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Abstract
Deep learning can detectmicrosatellite instability (MSI) from routine histology images in colorectal cancer (CRC). However,
ethical and legal barriers impede sharing of images and genetic data, hampering development of new algorithms for detec-
tion ofMSI and other biomarkers.We hypothesized that histology images synthesized by conditional generative adversarial
networks (CGANs) retain information about genetic alterations. To test this, we developed a ‘histology CGAN’ which was
trained on 256 patients (training cohort 1) and 1457 patients (training cohort 2). The CGAN synthesized 10 000 synthetic
MSI and non-MSI images which contained a range of tissue types and were deemed realistic by trained observers in a
blinded study. Subsequently, we trained a deep learning detector ofMSI on real or synthetic images and evaluated the per-
formance ofMSI detection in a held-out set of 142 patients. When trained on real images from training cohort 1, this sys-
tem achieved an area under the receiver operating curve (AUROC) of 0.742 [0.681, 0.854]. Training on the larger cohort
2 onlymarginally improved the AUROC to 0.757 [0.707, 0.869]. Training on purely synthetic data resulted in an AUROC of
0.743 [0.658, 0.801]. Training on both real and synthetic data further increased AUROC to 0.777 [0.715, 0.821].We con-
clude that synthetic histology images retain information reflecting underlying genetic alterations in colorectal cancer.
Using synthetic instead of real images to train deep learning systems yields non-inferior classifiers. This approach can
be used to create large shareable data sets or to augment small data sets with rare molecular features.
© 2021 The Authors. The Journal of Pathology published by JohnWiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain
and Ireland.
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Introduction

Colorectal cancer (CRC) is among the most prevalent
cancer types worldwide and is a cause of many cancer-
associated deaths [1]. To diagnose this disease, a tumor
tissue sample is usually taken endoscopically, formalin-
fixed, and paraffin-embedded. A tissue section is cut from
the paraffin block by an experienced technician using a
microtome; the tissue section is mounted onto a glass

slide and stained with hematoxylin and eosin (H&E)
before it can be examined microscopically. H&E-stained
histology slides are available for almost any cancer
patient [2] and for many cancer types, because they are
required to make a diagnosis.

To select an appropriate treatment for CRCpatients, fur-
ther molecular tests may be needed. Currently, one of the
most clinically relevant genetic alterations in CRC is
microsatellite instability (MSI), a genetic abnormality
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which affects approximately 10–15% of CRC patients [3].
MSI is a predictive biomarker for response to cancer
immunotherapy in metastatic CRC [3] and is associated
with Lynch syndrome. Therefore, some national guide-
lines recommend testing of all CRC patients for MSI
[4,5], but in routine clinical practice this is not universally
implemented, due to additional costs and tissue limita-
tions [6].

Recently, several studies showed that deep learning-
based analysis of digital slides can detect molecular
alterations from routine histology slides [7–9], including
MSI in colorectal cancer [10–12]. Ultimately, deep
learning-based image analysis could pre-select patients
for subsequent molecular testing or could be used as a
definitive test [13]. The performance of deep learning
systems in histology image analysis is dependent on
the availability of large training data sets [11,14]. Using
more images to train deep neural networks increased the
performance of tumor detection [14] and molecular sub-
typing [11].

