(τk + r)

= OP

(

(bn)−1rςklog(bn)
1/2 + r1/2ςk(bn)

−1/2
)

.

Combining all the previous parts we have

Dτk+r −Dτk

≥− (bn)−1/2akr(1 + oP(1))/2 +O(br(bn)−1/2|γ̃k|1) +OP

(

(bn)−1rςklog(bn)
1/2 + r1/2ςk(bn)

−1/2
)

(70)

Note |γ̃k|1 ≤ |Sk|1/2|γ̃k|2, thus

|γ̃k|1b ≤ |Sk|1/2|γ̃k|2b ≪ |Sk|1/2|γ̃k|2δ† ≤ |γ̃k|22 = ak.

Therefore in (70), we have O(br(bn)−1/2|γ̃k|1) = o((bn)−1/2akr).

Since Σ̃k is a covariance matrix with diagonal entities 1, |Σ̃k|2 ≤ |Sk|. Note ς2k ≤ |Σ̃k|2ak,
thus

ςk ≤ |Sk|1/2a1/2k .

Then we have

ςk(bn)
−1/2log(bn)1/2 ≤ |Sk|1/2a1/2k (bn)−1/2log(bn)1/2 ≪ |Sk|1/2a1/2k δ† ≤ ak,

where the last inequality is because ak = |γ̃k|22 ≥ δ†2|Sk|. ThereforeOP

(

(bn)−1rςklog(bn)
1/2

)

=

oP((bn)
−1/2akr) in (70). Inserting the above equations into (70) leads to

(bn)1/2(Dτk+r −Dτk) ≥ −akr(1/2 + oP(1)) +OP(ςkr
1/2).

Since Dτ̃k is the maximum, Dτk+r − Dτk > 0. Therefore r = OP(ς
2
k/a

2
k). By a similar

argument for the r < 0 part, the desired result follows.
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Proof of (ii). Let Ft be the σ-field generated by {ηs,j, s ≤ t, 1 ≤ j ≤ p}. Denote the

projection operator Pt· = E(·|Ft) − E(·|Ft−1). Let γ̄k,j = (Λ−1γk)j, if j ∈ Sk, γ̄k,j = 0 if

j /∈ Sk. Let (η
′
t) be an i.i.d copy of (ηt). Then

ct := ‖P0εt‖4 ≤ ‖γ̄⊤
k Λ

−1At(η0 − η′0)‖4 . |γ̄⊤
k Λ

−1At|2µ4,

where the last inequality is by Lemma 2 and that η0,j, 1 ≤ j ≤ p, are i.i.d. By Assumption

2.5,

∑

s≥m

cs .
∑

s≤m

|γ̄⊤
k Λ

−1As|2 ≤
p

∑

j=1

∑

s≥m

γ̄k,jσ
−1/2
j,j |As,j,·|2 . |γ̄k|1m−β = |γ̃k|1m−β.

Thus by Corollary 2.1 in Berkes et al. (2014), strong invariance principle holds for
∑

s≤t εs.

Thus similar to (70), we have

Dτk+r −Dτk = −2−1akrl(τk)(1 + oP(1))−
τk+r−1
∑

s=τk

εsl(τk + r)
D→ (−2−1akr + ςkB(r))l(τk).

The r < 0 part can be similarly dealt with.

B.7 Proof of Theorem 5

Proof of (i). The main idea follows the proof of Proposition 2.4 in Catoni (2012), however

due to the dependence and the break points, our result is much more involved. Let

S = {k | Ak or Ak−1 contains break points}.

Then by assumption |S| ≤ 2K0. We look at estimators without the break point first.

h̄i,j(u) =
∑

k/∈S

φαi,j
(σ̂i,j,k − u)/N2, where N2 = N1 − |S|.
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Let

σ̃i,j =
∑

k/∈S

Eσ̂i,j,k/N2 and v2i,j =
∑

k/∈S

Eσ̂2
i,j,k/N2 − σ̃2

i,j.

