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Preface

Preclinical MRI for Renal Health

Despite the fact that we are in an era of increased prevalence, incidence, and recognition of
renal diseases, the current options for effective prophylactic and therapeutic regimens for
kidney disorders are disappointingly sparse. A major obstacle is the inherent complexity of
the pathophysiology in renal disease. Overcoming this requires immediate innovative action
across multiple domains and requires new instruments that enable noninvasive diagnostics
and monitoring of therapy during renal diseases. The upshot is that this also creates ever-
increasing opportunities for discovery.

The development and validation of disruptive diagnostic approaches and strategies for
early interception of renal disease and renoprotection can be brought on only with a deeper
understanding of the underlying (patho)physiology. This underlines the urgent quest for
emergent biomedical imaging techniques, customized for probing all stages of renal dis-
eases. While many renal diseases involve defects at the molecular and cellular levels, these
manifest themselves at the scale of the organ system. The unique function of biomedical
imaging is to monitor all these levels simultaneously, connecting the view of biologists with
that of clinicians in vivo. This asks for approaches that are noninvasive, ubiquitous, and
applicable both preclinically and clinically—this is the forte of magnetic resonance imaging
(MRI). An increasing body of evidence indicates that MRI biomarkers have a high potential
for complementing and improving acute and chronic renal disease management. MRI is a
versatile technique, and a host of functional MRImethods have emerged that are sensitive to
pathophysiological changes associated with renal hemodynamics, oxygenation, fibrosis,
inflammation, and microstructure. To better connect MR imaging markers with (patho)-
physiology, MRI needs to be benchmarked and calibrated with integrative physiological
measurements which include the use of quantitative invasive probes. Due to the enormous
technical challenges involved, renal MRI biomarkers remain woefully underused in preclini-
cal research and in clinical practice. These scientific and technical issues constitute a substan-
tial barrier en route to the standardization and broad application of renal MRI.

The purpose of this book is to overcome these roadblocks by promoting an open-access
collection of protocols and comprehensive recommendations for preclinical renal MRI, to
be employed in translational research. The book provides answers to the common questions
regarding how renal MRI technologies emerging from the research community can be
translated into open-access, ready-to-go toolboxes that can be applied to human patients
in a way that is standardized, highly reproducible, and harmonized across centers, with the
goal of combating renal disease by substantially slowing its progression and preventing
kidney injury.

With this “from the community, to the community” approach, the book is designed to
enhance training in renal MRI sciences, to improve the reproducibility of renal imaging
research, and to boost the comparability of renal MRI studies. With this mission, the book
promotes an entirely unique opportunity for developing advanced in vivo renal phenotyp-
ing, diagnostic imaging, and therapy guidance as a link to stratified medicine. The clinical
implications of this relate to a broad spectrum of physiology, nephrology, radiology,
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cardiology, and other associated fields of basic science and clinical research targeting renal
and cardiorenal diseases.

The chapters covered in this book are interdisciplinary in nature and bridge the gaps
between physics, physiology, and medicine. The contributions are provided by leading
international experts and hands-on scientists and serve as a foundation to substantially
boost the development of renal imaging tools, which will increase the efficacy of diagnostics,
promote the identification of new therapeutic targets and options, drive explorations into
novel renoprotective strategies, and lead to enhanced prophylactic regimens. To meet this
goal, the book provides chapters on the fundamental principles, detailed experimental
protocols and guidelines for data analysis, to successfully unlock the full potential of renal
MRI. At the same time, the book promises to help nurture a new generation of researchers
with the high potential needed for the development of next-generation renal imaging
technology, by addressing some crucial educational gaps.

The pace of discovery of preclinical MRI is heartening, drawing in new talent and
driving the transfer of results into novel preclinical applications and into the clinical arena.
The remaining challenges must be faced openly via collaborations between forward-
thinking researchers, application scientists, clinicians, and the general readership of this
book. These collaborations should be interdisciplinary, inter-institutional, and international,
as exemplified and spearheaded by imaging networks. A prominent example of this is the
renal imaging initiative PARENCHIMA, a community-driven Action of the COST
(European Cooperation in Science and Technology) program of the European Union,
which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Only because of the truly interdisciplinary nature of this work, and the essential role that
having many types of expertise in close interaction has played, we got this far.

This book lives up to this mission by providing a comprehensive overview and guidance
on preclinical MRI. It is intended to take this approach to the next level and to put extra
weight behind finding a solution to the remaining problems in renal imaging research. With
this mission, the reader will learn to make sense of the terrain we currently inhabit and to
better interpret the images of the kidney that we produce using sophisticated preclinical
MRI and data analysis protocols. Inevitably, there will be breakthroughs and surprises when
you place next-generation imaging technologies and this book into the hands of highly
creative interdisciplinary teams. However, this will only happen if we recognize that moving
into the next generation of renal imaging technology is more than just a matter of buying
equipment, installing it, and then trying to operate in "core facilities" where budgetary
considerations, and not scientific goals, dominate. The ultimate potential of preclinical renal
MRI is far greater; all that is required is the imagination to apply it, following the chapters in
this book as a roadmap. We hope that the book will convey the seeds of this vision and
inspire you—as it has us—to become pioneers in this amazingly promising area.

With this perspective, we are grateful to all the authors for their outstanding work,
passion, dedication, and enthusiasm to drive this assembly of recommendations and open-
access protocols on preclinical MRI home. We all succeeded thanks to the sheer power and
momentum of interdisciplinary collaboration and teamwork. You made and make the
difference. Thank you.