However, unlike in non-medical fields of deep learn-
ing research, histology image data suitable for deep
learning-based analysis are not publicly available in
abundance [15]. Histology images are only useful when
combined with additional patient-specific metadata
related to outcome or molecular alterations. Publicly
sharing histology images with these metadata is prob-
lematic because these data are linked to an individual
patient. Although histology images themselves are not
considered protected health information (PHI) by the
Health Insurance Portability and Accountability Act
(HIPAA) in the United States of America, public sharing
of patient-related data needs to comply with legal and
ethical regulations in most countries. Therefore, in prac-
tice, publicly available matched histology and genetic
data are very scarce. An exception is ‘The Cancer
Genome Atlas’ (TCGA), a large-scale initiative which
provides matched histology and genomics data for can-
cer patients [16]. However, data from this archive are
limited and similarly molecularly comprehensive data
are currently not available from any other resource. This
lack of data is prohibitive for many researchers and may
impair the development of new computer-based
methods for detecting molecular alterations in cancer.
In order to address this shortage of publicly available
histology images, recent studies have used ‘generative
models’ to generate synthetic histology images [17]. In
particular, generative adversarial networks (GANs)
seem to be able to synthesize histology images that are
indistinguishable from real histology images for experts
[17–20]. Unlike real histology images, synthetic images
are not linked to a particular patient. Thus, synthetic
images could be publicly shared with fewer legal or eth-
ical difficulties [21]. However, it is unclear whether and
how synthetic histology images retain information about
molecular alterations in cancer. Also, it is unclear
whether synthetic images can be used equally well to
train deep learning-based predictors of molecular alter-
ations. In the current study, we aimed to develop a con-
ditional generative adversarial network capable of

synthesizing histology images with associated genetic
information. We investigated if these synthetic images
could replace real images to train deep learning detectors
of MSI status.

Materials and methods

Ethics statement
All experiments were conducted in accordance with the
Declaration of Helsinki and the International Ethical
Guidelines for Biomedical Research Involving Human
Subjects by the Council for International Organizations
of Medical Sciences (CIOMS). Histology images with
matched MSI status were derived from The Cancer
Genome Atlas (https://portal.gdc.cancer.gov) [22] and
the Netherlands Cohort Study (NLCS) study [23], as
described previously [11]. The NLCS study was cleared
by the institutional ethics board of the respective institu-
tions, as described previously [23].

Image selection and preprocessing
We retrieved whole-slide digital histology images from
the TCGA database as described previously [10]. For
398 colorectal cancer patients, H&E-stained slides from
formalin-fixed, paraffin-embedded tissue with matched
MSI status were available. These patients were ran-
domly assigned to a training set (‘training cohort 1’)
and a test set with a 2:1 split ensuring similar MSI inci-
dence in each set. As in previous studies [8], the train–
test split was performed at the patient level as opposed
to at the tiles level. Thus, we ensured that the train and
test set never contained tiles from the same patient. To
increase the sample size of the training cohort in subse-
quent experiments, we acquired images from another
cohort (‘training cohort 2’): We randomly selected
1457 histopathological whole-slide images of CRC
(152 MSI and 1305 non-MSI, one image per patient)
from the NLCS cohort as described before [11].We used
this second set of images to create an additional training
set. In all whole-slide images, tumor regions were man-
ually outlined by a trained observer supervised by an
expert histopathologist, as described previously [10].
Tissue within the tumor region was tessellated into tiles
of 512 × 512 pixels corresponding to 256 × 256 μm
and a magnification of 20×. All image tiles were color-
normalized using the Macenko method [24].

Development of generative models
Based on the classical generative adversarial network
(GAN) architecture [25] and previously described condi-
tional GAN (CGAN) architectures [18], we developed a
specialized CGAN to generate red, green, blue (RGB)
images of 512 × 512 pixels. The CGAN consisted of a
generator and a discriminator network (Figure 1A,B). It
was trained for 50 000 iterations to generate synthetic
images of microsatellite stable (MSS) and microsatellite
instable (MSI) CRC (Figure 1C,D). CGANs were trained
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using a mini batch size of 32 and a label flip factor of
0.125. The CGAN was found to converge smoothly to
realistic images without noticeable artifacts such as
mode collapse. After the development phase, the CGAN
was deployed to generate synthetic images of MSI and
MSS colorectal cancer histology images. Two sets of
synthetic image tiles were generated (supplementary
material, Tables S1 and S2): first, a set of 10 000 images
per class (SYNTH-CRC-10K), matching the size of the
real training set (TCGA-CRC-TRAIN). Then a larger
synthetic set of 75 000 image patches per class was gen-
erated (SYNTH-CRC-75K), roughly matching the size
of other state-of-the art training sets for MSI detection
[11]. Finally, images from SYNTH-CRC-75K were
used to augment the real training set TCGA-CRC-
TRAIN, yielding a large hybrid training set (MIXED-
CRC-75K). All images from the TCGA archive which
were used in this study are publicly available (supple-
mentary material, Table S2). In addition, a CGAN was
trained on images from N = 1457 patients in the ‘train-
ing cohort 2’ (NLCS), generating another synthetic

image set (SYNTH-MULTI-10K). The flow of all sam-
ples is shown in supplementary material, Figure S1.

