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ABSTRACT: In South America, land–atmosphere interactions have an important impact on climate, particularly the

regional hydrological cycle, but detailed evaluation of these processes in global climate models has been limited. Focusing

on the satellite-era period of 2003–14, we assess land–atmosphere interactions on annual to seasonal time scales over South

America in satellite products, a novel reanalysis (ERA5-Land), and two global climate models: the Brazilian Global

Atmospheric Model version 1.2 (BAM-1.2) and the U.K. Hadley Centre Global Environment Model version 3

(HadGEM3).We identify key features of SouthAmerican land–atmosphere interactions represented in satellite andmodel

datasets, including seasonal variation in coupling strength, large-scale spatial variation in the sensitivity of evapotranspi-

ration to surface moisture, and a dipole in evaporative regime across the continent. Differences between products are also

identified, with ERA5-Land,HadGEM3, andBAM-1.2 showing opposite interactions to satellites over parts of theAmazon

and the Cerrado and stronger land–atmosphere coupling along the North Atlantic coast. Where models and satellites

disagree on the strength and direction of land–atmosphere interactions, precipitation biases and misrepresentation of

processes controlling surface soil moisture are implicated as likely drivers. These results showwhere improvement of model

processes could reduce uncertainty in the modeled climate response to land-use change, and highlight where model biases

could unrealistically amplify drying or wetting trends in future climate projections. Finally, HadGEM3 and BAM-1.2 are

consistent with the median response of an ensemble of nine CMIP6 models, showing they are broadly representative of the

latest generation of climate models.

KEYWORDS: Amazon region; Land surface; Vegetation-atmosphere interactions; Feedback;Model evaluation/performance;

Atmosphere-land interaction

1. Introduction

Global climate models offer a way to predict how increasing

anthropogenic emissions and land-use change will impact cli-

mate. However, before models can be reliably used for future

projections, it is necessary to validate their performance in the

present day, including their ability to represent key physical

processes in the climate system (Flato et al. 2013). Such

process-based model evaluation has become increasingly im-

portant as models have gained in complexity, with novel

evaluation approaches over the past decade helping to drive

improvements in model development, and to assess the cred-

ibility of future climate projections (Eyring et al. 2016a;

Duveiller et al. 2018; Eyring et al. 2019, 2020; Fasullo 2020).

In SouthAmerica, interactions between the land surface and

the atmosphere are particularly important for climate, and thus

need to be accurately represented in climate models. Studies

integrating remote sensing and reanalysis datasets have high-

lighted the importance of soil moisture (SM), with variation in

SM shown to drive spatiotemporal variation in evapotranspi-

ration (ET), surface temperature (T), and precipitation (P)

(Spennemann and Saulo 2015; Bedoya-Soto et al. 2018). SM

impacts local climate by affecting surface albedo and the par-

titioning of heat loss to the atmosphere into sensible and latent

heat fluxes (Bowen ratio) (Avissar 1995; Eltahir 1998; Koster

et al. 2004; Seneviratne et al. 2010; Dirmeyer 2011). SM may

also influence climate remotely, with P over some areas of

central and southern South America dependent on water that
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has been recycled over the continent (Salati et al. 1979;

Dirmeyer et al. 2009; van der Ent et al. 2010; Drumond et al.

2014; Bedoya-Soto et al. 2018).

Variation in vegetation cover is also important for regulating

land–atmosphere interactions in South America (Spracklen

et al. 2018). Extensive land-use change, both inside and outside

Amazonia, has already impacted climate on local and regional

scales (BaidyaRoy andAvissar 2002; Silvério et al. 2015; Salazar
et al. 2015, 2016; Baker and Spracklen 2019). Deforestation has

been linked to lengthening dry seasons in the southern Amazon

and in the seasonally dry Cerrado biome (Costa and Pires 2010;

Fu et al. 2013). Many models struggle to represent the complex

biophysical changes that accompany land-use change, dis-

agreeing on the direction of ET, T, and P responses over South

America (Duveiller et al. 2018; Boysen et al. 2020). These

studies demonstrate that accurate representation of land–

atmosphere interactions in models is necessary to quantify the

climate response to future land-use change.

Models can contribute to mechanistic understanding of

land–atmosphere interactions, as model fieldsmay be available

for variables that cannot be observed directly, and model ex-

periments can be used to isolate the importance of different

variables and processes. Studies based on regional climate

models have identified the Amazon, eastern Brazil, and

southeastern South America, including La Plata basin, as key

regions where interactions between land and atmosphere have

an important impact on the local climate (Sörensson and

Menéndez 2011; Llopart et al. 2014; Ruscica et al. 2015;

Menéndez et al. 2016; Spennemann et al. 2018; Menéndez et al.
2019). Over eastern Brazil and La Plata Basin, where T is highly

variable, a study based on two regional circulation models

showed that models with fully interactive land–atmosphere

feedbacks simulated greater T seasonality and higher inter-

annual T variation, than models where climatological SM was

prescribed (Menéndez et al. 2019). Similarly, a comparison of

models run with and without land–atmosphere coupling over

the Amazon showed that models with prescribed SM under-

estimated the dry season T response to El Niño over the

eastern basin (Levine et al. 2019). In southeastern South

America, land–atmosphere coupling strength varies season-

ally, peaking in austral summer when SM and ET variability

are sufficiently high to influence the atmospheric response

(Sörensson and Menéndez 2011; Ruscica et al. 2015, 2016).

Detailed evaluation of variables in the surface-to-atmosphere

moisture feedback pathway showed that SM influences P by

modulating the surface heat flux, thus coupling SM to the

vertical gradient in moist static energy (MSE), where higher

(lower) MSE is usually associated with lower (higher) atmo-

spheric stability, favoring (suppressing)P (Eltahir 1998; Ruscica

et al. 2015). These studies illustrate howmodels can enhance our

understanding of land–atmosphere interactions, though they

depend on models providing an accurate representation of the

relevant processes, which may not be guaranteed.

Evaluation of land–atmosphere interactions over South

America in global climate models has so far been limited, al-

though evidence suggests representation is variable at best. On

short time scales, models show a tendency of enhanced after-

noon rainfall over areas with high SM, which is opposite to the

observed response (Taylor et al. 2012). Furthermore, a meta-

analysis of studies modeling the climate impacts of complete

Amazon deforestation found simulated precipitation changes

ranged from15% to255%, illustrating high uncertainty in the

atmospheric response to changes in the land surface (Spracklen

and Garcia-Carreras 2015). Another study evaluating land–

atmosphere interactions over the Amazon showed 20 out of

38 Coupled Model Intercomparison Project (CMIP) phase 5

(CMIP5) models analyzed, and 10 out of 26 CMIP6 models,

simulated a water-limited evaporative regime over theAmazon,

rather than a radiation-limited regime as indicated by observa-

tions (Baker et al. 2020, manuscript submitted to Environ. Res.

Lett.). The authors showed that the direction of interactions

influenced whether future changes in climate were likely to be

amplified or moderated. These examples illustrate the impor-

tance of evaluating model representation of land–atmosphere

interactions, and identifying model processes to target for

improvement.