Berlin, Germany Thoralf Niendorf
Andreas Pohlmann
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Charité—University Medicine Berlin, Berlin, Germany
ANDREIA C. FREITAS • Institute for Systems and Robotics (LARSyS) and Department of
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Chapter 1

Recommendations for Preclinical Renal MRI: A
Comprehensive Open-Access Protocol Collection to Improve
Training, Reproducibility, and Comparability of Studies

Andreas Pohlmann, Susan J. Back, Andrea Fekete, Iris Friedli,
Stefanie Hectors, Neil Peter Jerome, Min-Chi Ku, Dario Livio Longo,
Martin Meier, Jason M. Millward, João S. Periquito, Erdmann Seeliger,
Suraj D. Serai, Sonia Waiczies, Steven Sourbron, Christoffer Laustsen,
and Thoralf Niendorf

Abstract

Renal MRI holds incredible promise for making a quantum leap in improving diagnosis and care of patients
with a multitude of diseases, by moving beyond the limitations and restrictions of current routine clinical
practice. Clinical and preclinical renal MRI is advancing with ever increasing rapidity, and yet, aside from a
few examples of renal MRI in routine use, it is still not good enough. Several roadblocks are still delaying
the pace of progress, particularly inefficient education of renal MR researchers, and lack of harmonization of
approaches that limits the sharing of results among multiple research groups.
Here we aim to address these limitations for preclinical renal MRI (predominantly in small animals), by

providing a comprehensive collection of more than 40 publications that will serve as a foundational resource
for preclinical renal MRI studies. This includes chapters describing the fundamental principles underlying a
variety of renal MRI methods, step-by-step protocols for executing renal MRI studies, and detailed guides
for data analysis. This collection will serve as a crucial part of a roadmap toward conducting renal MRI
studies in a robust and reproducible way, that will promote the standardization and sharing of data.
This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network

funded by the European Cooperation in Science and Technology (COST) program of the European
Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.

Key words Magnetic resonance imaging (MRI), Kidney, Animals, Acute kidney injury, Chronic
kidney disease, Training, Standardization
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1 Who Is Pulling the Brakes in Renal MRI?

1.1 Renal MRI

in Clinical Practice—

Fantasy, Dream,

or Reality?

Magnetic resonance imaging (MRI) of the kidney is not brain
surgery—it’s better! It can save lives without invasive surgery,
noninvasively. This statement—a play on Donald W McRobbie’s
“MRI is not rocket science, it’s better” in MRI From Picture to
Proton—is one that Dr. Susan Back, radiologist and director of
Pediatric Genitourinary Imaging at the Children’s Hospital of
Philadelphia, would sign on to without hesitation. It’s Thursday
afternoon and she is just running an MRI scan on a 4-year-old boy
with a left kidney urinary tract dilation, which was gradually increas-
ing on ultrasound. This is the last sequence in the MRI protocol: a
contrast-enhanced dynamic 3D T1-weighted GRE sequence with a
temporal resolution of ~8 s, used for quantitative functional uro-
graphy [1]. Before, an anatomic T2-weighted MR urogram [1] was
performed to identify possible anatomic causes of obstruction
(Fig. 1), which are difficult to find with ultrasound. These renal
MRI data play a key role in the diagnosis and treatment decisions.
The configuration of the kidney on the MRI is concerning for an
ureteropelvic junction obstruction because there is an abrupt tran-
sition from the renal pelvis to the proximal ureter. However, having
this anatomic image and the functional information generated

Fig. 1 Renal MRI used for diagnosis and treatment planning of a 4-year-old boy with a left kidney urinary tract

dilation. The anatomic portion of the MR urogram study (left: postprocessed image created by superimposing

the vascular/parenchymal enhancement phase with the renal excretion phase; right: 3D rendering) depicted

the left urinary tract dilation with an abrupt transition in caliper between the dilated renal pelvis and the

proximal ureter
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using dynamic imaging shows good excretion and proves that the
kidney is not obstructed. For the decision on whether to operate,
the urologist takes a look at the quantitative functional informa-
tion. Offline analysis of the dynamic data using the Parametric MRI
software package (www.parametricmri.com) [2] provided a wide
range of quantitative parameters for assessment of renal function,
including renal transit time, calyceal transit time, volumetric differ-
ential renal function (vDRF), and Patlak differential renal function
(pDRF). The other good news is that the left kidney is functioning
similarly to the normal right kidney (vDRF: 48%/52%, pDRF:
49%/51%) so the urologist decides not to operate and the child
would be put under observation.

While this scene of renal MRI in clinical routine use vividly
illustrates the dream and ambition of many renal MRI researchers—
clinicians (nephrologists, urologists, radiologists, surgeons, etc.),
clinical scientists, MRI scientists, and basic scientists alike—it may,
to the more realistic ones, be perhaps no more than a wild phantasy.
However, for the vast majority of kidney patients worldwide, reality
couldn’t be more different: diagnosis and treatment decisions are
predominantly based on plasma and urine parameters, that are
known to be insensitive and unspecific. Information on increased
serum creatinine is literally too little too late. Currently, the esti-
mated glomerular filtration rate (eGFR; commonly calculated from
serum creatinine including variables for age, gender, race) is “the
best overall index of kidney function” [3], but it “is an unreliable
tool to assess renal function in health and disease, as well as in
clinical practice and research” [4]. It is like trying to study the
complex bio system of the vast Amazon river basin solely by taking
water samples at the mouth of the river.

1.2 Renal MRI,

Where Are You?

Renal MRI undoubtedly holds great potential to improve diagnosis
and care for millions of patients. The scientific literature reveals
hundreds of renal MRI studies, both in patients and animals, aim-
ing to demonstrate its clinical value, and to detail and validate the
observed changes in functional and structural parameters. On
reading the introductions of these studies we are typically being
reminded of the millions of patients suffering from renal disease—
acute kidney injuries (AKI) and chronic kidney diseases (CKD)—as
well as the steadily growing number of diabetes patients of which
many are inevitably en route to diabetic nephropathy. This is usually
followed by highlighting the urgent need for more sensitive and
specific bio markers, with renal MRI being a prime candidate. Yet
renal MRI is still virtually absent from the radar screen of the
nephrologist, and patients like those at the Children’s Hospital of
Philadelphia are a rare exception. What is going wrong?

