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ABSTRACT

Based on a review of both literature and field data, it is apparent that the role of acetic acid (HAc) in oilfield brines is both extremely complex and 

somewhat controversial. Although it is commonly believed that the presence of this organic compound enhances both the general and the 

localized corrosion rate of carbon steel, HAc has recently been reported to also act as a weak general corrosion inhibitor in specific aqueous 

environments. These observations prompted a study into whether such behavior is apparent in a CO2 top-of-line corrosion (TLC) scenario i.e. when 

HAc dissolves into condensed water which forms on the upper internal wall of carbon steel pipelines during wet-gas stratified flow. Four different 

water condensation rates/temperature TLC conditions were selected to investigate the role of HAc on both the kinetics and mechanism of carbon 

steel dissolution. A miniature three-electrode setup was developed to characterize the real-time TLC response through the implementation of 

electrochemical measurements. Surface analysis techniques (microscopy and profilometry) were also performed to complement the 

electrochemical results. Collective consideration of the corrosion response and condensate chemistry indicates that similar effects were observed 

compared to those reported in the literature for bulk aqueous environments, in that the introduction of HAc can result in either accentuation or a 

minimal/inhibitive effect on general corrosion depending upon the operating conditions. The minimal/inhibitive effects of HAc were apparent at a 

surface temperature of 20.5oC and water condensation rate of 0.5ml/m2.s as no significant increase in corrosion was observed despite a significant 

reduction in condensate pH being generated due to the presence of HAc. X-ray photo-electron spectroscopy analysis of the inhibited steel 

specimen in the presence of HAc revealed the presence of iron acetate on the steel surface which may have been at least partially responsible for 

the observed inhibitive effect. Extended duration experiments over 96h revealed that both general and localized corrosion are not significantly 

affected by HAc addition at low temperature whilst the level of degradation increases at higher surface temperature over longer periods.

KEY WORDS: acetic acid, CO2, sweet corrosion, top-of-line corrosion

1 INTRODUCTION 

Top-of-line corrosion (TLC) is a specific corrosion mechanism observed in the oil and gas industry. This phenomena occurs under stratified 

or wet-gas flow regimes when the upper internal pipeline walls are sufficiently cooled (by heat transfer to the surrounding outer environment), 

promoting local condensation of water vapor. As fresh water condenses onto the steel surface carbon dioxide (CO2) and organic acids dissolving 

into the condensed water generate a change in the solution chemistry  reducing condensate pH. Such changes ultimately influences the corrosion 

kinetics of the contacting carbon steel. Depending on the temperature and water condensation rate (WCR) two scenarios might take place during 

the water condensate renewal cycle. First, the steel dissolution might result in Fe2+ saturation and pH increase leading to the formation of a 

protective FeCO3 film. Second, no protective film is formed and corrosion continuously take place on the bare steel surface.
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In the oil and gas industry, the majority of hydrocarbon reservoirs produce both acid gases and volatile organic acids in conjunction with 

formation brine and hydrocarbons. These gases and volatile compounds create highly corrosive condensate chemistries for carbon steel pipelines. 

Organic acids such as acetic acid (HAc) are well known to accentuate TLC of carbon steel dramatically across a range of conditions, with this 

particular acid’s role receiving significant research attention. However, the underlying mechanism has not been explored extensively until fairly 

recently.1 The influence of HAc on CO2 corrosion needs to be studied holistically, as it can have a multitude of synergistic or antagonistic roles, 

including increasing the cathodic reaction rate (via lowering solution pH and through the ability of HAc to facilitate a ‘buffering’ effect at the steel 

surface), inhibiting the anodic and cathodic charge-transfer reactions (through inhibition of the cathodic hydrogen ion reduction reaction and the 

anodic iron dissolution reaction), and changing the solubility and protective characteristics of corrosion products.2,3,4,5,6  

Interestingly, some studies have shown that in particular bulk fluid chemistries (pH range within 3-5) in dynamic conditions, the addition 

of HAc can be minimal in terms of influencing the corrosion rate of carbon steel, even resulting in a diminution in general corrosion rate under a 

given controlled solution pH. Such observations have been attributed to the suppression of the anodic dissolution reaction and cathodic charge-

transfer reaction due to the ability of HAc to chemically adsorb onto the metal surface.4,7,8,9 Although the role of HAc has recently received 

increased attention with respect to bulk aqueous environments, the same effect has not been characterized for a TLC environment (i.e. a process 

under condensation corrosion). This study investigates whether, under certain conditions, HAc can also have a negligible or inhibitive effect on 

corrosion of carbon steel in specific TLC environments, despite being dosed at comparable field concentrations.

Based on previous studies on the role of HAc in CO2 TLC conditions, a set of laboratory-scale experiments and conditions are devised 

here, consisting of four different water condensation rates and temperature combinations commonly reported or evaluated in TLC cases. For this 

purpose, a real-time corrosion monitoring setup10 was implemented in order to evaluate the transient corrosion response throughout experiments, 

and evaluate the role of HAc across a range of environments. 

2 EXPERIMENTAL PROCEDURES

In the present study, mass loss and electrochemical test specimens (shown in Figure 1) were used in order to obtain corrosion rate data. 

The mass loss specimens consisted of cylindrical coupons 10mm in diameter and 6mm thick, with an exposed area to the vapor phase of 0.785cm2. 

Both mass loss and electrochemical specimens were manufactured from the same API 5L X65 carbon steel stock bar, which possessed a ferritic-

pearlitic microstructure and has the chemical composition shown in Table 1. 

The miniature three-electrode setup used to monitor the changes in corrosion rate throughout the course of the experiment consisted of 

three metallic electrodes mounted inside a carbon steel sample with the same outer geometry as the mass loss specimens (to ensure comparable 

heat-transfer to both specimen configurations). The working electrode consists of a 1mm diameter X65 steel pin. The reference and counter 

electrodes both comprised of a 1mm diameter Hastelloy® c-276 wire as shown in Figure 1. Each electrode is individually isolated by a lacquer 

coating and shrink wrap tubing. The miniature solid electrode set up has been used in a previous study by de Carvalho et al.10 and in both studies 

produced comparable results to the conventional three-electrode setup in solution chemistries indicative of the condensate produced in these TLC 

experiments.

The exposed surfaces of the test specimens were wet-ground up to 1200 silicon carbide (SiC) grit paper to produce a planar, clean 

surface. A thermocouple probe was placed laterally across the 10mm diameter specimens in specific experiments, touching its exposed surface for 
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surface temperature (Ts) measurements; these specimens were not used for mass loss measurement due to the potential occurrence of galvanic 

effects. A bespoke laboratory scale TLC rig was used in this study,10 with the schematic drawing provided in Figure 2. The setup consists of a 2L glass 

cell with a specific custom lid integrated with an internal channeled matrix and test specimen slots, allowing flow of refrigerant to cool the surface 

of the TLC specimens to specific temperatures. The test specimen slot on the channeled lid allows the simulation of 12 o’clock position of a 

horizontal 6 inch (152.4mm) diameter pipeline.