A key challenge facing researchers wishing to study land–

atmosphere interactions over South America, and evaluate

their representation in climate models, is the limited avail-

ability of high-quality observational datasets, particularly over

the Amazon. Ground-based climate data are scarce in the

Amazon and therefore datasets based on interpolated station

data (e.g., Harris et al. 2014) are less likely to be reliable in this

region. Satellite products can provide useful estimates of some

variables, such as T, SM, and P. However, SM estimates are

unavailable over most of the Amazon, as closed-canopy veg-

etation obscures the land surface, thus interfering with satellite

retrievals of SM (Dorigo et al. 2017). ET is even more chal-

lenging to quantify over large spatial scales as retrieval from

space is particularly complex, in situ data are rare, and com-

parison studies have revealed important discrepancies between

products over the Amazon (Sörensson and Ruscica 2018;

Baker et al. 2021). Where satellite data are unavailable or

unreliable, reanalysis products can potentially provide useful

estimates of climate variables. Reanalysis fields are not pure

observations, but the result of assimilating observations into a

numerical model to generate a best estimate of the climate

state on a homogenous grid. Reanalyses have been widely used

in model evaluation studies (e.g., Flato et al. 2013, and refer-

ences therein), though they themselves require validation,

where possible, to ensure reliability.

There is a clear need to evaluate the representation of land–

atmosphere interactions in climate models in order to deter-

mine where model improvements are needed, and ultimately

to reduce the uncertainty in future climate projections. In this

study, we selected two global climate models representing

different stages of model development for a detailed assess-

ment of land–atmosphere interactions over South America:

the U.K. Hadley Centre Global Environment Model version 3

(HadGEM3), which has been developed over several decades

and has been included in multiple CMIP phases (Murphy 1995;

Johns et al. 1997; Pope et al. 2000; Collins et al. 2001; Johns

et al. 2006; Martin et al. 2011; Williams et al. 2018; Andrews et

al. 2020), and the Brazilian Global Atmospheric Model version

1.2 (BAM-1.2), which was developed comparatively recently

(Figueroa et al. 2016; Coelho et al. 2021). Furthermore, we
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wanted to understand how representation of land–atmosphere

interactions in these two models compared with wider en-

semble of CMIP6 models, to assess the generalizability of our

findings. Limited in situ observations and uncertainties in sat-

ellite retrievals and reanalysis datasets make such evaluations

challenging, suggesting we need to understand the behavior of

land–atmosphere processes across all types of datasets before

models can be critically assessed. Therefore, the aims of this study

were 1) to quantify land–atmosphere interactions over South

America using satellite products, a novel reanalysis, and the global

climate models HadGEM3 and BAM-1.2; 2) to compare results

from all products, and identify similarities and differences be-

tween them; and 3) to compare results from HadGEM3 and

BAM-1.2 to results from an ensemble of nine CMIP6 models.

2. Methods

We compiled a suite of land–atmosphere coupling metrics

based on previous literature to evaluate the surface soil

moisture–evapotranspiration–precipitation (SM–ET–P) path-

way in satellite products, a reanalysis and two global climate

models. We focused on evaluating land–atmosphere interac-

tions over South America, but the metrics applied here can be

adapted to evaluate other processes, over any region of interest

across the world. A link to the repository containing the fully

commented diagnostic scripts (written in the programming

language Python) is provided at the end of the paper.

a. Land–atmosphere coupling metrics

The metrics used here measure the strength of coupling

between the land and the atmosphere, where ‘‘coupling’’

refers to the sensitivity of the atmospheric state to variation

in the land surface (land–atmosphere coupling), or vice

versa (atmosphere–land coupling) (Seneviratne et al. 2010;

Levine et al. 2016). We specifically aimed to diagnose and

understand the surface-to-atmosphere moisture transfer

pathway (i.e., SM–ET–P). Given the challenges associated

with measuring SM and ET over large parts of South

America, we selected five metrics that could be used to

quantify and visualize this pathway using complementary

approaches and data requirements. The first three metrics

specifically relate to the SM–ET segment of the pathway,

offering alternative methods to quantify SM–ET coupling.

These include the terrestrial coupling index (TCI), which

measures the sensitivity of ET to variation in SM (Guo et al.

2006; Dirmeyer 2011); the temperature–evapotranspiration

metric (T_ET), which uses relationships between T and ET

to infer SM–ET coupling (Seneviratne et al. 2006, 2010); and

Zeng’s gamma (G), a quantity that uses P as a proxy for SM

to estimate SM–ET relationships (Zeng et al. 2010). In ad-

dition to these we used the Betts’ approach, which calculates

and displays associations between any two variables aver-

aged over a specified domain of interest (Betts 2004), and

the two-legged metric, which traces the full SM–ET–P

pathway from the surface to the atmosphere in a mecha-

nistic way (Guo et al. 2006; Dirmeyer 2006; Dirmeyer et al.

2014). A full description of each metric is provided in the

online supplemental material.

b. Satellite and reanalysis products

The satellite and reanalysis products used in this study are

listed in Table 1. Satellite products were obtained for the

common time period of 2003–14 and all datasets were scaled to

monthly resolution. Satellite retrievals of SM were obtained

from the European Space Agency Climate Change Initiative

(ESA CCI) Combined product (Liu et al. 2012), which merges

information from active and passive satellite sensors. Satellite

SM products typically offer information on the moisture

content of the top 5 cm of the soil profile (Ray and Jacobs

2007), and thus provide a measure of surface SM only. We

used satellite ET from the Moderate Resolution Imaging

Spectroradiometer (MODIS) MOD16 ET product (Mu et al.

2007, 2011). Precipitation data came from the Tropical Rainfall

Measuring Mission (TRMM) Multi-Satellite Precipitation

Analysis (TMPA) 3B43 monthly version 7 product (Huffman

et al. 2007). Monthly surface T data were obtained from the

Level 3 AIRX3STM version 6 product, based on retrievals

from theAtmospheric Infrared Sounder (AIRS) instrument on

board theAqua satellite (Aumann et al. 2003; Tian et al. 2017).

We took the mean of measurements from ascending [local over-

pass time 1330 local time (LT)] and descending (local overpass

time 0130 LT) orbits (variable names SurfSkinTemp_A and

SurfSkinTemp_D), which was previously shown to provide a

reliable estimate of surface T (Susskind et al. 2019). Shortwave

incoming solar radiation (RDN) data were retrieved from the

0.258 3 0.258 CLARA-A1 dataset (Karlsson et al. 2013).

Previous work has shown inconsistencies between CLARA-

A1 and other satellite radiation products (e.g., Loew et al.

2016; Sörensson and Ruscica 2018), and thus comparisons be-

tweenmodels and satellite radiation data should be interpreted

with some caution. However, as radiation data were not used

for any of the metric calculations, radiation uncertainties are

expected to have a relatively small impact on the interpretation

of results in this study.

We obtained monthly output from ERA5-Land, a state-

of-the-art global reanalysis from the European Centre for

Medium-Range Weather Forecasts (Hersbach et al. 2020).