Define functions

B+
i,j(u, x) = σ̃i,j − u+ αi,j[(σ̃i,j − u)2 + v2i,j]/2 + x,

B−
i,j(u, x) = σ̃i,j − u− αi,j[(σ̃i,j − u)2 + v2i,j]/2− x.

The proof contains four steps.

Step 1. This step shows that function Eh̄i,j(u) for any i, j satisfies, the expected loss

functions have upper and lower envelope functions,

B−
i,j(u, 0) ≤ Eh̄i,j(u) ≤ B+

i,j(u, 0).

By (40), φ(x) ≤ x+ x2/2 and thus

Eh̄i,j(u) ≤
∑

k/∈S

(

E(σ̂i,j,k − u) + αi,jE(σ̂i,j,k − u)2/2
)

/N2 = B+
i,j(u, 0).

Similarly we can bound the other side.

Step 2. This step shows for any x > 0, the estimated influence function h̄i,j(u) is highly

concentrated around its mean, for C0 > 0 and x & (N2log(N2))
1/2,

p
∑

i,j=1

P

(

sup
|u−σi,j |≤C0

|h̄i,j(u)− Eh̄i,j(u)| ≥ x(σ
1/2
i,i σ

1/2
j,j )/N2

)

. p2
(

N2log(n)
q/4x−q/2 + e−x2/(cN2)

)

,

(71)

where c and the constant in . are independent of n, p.

First introduce some notation. For any random variable X, denote E0X = X − EX,

the centering operator. Let Fk = (ηt, t ∈ ∪s≤kAs) and Fk,{s}, s ≤ k, be Fk with ηt, t ∈ As
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therein replaced by η′t, where η′t are i.i.d copy of ηt. For any random variable X = h(Fk),

let X{i} = h(Fk,{i}). Denote ∆ξk = ξk − ξk−1. We now show that the temporal dependence

measure decays with polynomial rate. Let ζi,j,k(u) = φαi,j
(σ̂i,j,k − u). Since |φ′|∞ ≤ 1, we

have for any s ∈ N and any u,

‖ sup
u

|ζi,j,k(u)− ζi,j,k,{k−s}(u)|‖q/2 ≤ ‖σ̂i,j,k − σ̂i,j,k,{k−s}‖q/2

≤2−1m
(

‖E0∆ξk,i(∆ξk,j −∆ξk,j,{k−s})‖q/2 + ‖E0(∆ξk,i −∆ξk,i,{k−s})∆ξk,j,{k−s}‖q/2
)

= : 2−1m(I1 + I2).

Let Uk,i (resp. fk,i) be ξk,i with Yt replaced by ǫt (resp. f(t/n)). Then ξk,i = ǫk,i + fk,i

when there is no break. Let ∆Uk,i = Uk,i − Uk−1,i and ∆fk,i = fk,i − fk−1,i. Then we have

I1 ≤
∥

∥

∥E0∆fk,i(∆Uk,j −∆Uk,j,{k−s})
∥

∥

∥

q/2
+
∥

∥

∥E0∆Uk,i(∆Uk,j −∆Uk,j,{k−s})
∥

∥

∥

q/2
=: I11 + I12.

(72)

Since maxj |fj|∞ < f ∗,

max
1≤j≤p

|∆fk,j| ≤ f ∗m/n. (73)

Let Ek,l,i,· =
∑(k+1)m

t=(km+1)∨l At−l,i,·, where At−l,i,· is the ith row of matrix At−l. Then for s ≥ 1,

Uk,i =
∑

l≤(k+1)m

Ek,l,i,·ηl/m and ∆Uk,i −∆Uk,i,{k−s} =
∑

l∈Ak−s

(Ek,l,i,· − Ek−1,l,i,·)(ηl − η′l)/m.

