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Optimisation of the Resource Efficiency of Food Manufacturing via the 

Internet of Things 

 

Abstract 

The food sector is currently very inefficient due to a large amount of food waste it generates, 

and the volumes of water and energy used. This problem is aggravated by increasing economic 

costs and stricter regulations associated with the disposal and treatment of food waste, carbon 

emissions and wastewater discharge. Because of this, resource efficiency is key to a sustainable 

food system. In this context, it is essential to reduce food waste, energy and water through 

transparent and accurate real-time monitoring to be able to understand the real reasons behind 

their generation/use. Understanding these reasons would help food manufacturers to redesign 

their processes and achieve operational improvements. The Internet of Things (IoT), a 

relatively new manufacturing concept within Industry 4.0, can support this. IoT consists of an 

information technology infrastructure for data collection and distribution, that can significantly 

influence the efficiency and performance of manufacturing systems. This article presents an 

IoT-based framework for monitoring the generation of food waste and the use of energy and 

water in the food sector. The framework supports the identification of improvements to 

optimise the resource efficiency of food manufacturing through the design and implementation 

of a number of IoT-based tools. 

Keywords 

Food manufacturing; Food supply chains; Internet of Things; Industry 4.0; Sustainability; 

Resource efficiency. 
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1 Introduction 

The food industry is one of the largest manufacturing sectors and a key contributor to the 

economy (FoodDrinkEurope, 2017). When food is harvested, stored, processed, packed and 

transported, it consumes vast amounts of resources (i.e. material, energy and water) (Krishnan 

et al. 2020) and generates vast amounts of food waste (FW) (Garcia-Garcia, Stone, and 

Rahimifard 2019), which makes the food sector very inefficient (DEFRA, 2006). At the same 

time, these activities cause negative impacts on the environment due to emissions to air, water 

and soil. Implementation of lean and green manufacturing practices and resource-efficient 

processes can help in tackling these issues (Nabhani, et al., 2017; Nadeem, et al., 2017). 

Resource-efficient processes offer several benefits to food manufacturing, including cost 

savings, support towards meeting environmental regulations and increasing the added value by 

providing more sustainable food products, whose demand is growing by consumers (European 

Commission, 2016). Specifically, reducing Food waste generation and Energy and Water 

consumption (FEW) is paramount to improve the resource efficiency of food manufacturing. 

In many food factories, resource efficiency efforts are hindered due to the lack of awareness of 

resource consumption trends (Hill & Scudder, 2002) and FW generation patterns. For instance, 

food factories may have generic data regarding the amount of resources consumed through 

their periodical bills, the FW generated, effluent discharge and CO2 emissions. However, they 

are often not aware of resource use and waste generated at the production-line level, or even 

down to the machine level (Jagtap, 2019). By collecting and analysing FEW data at the machine 

level in real time, better management decisions can be made to minimise FEW and thereby to 

improve resource efficiency. 

In this context, the Internet of Things (IoT) can support the real-time monitoring of FEW in 

the food industry. The IoT has been defined ‘as a global infrastructure for the information 

society, enabling advanced services by interconnecting (physical and virtual) things based on 
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existing and evolving interoperable information and communication technologies’ (ITU-T, 

2012). Manufacturers can significantly improve their productivity through the adoption of IoT 

systems (Daugherty, et al., 2015). IoT systems have the potential to be used across the whole 

factory for monitoring FEW and identifying the processes that are less efficient (Holmström, 

et al., 2019). These actions would help the factory management to radically improve the 

environmental sustainability of their operations. Some food manufacturers have already 

implemented some IoT-based technologies to collect and analyse FEW data to make resource-

efficient food production decisions (Pang, et al., 2015). 

However, IoT is generally not utilised to its full potential, thereby only leading to slight 

improvements in operational efficiency. The IoT is often applied with a single objective and to 

only one actor in the food supply chain. For instance, a majority of its applications in the food 

industry are restricted to food traceability. Furthermore, IoT implementation is challenging as 

it needs expertise from the food industry and IoT developers. Besides, food supply chains are 

complex, food products have varied shelf-life and properties, and they face variable consumer 

demands. Consequently, many food businesses have not yet implemented IoT as part of their 

sustainability approach. The current major research challenge is to go beyond the minor 

incremental improvements and to aim for radical changes by developing IoT-based food 

factories. 