Classification network models
After generating synthetic images, a deep learning clas-
sifier was trained on each training set (supplementary
material, Tables S1 and S3) and evaluated on a set of
image tiles generated from held-out patients (TCGA-
CRC-TEST). The architecture and hyperparameters
used for this classifier network have been developed
and optimized previously [8]. In brief, a modified Shuf-
fleNet [26] was trained for four epochs. For data aug-
mentation and to achieve rotational invariance, random
horizontal and vertical flips were used in all experiments.
To account for color variations in the training set, all tiles
were color-normalized using the Macenko method
before training [24]. No additional color-based data aug-
mentation steps were used as previous work showed that
this does not add a large benefit [27]. To limit overfitting,
10% of the training set were set aside and used as an

Figure 1. A conditional generative adversarial network (CGAN) for histology images with molecular labels. (A) Overview of the generator net-
work for generation of synthetic histology image patches with 512 × 512 × 3 pixels. MSI, microsatellite instable; MSS, microsatellite stable;
Conv’, transposed convolution 2D layer; BN, batch normalization layer; ReLu, rectified linear unit layer. (B) Overview of the discriminator net-
work for classifying images as real or fake (synthetic). Conv, convolution 2D layer; ReLu*, leaky rectified linear unit layer. (C) Progress of syn-
thetic images from 2000 (2K) to 20 000 (20K) epochs. (D) Final output of the generator network after 50 000 (50K) epochs.
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internal validation set, which was used to stop training as
soon as the validation performance plateaued. The perfor-
mance of all classifier networks was evaluated at patient
level by pooling tile-level predictions as described previ-
ously [10]. Patient-level performance was evaluated by
the area under the receiver operating curve (AUROC)
with 10× bootstrapped pointwise confidence bounds.

Comparison of real and synthetic image tiles
To assess whether synthetic images are deemed ‘realis-
tic’ by human observers, we performed a blinded exper-
iment. We randomly selected 50 real and 50 synthetic
image tiles with balanced MSI status. The images were
presented to five observers who were asked to classify
an individual image as either ‘real’ or ‘synthetic.’ One
observer was a pathologist; the other four observers were
non-pathologists with experience in reviewing colorec-
tal cancer digital slides. The primary endpoint was accu-
racy, with 1.0 corresponding to perfect discrimination
and 0.5 corresponding to perfect confusion. The experi-
ment was first performed with synthetic images from the
‘SYNTH-CRC-10K’ image set and was repeated with
images from the ‘SYNTH-MULTI-10K’ set (supple-
mentary material, Table S1 and Figure S1).

To further quantify the similarity between real and
synthetic image tiles, we extracted a feature vector for
each image tile and used t-stochastic neighbor embed-
ding (t-SNE) [28] to visualize clusters among the tiles.
The feature vector was obtained from the last fully con-
nected layer (penultimate layer activations) from the net-
work which was trained on real images. The aim of this
experiment was to find out whether real and synthetic
images cluster in distinct groups and are thus distin-
guishable. Clustering was attempted using a range of
commonly used values for t-SNE parameters’ exaggera-
tion and perplexity in Matlab R2020a. The respective
documentation defines perplexity as ‘the effective num-
ber of local neighbors of each point’ and exaggeration as
‘size of natural clusters in data’.