ERA5-Land is a downscaled ERA5 product reported to

have improved accuracy for land applications. To produce

ERA5-Land, remote sensing and in situ observations were

assimilated into the Integrated Forecasting System Cy4lr2

model to quantify the climate state on a four-dimensional

grid. The land surface scheme is the Hydrology Tiled

ECMWF Scheme for Surface Exchanges over Land (HTESSEL;

Balsamo et al. 2015). As a reanalysis, ERA5-Land theoretically

occupies an intermediate position between observations and pure

simulation, and may provide insights over regions where obser-

vational data are unavailable. We downloaded ERA5-Land ET,

P, T, and RDN as single-layer datasets. For surface SM we used

data from the uppermost layer of the soil column (0–7 cm) to al-

low close comparison with satellite SM.

c. Models

We used Atmospheric Model Intercomparison Project

(AMIP) simulations following the CMIP6 protocol. CMIP6

AMIP runs cover the historical period only (1979–2014), and
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are prescribed with observed sea surface temperatures, sea-

ice concentrations, and all volcanic, solar, and anthropo-

genic forcings, including atmospheric CO2 concentrations

(Eyring et al. 2016b). Our analysis focused on two models,

the U.K. Hadley Centre Global EnvironmentModel version

3 (HadGEM3), and the Brazilian Global Atmospheric

Model version 1.2 (BAM-1.2), but we later compare these

results with AMIP runs from nine additional CMIP6 models,

where the necessary data were available. The model variables

needed to replicate the analyses shown in this study are listed in

Table S1 in the online supplemental material and include ET,

P, surface T, RDN, and surface-layer (0–10 cm) SM. Detailed

information on the processing of model output is provided in

the supplemental material.

AMIP runs from HadGEM3-GC31-MM (HadGEM3),

the medium-resolution, global coupled model from the

U.K. Met Office (Met Office Hadley Centre 2019; Williams

et al. 2018; Andrews et al. 2020), were downloaded from

the CMIP6 Earth System Grid Federation (ESGF) archives

(https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/) at monthly

resolution (surface SM data only were downloaded at daily

resolution and converted to monthly means, due to monthly

output being unavailable for this variable). MM (medium res-

olution in atmosphere and ocean) simulations (N216) have a

horizontal resolution equivalent to approximately 60 km in the

midlatitudes (Roberts et al. 2019). HadGEM3 uses the Unified

Model global atmosphere (GA7) and the JULES global land

(GL7.1) schemes (Table S2). Further details on the configura-

tion of HadGEM3 is provided by Walters et al. (2019).

In addition, we obtained monthly AMIP-type runs from

BAM-1.2 (Coelho et al. 2021), developed at the Centre for

Weather Forecasting and Climate Studies [Centro de Previsão
de Tempo e Estudos Climáìticos (CPTEC)] of the National

Institute for Space Research [Instituto Nacional de Pesquisas

Espaciais (INPE)] in Brazil (Figueroa et al. 2016; Guimarães
et al. 2020). In this study, BAM-1.2 was run with triangular 126-

wave truncation (TQ126), corresponding to a horizontal grid of

approximately 1.08 3 1.08 at the equator, 42 sigma vertical

levels (32 levels in the troposphere and 10 in the stratosphere),

and the model top was at 2 hPa. BAM-1.2 uses the land surface

scheme IBIS-CPTEC (Kubota 2012). A full description of

BAM-1.2 and its physical components is provided by Coelho

et al. (2021). A summary of the characteristics of ERA5-Land,

HadGEM3, and BAM-1.2 is presented in Table S2.

To compare land–atmosphere interactions in the U.K. and

Brazil climate models with the latest generation of global

models, we downloaded monthly AMIP simulations from a

further nine CMIP6 models (Table S3) for the period 2003–14.

We selected models that provided output for surface SM, ET,

P, and T, excluding models from the same modeling centers as

HadGEM3 or BAM-1.2.

d. Data analysis

We focused on assessing land–atmosphere moisture inter-

actions over South America and four key subregions (Fig. 1).

These included the Amazon and La Plata basins, which rep-

resent the two largest watersheds in South America, and the

Brazilian Cerrado and Caatinga biomes, seasonally dry ecor-

egions of woody savanna and semiarid vegetation, respec-

tively. The shapefile for the Amazon was obtained from the

Observation Service SOHYBAM (http://www.ore-hybam.org),

La Plata fromCentro de Investigaciones delMar y la Atmósfera
(CIMA, http://www.cima.fcen.uba.ar/ClarisLPB/), and shape-

files for the Cerrado and Caatinga biomes were downloaded

from Map for Environment (https://mapforenvironment.org/

layer/info/751/#4.3/-13.19/-48.45).

TABLE 1. List of satellite and reanalysis products used in this study. SM 5 surface soil moisture, ET 5 evapotranspiration, P 5 pre-

cipitation, T 5 surface temperature, RDN 5 radiation.

Variable Type Product Original resolution (8) Reference

SM Satellite ESA-CCI Combined v03.2 0.25 Liu et al. (2012)

ET Satellite MODIS MOD16A2 0.05 Mu et al. (2007) and Mu et al. (2011)

P Satellite TRMM 3B43 v7 0.25 Huffman et al. (2007)

T Satellite AIRS AIRX3STM v6 1.0 Tian et al. (2013)

RDN Satellite CLARA-A1 0.25 Karlsson et al. (2013)

SM, ET, P T, and RDN Reanalysis ERA5-Land Reanalysis 0.1 Hersbach et al. (2020)

FIG. 1. Map of South America showing the four subregions eval-

uated in this study.
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We analyzed land–atmosphere interactions in satellite

products, ERA5-Land and global climate model output using

the five metrics outlined in section 2a. All datasets were re-

gridded to the same resolution as BAM-1.2, using an area-

weighted regridding approach. For HadGEM3 and BAM-1.2,

which each had four ensemble members, we computed land–

atmosphere interactions for each member individually, and

then calculated the mean result for each metric. Land–

atmosphere interactions varied slightly between members,

and metrics computed using ensemble mean data were not

necessarily representative of the mean of the results from

individual members (Figs. S1 and S2). This is because com-

puting the ensemble mean prior to applying the land–

atmosphere coupling metrics averages out spatiotemporal

variability in the surface, flux and atmospheric variables, and

thus land–atmosphere interactions estimated from the en-

semble mean tend to be slightly muted. Therefore, all of the

metric results presented here represent the mean of metrics

computed from individual members, unless otherwise stated.

To gain a broad overview of coupling at multiple time

scales, metrics were calculated at the annual scale using data

from all months (i.e., a time series of 12 3 12 5 144 data

points), and at the seasonal scale using data from 3-monthly

periods [December–February (DJF), March–May (MAM),

June–August (JJA), and September–November (SON), i.e., a

time series of 3 3 12 5 36 data points), for the 12-yr period

2003–14 (the common period of available data). Since most of

the climate data analyzed here were not normally distributed

(Fig. S3), Spearman’s rank correlation coefficients were com-

puted for all metrics, with the exception of the Betts’ approach,

which used Pearson’s correlation coefficients derived from a

scatterplot of the two investigated variables (though correla-

tions from Spearman’s rank were found to be very similar).

Finally, while it would have been preferable to analyze land–

atmosphere interactions over a longer time period, we were

limited by the availability of appropriate satellite reference

data, and the fact that CMIP6 AMIP simulations finish in the

year 2014.