(74)

Since ηl are i.i.d, by Lemma 2, (73) and (74),

‖∆fk,i(∆Uk,j −∆Uk,j,{k−s})‖q/2 ≤ 2f ∗cq

(

∑

l∈Ak−s

(|Ek,l,i·|2 + Ek−1,l,i·|2)2
)1/2

µq/2/n. (75)
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By Assumption 2.5, we have for any s > 1,

∑

l∈Ak−s

|Ek,l,i,·|22 . m(m(s− 1))−2βσi,i, and
∑

l≤(k+1)m

|Ek,l,i,·|22 . mσi,i, (76)

where the constant in . only depending on β, cs. Hence by (75) and (76),

I11 . m1/2n−1(m(s− 1))−βσ
1/2
i,i , (77)

where the constant in . only depends on β, cs, q, µq, f
∗. By Lemma 2 and (76)

‖E0Uk,i(Uk,j − Uk,j,{k−s})‖q/2 =
∥

∥

∥
E0

(

∑

l1≤(k+1)m

Ek,l1,i,·ηl1
∑

l2∈Ak−s

Ek,l2,j,·(ηl2 − η′l2)
)∥

∥

∥

q/2
m−2

. m−2
(

∑

l1≤(k+1)m

∑

l2∈Ak−s

|Ek,l1,i,·|22|Ek,l2,j,·|22
)1/2

. m−1(m(s− 1))−βσ
1/2
i,i σ

1/2
j,j , (78)

where the constant in . only depends on µq, q, , cs. Thus I12 . m−1(m(s − 1))−βσ
1/2
i,i σ

1/2
j,j .

By combining the bounds for I11 and I12 and a similar argument for I2, we have

δs := max
k

∥

∥ sup
u

|ζi,j,k(u)− ζi,j,k,{k−s}(u)|
∥

∥

q/2
. ((ms)−β1s>1 + 1s≤1)σ

1/2
i,i σ

1/2
j,j , (79)

where the constant in . only depends on µq, cs, cσ, β, q, f
∗.

Let δ := σ
1/2
i,i σ

1/2
j,j x/(2N2) and An be the δ net for {u : |u − σi,j| ≤ C0}. Denote

f(u) = h̄i,j(u)− Eh̄i,j(u). Then by |φ′|∞ ≤ 1,

sup
|v−σi,j |≤C0

min
u∈An

|f(u)− f(v)| ≤ δ.

Therefore |An| = 2C0/δ = O(n) and

P

(

sup
|u−σi,j |≤C0

|h̄i,j(u)− Eh̄i,j(u)| ≥ x(σ
1/2
i,i σ

1/2
j,j )/N2

)

≤ P

(

max
u∈An

|h̄i,j(u)− Eh̄i,j(u)| ≥ x(σ
1/2
i,i σ

1/2
j,j )/(2N2)

)

.
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Desired result follows from Lemma 5.8 in Zhang et al. (2017).

Step 3. This step shows for the estimator

max
1≤i,j≤p

|σ̃i,j − σi,j| = O(m−β/(β+1)σ
1/2
i,i σ

1/2
j,j +m3/n2), and v2i,j = O(σi,iσj,j), (80)

where the convergence is uniform for 1 ≤ i, j ≤ p.

Let ǫ̂i,j,k be σ̂i,j,k with Yt replaced by ǫt and let σ⋄
i,j = Eǫ̂i,j,1. Then by (73),

|σ̃i,j − σ⋄
i,j| ≤ m

∑

k/∈S

|∆fk,i||∆fk,j|/(2N2) = O(m3/n2). (81)

Note the convergence in above O(·) and all the followings are uniform for i, j. Let ρi,j,k =

E(ǫ0,iǫk,j). Then for any L < m,

|mE(U1,iU1,j)− σi,j| =
∣

∣

∣
m−1

∑

−m<k<m

(m− |k|)ρi,j,k − σi,j

∣

∣

∣
= O

(

∑

|k|≥L

|ρi,j,k|+ Lm−1
∑

k∈Z

|ρi,j,k|
)

.

By Assumption 2.5,
∑

|k|≥L |ρi,j,k| ≤
∑

t∈Z,|k|≥L |At,i,·|2|At+k,j,·|2 = O(L−βσ
1/2
i,i σ

1/2
j,j ). Take

L = m1/(β+1), then |mE(U1,iU1,j)−σi,j| = O(m−β/(β+1)σ
1/2
i,i σ

1/2
j,j ).And similarly |mE(U1,iU2,j)| =

O(m−β/(β+1)σ
1/2
i,i σ

1/2
j,j ). Hence

σ⋄
i,j = m

(

E(U1,iU1,j) + E(U2,iU2,j)− E(U1,iU2,j)− E(U2,iU1,j)
)

/2 = σi,j +O(m−β/(β+1)σ
1/2
i,i σ

1/2
j,j ).