Statistical analysis
All statistical analyses were performed using Matlab
R2020a (MathWorks, Natick, MA, USA). Classifier per-
formance is always reported on a patient level by pooling
tile-level predictions in a majority vote. The main statis-
tical endpoint was the patient-level area under the
receiver operating curve (AUROC), with the upper and
lower bound achieved in a 10× bootstrapped experiment
reported as confidence bounds as described in https://
www.mathworks.com/help/stats/perfcurve.html.

Implementation and code availability
All experiments were implemented in Matlab R2020a
(MathWorks) and were run on computer workstations
with two NVidia Titan RTX graphics processing units.
All source codes for CGANs are available at https://
github.com/jnkather/histoGAN, translated to Python
with PyTorch at https://github.com/mjendrusch/

pytorch-histogan. All source codes for training and eval-
uating classifier models are available at https://github.
com/jnkather/DeepHistology. The code for the observer
study is available at https://github.com/JeremiasKrause/
Histoquiz. Hyperparameters for CGAN training and a
step-by-step explanation to reproduce the experiments
are available in supplementary material, Tables S4 and
S5, respectively.

Results

Conditional GANs generate realistic image patches
with multiple tissue types
We trained conditional generative adversarial networks
(CGANs) to generate synthetic histological H&E images
of colorectal cancer (CRC), encodingmicrosatellite insta-
bility (MSI) status as a ‘conditional’ variable into the syn-
thetic images. Comparing real and synthetic image tiles
ofMSI and microsatellite stable (MSS) tumors, we found
that synthetic images were realistic and contained differ-
ent types of tissue as expected (Figure 2A–D). In particu-
lar, synthetic images contained tumor epithelium,
desmoplastic stroma, inflammatory cells, and mucus,
without being explicitly trained to generate these types
of tissue (Figure 2B,D). To quantify whether synthetic
images are realistic to observers, we performed a study
with five participants (Figure 3). In the first synthetic
image set (SYNTH-CRC-10K; supplementary material,
Table S1), the pathologist could distinguish real from
synthetic images with an accuracy of 84%, while the
non-pathologists achieved only an average accuracy of
65%. The participants reported that theymostly identified
the synthetic images based on artifacts such as the pres-
ence of squares in whitespace background. Next, we
investigated whether training a CGAN on a larger patient
cohort can reduce these artifacts and thus yield more real-
istic synthetic images derived from n = 1457 patients. In
this second user study, only the pathologist was able to
detect synthetic images, with an accuracy reduced to
77%. All the other observers were unable to reliably
detect synthetic images in this study and reached an aver-
age accuracy of 52% (individual accuracy was 47%,
58%, 55% and 48%, respectively) (Figure 3). Aiming at
further quantifying possible differences between real
and synthetic images, we assessed the local sensitivity
of deep learning classifiers to regions in real and synthetic
images. As shown in Figure 4A–D and supplementary
material, Figure S2A–D, local sensitivity as measured
by occlusionmaps was highest in regions with tumor epi-
thelium and in interface regions (epithelium/background,
epithelium/mucus). In terms of local sensitivity, no obvi-
ous differences between real and synthetic images were
detected. In addition, we visualized the clustering of real
and synthetic tiles in a feature space. Dimensionality
reduction with t-SNE revealed that these images were
completely mixed in the feature space (Figure 4E). Taken
together, this provides evidence that real and synthetic
images are similar.
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Synthetic images retain latent genetic information
Having generated synthetic histology images with realistic
morphology, we investigated whether these images retain
information about genetic subtypes of cancer. We trained
a deep learning network forMSI detection on real and syn-
thetic images and evaluated patient-level classification per-
formance on a held-out test set (Figure 5A). When trained
on real image tiles in TCGA-CRC-TRAIN (supplemen-
tary material, Figure S1), the classifier achieved a patient-
level area under the receiver operating curve (AUROC)
for MSI detection of 0.742 [0.681, 0.854] (Figure 5B) on
the test set. Training the same classifier on synthetic
images from the SYNTH-CRC-10K set for the same num-
ber of epochs yielded an AUROC of 0.710 [0.614, 0.753]
(supplementary material, Table S1). Unlike real images,
synthetic images can be generated in arbitrary numbers.
Therefore, we trained a classifier for four epochs on a syn-
thetic data set of 75 000 images per class (SYNTH-CRC-
75K). When evaluated on the real test set, this classifier
achieved a patient-level MSI detection AUROC of 0.743
[0.658, 0.801] (Figure 5C). In the clinically relevant [11]