The main aim of this article is to help to improve the overall resource efficiency of the food 

manufacturing sector through the adoption of IoT-based technologies to monitor FEW and 

make the information available to the factory management via dashboards. Consequently, 

environmental considerations can become embedded into the core of the decision-making 

process leading to improved sustainability of food manufacturing. To do so, this article presents 

a novel IoT-based framework to optimise resource efficiency in food manufacturing. 
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2 Overview of the Framework 

This article presents a novel framework to reduce FEW generation/use in the food 

manufacturing sector via an IoT system. The framework consists of the three stages outlined 

in Figure 1, which are briefly described below. 

 

Figure 1. IoT-based FEW framework for resource efficiency in food manufacturing 

 Stage 1 - Definition of the datasets required for FEW: In this stage, the FEW data that 

need to be collected is determined. Also, it is necessary to know from where within the 

food manufacturing processes the data can be extracted and how these data are filtered 

to obtain meaningful information to support supply chain resource-efficient decisions. 

 Stage 2 - Design of an IoT system for monitoring FEW to support resource efficiency: 

The second stage is to design an IoT system to monitor FEW’s current status and 
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patterns. In this stage, it is essential to identify the type of sensors, electronics or other 

hardware and software systems needed to collect FEW data continuously.  

 Stage 3 - Model and design of a FEW decision support tool: In the final stage, the 

valuable information generated through the IoT system is analysed to produce FEW 

key performance indicators (KPIs) and reports for better planning of food 

manufacturing operations. This allows focusing on FEW-intensive operational 

activities and identify and introduce improvements to manage these resources more 

efficiently. 

These three stages are presented in detail in the remaining sections of this article. 

3 Stage 1 – Definition of the Datasets Required for FEW 

The first stage is to define the type of FEW information that needs to be collected and how the 

data should be processed. These data allow stakeholders to make informed decisions. The 

following are the major categories of FEW information to be collected: 

1. FW can be categorised into three major categories (WRAP, 2009): 

a. Avoidable waste – FW that at some stage before disposal was edible and planned 

to be consumed (e.g. bread, meat, cheese).  

b. Possibly avoidable waste – FW that was edible, but some people would have had 

consumed and others not due to personal preferences (e.g. apple skins, potato skins).  

c. Unavoidable waste – FW that has always been considered inedible (e.g. bones, 

banana skins, eggshells). 

2. Energy can be categorised into two major categories (Seow, 2011): 
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a. Direct energy – Energy required by various processes to produce a finished food 

product (e.g. cleaning, washing, chopping, packing, chilling, transporting).  

b. Indirect energy – Energy utilised by surroundings in which food production 

processes are carried out, or food is stored and transported (e.g. lighting, ventilation, 

heating).  

3. Water can be categorised into two major categories (Sachidananda, et al., 2016): 

a. Production water – Water used directly by food production processes. Production 

water is further divided into two sub-categories:  

i. Process water, required to convert raw ingredients into finished food 

products (e.g. washing, boiling, cooking). 

ii. System water, to run production machines, tools, and keep an adequate 

factory environment (e.g. cleaning of equipment, heat exchange).  

b. Non-production water – Water used by facilities or other utility infrastructures to 

support production activities, such as heating and sanitation. 

Once the type of FEW data has been defined, the sensors must be adequate to collect the data 

from the equipment. It is important to select the right hardware (sensors and smart meters) and 

to install them at the right locations (e.g. production area, section, machine). The location for 

such installation should be decided based on what processes are believed to have the highest 

impact on FEW efficiency. Following the application of the FEW framework and once 

sufficient data is collected, evidence would support focusing on the least-efficient processes, 

as well as identifying at what times such processes perform less efficiently. Once these 

processes are optimised, hardware can be reinstalled in new locations to further optimise the 

entire production process, following an iterative step-by-step implementation. 
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The information collected via sensors and smart meters is stored and analysed using a software 

at the actor level or stored in the cloud. The results obtained via data analysis are continuously 

visible to all stakeholders in real time, and if there is an unusual pattern of FEW factory staff 

can be alerted. The data are summarised within a live resource dashboard, stored, and audited 

for further analysis in support of future production strategy or process/system reengineering. 

The FEW data can be incorporated into planning systems to allow better visibility and faster 

decisions on planning, scheduling, storing, ordering and other resource management practices. 

Although the communication between sensors or smart meters and existing planning systems 

is complex due to interoperability issues, sensors can generate results in different file formats, 

such as XML, JSON and CSV files (Mäs, et al., 2018), which can be used by various 

operational planning systems, such as Enterprise Resource Planning (ERP) (e.g. Epicor, 

Solarsoft, SAP, Sage X3) (Compare Business Products, n.d.). These solutions allow factory 

management to monitor the real time status of FEW. 