The selected gas temperature (Tg) and surface temperature (Ts) were achieved by controlling the bulk fluid temperature in the 2L glass 

beaker using a hot plate. The refrigerant temperature (Text) in the channeled matrix was controlled using a chiller system. The same test 

methodology, used to reach the aforementioned desired conditions, and accuracy of temperature control for this specific rig can be found in 

previous work.10

The bulk test solution consisted of CO2-saturated 3.5 wt.% NaCl solution with the presence and absence of 1000 ppm HAc, which was 

purged with CO2 for a minimum of 12h prior to each experiment, to minimize the dissolved oxygen content. CO2 was continuously bubbled into the 

cell throughout the test to avoid oxygen ingress. 

Dissolved oxygen measurements were performed after each test using CHEMets colorimetric test kits using the Rhodazine D method. 

When in contact with tested sample the Rhodazine D compound in reduced form reacts with dissolved oxygen to form a bright pink reaction 

product. All the TLC tests showed that the saturation of the system was valid and produced dissolved oxygen readings of less than 50 ppb.

The volume of condensed water in the graded collector was recorded and the water condensation rate (WCR) was calculated using 

Equation (1):

𝑊𝐶𝑅 = 𝑉𝑤/(𝐿𝑠.𝑡𝑐)                                        (1)

where WCR is the water condensation rate in mL/m2s, Vw is the volume of condensed water in mL, tc is the duration over which the 

condensed liquid is collected in s, and Ls is the internal area of the lid surface exposed to the vapor condensation (m2).10 

The condensate collector itself was also deaerated by bubbling continuously with CO2 during the experiment to maintain the same 

environmental conditions. The pH of  bulk solution was measured at the beginning and at the end of each test using an automatic temperature 

correction pH probe. Additionally, condensate samples from all four different WCRs were collected to perform ionic chromatography analysis in 

order to quantify the amount of HAc that evaporated from the bulk solution and reached the top-of-line section. The ionic chromatography was 

performed with a ThermoScientific ICS-5000 system. Cations were separated with AS19 analytical column (2mm × 250mm). The system was 

employed with a guard column AG 19 (2mm × 50mm). All sample runs were performed using both the guard and the analytical column.

Electrochemical measurements were performed using the miniature electrodes using a computer controlled ACM Gill 8 potentiostat. 

Three electrochemical techniques were implemented in total. Linear polarization resistance (LPR) and electrochemical impedance spectroscopy 

(EIS) were employed to determine the in situ corrosion rate of the X65 carbon steel specimens. LPR measurements were performed by polarizing 

the sample ±15 mV vs the open circuit potential (OCP) at a scan rate of 0.25 mV/s to obtain a polarization resistance (Rp) and were undertaken 

every 20 minutes. The solution resistance (Rs) was measured over the course of the experiment using EIS. These measurement were performed 
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using an amplitude of ±15 mV vs the OCP and a frequency range from 20 kHz to 0.1 Hz. These parameters were chosen taking into account previous 

work10 which have shown that the system is stable enough to perform such analysis during the acquisition period.

The value of Rp was corrected for Rs (Ω.cm2) and ultimately used to determine the corrosion rate with time using the Stern-Geary 

relationship in conjunction with Faraday’s Law. For tests performed in the 4 different WCRs the average of Rs values were 5.6 ± 0.9 Ω.cm2 in 

solutions without HAc and 4.3 ± 0.6 Ω.cm2 in the presence of HAc.

Due to the droplet cycle process, there were some instances in which the electrochemical measurements were interrupted, resulting in 

noisy or erratic LPR responses. This phenomena is associated with the intermittency of droplet contact between all three of the electrode probes. 

Under such instances, two scenarios can be hypothesized to explain the anomalous electrochemical responses:

1) The droplet/liquid film is no longer in contact with the carbon steel electrode, and corrosion ceases prior to the formation and/or growth 

of a droplet.

2) A droplet/liquid film does exist at the carbon steel electrode surface, resulting in continued corrosion of the steel sample. However, 

electrochemical measurements are prohibited due to a lack of a consistent contact between the electrolyte and all three electrodes.

Each of the two aforementioned scenarios results in a different interpretation of the magnitude of corrosion rate during these 

intermittent periods, and it is likely that both scenarios occur during the experiment. However, the proportion to which each occurs in not clear. In 

order to produce conservative predictions of corrosion rates from the miniature electrodes in instances where electrochemical measurements 

were not possible, the corrosion rate was determined via interpolation between the nearest measurements in time either side of any erratic 

reading. (This is as opposed to assuming a corrosion rate of zero at such points.) To highlight the significance of processing such measurements in 

this manner, it was determined that setting such values at 0 mm/year resulted in a reduction of the corrosion rate by approximately ~10-15% in the 

most extreme cases compared to the interpolation method. This result is smaller than the error associated with repeat measurements of the 

experiment.

After completion of each 20 h experiment, Tafel polarization curves were collected by performing individual anodic and cathodic sweeps 

(on separate test specimens), starting from OCP and scanning to -150mV vs. OCP, for the cathodic branch, and to +150mV vs. OCP, for the anodic 

branch, at a scan rate of 0.5mV/s. From the polarization curves produced, it was possible to determine the anodic (βa) and cathodic (βc) Tafel 

constants in mV/decade by measuring their respective gradient over regions where linearity was observed (on an E vs log(i) plot). Then determine 

the Stern-Geary coefficient (B), for each experiment, and ultimately the corrosion current density (icorr) (Equation (2)):

                                                                  (2)𝑖𝑐𝑜𝑟𝑟 =
𝐵𝑅𝑐𝑡 =  

1𝑅𝑐𝑡 𝛽𝑎𝛽𝑐
2.303(𝛽𝑎 + 𝛽𝑐)

where B is the Stern-Geary coefficient, βa is the magnitude of the anodic Tafel constant, and βc is the magnitude of the cathodic Tafel 

constant (determined in separate experiments). The value of icorr was then used in conjunction with Faraday’s Law and an appropriate conversion 

factor to obtain the corrosion rate in mm/year, as shown in the Equation (3), which was converted into a rate of thickness loss in mm/year, in 

accordance to ASTM G102.11
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                                                                            (3)𝐶𝑅 = 𝐾𝑖𝑐𝑜𝑟𝑟𝑀𝐹𝑒𝑛𝐹𝜌

where K is a conversion factor to obtain corrosion rate (CR) in units of mm/year (K = 3.16x108), MFe is the molar mass of iron (55.8g), n is 

the number of electrons freed in the corrosion reaction (2 electrons – Fe2+) and ρ is the density of steel (7.87g/cm3).