high-sensitivity, low-specificity area, this ‘trained on syn-
thetic’ classifier was superior to the ‘trained on real’ classi-
fier, reaching a specificity of greater than 0.6 at a sensitivity
of 0.8 (Figure 5C). In addition, we trained additional clas-
sifiers on 25 000 image patches (SYNTH-CRC-25K) and
on 100 000 image patches (SYNTH-CRC-100K; supple-
mentary material, Table S1), without achieving a pro-
nounced increase of the resulting performance. To
quantify the upper limit of a test performance for a network
trained on real images, we went beyond the pre-defined
hyperparameter set and trained a network on TCGA-
CRC-TRAIN for 30 epochs, reaching a higher AUROC
of 0.787 [0.694, 0.860] (supplementary material,
Table S1). This likely represents the upper limit of the per-
formance that can be reached with the available data.

Improving the performance of genetic classifiers
with generated images
Having shown that synthetic histology images can be
used as a substitute for real histology images to train

Figure 2. Synthetic histology images are realistic and contain multiple tissue types. These are representative images for MSI and non-MSI,
real images and synthetic images. Visually, most of the synthetic images are indistinguishable from real images. Multiple tissue classes
are present in real and synthetic images. T, tumor epithelium; S, desmoplastic stroma; M, mucus; D, debris or necrotic cells. (A) Real image
patches of microsatellite instable (MSI) tumors. (B) Synthetic image patches of MSI tumors. (C) Real image patches of microsatellite stable
(MSS) tumors. (D) Synthetic image patches of MSS tumors.
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classifiers of molecular status, we asked whether syn-
thetic images could augment real image data sets to
improve classification performance. We used synthetic
images from the SYNTH-CRC-75K data set to augment
the TCGA-CRC-TRAIN data set until we reached
75 000 image patches per class (MIXED-CRC-TRAIN
data set). Training on this mixed data set and evaluating
on the benchmark test set, an MSI classifier reached
a performance of AUROC 0.777 [0.715, 0.821]
(Figure 5D). We concluded that synthetic histology
image patches can be used to augment real training sets,
potentially improving the detection of molecular sub-
types in colorectal cancer with a deep learning classifier.
Finally, we investigated whether classification perfor-
mance increases if MSI detectors are trained on more
realistic synthetic images in the MULTI-CRC-10K
image set. In the user study, images in the MULTI-
CRC-10K set were deemed much more realistic than
images in the TCGA-SYNTH-10K set (Figure 3B). A
likely reason for this superior quality is that these
images were generated by a network which was trained
on a larger cohort of images, providing a larger degree
of biological variability to the CGAN. Indeed, training
an MSI detector on this MULTI-SYNTH-10K set mark-
edly improved prediction performance on TCGA-CRC-
TEST, achieving an AUROC of 0.757 [0.707, 0.869]
(supplementary material, Table S1 and Figure 5E). We
conclude that optimizing for realistic appearance of syn-
thetic images may also improve the classification perfor-
mance for deep learning systems for detecting genetic
alterations.

Discussion

Treating patients who have metastatic cancer may
require genetic profiling of tumors. Recent studies have
shown that this genetic profiling could potentially be
supplemented or replaced by deep learning-based analy-
sis of H&E-stained tissue sections [2]. However, large
patient cohorts with matched histology, clinicopatholog-
ical data, and molecular data are scarce, which is a limit-
ing factor for further development of these methods [2].
Generative adversarial networks (GANs) have been pro-
posed as a technology to solve data shortage in digital
pathology [20]. However, while previous studies sug-
gest that GANs may be able to generate realistic histol-
ogy images [17], it is unclear whether these synthetic
images retain information about molecular or genetic
information.
In the present study, we investigated whether a deep