4 Stage 2 – Design of an IoT system for Monitoring FEW to Support 
Resource Efficiency 

IoT architecture is formed of several layers. A sensing layer (also known as perception layer) 

communicates with the local server or cloud platform via gateways. These gateways then 

collect the data, as part of a network layer (also known as communication layer), in a 

customised or specific IoT format, e.g. message queueing telemetry transport (MQTT) format. 

Next, the data are transmitted to the local server or cloud platform through wired or Global 

System for Mobile Communications (GSM) based internet (Al-Fuqaha, et al., 2015). Collected 

data can then be analysed within an application layer and used to explain why and how much 

FEW is generated/consumed. For example, certain food processes producing an excessive 

amount of FW can trigger an alert in real time via an Android application to the management, 

compelling them to take immediate action to reduce FW. We propose an IoT architecture for 
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FEW monitoring in the food sector based on four layers: sensing, network, service and 

application layers. We have developed and tested these layers, which are explained in the next 

subsections. 

4.1 The sensing layer 

Sensing devices include cameras, handheld devices, temperature probes and RFID tags, 

amongst others. To be considered IoT-sensing devices, they need to establish direct or indirect 

communication with the internet. Arduino or Raspberry Pi connection with Ethernet or Wi-Fi 

is considered as a direct connection whilst Zigbee or Bluetooth devices connected via Zigbee 

gateway or mobile phone respectively are considered an indirect connection (Jagtap & 

Rahimifard, 2019a). This subsection describes the requirements for the sensing layer in order 

to collect FEW data from sensors, smart-meters or other actuators. 

4.1.1 Measurement requirements 

The required data accuracy and time intervals for data collection and requirements by the food 

manufacturing company must be considered to select sensors to record FEW data. In some 

cases, based on the requirements and industrial guidelines, the FEW data could be viewable to 

designated users in real time. Besides, a detailed report based on collected real-time data can 

be generated. 

We propose a load cell and a combination of load cell and camera to measure FW. A load cell 

with a calibrated accuracy of ± 0.001 kg and a 5 Megapixel camera is used for capturing the 

image. To measure energy consumption, we propose an off-the-shelf smart meter that uses an 

Arduino YUN board and a combination of voltage and current sensor. For water monitoring, 

we propose an ultrasonic smart water meter that uses the Arduino-based Electronic Interface 



9 

 

Module (EIM) for both wired and wireless (Wi-Fi) transmission of the real-time date stamped 

data log on water use. 

4.1.2 Sensor node requirements 

The sensor nodes selected are long-lasting, needing minimum maintenance, flexible with an 

open design and able to transmit data wirelessly. Technologies such as Zigbee, Wi-Fi and 

Bluetooth are adequate for wireless transmission of data. However, in the food industry, due to 

a production environment with thick-walled stainless-steel equipment and long distances, 

motors and machines reduced or affected the capability to transmit the data wirelessly. To 

overcome this issue, short-distance communication technologies such as Near Field 

Communication (NFC) or Radio Frequency Identification (RFID) can be used. Still, then the 

opportunity to view the data in real time is hindered. For the FEW systems proposed in this 

research, a combination of both Wi-Fi and Bluetooth technology was used. The sensor nodes 

were installed on the factory floor, ensuring minimum disruption to food operations. 

4.1.3 Scalability requirements  

The proposed IoT architecture could be scaled up to handle a large number of devices that 

constantly transmit and process data. However, this can be expensive and complex. Therefore, 

the FEW systems proposed were commissioned on a single production line with a view to 

potentially replicate to other production lines in the future. The ability to deploy cloud 

infrastructure is an essential requirement towards elastic scalability, i.e. having an architecture 

which deploys cheaper servers and supports small as well as large deployments. 

4.1.4 Device identity requirements 

The device identity stores and permits the authorisation of cryptographic information for device 

client verification purposes. With regards to FEW monitoring, the devices were identified, 
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paired and secured so that cryptographic information is not disclosed to any unauthorised 

parties or entities. This also ensures fast and responsive operations. Another important function 

required for the FEW systems is to create identities for adding new devices and removing 

existing devices from the system. The device identity function only provides access to 

authorised areas of the system as and when necessary.  

4.1.5 Device provisioning requirements 

The IoT device must be identified by the IoT system. For the FEW systems, an Azure-based 

IoT Hub Device provisioning service is used because it allows successful registration and 

configuration of devices across several hubs. Device-provisioning systems perform both device 

registration and device configuration through an Application Programming Interface (API). 