1.3 Function,

Function, Function

If the three most important characteristics that determine the value
of a house are often considered to be “location, location, location,”
then the three most important characteristics of the kidney are
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“function, function, function”—rather than its structure/mor-
phology. Morphology, however, is what conventional clinical MRI
is all about in the vast majority of cases. Radiologists are trained to
detect and identify the subtle deviations from “normal” morphol-
ogy on grayscale images with different T1 or T2(T2*) weighting.
This leads to three challenges for renal MRI: (1) assessing func-
tional images, for example of perfusion or blood oxygenation,
requires new training and learning of what “normality” means;
(2) almost all renal MRI techniques provide “exotic” pseudoco-
lored parametric maps rather than conventional weighted images;
(3) interpreting changes in these MR parameters in the context of
the complex renal physiology is anything but trivial—in other
words: we don’t really know what they mean.

Particularly for the last point, preclinical research is crucial
because it enables researchers to obtain from the same organ MRI
data together with physiological parameters from invasive probes,
as well as histological data. Obvious examples are the comparison of
T1 and ADC with the degree of fibrosis from histology [5], ASL
perfusion with invasively measured renal blood flow and local flux,
or T2* with invasively measured tissue oxygenation [6]. Moreover,
in preclinical studies the application of (ir)reversible experimental
interventions permits studying the complex relationships between
MRI parameters and quantitative physiological parameters in the
context of kidney-specific control of hemodynamics and oxygena-
tion (see the chapter by Cantow K et al. “Reversible (Patho)
Physiologically Relevant Test Interventions: Rationale and Exam-
ples”). Clearly, a lot more work needs to be done to establish and
translate renal MRI into clinical practice, and preclinical research is
an essential part of this process. Shedding some light on where we
are with regard to research activity in MRI of the kidney may help
us drive forward the development of renal MRI.

1.4 Research Activity

in Renal MRI

Renal and cardiac MRI both started as niche applications, with their
own unique challenges for clinical translation, ranging from acqui-
sition to analysis and interpretation. Cardiac MRI has already
become an established clinical tool, which is supported and driven
by a dedicated international society (Society for Cardiovascular
Magnetic Resonance (SCMR), scmr.org) and guided by >10 pub-
lished consensus/position statements (scmr.org/page/guidelines).
Renal MRI, on the other hand, is struggling to get off the ground.

Conceivably, this divergence is partially due to the usefulness of
morphological MRI, which is rather different for both applications.
Unlike cardiac MRI, with its workhorse - cardiac function assess-
ment - being based on (cinematic) morphological images, renal
MRI depends on multi-parametric structural and functional infor-
mation, derived from T1, T2, BOLD, DWI, ASL, etc. A second
reason might be the availability of treatment and the nature of the
diseases. Due to the still rather limited treatment options for CKD,
performing complicated and expensive MRI exams still seems less
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critical than in cardiac disease where there are more management
options. It is expected that the emergence of new CKD treatments
will stimulate the interest in renal MRI.

It is interesting to consider exactly how much clinical and
preclinical research activity in cardiac and renal MRI there has
been, and how it has grown over the years. Using publications
listed in PubMed as an indicator, we performed tailored searches
with PubMed’sMedical Subject Headings (MeSH) to obtain lists of
literature on renal/cardiac MRI in humans/animals (Fig. 2, upper
panels). Additionally we used PubMed’s MeSH Major Topic to
restrict the searches to papers that focus on renal/cardiac MRI
while excluding articles that only mention these terms but have
another focus (Fig. 2, lower panels) (see Note 1).

The number of publications in both fields has grown consider-
ably over the years, but at very different rates. Around 1000 cardiac
MRI papers per year were published during 2014–2018; the equiv-
alent number for renal MRI papers was only around 200. After
restricting the search to papers with a main focus on MRI of the
kidney/heart the number of papers per year were 400 and
70, respectively. In other words, a lot more research activity in
renal MRI is needed. From the number of publications one can
deduce that there is considerably more clinical research than pre-
clinical research in renal MRI. Conceivably, this is partially due to
the more limited availability of preclinical MRI systems. However,
preclinical renal MRI has recently seen a rapid increase to 37% of all
renal MRI publications. This highlights the importance of animal
research in renal MRI, considering that only 5% of cardiac MRI
papers are preclinical (as of 2018).

The renal MRI research community is still rather small. While a
recent SCMR meeting attracted more than 1900 attendees [7],
international meetings on renal MRI have had approximately
150–200 attendees [8, 9]. Around 200 experts in renal MRI from
30 countries are part of PARENCHIMA (renalmri.org), a
community-driven Action in the COST program of the European
Union, with the aim to improve the reproducibility and standardi-
zation of renal MRI biomarkers. In fact, the number of research
groups active in preclinical renal MRI is only 1/5 of those active in
clinical renal MRI (see Note 2). One important conclusion from
this is that accelerating the development of renal MRI will require
more researchers and institutions to enter the field. We may ask
ourselves, “What hurdles are slowing down progress and impeding
clinical translation?”

1.5 The Usual

Suspects

For a novel MRI technique, the road to routine clinical use is a
stony one, involving issues such as reimbursement, available time
for MRI, evidence needed that the new method is superior to
existing techniques, and availability of hardware/software and
trained staff. However, most renal MRI techniques are still at an
early phase of development. Here, learning how to correctly
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Fig. 2 Number of publications on renal or cardiac MRI over the years. Left panels: (pre)clinical renal MRI versus (pre)clinical cardiac MRI. Right panels: clinical

renal MRI versus preclinical renal MRI. Lower panels: Search restricted to publications with the main focus on renal or cardiac MRI
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interpret theMRI parameters (T1, T2*, ADC, etc.) and establishing
normal ranges for these MRI parameters are only two of the items
on the to-do list.