Finally, the nine CMIP6 models (Table S3) were evaluated

at the annual time scale to provide a wider context for the rest

of the results. The TCI, T_ET, and Zeng’s G metrics were

calculated for each model member in turn (the number of

members per model is listed in Table S3). The mean of the

results from individual members was calculated for each

model, and themedian metric value over each of the four study

regions was extracted. The distribution of median values across

the nine CMIP6 models was compared with median values

from satellite products, ERA5-Land, and the four members of

HadGEM3 and BAM-1.2.

3. Results

a. Controls on surface moisture fluxes

A key step in the hydrological pathway is the transfer of

moisture from the land to the atmosphere via ET. Following

the terminology of Seneviratne et al. (2010), we refer to areas

where variation in ET is strongly related to surface SM as

having strong land–atmosphere coupling.When land–atmosphere

interactions are dominated by an atmospheric influence, such

as a radiation control on ET, the coupling is in the opposite

direction (atmosphere–land coupling). To evaluate represen-

tation of land–atmosphere interactions in HadGEM3 and

BAM-1.2 at the annual mean time scale, we synthesized results

from three land–atmosphere coupling metrics calculated using

twelve years (2003–14) of monthly data (TCI, T_ET, and

Zeng’s G), and the four climate variables used in their com-

putation (P, ET, surface SM, and surface T), over the four

regions in South America shown in Fig. 1, and compared the

results against satellite and reanalysis products (Fig. 2, Fig. S4,

Table S4). In general, we consider the satellite products as the

‘‘reference’’ in our comparison, though we acknowledge that

they also have an associated degree of uncertainty, which

should not be overlooked.

Satellite SMdata were unavailable over three quarters of the

Amazon (Fig. S4u, Table S4), though the T_ET and Zeng’s G
metrics computed using satellite products suggest Amazon

land–atmosphere interactions are dominated by an atmo-

spheric control on the land surface (i.e., atmosphere–land

coupling, Figs. 2e,i). Positive T_ET values and negative Zeng’s

G values indicate that ET fluxes in this region are controlled by

incoming shortwave radiation. This is consistent with the fact

that in very wet areas, such as theAmazon,P is sufficiently high

that the land surface is nearly always moist, therefore, the

primary limiting factor for ET is the amount of available ra-

diation.Metrics calculated using ERA5-Land, HadGEM3, and

BAM-1.2 showed a broader distribution of land–atmosphere

interactions in the Amazon, with TCI and T_ET results

showing variation in sign across the region (Figs. 2e,i). BAM-

1.2 in particular tended to simulate a stronger land surface

control on coupling over the Amazon than shown by other

datasets (Figs. 2e,i). This finding can be understood by the fact

that BAM-1.2 simulates lower surface SM over the Amazon

than ERA5-Land or HadGEM3 (Fig. 2u), and therefore

BAM-1.2 Amazon ET is more likely to be water limited.

Amazon P distributions are similar in all datasets (Fig. 2m),

therefore the lower Amazon SM in BAM-1.2 relative to

ERA5-Land and HadGEM3 is likely caused by differences in

the processes controlling SM.

In the Cerrado, Caatinga, and La Plata, the TCI and T_ET

metrics showed that ERA5-Land, HadGEM3, and BAM-1.2

largely captured a land surface control on ET, as indicated by

satellite products (i.e., metric results have the same sign,

Figs. 2b–d, f–h). Land–atmosphere interactions were strongest

over the Caatinga (Figs. 2c,g,k). This is the driest of the regions

analyzed, with mean annual P of just 825mmyr21 (Fig. S4m),

and therefore water availability has an important influence on

surface moisture fluxes. BAM-1.2 simulated weaker coupling

here than shown in other products, likely because annual

P was more than 50% higher than in satellite estimates

(Fig. 2o). For the Caatinga and La Plata, the distributions of

land–atmosphere interactions in ERA5-Land were closest to

the results from satellites. However, HadGEM3 performed

slightly better than ERA5-Land over the Cerrado (Figs. 2b,j),

which is likely due to ERA5-Land showing higher surface SM

than satellites, causing weaker land–atmosphere coupling.
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Across all regions analyzed, the TCI, T_ET, and Zeng’s G
metrics, which all provide a measure of the land surface in-

fluence on surface moisture fluxes, showed fairly good agree-

ment in the sign of coupling at the annual scale (Figs. 2a–l).

However, there were some differences among metrics in the

direction andmagnitude ofmodel biases. Zeng’s G in particular

gave slightly different results from the TCI and T_ET metrics.

Given that the three metrics have different input variables (see

section 2a), we would not have expected the results from each

to be identical. Indeed, climate variables from ERA5-Land

and the two climate models over the four South American

domains showed variable correspondence with satellite

FIG. 2. Annual land–atmosphere coupling and climate variables over four regions in South America. Boxplots show spatial variation in

annual mean results from the (a)–(d) TCI, (e)–(h) T_ET, and (i)–(l) Zeng’s Gmetrics; (m)–(p) precipitation; (q)–(t) evapotranspiration;

(u)–(x) surface soil moisture; and (y)–(ab) surface temperature in satellite products (white boxes), ERA5-Land (green boxes), and AMIP

simulations from HadGEM3 (blue boxes) and BAM-1.2 (red boxes) using data from all months in the year. For the metrics, only pixels

with statistically significant coupling (p, 0.05) were included (Table S4). Boxplots show the quartiles (box) and upper and lower extremes

(whiskers) for all pixels over the Amazon, Cerrado, Caatinga, and La Plata regions shown in Fig. 1. Arrows to the right of the top three

rows indicate the direction of increasing land–atmosphere coupling strength. Note that the y axes differ between panels to optimize data

visualization. The y axes of (e)–(h) have been reversed, to reflect the fact that strong land–atmosphere coupling is indicated by negative

values in the T_ET metric. Satellite P came from TRMM, ET fromMODIS, SM from ESA-CCI, and T from AIRS (Table 1). The same

annual coupling and climate variable data are shown as maps in Fig. S4.
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products (Figs. 2m–ab). Difference between satellite and re-

analysis SM did not always mirror those for P, with ERA5-

Land tending to represent P relatively well (Figs. 2m–p), but

showing higher SM than measured by satellites (Figs. 2u–x).

Since Zeng’s G uses P as a proxy for SM (supplemental

methods), Zeng’s G results for ERA5-Land should therefore

be interpreted with some caution (Fig. 2j). ERA5-Land and the

global models also tended to show higher annual ET than

satellites, which may be associated with simulated T that was

lower than observed (Figs. 2q–t, y–ab).

Since South America has a strong seasonal hydrological

cycle, we evaluated model representation of land–atmosphere

interactions using data from 3-monthly periods, to observe

how model performance varied seasonally (Fig. 3). The three

metrics computed from satellite products showed general

agreement in the seasonality of land–atmosphere interac-

tions across regions (Figs. 3a–l), though there were some

discrepancies over the Amazon and Caatinga (Figs. 3c,g,k).