learning classifier of microsatellite instability in colorec-
tal cancer can be trained equally well on synthetic CRC
images. Among all genetic biomarkers detectable by
deep learning, microsatellite instability is the most
extensively validated biomarker [11]. Our results from
the present study suggest that when synthesizing histol-
ogy images with a CGAN, image information able to
predict molecular status is preserved. Classifiers trained
on synthetic images alone, or hybrid data sets of real
and synthetic images, appear to be able to infer molecu-
lar information from histology images in a benchmark
test set. In terms of performance as measured by
AUROC, training on synthetic images yields a classifier

Figure 3. Results of the user study in which participants were asked to distinguish between real and synthetic images. (A) The group consisted
of one histopathologist and four non-pathologists who were trained in histology. (B) Accuracy for each observer. The test set consisted of
100 pictures (50 real images and 50 synthetic images, balanced for MSI status). Icons in panel A are re-used under a CC-BY 4.0 license from
Twitter Twemoji.
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which is on par with a classifier trained on real images. A
classifier trained on the hybrid data set was found to be
superior to pure real or pure synthetic approaches
(Figure 5D). In summary, CGANs could be used as an
effective method to generate purely synthetic or hybrid
training sets for deep learning classifiers of molecular
status in cancer histology. Known histological features
associated with MSI in colorectal cancer include poor
differentiation, intraepithelial lymphocytosis, and the
presence of extracellular mucin, features which were
present in synthetic images of MSI tumors (Figure 2B).
Furthermore, we saw a performance improvement using
the synthetic images as data augmentation in addition to
commonly used augmentation methods. However, the
benefit of this was only marginal, increasing AUROC
from 0.742 to 0.777. Limitations of our study include
the observation that although trained non-pathologists
could not distinguish between real and synthetic images,
a pathologist was able to detect synthetic images with

some degree of certainty based on the presence of arti-
facts unique to the synthetic images (Figure 3B). Addi-
tional studies are needed to further improve the
performance of CGANs in the context of histopathol-
ogy. In addition, while this study shows that CGANs
can synthesize images containing information about a
pre-defined molecular alteration, it is unclear whether
other molecular information is encoded in the images.

With the exception of the TCGA study, no large-scale
histology data sets with matched molecular or genetic
information are publicly available. This is in contrast to
non-medical fields of research, where there is an abun-
dance of data sets publicly available for re-use. From
an ethical perspective, patient-related raw data should
only be publicly shared if the patient explicitly con-
sented or if an ethics board formally waived the need
for patient consent. From a legal point of view, handling
personal health data requires special caution, especially
when the data can be linked back to a particular

Figure 4. Quantifying similarity between real and synthetic images. (A–D) Representative occlusion maps of real and synthetic images gen-
erated by the model trained on real images. The model is sensitive to highly cellular regions in synthetic and real images alike. This suggests
that the network processes synthetic images similarly to real images. Furthermore, the strength of activation in both real and synthetic
images seems to be similar to one another in relevant regions. (E) t-Stochastic neighbor embedding (tSNE) of visual features in real (black)
and synthetic (red) images, as extracted by a network trained on real histology images using a range of clustering parameters (perplexity and
exaggeration).
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individual. While legal constraints differ between
regions, publicly sharing histology slides with matched
molecular, genetic or clinical information is problem-
atic in most countries. Generating ‘synthetic’ data
which can be shared publicly could mitigate this prob-
lem. While generative models learn patterns from
actual patient data, the generated samples cannot be
linked to any particular individual. By showing that
synthetic data are non-inferior to real data for detecting
molecular features in colorectal cancer, our study pro-
vides a potential solution to legal and ethical problems
associated with sharing patient-related data. In other
words, our study provides a new method to anonymize
medical image data for subsequent deep learning

analysis while retaining subtle information linked to
molecular features. Future studies are needed to dem-
onstrate the robustness of this method for other bio-
markers. Also, all methods in the present study were
limited to the analysis of image tiles extracted from
whole-slide histology images. While this approach is
currently the state of the art in computational pathol-
ogy [29], some studies have provided evidence that
analysis of larger regions or even whole-slide images
is a feasible alternative [30]. Thus, further studies are
needed to fine-tune generative networks to a range of
clinically relevant applications in computational
pathology. Our study provides a proof of principle
and a benchmark data set for such approaches.