From analysis of the corrosion rate (CR) vs time curves produced from the electrochemical measurements, an average corrosion rate 

(ACR) was determined over the duration of each 20h experiment, making it possible to compare the results obtained with the mass loss 

experiments performed in this study, as well as the work of other researchers. 

Four different experimental conditions were generated by setting various combinations of Tg and Text in accordance with values reported 

in the literature.12,13 The experimental matrix of tests performed in this study are presented in Table 2. In summary, experiments were performed 

at two WCR values below the 0.25ml/m2.s ‘threshold’ and two above this value, with the latter two values simulating more severe conditions 

analogous to a system whereby external insulation may have failed in the field. Each of the four experimental conditions were studied in both the 

absence and presence of 1000ppm HAc.

In order to accurately evaluate and quantify the extent of localized TLC, long term tests (96h) were also performed. Based on the 

corrosion responses from the 20h experiments, the highest and lowest surface temperature were chosen as the conditions for longer duration 

tests, since these represented the most and least aggressive conditions for general TLC, respectively. 

In order to understand the role of HAc in TLC, different surface analysis methods were implemented to complement the corrosion rate 

data extracted from mass loss and electrochemical measurement. Scanning electron microscopy (SEM) analysis was performed using a HITACHI 

Tabletop Microscope TM3030 for observation of the corrosion features. In addition, a Bruker NPFlex 3D interferometer was used to analyze the 

roughness of the corroded surface of the mass loss specimens using a 20x magnification lens. Three mass loss specimens were analyzed for each 

test condition using profilometry for roughness and pitting/localized corrosion. A surface area of 2mm × 2mm was analyzed on each of the three 

mass loss specimens. According to ASTM G46-9412 standard, an average of the 10 deepest pits and the maximum pit depth (based on relative pit 

depth measurement after removal of corrosion products) should be used for pit damage characterization.

Fourier transform infrared spectroscopy (FTIR) analysis was performed with a PerkinElmer Spectrum 100 with Universal ATR accessory 

fitted, and recorded between 600 and 4000 cm−1. This technique was used to obtain chemical information about the organic corrosion product film 

adsorbed on the surface of the sample. Complementary, X-ray photoelectron spectroscopy (XPS) characterization was conducted using a Thermo 

NEXSA with an X-ray source of Al Kα and analysis spot size of 100µm, to corroborate the investigation of iron acetate layer on the steel surface.

3 RESULTS AND DISCUSSION

3.1 Corrosion Rate Response in CO2 Top-of-line Corrosion Environments over 20 h
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Top-of-line corrosion rates from electrochemical measurements every 20 minutes over 20h across four different test environments both 

with and without 1000ppm HAc are provided in Figure 3. Each graph from Figure 3(a) to (d) presents the real-time measurements of two tests at 

each condition. In addition, Figure 3(e) provides an indication as to the frequency of measurements using the miniature electrode configuration, 

where there appeared to be a discontinuous electrochemical circuit. It shows what percentage of the measurements could not be used to deduce 

the corrosion rate. The implications of such intermittency are analyzed and discussed in due course for each experimental condition. 

The average corrosion rates over 20h in all the TLC environments without HAc ranged between 0.5 mm/year and 1.5 mm/year, agreeing 

with the range of values reported in previous studies under comparable conditions.10,13,14,15 The corrosion rate values increased with both increase 

in surface temperature and water condensation rate as expected and stated by previous researchers in conditions without film formation.10 

Although some test environments suggested a possible increase in corrosion rate with time over the course of the 20 h experiment (e.g. at the 

WCR of 0.81ml/m2.s in Figure 3(a)), this increase could arguably lie within experimental error. However, such an observed increase with time can 

be explained either by increased surface roughening (and hence an increase in the true contact area between the test specimen and electrolyte) 

due to corrosion, and/or preferential dissolution of ferrite leaving behind an iron carbide (Fe3C) phase, which is known to lead to an enhancement 

in the kinetics of hydrogen evolution, and hence increase the rate of iron dissolution.3,14 

The addition of 1000ppm HAc into the bulk brine solution resulted in a significant increase in the TLC rate for three of the four 

environments. For the specimens tested at Ts = 50.3oC/WCR  = 0.5ml/m2.s and Ts = 42.5oC/WCR = 0.81ml/m2.s, the average corrosion rate increased 

with time from 0.8 mm/year to 2.8 mm/year, and from 1.4 mm/year to 3.0 mm/year, respectively (Figures 4(a) and (b)). 

At a surface temperature of 32.5oC and WCR of 0.07 ml/m2.s, regarding the corrosion rate vs time plot (Figure 3(d)), the initial corrosion 

rate was ~2.5 mm/year at the beginning of the tests in the presence of 1000ppm HAc, rapidly increasing to 4.4 mm/year after 120 minutes of 

immersion, and then decreasing during the remainder of the test. 

For the lowest surface temperature evaluated (20.5oC) with a WCR of 0.2ml/m2.s, shown in Figure 3(c)), the presence of 1000ppm HAc 

did not significantly accentuate of the corrosion kinetics for X65 steel, which remained ~0.5 mm/year throughout the 20 h experiment. Through 

consideration of the corrosion response, there is a suggestion that the addition of 1000ppm HAc produces a reduction in corrosion rate, although 

this could be argued as insignificant considering the experimental error. Nonetheless, it is clear that the addition of 1000ppm HAc produces no 

significant increase in corrosion rate, even though HAc facilitates a reduction in condensate pH (as discussed and indicated later). Such 

observations suggest HAc is acting as a weak corrosion inhibitor, a feature which has been reported in low test temperature environments where 

the synergism between HAc and temperature is less significant and the chemical adsorption of HAc or the associated iron acetate layer and/or iron 

acetate complex on the steel surface is substantial and dominant enough to suppress both the anodic and cathodic charge-transfer reactions.8,9 

Referring to Figure 3(e) the percentage of discontinuous electrochemical measurements increased with the presence of HAc from 12.5% 

to 20%. The tests conducted at lower temperatures (20.5oC and 32.5oC) and hence, lower WCRs, resulted in only 10% and around 15% of ‘non-

connectivity’ data for 0ppm and 1000ppm HAc, respectively. The frequency of such erratic measurements can be at least partially related to the 

condensation and droplet formation rates, which are responsible for maintaining collective wetting of the miniature electrode surfaces. However, 

given the substantial influence of HAc on the percentage of valuable extracted data from the experiments, it appears that the WCR may not be the 

only controlling factor. 
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We suggest that there might be an apparent synergistic effect between WCR, the HAc and surface temperature, since at high Ts and HAc 

presence there was an increase in ‘non- connectivity’ measurements. Furthermore, Okafor and Nesic (2007)16 observed that the presence of HAc 

on TLC has the ability to change the condensation mode from filmwise to  dropwise condensation, which could also lead to increased intermittency 

of data measurements.