4.2 The networking layer 

The networking layer supports the connectivity of the sensing devices to the service layer. The 

connectivity is achieved via a gateway and established through various protocols such as Hyper 

Text Transfer Protocol/Hyper Text Transfer Protocol Secure (HTTP/HTTPS), MQTT or 

Constrained application protocol (CoAP) (Yokotani & Sasaki, 2016). HTTP is an easy text-

based protocol with many libraries that support it. Nevertheless, for IoT use, the most 

appropriate protocol is MQTT and CoAP. MQTT is a publish-subscribe messaging system, 

and since it is based on broker model, it has a small overhead (2 bytes/message) and is designed 

to support intermittently connected networks. CoAP is a protocol designed to provide a 

REpresentational State Transfer (REST) application based on HTTP semantics with a small 

impact. It has a binary approach rather than a text-based approach. CoAP is more focused on 

client-server rather than a brokered approach. 
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We propose an MQTT approach because of its wider library support, better acceptability, 

simpler connectivity, and the possibility to embed into existing data collection and processing 

systems. Due to its brokered model specifications, MQTT is also beneficial for the IoT devices 

where they send and receive data to/from the cloud or local server. This subsection describes 

the requirements for the networking layer to transfer FEW data from the sensors or smart 

meters to the service layer. 

4.2.1 Gateway requirements 

The most appropriate sensor node to collect FEW data is the gateway, which can acquire data 

and transfer it via the internet rather than clustering. Nowadays, a range of options is available 

for commercial gateways/routers which are compatible with an IoT system. The only hurdle is 

to provide continuous energy supply to the gateways. 

4.2.2 Device connectivity requirements 

Devices can be connected directly or indirectly through a field gateway with intelligent 

capabilities to collect and filter the required FEW data to the backend to support the decision-

making process. For FEW monitoring, sensing devices are connected via a field gateway to the 

local server gateway. The sensing devices used for FEW monitoring are varied and often a 

combination of short-range communication technology (Bluetooth) as well as wireless Internet 

protocol (IP) secure connections via the internet. Routers act as a field gateway, and their 

function is mainly to receive data from sensing devices and transfer them to the local/cloud 

backend.           

4.2.3 Connectivity and communication requirements 

In order to address the memory capacity and power requirement of the IoT devices, a small, 

easy and binary protocol is needed, e.g. HTTP, which provides combined and uniform 
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connectivity. Some of the devices used in FEW monitoring connects directly, and others need 

a gateway to transmit the data. The devices that need a gateway require two protocols: to 

establish a connection to the gateway and to establish a connection from the gateway to the 

cloud or local database. Therefore, the proposed IoT-architecture needs to support the 

transmission of FEW data and protocol bridging. 

4.2.4 Device management requirements 

The IoT devices to monitor FEW components need to fulfil certain industrial requirements, 

including allowing only authorised devices to connect, allowing software updates on devices, 

erasing the data on misplaced or stolen devices, and allowing remote access to 

enable/disable/re-configure hardware or network capabilities. 

4.2.5 Security requirements 

Security is a key aspect of IoT devices since they are directly or indirectly collecting highly 

confidential data and bringing it to the internet. Risks could include: 

 Flaws in the internet system which IoT designers are not aware of leading to 

breach of data 

 Flaws with the IoT devices  

 No safety breach of data, for instance, from rogue sensors or actuators      

In order to address these risks, the following actions were implemented: 

 Blocking or disabling open ports in IoT devices 

 Avoiding IoT devices that do not support asymmetric encryption 

 Identifying hardware that is easy to decode through reverse engineering 

 Identifying poor practices with regard to identity and access to management   
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4.3 The service layer 

The service layer aggregates, analyses and brokers communications. This layer supports the 

MQTT broker to communicate to the devices, collects and combines data from various sensing 

devices and acts as a transformation medium between various protocols. The service layer also 

collects, stores and process the data, and can even warn and serve based on the information 

collected. To monitor FEW data, the service layer should have the following requirements: 

 Ability to handle a large increase in transactions 

 Support data storage for all the data generated in a column-based data storage    

 Complex data processing in real time, send alerts and take actions based on data 

analysis 

 Support different platforms, e.g. Java, PHP, Ruby or Python 

This section describes the requirements for the service layer to process FEW data once it is 

received from the networking layer. 