Figure 5. Experimental design and classification results. (A) This study aimed to investigate whether information about molecular status in
histological images is preserved by synthesizing training images with a conditional GAN. The red area contains potentially protected health
information, whereas the blue area contains shareable data which cannot be linked to any particular patient. (B) Receiver operating curve
(ROC) with pointwise confidence bounds for a network trained on TCGA-CRC-TRAIN. All models were evaluated on TCGA-CRC-TEST and show
patient-level statistics. Learning hyperparameters were pre-defined. (C) The corresponding ROC of a model trained on SYNTH-CRC-75K
shows a similar performance. (D) Augmentation of the real training data set with synthetic images improves performance. (E) Area under
the ROC (AUROC) shown for various classifiers trained for four epochs, evaluated on the same test set. Raw data are available in supplemen-
tary material, Table S1.

Deep learning detects genetic alterations in synthetic histology images 77

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd.
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2021; 254: 70–79
www.thejournalofpathology.com

 10969896, 2021, 1, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.5638 by T

est, W
iley O

nline L
ibrary on [14/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.pathsoc.org
http://www.thejournalofpathology.com


Acknowledgements

We acknowledge the support of the Rainbow-TMA Con-
sortium, especially the project group: PA van den Brandt,
A zur Hausen, HI Grabsch,M van Engeland, LJ Schouten,
J Beckervordersandforth (Maastricht University Medical
Center, Maastricht, The Netherlands); PHM Peeters, PJ
van Diest, HB Bueno de Mesquita (University Medical
Center Utrecht, Utrecht, The Netherlands); J van Krieken,
I Nagtegaal, B Siebers, B Kiemeney (Radboud
University Medical Center, Nijmegen, The Netherlands);
FJ van Kemenade, C Steegers, D Boomsma, GA Meijer
(VU University Medical Center, Amsterdam, The Nether-
lands); FJ van Kemenade, B Stricker (Erasmus University
Medical Center, Rotterdam, The Netherlands);
L Overbeek, A Gijsbers (PALGA, the Nationwide
Histopathology and Cytopathology Data Network and
Archive, Houten, The Netherlands); and Rainbow-TMA
collaborating pathologists, among others: A de Bruïne
(VieCuriMedicalCenter,Venlo); JCBeckervordersandforth
(Maastricht University Medical Center, Maastricht);
J van Krieken, I Nagtegaal (Radboud University Medical
Center, Nijmegen);WTimens (UniversityMedical Center
Groningen, Groningen); FJ van Kemenade (Erasmus
University Medical Center, Rotterdam); MCH Hogenes
(Laboratory for Pathology Oost-Nederland, Hengelo); PJ
van Diest (University Medical Center Utrecht, Utrecht);
RE Kibbelaar (Pathology Friesland, Leeuwarden); AF
Hamel (Stichting Samenwerkende Ziekenhuizen Oost-
Groningen, Winschoten); ATMG Tiebosch (Martini Hos-
pital, Groningen); C Meijers (Reinier de Graaf Gasthuis/
SSDZ, Delft); R Natté (Haga Hospital Leyenburg, The
Hague); GA Meijer (VU University Medical Center,
Amsterdam); JJTH Roelofs (Academic Medical Center,
Amsterdam); RF Hoedemaeker (Pathology Laboratory
Pathan, Rotterdam); S Sastrowijoto (Orbis Medical
Center, Sittard); M Nap (Atrium Medical Center,
Heerlen); HT Shirango (Deventer Hospital, Deventer);
H Doornewaard (Gelre Hospital, Apeldoorn); JE Boers
(Isala Hospital, Zwolle); JC van der Linden (Jeroen Bosch
Hospital, Den Bosch); G Burger (Symbiant Pathology
Center, Alkmaar); RW Rouse (Meander Medical Center,
Amersfoort); PC deBruin (St. AntoniusHospital, Nieuwe-
gein); P Drillenburg (Onze Lieve Vrouwe Gasthuis,
Amsterdam); C van Krimpen (Kennemer Gasthuis,
Haarlem); JF Graadt van Roggen (Diaconessenhuis,
Leiden); SAJ Loyson (Bronovo Hospital, The Hague);
JD Rupa (Laurentius Hospital, Roermond); H Kliffen
(Maasstad Hospital, Rotterdam); HM Hazelbag (Medical
Center Haaglanden, The Hague); K Schelfout (Stichting
Pathologisch en Cytologisch LaboratoriumWest-Brabant,
Bergen op Zoom); J Stavast (Laboratorium Klinische
Pathologie Centraal Brabant, Tilburg); I van Lijnschoten
(PAMM Laboratory for Pathology and Medical
Microbiology, Eindhoven); and K Duthoi (Amphia
Hospital, Breda).
JNK is funded by the Max-Eder-Programme of the