The average corrosion rate from the real time corrosion tests was calculated and compared to those acquired through mass loss tests in 

order to determine the accuracy and validity of the electrochemical technique. As shown in Figure 4(a), a high level of agreement exists between 

these two methodologies. Additionally, a comparative graph was plotted (Figure 4(b)), which shows that the electrochemical responses acquired 

with the developed miniature electrode configuration is in accordance with values from the literature under similar conditions. 

Furthermore, one of the main parameters that influences TLC rate (and has received little research attention until recently) is Ts. Since 

corrosion is an interface phenomenon, the temperature at the steel-electrolyte interface will undoubtedly influence the steel response to the 

corrosive environment, as highlighted in recent studies by Islam et al.17 and by De Carvalho et al.10. The influence of Ts on the corrosion rate 

response is plotted in Figure 4(b) for experiments in the absence of HAc. Figure 4(b) shows that in the absence of HAc, a good agreement is 

observed between corrosion rate and Ts in environments where no corrosion products form. This strong agreement is observed despite difference 

in WCR between each author for the given values of Ts, demonstrating that Ts has the dominant effect across the collective environments 

considered in these studies.

Considering Figure 4(a) and (b), there is a progressive increase in corrosion rate with Ts in the absence of HAc, following the familiar 

Arrhenius trend in the absence of formation of any protective corrosion products (the absence of which is supported by SEM observations 

presented later). In the presence of 1000ppm HAc, the observed trend is not as straightforward, with the corrosion rate appearing to converge to a 

maximum rate as Ts is increased. This indicates a much more complex process occurring within the condensate and/or at the steel surface. The 

accentuated dissolution rate of the steel beyond 20oC will have a more profound effect on the evolution of solution chemistry in the droplet, 

coupled with the potential inhibition effect and the known synergy between HAc and temperature, generates an environment whereby the 

prediction of corrosion kinetics is particularly challenging.4,5

Table 3 summarizes the average corrosion rate in each test environment, based on the electrochemical data acquired over 20h. The 

greatest increase in corrosion rate due to the addition of HAc (303%) occurred at the lowest WCR (0.07 ml/m2.s) and temperature of 32.5oC, whilst 

in the test performed at Ts = 20.5oC and WCR = 0.2 ml/m2.s, there was an average decrease in the corrosion rate of ~19% when HAc was added, 

although this is not significant when considering the experimental error associated with repetitions. As stated previously, such a decrease, or lack 

of accentuation in corrosion rate in a more aggressive condensate chemistry is likely attributable to the adsorption of HAc or an associated 

complex/iron acetate acting as a weak corrosion inhibitor.8,9 

In the remaining other three test environments, the accentuation of corrosion rate can be attributed to the ability of HAc to enhance the 

rate of the cathodic reaction, increasing the overall corrosion kinetics. Under these conditions, the beneficial inhibitory effects of HAc are 

outweighed by its ability to accelerate the cathodic hydrogen reduction reaction by lowering condensate pH (providing a greater source of H+), as 

well as providing a ‘buffering effect’ to enhance the cathodic reaction even further.

Referring to the literature, bulk fluid electrochemical corrosion experiments performed with carbon steel in the presence of HAc showed 

that anodic and cathodic current densities close to OCP in Tafel plots at near room temperature were progressively suppressed with increasing HAc 
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concentration, suggesting HAc does indeed slightly inhibit both charge-transfer reactions.5,9 Gulbrandsen and Bilkova8 also established that HAc or 

Ac- may inhibit electrochemical reactions, in particular the anodic reaction at room temperature, suppressing general corrosion. They performed 

rotating cylinder electrode experiments with X65 steel in 0.3 wt.% NaCl brine saturated with CO2 both with and without HAc. The tests showed that 

by introducing 200ppm of HAc into the system, the final corrosion rate would drop from 4 mm/year (with no HAc) to 1.5 - 2 mm/year, whilst the 

open circuit potential (OCP) would increase from -0.67V to -0.60V. However, the addition of the acid changed the morphology of corrosion attack 

from uniform to localized, showing deep pits on the exposed surface.

Figure 5 presents repetitions of Tafel polarization curves for carbon steel exposed to each of the four environments after 20h of TLC 

exposure, with the y-axis representing the applied potential vs the OCP at the end of each individual test. This has been presented in such a manner 

due to the variability of the Hastelloy® reference electrode potential in each experimental condition and to enable easier comparison regarding the 

suppression or accentuation of the anodic and cathodic reactions. 

By analyzing the Tafel polarization plots it can be seen that at higher Tg and Ts (Figures 5(a) and (b)) the addition of HAc clearly increases 

the anodic and cathodic reaction kinetics. At lower temperatures (Figure 5(d)), the level of accentuation is less pronounced, whilst at the lowest 

temperature (Figure 5(c)), the addition of HAc suppresses both the anodic and cathodic reactions. This suppression of reactions observed in Figure 

5(c) could be attributed to inhibitive effect from HAc, which promotes a blockage of active sites for electron transfer reactions, as previously stated. 

These observations are in reasonable agreement with the electrochemical corrosion rate measurements at the end of each 20h experiment in 

Figure 3. 

3.2 Miniature Electrode Non-connectivity Behavior over 20 h

As previously discussed, during TLC electrochemical measurements, periods of non-connectivity and/or anomalous data were recorded. 

The implications of this are shown in Figure 6, which provides a comparison between two interpretations of the real time data collected by the 

electrochemical measurement. For each test condition, the average corrosion rates are plotted assuming one of the two scenarios regarding the 

periods of non-connectivity:

1) Interpolation between points; in this scenario, the corrosion rate for the erratic readings/non-connectivity measurements were 

determined via interpolation between the nearest measurements in time either side of the response

2) Non-connectivity set to zero; under this scenario, any erratic reading was set to zero under the assumption that no corrosion 

was occurring at this instance in time.

As stated before, it is likely that a combination of both scenarios is occurring, but these two permutations represent the extremes of the 

process and help understand the significance of the non-connectivity measurements on the accuracy of the collected data. Consideration of the 

data in Figure 6 indicates that setting the non-connectivity values to zero has little bearing on the average corrosion rate, such that many responses 

lie within the error of the overall test repeatability.  