Land–atmosphere interactions have previously been shown to

vary spatially, with the strongest land–atmosphere coupling in

wet/dry transition regions (e.g., Koster et al. 2004). Our anal-

ysis of satellite products showed seasonal variation in water

availability also influenced coupling magnitude (Fig. 3). For

example, in the Amazon where atmosphere–land coupling was

dominant at the annual scale (Figs. 2e,i), coupling was stron-

gest in DJF when P was highest (Figs. 3e,i,m, Fig. S5a) and

radiation at its lowest (Fig. S6a). The direction of interactions

was opposite over the Cerrado and La Plata, with variation in

the land surface controlling ET. These areas also showed

strongest coupling during the wettest months (DJF, Fig. 3,

columns 2 and 4). These results illustrate that due to high

variability of P in DJF (Fig. S7), and therefore also radiation

and SM, areas with both an atmospheric forcing on the land

(e.g., theAmazon), and land surface forcing on the atmosphere

FIG. 3. Seasonal variation in land–atmosphere coupling and climate variables over four regions in South America. Panels show the

(a)–(d) TCI, (e)–(h) T_ET, and (i)–(l) Zeng’s Gmetrics calculated using data from 3-monthly periods, plus climatological 3-monthlymean

(m)–(p) precipitation, (q)–(t) evapotranspiration, (u)–(x) surface soil moisture, and (y)–(ab) surface temperature from satellite products

(black), ERA5-Land reanalysis (green), and AMIP simulations fromHadGEM3 (blue) and BAM-1.2 (red) using data averaged over the

Amazon, Cerrado, Caatinga, and La Plata regions shown in Fig. 1. For the metrics, only pixels with statistically significant coupling (p,
0.05) were included. Arrows to the right of the top three rows indicate the direction of increasing coupling strength. Note that the y axes

differ between panels to optimize data visualization. The y axes of (e)–(h) have been reversed to reflect the fact that strong land–

atmosphere coupling is indicated by negative values in the T_ET metric.
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(Cerrado and La Plata) show strongest coupling at this time of

the year.

There were differences in seasonal land–atmosphere in-

teractions estimated from ERA5-Land, HadGEM3, and

BAM-1.2 over the four study regions (Fig. 3). HadGEM3 and

BAM-1.2 captured seasonality in land–atmosphere interactions

reasonably well over the Cerrado and La Plata, and to some ex-

tent over the Amazon (Figs. 3a–l). Seasonal cycles in P, ET, and

SM for the Cerrado and La Plata weremostly well represented in

the two models (Figs. 3m–x). For the Amazon, seasonal vari-

ation in P was well characterized, with model SM and ET

following the same seasonal cycle (Figs. 3m,q,u). However,

no Amazon SM satellite data were available for comparison

(Fig. 3u), and satellite ET data showed little agreement with

models over the Amazon at the seasonal scale (Fig. 3q). ERA5-

Land performed least well over the Cerrado, where land–

atmosphere interactions in DJF showed the opposite sign to

satellite estimates (Figs. 3b,f), possibly due to surface SM being

overestimated by more than a third in this period (Fig. 3v).

b. Spatial variation in model performance

Figures 4 and 5 show spatial variability in the TCI and T_ET

metrics, respectively. Results from the Zeng’s Gmetric showed

similar spatial patterns to TCI and T_ET, and are presented in

the supplemental material (Fig. S8). Dark red shading in Figs. 4

and 5 indicate ‘‘hot spots’’ where surface moisture fluxes are

most sensitive to variation in soil water. The regions with the

strongest land–atmosphere interactions, as indicated by the

satellite TCI results, were northeast Brazil over the seasonally

dry Caatinga andCerrado ecoregions, and northernArgentina,

over La Plata basin (Fig. 4, column 1). Since the metric is

weighted by variability in surface state, the land influence on

the atmosphere was strongest in DJF (see large region of dark

red shading in Fig. 4a), in agreement with the results presented

in Fig. 3. With the exception of the Cerrado, ERA5-Land,

HadGEM3, and BAM-1.2 mostly captured these hotspots

(Fig. 4), indicating spatial variation in the ET response to

surface SM was well represented over these areas. The maps

also reveal where there is spatial variation in land–atmosphere

interactions within the defined study regions, thus influencing

the regional means presented in Fig. 3, for example, over the

Cerrado inMAM (Figs. 4e–h) and the Amazon and La Plata in

JJA (Figs. 5i–l).

The Amazon is dominated by an atmospheric control on the

land surface throughout the year (blue shading in Fig. 5, col-

umn 1). This feature can also be detected in ERA5-Land,

BAM-1.2, and HadGEM3, though these datasets tend to

overestimate the strength of the signal, while underestimating

the spatial extent. This is particularly evident in JJA and SON,

when the models show large areas with a land surface control

(red shading, Fig. 5, columns 2–4). Output from the Zeng’s G
metric, which is based on relationships between P and ET, also

indicates an atmospheric control on interactions over most of

the Amazon throughout the year (Fig. S8). The P–ET rela-

tionships have previously been used to distinguish between

regions where ET is primarily limited by soil moisture (areas

with a positive correlation between anomalies of P and ET) or

available energy at the surface (areas with a negative

correlation; Baker et al. 2020, manuscript submitted to

Environ. Res. Lett.). The fact that Amazon atmosphere–land

interactions are strongest during DJF (Fig. 5a) supports this

interpretation, as solar radiation is lower during the wetter

months of the year (Figs. S5 and S6).

The reanalysis and models performed less well along the

North Atlantic coast, particularly in DJF and MAM, simulat-

ing strong land–atmosphere coupling that was not suggested by

satellite data (Figs. 5b–d, f–h). This indicates that the variables

controlling ET, such as SM, P, vegetation functioning and/or

cloudiness, may be misrepresented over these regions, leading

to misrepresentation of land–atmosphere interactions. Indeed,

ERA5-Land, BAM-1.2, and HadGEM3 all showed lower P

than the satellite product in this area (Fig. S5), which may

explain why moisture availability is shown to be the dominant

control on surface moisture fluxes over this region.

c. Seasonal variation in SM–ET relationships over the
Caatinga

We used the Betts’ approach to investigate the relationship

between anomalies of surface SM and ET over the Caatinga by

season (Fig. 6), where the models and reanalysis seemed to

capture the direction of land–atmosphere interactions rela-

tively well (Figs. 4 and 5). For HadGEM3 and BAM-1.2, re-

sults from a single model member are shown in Fig. 6 (r1i1p1

and member 1, respectively), though comparable results were

found across all members (Table S5).

Although the period of analysis was only short (2003–14), we

identified strong and consistent positive relationships between

satellite surface SM andET throughout the year (Pearson’s r5
0.83–0.87), indicating surface water fluxes are strongly depen-

dent on terrestrial water availability in this region (Fig. 6,

column 1). ERA5-Land, HadGEM3, and BAM-1.2 captured

positive relationships between surface SM and ET in all sea-

sons (Pearson’s r 5 0.80–0.96, Fig. 6, columns 2–4), though

there were some differences in the distributions of these vari-

ables from those shown in satellite products. For example, in

the wet-to-dry transition season (MAM) HadGEM3 showed a

wider range in surface SM than shown in satellites (Fig. 6g),

implying this model may overestimate variability in the surface

state in these months, while BAM-1.2 showed a narrower

range in surface SM and ET over the same time period

(Fig. 6h). In the dry season (JJA), the models and ERA5-Land

all showed narrower distributions of surface SM than shown in

satellites. This could explain why coupling in these products is

weaker than in satellites in these months (Figs. 3c,g,k). These

results show that despite capturing the sign and magnitude of

SM–ET relationships, representation of variables impacting

land–atmosphere interactions over the Caatinga in ERA5-

Land, HadGEM3, and BAM-1.2 could still be improved.

d. Tracing surface-to-atmosphere moisture pathways

When considering land–atmosphere moisture transfer path-

ways, it can be helpful to distinguish between processes that

operate at the land–atmosphere interface and processes that

occur in the atmospheric boundary layer. For example, the

coupling between the land surface and surface fluxes, and be-

tween surface fluxes and the atmosphere, can be quantified
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separately (Guo et al. 2006; Dirmeyer 2011; Dirmeyer et al.