When searching for the culprits for the slow development of
renal MRI, we also encounter the usual suspects: lack of training
and standardization. This will sound familiar to most academic
researchers. The workforce of academic research consists primarily
of PhD students, who typically start their MRI research lacking the
most relevant knowledge, and thus spend half or even more of their
3- to 4-year project learning the necessary theory, skills, hands-on
experience and the many “secret tricks” that are essential for
performing successful studies but are not found in the usual litera-
ture. This is problem #1: inefficient learning.

When designing a study, researchers encounter a further diffi-
culty. Puzzled by the great variety of protocols (and diversity of
equipment) in the literature, and often lacking an explanation for
the choice of parameters, they are forced to design their study based
on their own rationales and gut feelings. This is problem #2: lack of
standardization. This not only hampers new researchers in setting
up their studies but, even more devastatingly, has a detrimental
effect on the comparability and reproducibility of research. This is
a major obstacle to fast and efficient research and development.

When researchers finally publish their results, they do so in the
usual format of a scientific paper, which focuses on a concise
description of the problem, proposed solution, main findings, and
a discussion of the meaning and limitations of the study. Important
details about the practicalities of actually conducting the experi-
ments are usually omitted. When individuals leave the lab, most of
their crucial experience and expertise is lost. The cycle starts again
with the next student.

2 How Can Training and Standardization Be Improved?

2.1 A Roadmap

for Improved Training

and Standardization

of Renal MRI

Let’s recap: the box of diagnostic tools available to the nephrolo-
gists is still rather poorly equipped (mostly insensitive and nonspe-
cific plasma/urine markers), and renal MRI has the potential to be a
game changer for the treatment of AKI and CKD. To address the
numerous challenges of clinical translation of renal MRI, much
more research activity is needed, and the community needs to
grow. Among the factors preventing rapid progress are inefficient
learning and lack of standardization. To overcome these roadblocks
we suggest a roadmap for improving the training and standardiza-
tion of preclinical and clinical renal MRI (Fig. 3). This combines
protocol collections in the Springer Protocols book format with
consensus-based technical recommendation papers based on the
Delphi method.
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Springer Protocols is “the world’s largest collection of protocols
of biomedical and life sciences,” currently with over 58,000 step-
by-step experimental protocols in more than 2000 books. The
protocols are published individually as electronic publications in
the PubMed cited journalMethods in Molecular Biology as well as in
the form of printed books, with each book representing a collection
of protocols for a specific topic. “Each protocol is provided in
readily-reproducible step-by-step fashion, opening with an intro-
ductory overview, a list of the materials and reagents needed to
complete the experiment, and followed by a detailed procedure that
is supported with a helpful notes section offering tips and tricks of
the trade as well as troubleshooting advice.” [10]. This format
makes Springer Protocols an excellent tool for training, and by
providing working protocols, they also help to improve the repro-
ducibility, comparability, and standardization of studies. Research-
ers are less likely to perform studies with “arbitrary” protocols and
parameters when tested and proven protocols are readily available.

Fig. 3 Suggested roadmap for improving the training and standardization of preclinical and clinical renal MRI.

It combines Springer Protocols books (excellent for training but also provides working protocols that help to

improve comparability/standardization of future studies) with consensus-based technical recommendation

papers (established tool to move toward standardization of studies). clinical ¼ human MRI, (pre)-

clinical ¼ human and animal MRI, preclinical ¼ animal MRI
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An established step toward standardization are consensus-
based technical recommendation papers published as articles in
technical journals. The process of developing expert consensus on
technical aspects is a challenge. Here the Delphi method [11] can
help to generate consensus statements: anonymous surveys that
ensure all opinions are heard, free from peer pressure, are followed
by rounds of face-to-face discussions. This iterative method permits
“reaching reliable consensus in practice guidelines on health-care-
related issues and on topics where there is little or no definitive
evidence and where opinion is important” [12].

Because step-by-step protocols and technical recommendations
address different ends of the training-standardization spectrum
(Fig. 3), both perfectly complement each other. When deciding
which step to take first, one needs to take into account the specific
situation, that is, the size of the research community, the amount of
hands-on experience available, the range of different equipment in
use, the range of different subjects/objects being investigated, and
so on. In these aspects clinical and preclinical renal MRI differ
significantly. The number of research groups active in clinical
renal MRI is five times the number of those active in preclinical
renal MRI (see Subheading 1.4). In the clinical setting the range of
setups (RF coils, field strengths) and subjects is much smaller than
in preclinical settings. Even though we highlighted pediatric renal
MRI in the introduction, the vast majority of renal MRI studies are
performed on adult subjects at 1.5 or 3.0T. In preclinical renal MRI
predominantly two species of very different size—mice and rats—
are investigated at fields strengths of 3.0T, 4.7T, 7.0T, 9.4T,
11.7T, and 16.4T, with a wide range of RF coils ranging from
human wrist coils to RX surface array + TX volume resonator
combinations tailored for mouse or rat cardiac MRI, to cryogeni-
cally cooled TX/RX surface coils. These variations in setup influ-
ence numerous factors, including the achievable signal-to-noise
ratio, the spatial resolution, and the relaxation times (T1, T2,
T2*), thus leading to substantially different MRI protocols. Both
the great technical variety and the small size of the preclinical renal
MRI community make reaching consensus-based technical recom-
mendations particularly challenging, because many different sets of
recommendations would be needed to address all commonly used
study setups. Therefore, while consensus-based technical recom-
mendations may be the natural first step for clinical renal MRI, for
preclinical MRI we decided to focus instead on creating a compre-
hensive Springer Protocols collection to improve training and com-
parability of studies.