3.3 Condensate Chemical Analysis
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Table 4 shows pH measurements of the bulk solution after 20h for all four test conditions in this study. In the absence of HAc, the pH of 

the bulk solution varied from 3.8 to 4.2. For the environments with 1000ppm HAc added to the bulk solution, the pH values varied between 3.0 and 

3.1. It is expected that the pH value in the water condensate present similar behavior as in the bulk solution, where the presence of HAc in 

condensate will result in a decrease of the pH in comparison to the tests conducted without the presence of the acid. To understand the extend to 

which HAc is able to reach the condensate, ion chromatography analysis was performed on condensate samples after each test. The methodology 

implemented with this technique uses a high pH buffer solution, converting all the HAc into acetate, hence, enabling measurement of the total 

HAc. Figure 7 shows a bar chart with the average of three replicates at each condition. The concentration of undissociated/free HAc remained 

similar and largely within experimental error of one another for all tested conditions, showing independence from the gas and surface 

temperatures, ranging from only 319 to 384ppm across all four experiments. This higher concentration of HAc in the bulk solution relative to that 

the measured in the condensate was expected due to the fact that HAc dissociates in the bulk solution, leaving only a proportion of HAc available 

to partition into the condensate. Similar values were recorded by Hinkson et al., (2008)4 when studying the chemistry of the condensate in top-of-

the-line systems with the addition of 1200ppm of HAc.

Since the concentration of HAc found in the condensate across all four different surface temperatures is similar, it can be concluded the 

low corrosion rates observed at Ts near room temperature is not attributable to a lower HAc concentration in the condensate. This result therefore 

supports the theory that inhibition aided by HAc is the underlying reason behind the suppression or lack of accentuation of corrosion in the 

experiment at 20.5oC. Clearly, specific pH measurements of the condensate would assist in validating this theory further. However, considering that 

the condensate collected is a combination of that from the internal portion of the acetal TLC lid, as well as the steel surface, direct measurement of 

pH from the collected condensate, and/or inferring pH from the Fe2+/HAc content in the condensate is likely to provide an inaccurate interpretation 

of the true chemistry in the droplets formed at the steel surface. Measurement of such local chemistry is the subject of future work.

3.4 Characterization of the Corroded Surface after 20 h

SEM images from the mass loss specimens after 20h with and without 1000ppm HAc (before cleaning the steel surfaces) are presented in 

Figure 8. The surface morphology of the steel in the absence of HAc mainly consists of undissolved Fe3C remaining from the X65 steel 

microstructure due to the preferential corrosion of the ferrite phase. However, at lower surface temperature (20.5oC) it is possible to observe that 

the corrosion environment is less aggressive (grinding marks from preparation are still visible), agreeing with the measured electrochemical 

response under this condition. In the presence of 1000ppm HAc, the SEM images indicate a more aggressive corrosion environment, with the 

exception of the test at Ts = 20.5oC, where the inhibiting effect of HAc from corrosion measurements was most pronounced. 

From all the images shown in Figure 8, no formation of crystalline corrosion product occurred on the steel surface in any condition, but 

rather a non-protective layer of Fe3C is revealed after ferrite dissolution, demonstrating that all the observations reported in this work relate to 

non-corrosion product forming environments. Various studies on carbon steel behavior in CO2 environments have shown that Fe3C present in the 

carbon steel is revealed after the ferrite is dissolved and accumulates on the steel surface as a non-protective, porous layer.18,19 Previous studies 

have hypothesized that in environments containing organic acids, a layer of iron acetate may form on the metal surface, generating a weak 

inhibitive effect against metal corrosion at near room temperatures5,8,9. However, no further investigation has been conducted to prove that the 
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iron acetate film is the main reason for the weak inhibitive effect observed in near room temperature conditions. In this work it is important to 

identify whether or not ferrous acetate forms on the surface, leading to the inhibitive effect observed in the TLC tests performed at Ts = 20.5oC. 

FTIR and XPS analysis were performed on the specimens tested at Ts = 20.5oC with 1000ppm HAc. The results in Figure 9 show the presence of 

adsorbed organic species on the steel surface after 20h of test in 1000ppm HAc which was in accordance with ferrous acetate IR (infrared) spectra. 

Additionally, the sample tested at 0ppm HAc shows a mainly flat spectra with no evidence of iron acetate bonds, as expected.

For acetate ions the main peaks expected are related to the stretching vibrations of the two C-O bonds of the ester group and C-H bonds 

of the alkyl group.21  C-H stretching bands were found at ∼2981 – 2857 and ∼1464 – 1380cm-1 and C-O stretching bands at 1764 and 1541, which 

are common wavenumber values found for alkyl and ester group species found in literature, respectively.21,22 Also, the carbonyl stretch C=O of the 

aliphatic ester was observed in the spectrum at 1764 and 1541cm-1.  Referring to Figure 9 there is a strong agreement for the main peaks of both 

the acquired FTIR spectra from the tested sample surface and the standard ferrous acetate data. Table 5 lists whole frequency assignments found 

in literature for the free acetate ion,23 an as prepared ferrous acetate and ferrous acetate (99%, reference) studied by Kim23 and the acquired 

ferrous acetate corrosion product in the present study. The weak inhibiting effect observed at low surface temperatures during the TLC tests could 

therefore well be credited to the formation of a thin layer of ferrous acetate at the low temperature condition. 

XPS surface characterization was performed to also aid in identification of a thin film ferrous acetate layer. Figure 10 presents the C1s, 

O1s, and Fe2p regions of the XPS spectra scan from the mass loss specimen after 20h of TLC at Ts = 20.5oC. Fitting and quantifications analysis were 

performed based on literature results and implemented through CASA XPS software.  For the C1s peak in Figure 10(a) the results suggest that with 

1000ppm HAc, there is a peak assigned to R-O-(C=O)-R (289.09 eV) which is also identified in the standard ferrous acetate spectra and is not 

present in the sample with 0ppm HAc.23,24,25 As expected, the steel samples tested with 0ppm HAc led to a spectra for C1s photoelectrons, 

corresponding to adventitious carbon contamination showing binding energies of common chemical states at 284.66eV (C-C, C-H), 285.51eV (C-O), 

and 288.33eV (C=O).25,27,28 Still, the deconvolution of spectra also showed a small peak at 283.20eV which can be assigned to a Fe3C thin layer, 

which was also observed from SEM analysis.29,30,31

O1s analysis also confirms the ferrous acetate presence. Figure 10(b) shows comparable curves between the ferrous acetate standard 

and the samples tested with 1000ppm HAc. For the samples tested with 0ppm HAc, the O1s analysis only showed the typical hydroxyl bond, which 

is widely observed in conjunction with Fe2O3.28,29,30 These oxide and hydroxide bonds are mainly contaminants due to the sample exposure to air 

before storage and/or before XPS analysis. 

Figure 10(c) presents the Fe2p spectra for the three different tested samples. For the sample tested without HAc, the main peaks at 

711.0eV and 724.5eV can be assigned for Fe2O3 oxide.31,32,33 At lower binding energy ~707 eV for both samples tested in TLC environments binding 

energies can be allocated to iron carbide (Fe3C) as expected due to the corrosion process. Fe2p analysis cannot conclusively show that ferrous 

acetate is present, however, by combining both XPS analysis with FTIR, there is a strong suggestion that a ferrous acetate film is indeed present on 

the steel surface and working as a weak inhibitor to counter TLC at near room temperature.