2014). This can make it easier to understand interactions and

feedbacks in a mechanistic way, and to properly evaluate

whether models are representing physical processes accurately.

We focused on the DJF period, when seasonal analysis showed

land–atmosphere interactions were at their strongest over the

Amazon, Cerrado, and La Plata (Fig. 3), and therefore, when it

is particularly important that models perform well.

The two-legged metric for the land-to-atmosphere moisture

transfer pathway (SM–ET–P) in DJF is presented in Fig. 7, and

its proxy pathway (T–ET–P) is shown in the supplemental

material (Fig. S9). ERA5-Land, HadGEM3, and BAM-1.2

captured the positive association between surface SM and P

over most of South America, showing similar spatial patterns

of land–atmosphere interactions to those in satellites (Figs. 7i–l).

However, on inspection of the surface (Figs. 7a–d, Figs. S9a–d)

and atmospheric (Figs. 7d,e–h, Figs. S9e–l) legs of the

metric, it is possible to detect regions where the reanalysis and

models simulated the correct feedback between surface SM

and P, but for the wrong reasons. For example, ERA5-Land,

FIG. 4. Terrestrial coupling index at seasonal scale. Maps showing the relationship (in units of mmday21) between surface SM and ET,

calculated using (first column) satellite products (SAT), (second column) ERA5-Land reanalysis, and AMIP simulations from (third

column) HadGEM3 and (fourth column) BAM-1.2, for (a)–(d) austral summer (DJF), (e)–(h) autumn (MAM), (i)–(l) winter (JJA), and

(m)–(p) spring (SON). Stippling indicates relationships that are statistically significant at p , 0.05. For the models, stippling indicates

where at least three out of fourmembers showed a statistically significant correlation (p, 0.05). Black lines indicate the four subregions of

South America shown in Fig. 1. Red shading indicates land–atmosphere coupling (variation in surface state controls surface fluxes), blue

shading indicates atmosphere–land coupling (variation in atmospheric state controls surface fluxes), and gray shading shows where sat-

ellite results were unavailable.
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HadGEM3, and BAM showed positive correlations between

surface SM and ET and between ET and P along the North

Atlantic coast (red shading, Figs. 7b–d, f–h), suggestive of a

strong surface control on land–atmosphere interactions. However,

satellite products showed inverse SM–ET (positive T_ET in

Fig. S9a) and ET–P relationships over this region (blue

shading, Figs. 7a,d), indicating that the direction of control is

not from the surface to the atmosphere, but rather the at-

mosphere is exerting an influence on the surface. This is con-

sistent with this region having an energy-limited evaporative

regime (Guan et al. 2015). Over the Cerrado, ERA5-Land

showed the opposite pattern, with negative relationships in the

surface and atmospheric legs combining to give a positive

SM–P association (Fig. 7, column 2), whereas the results from

satellite products show the surface (SM–ET) and atmospheric

(ET–P) legs of the pathway are both positive in this region

(Fig. 7, column 1). These results highlight how the two-legged

metric can provide a useful way of analyzing representation of

land–atmosphere feedback pathways, and highlight regions

where model processes could be improved.

FIG. 5. Temperature–evapotranspiration metric at seasonal scale. Maps showing the relationship between land surface T and ET (a

proxy for SM–ET coupling) calculated using (first column) satellite products (SAT), (second column) ERA5-Land reanalysis, and AMIP

simulations from (third column) HadGEM3 and (fourth column) BAM-1.2, for (a)–(d) austral summer (DJF), (e)–(h) autumn (MAM),

(i)–(l) winter (JJA), and (m)–(p) spring (SON). Stippling indicates relationships that are statistically significant at p , 0.05. For the

models, stippling indicates where at least three out of four members showed a statistically significant correlation (p , 0.05). Black lines

indicate the four subregions of SouthAmerica shown in Fig. 1. Red shading indicates land–atmosphere coupling (variation in surface state

controls surface fluxes), and blue shading indicates atmosphere–land coupling (variation in atmospheric state controls surface fluxes).
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e. Land–atmosphere interactions in CMIP6 models

Land–atmosphere interactions in nine CMIP6 models

were analyzed at the annual mean time scale and compared

with results from the datasets already analyzed in this study

(Fig. 8). For each region analyzed, median estimates of land–

atmosphere coupling from satellites, ERA5-Land, HadGEM3,

and BAM fell within or close to the distribution of median

values from the CMIP6models (gray boxes, Figs. 8a–l). Inmost

cases, median coupling values from members of HadGEM3 or

BAM-1.2 overlapped with the interquartile range of median

values from CMIP6 models, showing that the two models that

were assessed in detail in this study are consistent with the

median response shown by the wider CMIP6 ensemble. For

example, over La Plata, although results from the T_ET

metric showed most CMIP6 models tended to simulate

stronger land–atmosphere coupling than satellites, ERA5-

Land, and HadGEM3, the CMIP6 models were comparable

to results from BAM-1.2 (Fig. 8h). For BAM-1.2 and the

wider CMIP6 ensemble, the overestimation of land–atmosphere

FIG. 6. Betts’ relationship over the Caatinga. Contour plots showing the relationship between anomalies of surface SM andET averaged

over the Caatinga in (first column) satellite products, (second column) ERA5-Land reanalysis, and AMIP simulations (one member only)

from (third column) HadGEM3 and (fourth column) BAM-1.2, for (a)–(d) austral summer (DJF), (e)–(h) autumn (MAM), (i)–(l) winter

(JJA), and (m)–(p) spring (SON). Correlations for all HadGEM3 and BAM-1.2 members are presented in Table S5. The normalized

distributions of each variable are shown on each panel. Satellite data are from the ESA-CCI (SM) andMODIS (ET). Data were extracted

from the Caatinga domain indicated in Fig. 1. Pearson’s correlation coefficients are indicated on each panel.
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interactions in La Plata could be attributed to low P over the

region (Fig. 8p). In another example, CMIP6 TCI and T_ET re-

sults over the Caatinga showed relatively strong land–atmosphere

coupling, in good correspondence with HadGEM3 (Figs. 8c,g),

though coupling in BAM-1.2 was weaker in this region due to P

and surface SM being overestimated (Figs. 8o,w).