4.3.1 Storage requirements 

FEW-related activities usually generate large volumes of data, depending on how many 

connected devices generate data, how frequently they send data and the file size of the data 

sent from those devices. FEW data are often time-stamped and stored so that they can be 

visualised and used for generating reports and retrieved later for further processing. These data 

are often classified as warm or cold data stores. Warm data storage is recent data, i.e. a day, 

week, or month of data that can be retrieved with low latency. Cold data storage is typically 

historical data with higher latency. Cold data storage is used less often but may be important 

for future reporting, analysis or machine learning applications. For FEW monitoring purposes 

on a daily or monthly basis, warm database storage is used. FEW data that is over a month old 

can be stored in a cold data store as it will not be subjected to low latency, high volume like 

the warm data store. 
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4.3.2 Cloud or local database requirements 

On-line monitoring of FEW requires continuous collection and processing of data in the cloud 

or the factory’s local servers. However, the vast data generated by sensors could be too 

overwhelming for local servers and, therefore, cloud resources are preferable for FEW 

monitoring. Clouds reduce the amount of energy consumed for running the servers and provide 

data analysis with computing capacity. The cloud has the capability to process both continuous 

and batch data generated by nodes and gateways as well as provide efficient Big Data execution 

frameworks such as Spark and MapReduce. 

4.3.3 Data flow and stream processing requirements 

The volume of FEW data generated may affect the flow of data processing. Depending on 

various scenarios and applications, data can flow through different steps, stages, formats and 

orders. Data are mostly processed by simultaneous corresponding tasks. For FEW monitoring, 

these tasks can be categorised in the following: 

 Storing FEW data in permanent archives, temporary files or memory caches 

 Routing FEW data to transfer data to storage databases, analytical processes and 

actions 

 Analysing FEW data to run through data records via set parameters to generate 

various output data records 

These processes can be combined to show FEW information in real time in dashboards. The 

proposed architecture considers the fact that food business would run a number of 

corresponding data stream processors, either by segregating or by forwarding data to multiple 

channels. 
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4.3.4 Data collection, analysis and actuation requirements 

IoT devices have some kind of User Interface (UI) design and collect data from one or more 

sensors or actuators or a mix of both. The collected data are stored, analysed and then an 

appropriate action is taken. The proposed IoT architecture for FEW monitoring is designed to 

support a large number of devices that generate a continuous stream of data. Therefore, the 

architecture must be able to handle a varied and high volume of data. It should also process the 

data in real-time. 

4.3.5 Topology and entity store requirements 

Business logic, device and application models are required to build FEW applications. The 

business logic can include the process of defining and configuring business rules, executing 

searches for a set of devices, building a user interface and dashboard to ensure uniformity 

through the various components of the IoT solution and backend systems. The topology and 

entity store consist of a database that is comprised of FEW application entities and relationships 

within the entities. It further provides descriptive information about entities and provides rich, 

or irregular index competences with the aim to offer immediate lookups. 

4.4 The application layer 

The application layer supports the IoT-sensing devices to interact outside of the device-focused 

system. For the FEW monitoring systems, there is a need to build a web-based front-end portal 

that networks with devices and data processing. Machine-to-machine communication can be 

used to interact with external network systems. For the proposed IoT architecture, the approach 

is to build the web front that deploys a modular front end, e.g. a portal. This action allows easy 

and quick configuration of useful User Interfaces (UIs). The proposed architecture is able to 

support web server-side technologies, e.g. Java, Python, PHP and Ruby. Finally, FEW 
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dashboards show relevant graphs from the FEW data obtained from the devices and data 

processing. This section describes the requirements for the application layer to display the FEW 

data in a user-friendly dashboard. 

4.4.1 User-side interface requirements 

The user-side interface of the IoT infrastructure’s is continuously adapted depending on the 

complexity of the food product and the end-user requirements. For FEW analysis, energy and 

water measurement systems were not altered. For complex FW, with many ingredients, 

software supported by human intelligence is needed, and in this case, factory operators 

identified the type of FW and reasons for its generation. For single ingredients or less complex 

FW, image-processing technology and software made the waste monitoring system fully 

automatic and independent from humans. 

4.4.2 The solution user interface (UI) requirements 

The solution UI usually consists of a website and reporting. This could include a mobile app, 

desktop app or web service to provide access and visualisation of data collected, analysis of 

results and notification of alerts and alarms. Regarding the FEW solution user interfaces, it 

provides live, shared and interactive dashboards, appropriate to visualise the IoT system with 

large numbers of connected devices. 

4.4.3 Monitoring requirements 

The IoT monitoring system is used to determine whether the provided solution works, so the 

devices or systems are correctly configured to generate accurate FEW data. Visualisation of 

monitoring standards provides insight into the robustness and performance of the FEW systems 

and alerts business stakeholders to any deviations from set parameters to facilitate immediate 

response. 
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5 Stage 3 – Model and Design of IoT-based FEW Decision-Support 
Tools 

To support the minimisation of FEW, the food-production equipment must be fitted with FEW 

sensors or meters, which transmit data via gateways and internet networks to database storage, 

as depicted in Figure 2. The stored data is analysed and displayed in a dashboard to support 

making informed real-time decisions. 