3.5 Characterization of Pitting Top-of-line Corrosion over 20 and 96h

As discussed previously, the evaluation of pitting/localized corrosion damage in this study is divided into short term (20h – for all four test 

environments with and without 1000ppm HAc) and long term (96h for two selected test environments with and without 1000ppm HAc). Each of 

these time periods are discussed in turn.
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3.5.1 Short term localized corrosion (20 h).

An example profilometry image and extracted 2D profile for a given test condition is provided in Figure 11 (WCR = 0.5mL/m2.s and Ts = 

50.25oC with 0ppm HAc). Multiple scans such as these were analyzed for each test specimen exposed to TLC conditions over a duration of 20h. In 

total, the analysis for the 20h experiments encompassed 8 different test conditions comprising 4 different WCR/Ts combinations, both with and 

without 1000ppm HAc added to the bulk brine solution. The profilometry image in Figure 11 clearly shows that pitting/localized corrosion features 

are easily distinguishable and their depths can be quantified after cleaning.

Collectively, from the images analyzed for each test specimen, the top 10 deepest features were recorded and averaged to determine an 

average pit depth. In turn, the mass loss data extracted from each test condition was used to determine an average cumulative thickness loss from 

the entire steel surface over the 20h period. This calculation is based on the assumption that the mass loss attributed to localized corrosion is 

substantially smaller than that associated with the material loss generally from the steel surface. Figure 11 helps to support such an analysis as it 

shows that the number and size of the pits relative to the surrounding area is small, with this image reflecting the behavior observed in other TLC 

experiments conducted in this study. Finally, the summation of the average pit depth and cumulative general thickness loss produces a 

total/absolute pit depth. This value is essentially the average depth of the pitting features relative to the original height of the steel surface. Such a 

value can be used to determine the overall severity of the test conditions by considering the cumulative effect of general and localized corrosion. 

The methodology also prevents the severity of pitting corrosion in the system from being underestimated in environments where excessive general 

corrosion is able to significantly mask the true growth/depth of pits.

Figure 12 shows the three different sets of information (average pit depth, cumulative general thickness loss and absolute pit depth) 

across four test environments both without (Figure 12(a)) and with (Figure 12(b)) 1000ppm HAc. Primarily it is possible to observe that tests 

performed without HAc (Figure 12(a)) showed a positive linear trend between pit depth and temperature i.e. as temperature increases, so too does 

the average pit depth and the absolute pit depth. Despite differences in the WCR values across this system, temperature appears to have the 

overriding effect on the propagation of pits in the non-corrosion product forming environments evaluated here in the absence of HAc.

The addition of HAc (Figure 12(b)) in general creates a more complex response. Through comparison of the test conditions at 20.5oC, the 

addition of HAc leads to a reduction in average and absolute pit depth. Such observations are in agreement with the suppression (or lack of 

accentuation) of general corrosion in this test environment. This response is interesting as HAc is normally associated with accentuating 

localized/pitting corrosion, yet under these specific conditions it is shown to reduce both pit depth and, arguably also general corrosion over 20h. 

Comparing the remaining three test conditions in Figure 12(b), the addition of HAc leads to an increase in average and absolute pit depth compared 

to the same system in the absence of the weak acid. However, one key difference is that the test condition at 42.5oC has a higher absolute pit 

depth compared to the experiment at 50.3oC. This shows a more complex interrelation between WCR and Ts in terms of localized corrosion when 

HAc is present in the system.

According to previous TLC experiments14,34 at low temperatures localized corrosion issues are rarely observed in wet-gas multiphase flow 

conditions, aligning with the observation here of very shallow pitting features which are similar to the general thickness loss rate. It is also 

important to state that even though no corrosion product layer was formed during these short term tests, initiation of localized corrosion was 

observed after 20h of test. This pit initiation may be associated with the preferential ferrite consumption that is increased due to the development 

large cathodic areas of Fe3C. This phenomena results in a galvanic coupling effect that, along with local chemistry changes, initiates and increases 

the depth of pits, as suggested in previous studies.15,17 The localized ferrite consumption is intensified by the addition of HAc, as recorded by the 
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rougher profiles consisting of several peaks and valleys. As already mentioned, such increased preferential dissolution will increase the ratio of Fe3C 

to ferrite over time. Pessu et al.35 presented a study correlating the evolution of different forms of corrosion products at different bulk pH and 

pitting corrosion in active materials in CO2 environments. Tests performed on X65 steel at pH 3.8 (unbuffered) showed pitting corrosion (relative to 

corroded surface) occurred steadily, with pit depths around 10µm developing after 7h of test, even though Fe3C was the only species observed on 

the steel surface after the tests. The authors also pointed out that the high general corrosion rate observed at acid medias (pH <4) has the ability to 

essentially mask the depth of initiated pits which was related to metal penetration occurring at a faster rate than that recorded from purely 

profilometry depth analysis.35,36

3.5.2 Long term localized corrosion (96h).

Despite clear indications of pitting after 20h of exposure to TLC conditions, it is not possible to know from a single test period whether 

the pits identified will continue to propagate. In order to obtain more information regarding the propagation of pits, longer term (96h) experiments 

were conducted, and subjected to the same method of profilometry analysis. However, only two conditions were selected for the extended 

duration study; Ts = 50.3oC and Ts = 20.5oC. 

Long term tests performed at Ts = 50.3oC without HAc showed that the high temperature and longer time of exposure may favor the 

precipitation of FeCO3 layer. However, the film precipitation was non-uniform, mainly consisting of sparsely distributed clusters throughout the 

metallic surface. Previous studies showed that the non-uniformity of FecO3 coverage is a result of water renewal which continuously brings freshly 

aggressive water that alters the local chemistry.15 Figure 13 presents a summary of the relationship between average pit depths (relative to 

corroded surface) and cumulative thickness loss resulting from uniform corrosion as well as the total/absolute pit depth. At both temperatures, pits 

and localized features continue to propagate. Relatively shallow pits and features (<15 µm) are observed at the lower temperature of 20.5oC, both 

with and without HAc. Over the longer duration experiment of 96h, the presence of 1000ppm HAc appears to have no significant effect on the 

propagation of pits, neither accelerating nor decelerating their growth. The inhibitory effects of HAc with regards to general and localized corrosion 

are less pronounced at longer durations. That being said, there is still no significant accentuation of either degradation process at the lower 

temperature as a result of the introduction of 1000ppm HAc into the bulk solution, despite increased aggressiveness of the condensate, (lower pH) 

suggesting some maintained action of HAc as a weak inhibitor.