Together with (81) we obtain the first part in (80).

Since σ̂i,j,k = m(∆fk,i+∆Uk,i)(∆fk,j+∆Uk,j)/2, we have Eσ̂i,j,k = m∆fk,i∆fk,j/2+σ⋄
i,j.

By (73) and (81),

v2i,j =
∑

k/∈S

Eσ̂2
i,j,k/N2 − σ̃2

i,j =
∑

k/∈S

Var(σ̂i,j,k)/N2 +O(m3n−2σ
1/2
i,i σ

1/2
j,j ).

Note by (74) and (76) we have

m2Var(∆fk,i∆Uk,j) = O(m3n−2σj,j), and m2Var(∆Uk,i∆Uk,j) = O(σi,iσj,j).
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Thus Var(σ̂i,j,k) = O(σi,iσj,j) and the second part in (80) holds.

Step 4. Since |S| ≤ 2K0, for any i, j, and |φ|∞ ≤ log(2),

|N1hi,j(u)/N2 − h̄i,j(u)| ≤ 2log(2)K0/(αi,jN2). (82)

Combining (82), Step 1 and step 2 with x = N2/log
3(np), then with probability tending 1,

for all 1 ≤ i, j ≤ p, and |u− σi,j| ≤ C0,

B−
i,j(u,∆) ≤ N1N

−1
2 hi,j(u) ≤ B+

i,j(u,∆), (83)

where

∆ = hσ
1/2
i,i σ

1/2
j,j + 2log(2)K0/(αi,jN2) and h = log(np)−3. (84)

Note if

α2
i,jv

2
i,j + 2αi,j∆ ≤ 1, (85)

then B+
i,j(u,∆) exists real roots. Denote the smaller one as u+, which satisfies u+ ≤

σ̃i,j + αi,jv
2
i,j + 2∆. Take α∗

i,j = αi,jσ
1/2
i,i σ

1/2
j,j . By Step 3 and Assumption 2.3, if (85), then

σ
−1/2
i,i σ

−1/2
j,j (u+ − σi,j) = O

{

m−β/(β+1) +m3/n2 + α∗
i,j + h+mK0/(α

∗
i,jn)

}

. (86)

Similar bound can be obtained for u− as well. When (83) holds, u− ≤ σ̂i,j ≤ u+. Take

α∗
i,j = (m/(bn))1/2, then with probability greater than 1− log(n)−1,

σ
−1/2
i,i σ

−1/2
j,j |σ̂i,j − σi,j| . m−β/(β+1) +m3/n2 + (m/(bn))1/2 + log(np)−3,

where the convergence is uniform for all 1 ≤ i, j ≤ p. Since there exists some constant

c1, c2 > 0, such that c1 ≤ σ̄j,j/σj,j ≤ c2, and any i, j with probability tending to 1. Thus

the desired result follows.
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Proof of (ii). Same argument as for (i), except that we need to replace Step 2 by Step 2’

with x ≪ N2/log(np)
2.5. Then we obtain the desired result.

Step 2’. This step shows

p
∑

i,j=1

P

(

sup
|u−σi,j |≤C0

∣

∣h̄i,j(u)− Eh̄i,j(u)
∣

∣ ≥ x(σ
1/2
i,i σ

1/2
j,j )/N2

)

. p2ne−cxN
−1/2
2 , (87)

where c and the constant in . are independent of n, p, i, j.

The proof follows similar argument as in Step 2 and Theorem 3 in Wu and Wu (2016).
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Figure 5: Visualization of one sample of simulated data with jump in case a),2),ii).
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Figure 6: Visualization of the real (left) and estimated correlation matrix (using the robust

estimation method).
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