 

Figure 2. FEW monitoring systems 

The FEW monitoring systems proposed in this research consist of the following three sections: 

an intelligent scale and image-processing unit for FW monitoring, commercial sensors/smart 

meters for energy monitoring, and meters with ultrasonic technology for water monitoring. 

These three sections of the FEW monitoring system are explained in the following subsections. 

5.1 FW monitoring 

The FW monitoring module is used to collect and process the data related to solid FW generated 

on the factory floor. The data can be collected via an intelligent scale or an image processing 

unit, as explained in detail by Jagtap & Rahimifard (2019) and Jagtap et al. (2019a). 
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The use of an intelligent scale for FW monitoring includes six steps (Figure 3): FW collection, 

FW weight measurement, entering the reason for FW generation via a bespoke software, 

sending data to the cloud or local server, data store, and data analysis. The architecture of the 

intelligent scale includes four layers (Figure 4): the sensing layer, the network layer, the service 

layer and the application layer (Jagtap & Rahimifard, 2017). The sensing layer uses load-cell 

technology to weight the FW and a software application operated via a touchscreen to input 

the reason for FW generation. In the network layer, the data are transferred to the service layer 

via Bluetooth technology using hardware such as Arduino UNO, HM-10 BLE Breakout and 

Linkit ONE. In the service layer, the data collected are stored locally or in the cloud and 

analysed. In the application layer, the data are presented in a FW dashboard. 
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Figure 3. IoT-based FW tracking system (Jagtap and Rahimifard 2019) 
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Figure 4. The architecture of the intelligent scale (Jagtap & Rahimifard, 2019) 

An automated image processing unit, like the one depicted in Figure 5, can also be used for 

FW monitoring. While food products travel on a conveyor belt, a camera photographs them 

and load cell the measures their weight. The information is sent to the control computer. If a 

product visually imperfect is detected, a rejecter arm segregates the product. The architecture 

of the automated image-processing unit includes four layers (Figure 6). The sensing layer 

collects the image and weight information via the camera and load cell. The network layer 

sends it to the service layer via Bluetooth or wired hardware. The images, weight, time and 

date are recorded in the service layer. The data available in the service layer is then presented 

in a dashboard via the application layer. 
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Figure 5. Automated potato waste monitoring system (Jagtap, Bhatt, et al. 2019) 

 

Figure 6, Architecture of the automated image processing unit (Jagtap, Bhatt, et al. 2019) 
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5.2 Energy monitoring 

The energy monitoring system is used to collect and process energy-use data within the factory. 

Sensors and smart meters supported with the software are used to record the energy-use data. 

The analysis of the energy data can lead to the following: 

 Reduction in the total energy usage of the equipment when idle and non-value-

added activities 

 Identification of irregularities in production activities based on the sudden surge 

in energy use 

 Track machine performance to monitor its maintenance and plan repairs in 

advance 

 Record the energy used in the manufacturing operations as part of environmental 

reporting 

 Highlight any inconsistent deviations or patterns caused due to excessive energy 

use 

Most energy sensors and smart meters commercially available can collect energy data and have 

their own software to process the collected data. We used an OWL intuition -Ic standard energy 

monitor network to transfer data via a wireless network to the controller PC. The energy smart 

meter uses current transformer sensing technology to sense and monitor a magnetic field 

around the electric cables. It assesses the electric current using either the Standard (up to 71 

Amp) or Large (up to 200 Amp) sensors. This information is then directed from the transmitter 

via a radio frequency of 433 MHz, which has a range of up to 30 metres. The information is 

then processed and multiplied to a fixed voltage to calculate the quantity and cost of energy 

used. The generated information is continuously transmitted and stored in a local drive in text 
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format. The software collects energy data such as energy consumption, peak consumption 

periods, cost of energy consumption, timings and CO2 emissions of energy consumed.  

Figure 7 gives an overview of the daily electricity consumption, cost of energy consumed, and 

CO2 emissions associated with energy use. Figure 8 gives details of any energy peaks observed 

during the day. 