At the higher temperature of 50.3oC, when considering the absolute pit depth, there is a noticeable acceleration of pit growth upon the 

introduction of 1000ppm HAc to the system. However, one can observe that much of the absolute pit depth at the higher temperature is a result of 

the high thickness loss from the general attack. Further analysis on the influence of the initiation of FeCO3 precipitation in such environments and 

its influence in localization of TLC will be better accessed in future publications,  

4 CONCLUSIONS

This paper evaluates the general and localized top-of-line corrosion (TLC) behavior of X65 carbon steel and the role of acetic acid (HAc) 

across a range of surface temperatures (Ts from 20.5 to 50.3oC) and water condensation rates (WCRs from 0.07 to 0.81mL/m2.s) using a newly 

designed TLC test rig. The rig is able to provide information on Ts, WCRs, real-time in-situ corrosion rates (using miniature electrodes) and 

integrated corrosion rates (using mass loss specimens). The work presented is complemented by surface analysis techniques to confirm the 

presence of ferrous acetate on the steel surface when HAc is introduced to the bulk solution. In addition, 3D profilometry is implemented to enable 

pit growth and susceptibility to be investigated. The main conclusions from this study are:
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 The developed miniature electrodes are able to provide valuable information on the time-dependent corrosion rate of carbon steel in a TLC 

environment. Furthermore, comparison of the integrated corrosion rates from the electrochemical response with mass loss measurements 

highlights the validity of the approach.

 Depending upon the environments studied, the introduction of 1000ppm HAc to the bulk solution in a CO2-TLC environment was shown to 

either accentuate, slightly inhibit or have no significant effect on general and localized steel dissolution.

 At near room temperature HAc has no significant effect on, or acted as a weak inhibitor of steel dissolution where the acidification of the 

environment did not result in the increase of both general and localized corrosion as observed in all other tested conditions. The ability of HAc 

to suppress the corrosion rate was attributed the formation of ferrous acetate, which was characterized and verified by a combination of FTIR 

and XPS analysis. These findings are in accordance with assumptions reported in other studies in bulk fluid environments.

 In the three other higher surface temperature environments evaluated, an increase in general and localized corrosion rate was observed due 

to the presence of 1000ppm HAc in the bulk solution. The extent of corrosion rate accentuation in each environment indicated the complex 

nature of the system when HAc is present. It was clear that the effects which accentuate corrosion (reduced condensate pH, buffering effect 

provided by HAc and synergy between HAc and temperature) and those which can cause a reduction in corrosion rate (increase of pH in 

droplet due to dissolution and inhibition effect caused by HAc) were actively competing against one another.

 Localized corrosion initiation was observed in short term tests (20h) without the presence of HAc, having a direct relation with the surface 

temperature. With the exception of the lower surface temperature test (20.5oC) the addition of 1000ppm HAc resulted in more aggressive 

general corrosion behavior which masked the true growth and extent of pitting. This warranted consideration of the absolute pit depth as a 

measure of localized corrosion susceptibility and indicated that pitting was accentuated in all tests with the exception of the lowest 

temperature environment (20.5oC)

 At the lower temperature of 20.5oC, longer duration experiments (96h) showed less pronounced inhibitory effects of HAc towards general and 

pitting corrosion. At the higher surface temperature of 50.5oC, pitting and general corrosion continued undisrupted and were accentuated by 

1000ppm HAc addition to the bulk solution.
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7 FIGURE CAPTIONS

FIGURE 1. a) Mass loss specimens and b) the developed miniature electrodes consisting of two Hastelloy® c276 wires as reference and 

counter electrodes and a X65 steel wire, isolated and flush mounted inside a larger X65 specimen.

FIGURE 2. Top-of-line corrosion setup: a) schematic diagram of the entire TLC experimental setup; b) glass cell and customised lid with 

cooling matrix.

FIGURE 3. Top-of-line corrosion rates over 20 h for API 5L X65 steel exposed to the vapor produced from a CO2-saturated 3.5 wt.% NaCl 

brine with 0 and 1000 ppm of HAc and respective percentage of computed data at a) WCR = 0.81 mL/m2.s and Ts = 42.5oC, b) WCR = 0.5 mL/m2.s 

and Ts = 50.3oC, c) WCR = 0.2 mL/m2.s and Ts = 20.5oC, d) WCR = 0.07 mL/m2.s and Ts = 32.5oC, and, e) Ratio of  of non-recorded data points due to 

loss of connectivity during 20 h of TLC tests in the four different surface temperatures with 0 and 1000ppm HAc.

FIGURE 4. (a) Comparison between mass loss and averaged corrosion rates from electrochemical measurements in this work to 

demonstrate the accuracy and validity of the miniature electrode configuration (tests are with and without 1000 ppm HAc), and (b) comparison of 

mass loss and electrochemical corrosion rates acquired in this present work with those reported under comparable conditions in the literature in 

the absence of HAc.

FIGURE5. Tafel polarization curves after 20 h for API 5L X65 steel exposed to the vapor produced from a CO2-saturated 3.5 wt.% NaCl 

brine with 0 and 1000 ppm of HAc at a) Ts = 42.5oC and WCR = 0.81 mL/m2.s, b) Ts = 50.25oC and WCR = 0.5 mL/m2.s, c) Ts = 20.5oC and WCR = 0.2 

mL/m2.s and d) Ts = 32.5oC and WCR = 0.07 mL/m2.s; two repetitions of the same experiment are shown for each tested condition.

FIGURE 6. Comparison between average top-of-line corrosion rate after 20 h tests in the different conditions, considering two scenarios 

regarding what occurs during periods of non-connectivity electrochemical measurement in TLC; either the corrosion rate during non-connectivity is 

an interpolation between its nearest electrochemical corrosion measurements, or is set to zero.

FIGURE 7.  Undissociated HAc concentration in the condensate after 20 h test for the four test environments considered in this study.

FIGURE 8. SEM analysis of the mass loss specimens after 20 h of test in TLC conditions in a CO2–saturated 3.5 wt.% NaCl environment at 

at different WCRs and Ts in a) 0ppm HAc, and b) 1000 ppm HAc.

FIGURE 9. FTIR spectra after 20 h of static TLC test at Ts 20.5oC with 0ppm and 1000 ppm acetic acid. Dotted line represents ferrous 

acetate standard FTIR spectrum.

FIGURE 10.  X-ray photoelectron spectra of ferrous acetate standard (99%) and samples after 20 hours of static TLC test at Ts 20.5oC with 

and without 1000ppm acetic acid, (a) C1s region, (b) O1s and (c) Fe2p region.

FIGURE 11. Example profilometry analysis for TLC specimens in the presence of 0 ppm HAc at WCR = 0.5 mL/m2.s and Ts = 50.25oC. 

FIGURE 12. Summary of relationship between average pit depths (relative to corroded surface) cumulative thickness loss resulting from 

uniform corrosion (determined via mass loss measurements), and total/absolute pit depth (the summation of the average pit depth and cumulative 

thickness loss) after 20 h, plotted as a function of the surface temperature, Ts for four systems (a) without and (b) with 1000 ppm HAc.