Both, consensus-based recommendations papers and protocols
collections, can only be fully effective if they are made openly
accessible. Therefore, we are very glad that it was possible to
make these publications open-access thanks to support from the
COST Action PARENCHIMA (renalmri.org).
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2.2 Driving

on the Road to more

Efficient Renal MRI

Research: Are We

There Yet?

The answer is, of course, “not yet,” as there is still some distance left
to drive. But a giant leap has been made already, thanks to the
COST Action PARENCHIMA (renalmri.org), which unites more
than 200 experts in renal MRI from 30 countries, and the time,
effort, and energy invested by more than 100 authors. After recent
clinical position papers (https://academic.oup.com/ndt/issue/
33/suppl_2) confirmed the demand, two projects have been imple-
mented: The consensus-based technical recommendations for clin-
ical translation of renal MRI (described in [12]) and the Springer
Protocols book on preclinical renal MRI (described in
Subheading 3).

Four papers present the results of applying the Delphi method
to clinical renal MRI: arterial spin labeling (ASL) perfusion, blood
oxygenation level dependent (BOLD) MRI, diffusion-weighed
imaging (DWI), and mapping of renal T1/T2 [13–16]. This pro-
cess generated over 160 consensus statements but also flagged
topics where experts were currently unable to agree on a recom-
mendation. These first ever technical recommendations for renal
MRI should spark research into their appropriateness, with the aim
to either prove or disprove specific recommendations. The findings
of these future studies should then be fed back into updated and
revised versions of the technical recommendations papers (Fig. 3).
We hope that this approach will gradually lead to an alignment of
the methods for measuring renal MRI biomarkers. It goes without
saying that also the spectrum of methods covered must be extended
in the future.

In the roadmap (Fig. 3), we propose to supplement these fresh
off the press, already existing publications with the respective other
parts, so that there will be step-by-step protocols as well as
consensus-based technical recommendations available for both
clinical and preclinical renal MRI. Here, the Springer Protocols for
clinical MRI of the kidney are a placeholder for any type of protocol
style journal, that is, Methods in Molecular Biology (Springer Proto-
cols), Nature Protocols, Protocol Exchange, Journal of Visualized
Experiments (JoVE), and so on. In contrast to the Springer Proto-
cols, the latter permits independent publications on specific meth-
ods, which could be advantageous for clinical renal MRI, as it
would not be necessary to publish protocols for many methods
simultaneously. Needless to say, regularly updating all protocols
and recommendations will be a challenging but, nevertheless,
very important part of advancing the progress of renal MRI.

3 The Springer Protocols Book on Preclinical Renal MRI

Since Douglas Adams’s The Hitchhiker’s Guide to the Galaxy was
first published in 1979, the number “42” has been claimed to be
the answer to the question of “life, the universe, everything.” After
more than 2 years of hard work by 90 authors, the answer to the
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question, “How can we improve the training and standardization
of preclinical renal MRI?” resulted in the 42 (other) chapters of
this Springer Protocols book Pohlmann A, Niendorf T (eds) (2020)
“Preclinical MRI of the Kidney—Methods and Protocols,”
Springer, New York. In the following subsections we describe
the tailored concept of the book and the topics covered by the
chapters.

3.1 Concept

and Special Features

of the Book

When we started to think about the structure and content of this
book on preclinical renal MRI (with main focus on small animals),
it immediately became clear that a simple collection of independent
chapters would not suffice, for a multitude of reasons. First,
there are many important aspects involved in renal MRI that are
relevant to any MRI method: it does not make sense that for every
individual method the protocol would include considerations and
instructions regarding the MRI hardware, animal preparation,
physiological monitoring, or image slice planning and shimming.
Second, due to the complexity of MRI it is very challenging to
include all the information about a method in a single chapter. If
the book was to become a one-stop-shop for learning renal MRI in
small animals, a concept was needed. In the following we describe
its concept and special features.

3.1.1 Provide all

the Necessary Information

for each Method

With a few exceptions, we included three chapters for each renal
MRI method:

1. There is one chapter describing the basic concepts of the
method. We believe a sound understanding of the measure-
ment concept is essential when planning, performing, analyz-
ing, and interpreting a study. This is complemented by a brief
overview of the preclinical renal applications, in order to
illustrate for what kind of questions and applications each
technique is useful for.

2. A step-by-step experimental protocol, which we know from
the many existing Springer Protocols books. These protocols are
the core of the book. For less complex methods they include
also instructions for data analysis.

3. Detailed step-by-step protocols for data analysis.

3.1.2 Generalize

Protocols by Peer Review

Although we trusted that each author had extensive experience and
described the protocols correctly and in an understandable manner,
we endeavored to make sure these were free from lab specific
techniques, assumptions and limitations, which could be due, for
example, to the (un)availability of equipment or traditions. Because
these protocols should also serve to move toward the harmoni-
zation of studies, we felt it was important to ensure that the
protocols were as universal as possible and would work in many
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labs and settings. For this reason we implemented a coauthor peer
review process, that is, every chapter had to have one or several
external coauthors from other laboratories. The roles of these
coauthors are as follows:

1. To check whether the protocol would be applicable in other
settings,

2. To check whether the steps and parameters are reasonable and
their rationale clear and correct,

3. To add example protocols for additional lab settings.

3.1.3 Avoid Magic

Numbers

Magic numbers—that is, numbers which are not explained and
whose choice appears to be arbitrary—are not only a bad idea for
software program codes but also for lab protocols. How often have
we all read scientific publications and just could not figure out why
the authors chose that particular set of measurement parameters!
Was there a clever rationale behind their choice that sadly we didn’t
know, a lab tradition which might be reasonable but perhaps not
applicable to our setting, or just a gut feeling of a student that
didn’t know how to make sense of all the different examples in the
literature?