Over the Amazon, six out of nine CMIP6 models were able

to capture the atmospheric influence on land–atmosphere in-

teractions indicated by satellites, as evidenced by median

T_ET and Zeng’s G values that were positive and negative,

respectively (Figs. 8e,i). Amazon P, ET, and T from CMIP6

models also showed good agreement with satellite products

(Figs. 8m,q,y). However, Amazon surface SM in the CMIP6

ensemble was notably lower than in ERA5-Land, HadGEM3,

and BAM-1.2. Outside of the Amazon, nearly all of the CMIP6

models analyzed showed coupling results of the same sign as

satellites (e.g., Figs. 8b–d, f–h), though representation of cli-

mate variables was variable. A more in-depth of analysis of

land–atmosphere interactions over South America in CMIP6

models should be the focus of another study, however, the

results presented here suggest that CMIP6 models capture key

features in land–atmosphere coupling over the continent.

4. Discussion

We conducted a detailed assessment of land–atmosphere

interactions over South America using satellite products, a

novel reanalysis (ERA5-Land) and simulations from two

global climate models, HadGEM3 and BAM-1.2. The clima-

tology and variability of these models have previously been

evaluated at the global scale (Figueroa et al. 2016; Williams

et al. 2018; Kuhlbrodt et al. 2018; Coelho et al. 2021), and land–

atmosphere interactions over South America were analyzed in

similar versions of these models at subseasonal time scales

(Chevuturi et al. 2021, manuscript submitted to Climate

Resilience Sustainability). Here, we focused on assessing land–

atmosphere interactions over longer, climate-relevant time

scales, with the aim of comparing results from different

FIG. 7. Two-legged metric for the DJF surface-to-atmosphere moisture-transfer pathway. Relationships between (a)–(d) a surface

variable and a surface flux variable, (e)–(h) a flux variable and an atmospheric variable, and (i)–(l) the full coupling pathway. In this

example, surface, flux, and atmospheric variables are surface SM, ET, and P, respectively. The metric was calculated using (first column)

satellite products, (second column) ERA5-Land reanalysis, and AMIP simulations from (third column) HadGEM3, and (fourth column)

BAM-1.2, for austral summer (DJF). Satellite data are from the ESA-CCI (SM), MODIS (ET), and TRMM (P; Table 1). Stippling

indicates where coupling is statistically significant at p, 0.05. For the models, stippling indicates where at least three out of four members

showed a statistically significant correlation (p , 0.05). Black lines indicate the four subregions of South America shown in Fig. 1. Gray

shading shows where satellite results were unavailable. The proxy pathway, T–ET–P, is shown in Fig. S9.
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FIG. 8. Annual land–atmosphere coupling and climate variables in CMIP6 models. Boxplots show the quartiles (box) and upper and

lower extremes (whiskers) of median values of the (a)–(d) TCI, (e)–(h) T_ET, (i)–(l) Zeng’s G metrics, (m)–(p) precipitation, (q)–(t)

evapotranspiration, (u)–(x) surface soil moisture, and (y)–(ab) surface temperature from nine CMIP6models (Table S3) for the Amazon,

Cerrado, Caatinga, and La Plata regions shown in Fig. 1. Spatial medians for satellite products (black stars) and ERA5-Land reanalysis

(green triangles) are shown, plus the spatial median values from each of the four members of HadGEM3 (blue circles) and BAM-1.2 (red

diamonds). The satellite and ERA5-Land values are the same median values as those presented in Fig. 2. The BAM-1.2 and HadGEM3

values are the same as themedian values for individualmembers presented in Figs. S1 and S2. Note that the y axes differ between panels to

optimize data visualization. The y axes of (e)–(h) have been reversed, to reflect the fact that strong land–atmosphere coupling is indicated

by negative values in the T_ET metric.
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sources, identifying strengths and weaknesses of different

products, and comparing our results to the wider ensemble of

CMIP6 models.

Models must be able to reproduce the direction and strength

of interactions between the land and the atmosphere to accu-

rately simulate climate. In this study, results from satellites

showed a dipole in the direction of land–atmosphere interac-

tions across South America. Interactions in the Amazon were

dominated by an atmospheric control on the land surface (i.e.,

an energy-limited evaporative regime) throughout the year.

This feature was detected in ERA5-Land, BAM-1.2, and

HadGEM3, and two-thirds of CMIP6 models analyzed. A re-

cent analysis showed half of CMIP5 models were unable to

accurately represent land–atmosphere interactions over the

Amazon (Baker et al. 2020, manuscript submitted to Environ.

Res. Lett.), so the ability of HadGEM3 and BAM-1.2 to cap-

ture this large-scale signal at the annual scale is a strength of

these two models. However, both models tended to over-

estimate the importance of the land surface state (SM) on

ET over parts of the Amazon in JJA and SON. The over-

estimation of land–atmosphere coupling, seemingly driven

by underprediction of surface SM, has implications for fu-

ture climate projections over the Amazon, as drying or

wetting trends could be unrealistically exacerbated (Baker

et al. 2020, manuscript submitted to Environ. Res. Lett.).

Furthermore, future deforestation and climate change in the

Amazon are expected to have most impact on dry season cli-

mate (Boisier et al. 2015; Guimberteau et al. 2017), which is

when differences between models and satellites were largest.

Deforestation has already been linked to increases in dry

season length over recent decades (Fu et al. 2013; Marengo

et al. 2018). Our analysis suggests that in parts of the Amazon

where land–atmosphere interactions are misrepresented in the

dry season, HadGEM3 andBAM-1.2may not reliably simulate

climate responses to future deforestation. In contrast to most

other CMIP5 and CMIP6models, HadGEM2-ES and the U.K.

Earth System Model, successors to HadGEM3, simulate a net

cooling in response to Amazon deforestation, partly driven by

the ET response to deforestation being too weak (Robertson

2019; Boysen et al. 2020).

Over the Cerrado, the Caatinga, and La Plata basin, land–

atmosphere interactions were controlled by variation in sur-

face state. These regions have a moisture-limited evaporative

regime, since water availability determines the magnitude of

ET fluxes (Budyko 1974; Seneviratne et al. 2010). BAM-1.2

and HadGEM3 generally captured the correct sign of land–

atmosphere interactions over these areas, which have at least

five months of the year with less than 100mm of P, and are

examples of ‘‘transition zones’’ between wet and dry climate

regimes. The CMIP6 models analyzed in this study were also

able to capture the direction of land–atmosphere interactions

over these areas. Previous work has shown that land–

atmosphere interactions are often strongest over regions with

transitional climate (Koster et al. 2004; Seneviratne et al.

2010; Levine et al. 2016). Accurate simulation of land–

atmosphere interactions is especially important over areas

where coupling is strong. One study, based on four regional

climate models, found overestimation of coupling in La Plata

contributed to P and T biases, due to positive feedbacks be-

tween the surface and atmosphere (Carril et al. 2012). On the

other hand, underestimating coupling could cause climate

models to underpredict climate variability (Menéndez et al.

2019), thus impacting the reliability of future projections.