 

Figure 7. Cost, daily consumption and CO2 emissions 

 

Figure 8. Day energy graph 
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5.3 Water monitoring 

The IoT-based water monitoring system helps in identifying leaks and water wastage. Figure 

9 shows an IoT-based architecture for water monitoring. The sensing layer (bottom right 

quadrant) collects data on water flow rate and water quality in real time via sensors, e.g. 

pressure transducers, flow meters and water quality sensors. The networking layer (bottom left 

quadrant) reads sensors and devices. It executes basic functions of linking up the sensing layer 

to the database systems and software platforms via short-range wireless networks such as Wi-

Fi, Bluetooth, RFID and ZigBee. The service layer (upper left quadrant) manages data, 

software applications and platforms. It collects information from all IoT-gateways, processes 

it, sorts it and stores it in a data warehouse. The stored data is made available for data mining 

and analysing by applications running in the cloud. The application layer (upper right quadrant) 

performs real-time water data analysis, generates water reports and presents information to the 

user over the internet via HTTP. The web application is powered by ASP, .NET, HTML5. It 

supports user-friendly functionalities such as diverting water from certain food production 

processes to other secondary processes (considering the water quality), checks the water use, 

sends alerts and allows viewing historical data. 
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Figure 9. IoT architecture for water monitoring (Jagtap, Rahimifard, et al. 2019) 

Water smart meters are widely available in the market. We used a FLUID water meter for 

measuring water flow rate, which uses ultrasonic technology to capture the water flow through 

a pipe. Therefore, there is no need for cutting or adjusting pipes to install the water meters. The 

device is clamped around the pipe and connected to a Wi-Fi network. It transfers the water 

consumption data via a Wi-Fi network and sends it to the cloud storage. After data analysis, 

the information is sent back to the user and displayed in a dashboard. 

5.4 FEW dashboards 

The collected data on FW, energy and water are combined to build the FEW dashboards. The 

dashboards show the values of the most relevant key performance indicators (KPIs) for FEW 

monitoring. It is capable of storing and displaying FEW data at departmental, line or machine-

level. In this way, the FEW dashboards can support stakeholders to make informed decisions 
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based on the FEW. For example, they can help identifying hotspots where FW generation, 

water use and/or energy use are particularly high. Next, the reasons for such high values must 

be identified, followed by taking an action to minimise them. These actions could be, for 

example, reducing the temperature of overheated ovens to minimise overcooked food, fixing 

water leaks or improving thermal insulation for some equipment. An example of a particular 

moment of FEW monitoring in a food manufacturing company displayed in the FEW 

dashboards can be seen in Figure 10. 

 

Figure 10. FEW dashboards to improve resource efficiency in food manufacturing 

Figure 11 shows the decision-support process for improving resource efficiency in food 

manufacturing. The real-time FEW data are collected by means of IoT technologies, then stored 

in the cloud or a server and finally analysed to extract useful information. Data analytics is 

used to assess the FEW generation/consumption. The information created can be integrated 

into food production management systems and tools that support optimising the efficient use 

of resources, for example, by using decision support systems (DSSs), KPIs and automated 

dashboards. The information obtained from the data analytics can finally support strategic, 

operational and control decisions in food management systems.    
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Figure 11. Decision-support process for improving resource efficiency in food manufacturing 

Food manufacturing decisions can be made on strategic, operating and control levels. These 

decisions allow more resource-efficient production activities when FEW data are used.     

At the strategic level, decisions about products, processes and facilities are undertaken. This 

includes developing long-term production plans, process design, selecting and managing 

production technology, planning the arrangement of services and planning for the optimal 

distribution of resources amongst machines, product lines and departments. The improvement 
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of resource efficiency can be achieved by more efficient food processing, good manufacturing 

practices or the redesign of food manufacturing processes.  

Operational management focuses on food production and meeting customer demand. This 

involves aggregate planning, production scheduling, planning and controlling finished goods 

inventories, planning materials and capacity requirements. It also includes short-term decisions 

about what and when to produce. FEW data from a particular food processing allows the 

machine user to identify the most efficient solution. This information, when fed into the 

production scheduling systems, can reduce FW generation as well as energy and water 

consumption.  

In production planning and control decisions, the focus is on managing food operations, for 

instance, the planning for the efficient utilisation of human resources in operations, controlling 

the quality of food products and services, and maintaining the machines and facilities. 

6 Discussion 

In recent years, food manufacturing companies are facing various challenges such as 

unpredictable demands and frequently changing customer and supplier requirements. New 

technological concepts such as IoT and Industry 4.0 are being embraced to address these 

challenges. Industry 4.0 is a complex but flexible system which can provide advantages such 

as improving quality, efficiency and competitiveness. The food sector can be considered to be 

more demand-driven than supply-driven, meaning that consumers dictate manufacturers what 

and when they want to consume. In order to address this demand, the equipment and 

manufacturing systems within the food factory should be able to share information and control 

each other autonomously making the whole process more resource efficient. The digitalisation 

within Industry 4.0 can support food manufacturers with process redesign, development and 

improvement. The availability of accurately measured real-time FEW data can help food 
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manufacturers to become more resource efficient, improving their environmental performance 

and reducing economic costs. 