In any case, we wanted to reduce the magic numbers in our
protocols to a minimum, so all authors were instructed to explain
the rationales for their parameter choices in generic terms. If possi-
ble, advice for adapting them to other settings (other species, other
field strengths) was to be given in the Notes section. Of course,
example parameter sets are very valuable because they may allow
readers to start straight away with a running protocol. They are also
important in terms of harmonization, as mentioned. Therefore,
examples of parameter sets for specific settings were requested,
but separately in the Notes section, for example parameter sets for
mice in a 7T MRI system and rats in a 9.4T system. For some
techniques parameter sets for rats in a clinical 3T MRI system were
also included.

3.1.4 Describe

the Pragmatic Way for Data

Analyses

It was important to us to dedicate separate chapters to the analyses
because data analysis is an essential part of each study, but it is very
rarely described in adequate detail. Statements like “T2* was calcu-
lated by pixel-wise exponential fitting to the data using an in-house
developed software written inMATLAB®” don’t really help anyone
who wants to learn how to analyze the data correctly. We are sure
many of us have used similar statements in previous journal pub-
lications, but the fault is not always entirely ours: often there is
simply no space (word limits!) and time to give a detailed descrip-
tion. Here, we wanted to make sure there was space (by having an
entire chapter solely for the analysis) and time (by rewarding the
effort and time spent in the detailed description with a first
authorship).
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It was key to present the most pragmatic approach to data
analysis. What is the point in describing how to do your own
code if there is established software available? So if analysis software
existed, authors should describe how to get it and how to use
it. Otherwise, the step-by-step instructions should focus on how
to write a software program. Including pseudo code was encour-
aged, as well as providing downloadable code examples via GitHub
or similar.

Finally, we asked to provide the readers with ideas on how to
validate that their analyses give correct results. This could include
for example a table of reference values or using synthetic test data.

3.1.5 Prevent Tunnel

Vision—A Successful

Study Needs More Than

an MRI Protocol

Indeed, performing the actual MRI study is only part of the story.
One must not forget that physiological MRI also requires consid-
eration of many factors that are less important in anatomical imag-
ing. Considerations about physiological monitoring, choosing the
right animal model, measuring at the right time of the day, and
using the most suitable anesthesia all have important implications.

For this reason, the first part of the book was dedicated to
topics like animal models, preparation, monitoring and physiologi-
cal interventions. We also questioned the need to always perform
in vivo experiments on animals for training, development, and
testing. Hence, one chapter provides a step-by-step protocol for
the preparation of ex vivo rodent phantoms.

3.1.6 Embrace

Competition—There Are

Other Great Techniques

Besides MRI

There are numerous questions for which it makes sense to go
multimodal. Not only ultrasound and photoacoustic imaging but
also invasive probes that provide quantitative physiological mea-
surements are extremely valuable complements. Therefore, this
book includes more than just MRI.

3.1.7 Make Access

to This Information Free

of Charge

Thanks to support from the COST Action PARENCHIMA
(renalmri.org) it was possible to make all chapters open access!

3.2 Content

of the Book

An overview of topics covered by the Springer Protocols book on
preclinical renal MRI is shown in Fig. 4. Part II contains four
chapters about animal models, preparation, monitoring, physiolog-
ical interventions, and rodent phantoms. In Part III there are
13 chapters describing the basic concepts of the techniques, fol-
lowed by Part IV with 14 step-by-step protocols for conducting
experiments. Finally, Part V contains ten chapters that address data
analysis; this includes the subsegmentation of the kidney into
morphology-based regions of interest or concentric objects, as
well as image denoising using nonlocal means (NLM) filtering.

More detailed information on the book structure and chapters
is provided below by listing all chapters in the format [chapter
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number] [chapter title] [author list]. Each chapter is PubMed-
listed as an entry in Methods Mol Biol.

3.2.1 Part I—

Introduction

1. Recommendations for Preclinical Renal MRI: A Comprehensive
Open-Access Protocol Collection to Improve Training, Reproduc-
ibility, and Comparability of Studies (Andreas Pohlmann, Susan
J. Back, Andrea Fekete, Iris Friedli, Stefanie Hectors, Neil Peter
Jerome, Min-Chi Ku, Dario Livio Longo, Martin Meier, Jason
M. Millward, João S. Periquito, Erdmann Seeliger, Suraj
D. Serai, Sonia Waiczies, Steven Sourbron, Christoffer Laust-
sen, and Thoralf Niendorf).

3.2.2 Part II—Animal

Models, Preparation,

Monitoring,

and Physiological

Interventions

1. Animal Models of Renal Pathophysiology and Disease (Adam
Hosszu, Tamas Kaucsar, Erdmann Seeliger, and Andrea
Fekete).

2. Preparation and Monitoring of Small Animals in Renal MRI
(Tamas Kaucsar, AdamHosszu, Erdmann Seeliger, HenningM
Reimann, and Andrea Fekete).

Fig. 4 Overview of topics covered by the Springer Protocols book on preclinical renal MRI. There are 4 chapters

about animal models, preparation, monitoring, physiological interventions, and rodent phantoms; 13 chapters

describing the basic concepts of the techniques; 14 chapters with step-by-step protocols for experiments, and

11 data analysis protocols
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3. Reversible (Patho)physiologically Relevant Test Interventions:
Rationale and Examples (Kathleen Cantow, Mechthild
Ladwig-Wiegard, Bert Flemming, Andrea Fekete, Adam Hos-
szu, and Erdmann Seeliger).

4. Preparation of Ex Vivo Rodent Phantoms for Developing, Test-
ing, and Training MR Imaging of the Kidney and Other
Organs (Jason M. Millward, Joao Periquito, Paula Ramos Del-
gado, Christian Prinz, Thoralf Niendorf, and Sonia Waiczies).

3.2.3 Part III—Basic

Concepts of Measurement

Techniques

5. Quantitative Assessment of Renal Perfusion and Oxygenation by
Invasive Probes: Basic Concepts (Kathleen Cantow, Roger
G. Evans, Dirk Grosenick, Thomas Gladytz, Thoralf Niendorf,
Bert Flemming, and Erdmann Seeliger).