Our results confirmed the importance of surface SM for

accurate representation of land–atmosphere interactions at

annual and seasonal scales. High surface SM over the

Cerrado in the wet season resulted in ERA5-Land simu-

lating opposite coupling to that shown by satellite products,

despite ERA5-Land being highly constrained by observa-

tional data (Hersbach et al. 2020), and being reported to

represent SM better than previous reanalyses over most of

the Northern Hemisphere (Li et al. 2020). ERA5-Land,

HadGEM3, and BAM-1.2 all showed lower surface SM

variability over the Caatinga in the dry season than shown

by satellite data, contributing to weaker land–atmosphere

coupling. SM is key for influencing spatiotemporal patterns

of P and ET over South America (Bedoya-Soto et al. 2018),

and the land surface ‘‘memory’’ of SM anomalies can in-

fluence the climate from a few days to several months

(Dirmeyer et al. 2009; Ruscica et al. 2014; Levine et al.

2019). Simulation of SM has been shown to be highly de-

pendent on the model land surface scheme (Koster et al.

2009), and our results confirm this, with the reanalysis and

models all showing different patterns of SM behavior. SM is

influenced by many processes besides P, including factors

which affect plant water consumption (e.g., vegetation

fraction, leaf area index, and rooting depth), partitioning of

heat fluxes (e.g., albedo, roughness length), and properties that

determine soil-water storage and runoff (e.g., soil porosity,

depth). Targeting these processes for model development

could help to improve representation of land–atmosphere in-

teractions, and thus regional climate projections.

Seasonal analysis showed land–atmosphere interactions were

strongest during the wet austral summer (DJF) in areas with a

land surface forcing on the atmosphere (e.g., Cerrado and La

Plata) and an atmospheric forcing on the land (e.g., theAmazon).

Previous studies have reported coupling maxima during DJF in

southeast SouthAmerica (Ruscica et al. 2015, 2016). Conversely,

Wei and Dirmeyer (2012) observed that climatologically wet

regions have a greater land surface influence in drier times of the

year, though they did not analyze interactions over the Amazon

(due to a lack of SMobservations) andwere primarily focused on

understanding the surface-to-atmosphere forcing, rather than

atmospheric forcing on the land surface.

Spatial analysis highlighted where coupling in the models

differed from coupling estimated from satellite products.

Along the North Atlantic coast of South America, ERA5-

Land, HadGEM3, and, to a lesser extent, BAM-1.2 simulated

strong land surface forcing on the atmosphere that was not

apparent in satellites. Precipitation and SM biases were most

likely responsible for the misrepresentation of coupling over

this area. A recent analysis suggested that this region could

see large absolute reductions in aboveground carbon in re-

sponse to 28C of global warming (Sullivan et al. 2020), high-

lighting the importance of reliable climate projections for

understanding future changes in the carbon cycle here.
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Furthermore, since atmospheric water vapor enters the

continent from the Atlantic Ocean, having a bias in land–

atmosphere coupling along the Atlantic coast could impact

simulation of downwind precipitation, as the biased atmo-

spheric moisture signal propagates inland via transpiring for-

ests (Staal et al. 2018). In the wet season, when the difference

between coupling in satellites and models in this region was

greatest, moisture from the Amazon is transported via the

South American low-level jet along the Andes and southward

to La Plata basin (Dirmeyer et al. 2009; van der Ent et al. 2010;

Zemp et al. 2014; Drumond et al. 2014). Model errors in cou-

pling along the Atlantic coast could therefore have detrimental

consequences for climate simulation over the whole region.

There are some caveats to the analysis presented in this

study. Our evaluation focused on the period of overlap be-

tween AMIP simulations and satellite-derived climate prod-

ucts (i.e., 2003–14). This is a relatively short timeframe for

analysis, especially at the monthly scale, however, we were still

able to detect robust land–atmosphere interactions that were

statistically significant. Reanalysis datasets offer climate in-

sights over longer time periods and are often used for model

evaluation, however, as indicated in this study, reanalyses may

not always provide a reliable representation of reality. We

therefore decided to use satellite products as a reference, de-

spite the short period of available data, because satellites can

provide measurements over remote areas such as the Amazon,

where instrumental data are scarce (Harris et al. 2014).

However, there were doubts over the reliability of some of the

reference satellite datasets used. Previous studies have shown

satellite ET products show discrepancies over the Amazon,

and struggle to represent the seasonal cycle in Amazon ET

(Maeda et al. 2017; Sörensson and Ruscica 2018; Baker et al.

2021). Furthermore, our results showed that satellite estimates of

P and SM, which might be expected to covary, were not always

consistent, highlighting another area of uncertainty. Doubts over

the reliability of reference datasets present a challenge for climate

model evaluation, though quantifying land–atmosphere interac-

tions using several independent metrics based on different data

sources, as applied here, may help toward overcoming this issue.

A drawback of the simple correlation-based evalua-

tion metrics described in this study should also be noted.

Significant relationships between land surface, flux and at-

mospheric variables do not provide evidence of causality,

and could be caused by covariation with another climate

variable. Compensating errors in models can result in rela-

tionships that appear to match observations, although the

processes driving them in models do not reflect reality

(Dirmeyer et al. 2018). The two-legged metric, which was

used to trace moisture feedback pathways, was able to de-

tect unreliable land–atmosphere coupling arising from such

error compensation, highlighting parts of South America

where ERA5-Land, HadGEM3, and BAM-1.2 captured rela-

tionships between surface SM and P but for the wrong reasons.

Another approach to demonstrate causality is to conduct

model experiments, for example, through comparing simula-

tions with and without land–atmosphere coupling (Sörensson
and Menéndez 2011; Ruscica et al. 2015; Spennemann et al.

2018; Menéndez et al. 2019; Giles et al. 2020). However, it may

be desirable to evaluate land–atmosphere interactions in pre-

existing model simulations, such as output from global model

intercomparison projects (Eyring et al. 2016b), and therefore

metrics such as those presented in this study offer a useful al-

ternative approach.

5. Summary and outlook

We assessed representation of land–atmosphere interac-

tions over South America in satellite products, the ERA5-

Land reanalysis and two global climate models, BAM-1.2 and

HadGEM3. The two models captured seasonal and spatial

variation in coupling strength over South America relatively

well, simulating a strong land surface influence on ET over

regions of savanna and seasonally dry forest in the south of the

continent, and an atmospheric control on ET over the wet

Amazon. Some issues with model performance were identified

over the Amazon, and along the North Atlantic coast, which

could result in climate biases elsewhere.BAM-1.2 andHadGEM3

were broadly consistent with an ensemble of nine CMIP6models,

which captured key features of SouthAmerican land–atmosphere

interactions at the annual scale.

Climate change studies suggest spatial coupling patterns in

South America are likely to change over the next century

(Dirmeyer et al. 2013).AreaswhereP is expected to increase, such

as La Plata, will tend to see a weakening of land–atmosphere

coupling as moisture fluxes become less sensitive to variation in

surface SM,while areas that are projected to becomedrier, such as

the Amazon, may show a shift toward a stronger land surface in-

fluence on coupling (Llopart et al. 2014; Menéndez et al. 2016;

Ruscica et al. 2016;Zaninelli et al. 2019).Crucially, CMIP6models

disagree in their local T and P responses to tropical deforestation,

due to different representations of land cover and land cover

change (Boysen et al. 2020). Overall, our analysis shows that while

global models show promise in their ability to represent land–

atmosphere interactions over South America, improvements are

required for more reliable investigation of how future changes in

climate and land use will impact regional hydrological cycling.
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