The wide range of hardware and software discussed in this article highlights that there is a need 

to identify key FEW data and hotspots within the production line since the collection of data 

for all processes is generally unfeasible. Moreover, a systematic plan for the use of data 

collected is also needed. The digitalisation of FEW data within food manufacturing can offer 

substantial environmental and financial benefits. Often, this approach is not followed by food 

manufacturers due to their reliance on traditional paper-based systems. We believe some of the 

advanced technologies based on IoT and Industry 4.0 can bring real-time transparency and 

visibility as well as efficiency to manufacturing processes. Having access to real-time FEW 

data of key processes would be very valuable to identify the most relevant issues that hinder 

resource efficiency. 

However, the acceptability of these novel technologies in food manufacturing is still small due 

to many challenges such as setting-up costs, availability and accessibility to relevant skills, and 

concerns regarding data sharing and security. Another potential issue is burden shifting, which 

would occur if the efficiency of some processes is improved via the utilisation of the IoT-based 

FEW framework, but the overall efficiency is decreased due to use of the new devices installed. 

Clearly, the use of such devices should not increase food waste generation nor water use; 

however, these devices have energy (electricity) requirements that could exceed energy savings. 

Although these devices generally need little energy to operate, in comparison with equipment 

with moving parts (e.g. conveyor belts) or processes that use large amounts of heat (e.g. ovens), 

it is important to calculate the overall efficiency improvements that the framework offers. The 

energy use of such devices can be easily calculated with their time of use and power in use 

(which should be found in its manual). This must be done on a case-by-case basis. 
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Therefore, food factories need to undertake a holistic review of the long-term benefits of 

utilisation of digital technologies to optimise their resource efficiency. It is expected that other 

stages of the food supply chain could also benefit from the adoption of such technologies to 

improve their environmental and economic performance, for instance during cultivating, 

harvesting, transportation and storage. 

7 Conclusions  

The contribution of this research is the following: 

 Defining a stepwise framework to improve the resource efficiency of food 

manufacturing through the design and implementation of a number of IoT-based tools 

for monitoring and reduction of food waste generation as well as energy and water 

consumption (FEW). 

 Introduction of a new, faster and reliable digital approach to monitoring FEW as 

compared to the traditional paper-based systems.  

 Development of a prototype decision-support system consisting of relevant hardware 

and software elements to demonstrate the collection and utilisation of FEW data to 

analyse and optimise processes within a food manufacturing system. 

Our framework consists of three stages. Firstly, the definition of datasets required for FEW in 

food manufacturing. In this stage, FEW data that needs to be collected, stored and analysed 

were identified. Secondly, the design of an IoT system for monitoring FEW to support resource 

efficiency. In this stage, the most appropriate sensors, electronics and other hardware and 

software needed to collect FEW data were determined. Four IoT architectural layers were 

proposed for collection and analysis of FEW data. Finally, the third stage involved modelling 

and designing a FEW decision support tool for monitoring FW, energy and water consumption 

in food manufacturing. 
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The four IoT architectural layers for FEW monitoring are sensing, networking, service and 

application layers. The sensing layers consists of all the sensors used to collect data. The 

collected data is then transferred to the service layer via the networking layer. The application 

layer includes a dashboard where the users can view key FEW data and make decisions to 

reduce them. The FEW monitoring systems were designed to be user-friendly and easy to use, 

so staff with little training can operate it.  

In order to collect FEW data, hardware such as a load cell (weighing scale, checkweigher), 

tablet, vision system (camera), rejecter arm, microcontroller, PC, Arduino/Raspberry Pi, and 

Bluetooth module were used. The software developed is able to process large amounts of FEW 

data in real time. Two main approaches for FW reduction were considered: an intelligent scale 

and an image-processing technology. The intelligent scale needs human support to record 

complex-FW data, whereas the image processing technology is fully automated and mostly 

suitable for single-ingredient FW. For water and energy, smart meters and commercially 

available software were used. 

The increasing environmental and economic ramifications related to FEW in food 

manufacturing activities clearly indicates the need for more efficient use of resources. The 

adoption of new digital capabilities and readiness of the food manufacturing sector to 

considerably reduce FEW plays a vital role in the long-term sustainability of food production 

activities. The fundamental conclusion derived from this research is that the complexities 

associated to environmental sustainability, costs of food production, national and international 

regulations, as well as consumer preferences and dietary requirements necessitate the use of 

automated data collection and associated decision support to sustain the demands in future food 

supply chains. In this context, the food sector must embrace the emerging concepts introduced 

by the fourth industrial revolution, i.e. Industry 4.0, to optimise their resource efficiency. 
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