FIGURE 13. Summary of relationship between average pit depths (relative to corroded surface) cumulative thickness loss resulting from 

uniform corrosion (determined via mass loss measurements), and total/absolute pit depth (the summation of the average pit depth and cumulative 

thickness loss) after 96 h, plotted as a function of the surface temperature, Ts for two systems (a) without and (b) with 1000 ppm HAc.
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8 TABLES

Table 1: Chemical Composition of API 5L X65 steel

Elements C Si Mn P S Cr Ni

wt.% 0.18 0.17 0.64 0.015 0.013 0.04 0.03

Elements Mo Al Cu Co Ti V Fe

wt.% <0.002 0.017 0.013 0.018 0.002 <0.001 Balance

Table 2: Top-of-line corrosion tests matrix evaluated in this study

Bottom of the line solution Temperatures

Tbulk (ºC) Tgas (ºC) Text (ºC) Ts (ºC)

WCR 

(ml/m2.s)
Test Duration (h)

80 70 -10 42.5 ± 1.0 0.81±0.03 20

80 70 30 50.3 ± 1.0 0.5±0.03 20 and 96

50 40 -10 20.5 ± 1.0 0.2±0.05 20 and 96

3.5% NaCl;

3.5% NaCl + 1000ppm HAc;

50 40 30 32.5 ± 0.5 0.07±0.02 20

Text.: Refrigerent temperature controlled by chiller

Ts : Carbon steel surface temperature 

Table 3: Summary of the average top-of-line corrosion rate increase with addition of acetic acid.

Average LPR CR (mm/year)

Ts (oC) WCR (ml/m2.s)

0ppm HAc 1000ppm HAc

Average CR change (%)

20.5 0.2 0.53 ± 0.2 0.43 ± 0.3 -19

32.5 0.07 0.55 ± 0.09 2.22 ± 0.3 303

42.5 0.81 0.84 ± 0.2 2.80 ± 0.4 233

50.3 0.5 1.36 ± 0.4 2.97 ± 0.08 118
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Table 4: pH analysis from bulk solution after 20 h of test without and with acetic acid

HAc Concentration in bulk

Bulk pH20h Bulk pH20hWCR  (ml/m2.s) Tsurface (oC)

0ppm 1000ppm

0.07 32.5 3.8 3.0

0.2 20.5 4.0 3.1

0.5 50.3 4.2 3.1

0.81 42.5 4.1 3.1

Table 5: Infrared wavenumber (cm−1) assignments found in literature for the free acetate ion of solid sodium acetate, as-prepared ferrous 

acetate, ferrous acetate (standard and reference) and ferrous acetate corrosion product.

Wavenumbers (cm-1)

Vibrational mode
Free acetate22 Ferrous acetate20

Prepared

ferrous acetate21

Ferrous acetate 

reference23

Ferrous acetate 

(this work)

CH stretching 2935 2924, 2964 - 2946 2930, 2964

CH3 deformation 1335, 1347 1360, 1378 1349 1353 1379

OCO stretching 1424 1455 1417, 1450 1419,1446 1465

C-C stretching 929 1032, 1038 931, 943 945, 956 953,1073

OCO deformation 658 618, 661 666 663 652, 710
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Figure 1. a) Mass loss specimens and b) the developed miniature electrodes consisting of two Hastelloy® 

c276 wires as reference and counter electrodes and a X65 steel wire, isolated and flush mounted inside a 

larger X65 specimen. 
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Figure 2. Top-of-line corrosion setup: a) schematic diagram of the entire TLC experimental setup;  b) glass 

cell and customised lid with cooling matrix. 

83x38mm (300 x 300 DPI) 
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Figure 8. SEM analysis of the mass loss specimens after 20 h of test in TLC conditions in a CO2–saturated 

3.5 wt.% NaCl environment at at different WCRs and Ts in a) 0ppm HAc b) 1000ppm HAc 
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Figure 11. Example profilometry analysis for TLC specimens in the presence of 0 ppm HAc at WCR = 0.5 

mL/m2.s and Ts = 50.25oC. 

83x89mm (300 x 300 DPI) 
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Table 1: Chemical Composition of API 5L X65 steel

Elements C Si Mn P S Cr Ni

wt.% 0.18 0.17 0.64 0.015 0.013 0.04 0.03

Elements Mo Al Cu Co Ti V Fe

wt.% <0.002 0.017 0.013 0.018 0.002 <0.001 Balance
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Table 2: Top-of-line corrosion tests matrix evaluated in this study

Bottom of the line solution Temperatures

Tbulk (ºC) Tgas (ºC) Text (ºC) Ts (ºC)

WCR 

(ml/m2.s)
Test Duration (h)

80 70 -10 42.5 ± 1.0 0.81±0.03 20

80 70 30 50.3 ± 1.0 0.5±0.03 20 and 96

50 40 -10 20.5 ± 1.0 0.2±0.05 20 and 96

3.5% NaCl;

3.5% NaCl + 1000ppm HAc;

50 40 30 32.5 ± 0.5 0.07±0.02 20

Text.: Refrigerent temperature controlled by chiller

Ts : Carbon steel surface temperature 
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Table 3: Summary of the average top-of-line corrosion rate increase with addition of acetic acid.

Average LPR CR (mm/year)

Ts (oC) WCR (ml/m2.s)

0ppm HAc 1000ppm HAc

Average CR change (%)

20.5 0.2 0.53 ± 0.2 0.43 ± 0.3 -19

32.5 0.07 0.55 ± 0.09 2.22 ± 0.3 303

42.5 0.81 0.84 ± 0.2 2.80 ± 0.4 233

50.3 0.5 1.36 ± 0.4 2.97 ± 0.08 118
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Table 4: pH analysis from bulk solution after 20 h of test without and with acetic acid

HAc Concentration in bulk

Bulk pH20h Bulk pH20hWCR  (ml/m2.s) Tsurface (oC)

0ppm 1000ppm

0.07 32.5 3.8 3.0

0.2 20.5 4.0 3.1

0.5 50.3 4.2 3.1

0.81 42.5 4.1 3.1
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Table 5: Infrared wavenumber (cm−1) assignments found in literature for the free acetate ion of solid sodium 

acetate, as-prepared ferrous acetate, ferrous acetate (standard and reference) and ferrous acetate corrosion 

product.

Wavenumbers (cm-1)

Vibrational 

mode
Free acetate20

Ferrous 

acetate18

Prepared

ferrous acetate21

Ferrous acetate 

reference21

Ferrous acetate 

(this work)

CH stretching 2935 2924, 2964 - 2946 2930, 2964

CH3 deformation 1335, 1347 1360, 1378 1349 1353 1379

OCO stretching 1424 1455 1417, 1450 1419,1446 1465

C-C stretching 929 1032, 1038 931, 943 945, 956 953,1073

OCO deformation 658 618, 661 666 663 652, 710
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