6. Ultrasound and Photoacoustic Imaging of the Kidney: Basic
Concepts and Protocols (Sandra Meyer and Dieter Fuchs Martin
Meier).

7. Hardware Considerations for Preclinical Magnetic Resonance of
the Kidney (Paula Ramos Delgado, Ekkehard Küstermann,
André Kühne, Thoralf Niendorf, Andreas Pohlmann, andMar-
tin Meier).

8. MRI Mapping of Renal T1: Basic Concepts (Stefanie Hectors,
Sabrina Doblas, Philippe Garteiser, Gwenaël Pagé, Bernard
E. Van Beers, John C Waterton, and Octavia Bane).

9. MRI Mapping of the Blood Oxygenation Sensitive Parameter
T2* in the Kidney: Basic Concepts (Lu-Ping Li, Bradley Hack,
Erdmann Seeliger, and Pottumarthi V. Prasad).

10. Renal Diffusion Weighted Imaging (DWI) for Apparent Diffu-
sion Coefficient (ADC), Intravoxel Incoherent Motion (IVIM),
and Diffusion Tensor Imaging (DTI): Basic Concepts (Neil
Peter Jerome, Anna Caroli, and Alexandra Ljimani).

11. Dynamic Contrast Enhancement (DCE) MRI–Derived Renal
Perfusion and Filtration: Basic Concepts (Michael Pedersen,
Pietro Irrera, Walter Dastrù, Frank G Zöllner, Kevin M Ben-
nett, Scott C Beeman, G Larry Bretthorst, Joel R Garbow, and
Dario Livio Longo).

12. Noninvasive Renal Perfusion Measurement Using Arterial Spin
Labeling (ASL) MRI: Basic Concepts (Min-Chi Ku, Marı́a A
Fernández-Seara, Frank Kober, and Thoralf Niendorf).

13. Renal pH Imaging Using Chemical Exchange Saturation
Transfer (CEST)-MRI: Basic Concepts (Dario Livio Longo,
Pietro Irrera, Lorena Consolino, Phillip Zhe Sun, and Michael
T. McMahon).

14. Sodium (23Na) MRI of the Kidney: Basic Concepts (James
T. Grist, Esben Søvsø Hansen, Frank G. Zöllner, and Chris-
toffer Laustsen).
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15. Hyperpolarized Carbon (13C) MRI of the Kidneys: Basic Con-
cepts (Cornelius von Morze, Galen D. Reed, Zhen J. Wang,
Michael A. Ohliger, and Christoffer Laustsen).

16. Functional Imaging Using Fluorine (19F) MR Methods: Basic
Concepts (Sonia Waiczies, Christian Prinz, Ludger Starke,
Jason M. Millward, Paula Ramos Delgado, Jens Rosenberg,
Marc Nazaré, Helmar Waiczies, Andreas Pohlmann, and Thor-
alf Niendorf).

17. MRElastography of the Abdomen: Basic Concepts (Suraj D. Serai
and Meng Yin).

3.2.4 Part IV—

Experimental Protocols

18. Monitoring Renal Hemodynamics and Oxygenation by Invasive
Probes: Experimental Protocol (Kathleen Cantow, Mechthild
Ladwig-Wiegard, Bert Flemming, Andreas Pohlmann, Thoralf
Niendorf, and Erdmann Seeliger).

19. Essential Practical Steps for MRI of the Kidney in Experimental
Research (Andreas Pohlmann, João dos Santos Periquito, and
Thoralf Niendorf).

20. Assessment of Renal Volume with MRI: Experimental Protocol
(Andreas Müller and Martin Meier).

21. Experimental Protocols for MRI Mapping of Renal T1 (Philippe
Garteiser, Octavia Bane, Sabrina Doblas, Iris Friedli, Stefanie
Hectors, Gwenaël Pagé, Bernard E. Van Beers, and John
C. Waterton).

22. Experimental Protocols for Mapping of Renal T2* and T2

(Andreas Pohlmann, Kaixuan Zhao, Sean B. Fain, Pottumarthi
V. Prasad, and Thoralf Niendorf).

23. Renal MRI Diffusion: Experimental Protocol (João
S. Periquito, Martin Meier, Thoralf Niendorf, Andreas Pohl-
mann, and Neil Peter Jerome).

24. Dynamic Contrast Enhanced (DCE) MRI–Derived Renal Per-
fusion and Filtration: Experimental Protocol (Pietro Irrera,
Lorena Consolino, Walter Dastrù, Michael Pedersen, Frank
G. Zöllner, and Dario Livio Longo).

25. Renal Blood Flow Using Arterial Spin Labeling (ASL) MRI:
Experimental Protocol and Principles (Kai-Hsiang Chuang,
Martin Meier, Marı́a A Fernández-Seara, Frank Kober, and
Min-Chi Ku).

26. Renal pH Mapping Using Chemical Exchange Saturation
Transfer (CEST) MRI: Experimental Protocol (Kowsalya Devi
Pavuluri, Lorena Consolino, Dario Livio Longo, Pietro Irrera,
Phillip Zhe Sun, and Michael T. McMahon).
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27. Sodium (23Na) MRI of the Kidney: Experimental Protocol
(James T. Grist, Esben Søvsø Hansen, Frank G. Zöllner, and
Christoffer Laustsen).

28. Hyperpolarized Carbon (13C) MRI of the Kidney: Experimental
Protocol (Christoffer Laustsen, Cornelius von Morze, and
Galen Reed).

29. Fluorine (19F) MRI for Assessing Inflammatory Cells in the
Kidney: Experimental Protocol (Min-Chi Ku, Adrian Schreiber,
Paula Ramos Delgado, Philipp Boehm-Sturm, Ralph Kettritz,
Thoralf Niendorf, Andreas Pohlmann, and Sonia Waiczies).

30. Fluorine (19F) MRI to Measure Renal Oxygen Tension and
Blood Volume: Experimental Protocol (Lingzhi Hu, Hua Pan,
and Samuel A. Wickline).

31. MR Elastography of the Abdomen: Experimental Protocols (Suraj
D. Serai and Meng Yin).

3.2.5 Part V—Protocols

for Advanced Analyses

32. Subsegmentation of the Kidney in Experimental MR Images
Using Morphology-Based Regions of Interest or Multiple-Layer
Concentric Objects (Leili Riazy, Bastien Milani, João
S. Periquito, Kathleen Cantow, Thoralf Niendorf, Menno
Pruijm, Erdmann Seeliger, and Andreas Pohlmann).

33. Denoising for Improved Parametric MRI of the Kidney: Protocol
for Nonlocal Means Filtering (Ludger Starke, Karsten Tabelow,
Thoralf Niendorf, and Andreas Pohlmann).

34. Analysis Protocols for MRI Mapping of Renal T1 (Philippe
Garteiser, Gwenaël Pagé, Sabrina Doblas, Octavia Bane, Stefa-
nie Hectors, Iris Friedli, Bernard E. Van Beers, and John
C. Waterton).

35. Analysis Protocols for MRI Mapping of the Blood Oxygenation
Sensitive Parameters T2* and T2 in the Kidney (João
S. Periquito, Ludger Starke, Carlota M. Santos, Andreia
C. Freitas, Nuno Loução, Pablo Garcı́a Polo, Rita G. Nunes,
Thoralf Niendorf, and Andreas Pohlmann).

36. Analysis of Renal Diffusion Weighted Imaging (DWI) Using
Apparent Diffusion Coefficient (ADC) and Intravoxel Incoher-
ent Motion (IVIM) Models (Neil Peter Jerome and João
S. Periquito).

37. Analysis Protocol for Dynamic Contrast Enhanced (DCE) MRI
of Renal Perfusion and Filtration (Frank G. Zöllner, Walter
Dastrù, Pietro Irrera, Dario Livio Longo, Kevin M Bennett,
Scott C. Beeman, G. Larry Bretthorst, and Joel R. Garbow).

38. Quantitative Analysis of Renal Perfusion by Arterial Spin
Labeling (Kai-Hsiang Chuang, Frank Kober, andMin-Chi Ku).
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39. Analysis Protocol for the Quantification of Renal pH Using
Chemical Exchange Saturation Transfer (CEST) MRI (Hahn-
sung Kim, Yin Wu, Daisy Villano, Dario Livio Longo, Michael
T. McMahon, and Phillip Zhe Sun).

40. Analysis Protocol for Renal Sodium (23Na)MR Imaging (James
T. Grist, Esben Søvsø Hansen, Frank G. Zöllner, and Christof-
fer Laustsen).

41. Analysis Methods for Hyperpolarized Carbon (13C) MRI of the
Kidney (Galen D. Reed, Natalie J. Korn, Christoffer Laustsen,
and Cornelius von Morze).

42. Data Preparation Protocol for Low Signal-to-Noise Ratio
Fluorine-19 MRI (Ludger Starke, Thoralf Niendorf, and
Sonia Waiczies).

3.3 Mission

and Vision

The mission of this book was to bring together in one collection a
comprehensive assortment of protocols, methods, techniques, and
recommendations that can form a cornerstone of preclinical renal
MR. This collection will serve as an excellent starting point for new
researchers interested in breaking into the renal MR field. Expand-
ing the number of researchers is absolutely critical for realizing the
full potential of renal MR. By providing a set of carefully con-
structed protocols, we can avoid the waste of time, money and
resources by no longer “re-inventing the wheel.” This collection
will also greatly facilitate the harmonization of studies, and pro-
mote the sharing of data and results across multiple research
groups, by getting everyone onto the “same page.” These efforts
will help us break through those bottlenecks of inefficient learning
and lack of standardization. The road ahead to fully realize the
scientific and clinical possibilities of renal MR remains long, but
the end result will be well worth the effort.

4 Notes

1. The search string for clinical renal MRI was as follows:
(((“magnetic resonance imaging”[MeSH Terms]) AND

“kidney”[MeSH Terms]) AND “humans “[MeSH Terms]).
For preclinical renal MRI the last AND term was replaced
with AND “animals”[MeSH Terms]) NOT “humans”[MeSH

Terms]. For cardiac MRI the word “kidney” was replaced
with the word “heart.” For restricting the search to papers
with a main focus on MRI of the kidney/heart MeSH Terms

was replaced with MeSH Major Topic: (((“magnetic reso-

nance imaging”[MeSH Major Topic]) AND “kidney”[-

MeSH Major Topic])) . . .. We used PubMed’s MeSH terms
rather than free text search in the title/abstract to reduce the
number of false positive/negative search results. However, a
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drawback of using MeSH terms is that the indexing process
takes rather long (several studies reported average delays of
100–150 days), but it may take significantly longer in some
cases. For example, we found that several of our publications
from 2017 and after were not yet MeSH indexed. Hence, the
presented publication statistics can only be rough estimates of
the true numbers of publications. Data for the year 2019 was
excluded, because most PubMed listed publications on renal
MRI had not been indexed with MeSH Terms yet.

2. We further exploited the publication lists obtained from the
above PubMed’s searches. We defined active researchers as any-
one who published on renal MRI since 2015. After exporting
the date-restricted publications lists from PubMed in XML
format, we used an in-house developed software to extract
the affiliations of the first and last authors—these research
groups (departments of hospitals and academic institutions
were counted individually) were considered to be active players
in renal MRI. Duplicates were removed automatically (using
Matlab’s unique() function) and manually. The limitations
mentioned in Note 1 also apply here: due to the incomplete
MeSH indexing the derived statistics are only rough estimates
and data of 2019 could not be included.
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