German Cancer Aid (Bonn, Germany; grant
#70113864) and the START Programme of the Medical
Faculty Aachen (Aachen, Germany, grant #691906).

PB is supported by the German Research Foundation
(DFG; SFB/TRR57, SFB/TRR219, BO3755/3-1,
BO3755/9-1, BO3755/13-1), the German Federal Minis-
tries of Education and Research (STOP-FSGS-
01GM1901A and DEFEAT PANDEMIcs-01KX2021),
and Economic Affairs and Energy (EMPAIA). JNK,
TL, and PB are funded by the German Ministry of Health
(‘Förderung aufgrund eines Beschlusses des Deutschen
Bundestages durch die Bundesregierung’; grant DEEP
LIVER, #ZMVI1-2520DAT111). PvdB is funded by
The Dutch Cancer Society (KWF, Amsterdam; grant
number 11044). Data from the NLCS study were pro-
vided by the Rainbow-TMA Consortium, which was
financially supported by BBMRI-NL, a Research Infra-
structure financed by the Dutch Government (NWO
184.021.007 to PAvdB), and Maastricht University Med-
ical Center, University Medical Center Utrecht, and Rad-
boud University Medical Centre, The Netherlands.

Open Access funding enabled and organized by Pro-
jekt DEAL.

Author contributions statement

JK, HIG and JNK conceived the experiments. JK, JNK
and MJ carried out experiments and analyzed data.
HIG, MK, RDB and PB contributed pathology expert
knowledge to experimental design and data interpreta-
tion. HIG, PB, TL, CT and PAvdB provided essential
resources. All the authors were involved in interpreting
the results, writing the paper, and had final approval of
the submitted and published versions.

References
1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:

GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.

2. Kather JN, Calderaro J. Development of AI-based pathology bio-
markers in gastrointestinal and liver cancer. Nat Rev Gastroenterol

Hepatol 2020; 17: 591–592.
3. Kather JN, Halama N, Jaeger D. Genomics and emerging biomarkers

for immunotherapy of colorectal cancer. Semin Cancer Biol 2018; 52:
189–197.

4. Stjepanovic N, Moreira L, Carneiro F, et al. Hereditary gastrointesti-
nal cancers: ESMO Clinical Practice Guidelines for diagnosis, treat-
ment and follow-up†. Ann Oncol 2019; 30: 1558–1571.

5. Molecular testing strategies for Lynch syndrome in people with colo-
rectal cancer (section 4, Evidence) | Guidance. NICE. [Accessed 30
April 2020]. Available from: https://www.nice.org.uk/guidance/
dg27/chapter/4-Evidence.

6. Snowsill T, Coelho H, Huxley N, et al. Molecular testing for Lynch
syndrome in people with colorectal cancer: systematic reviews and
economic evaluation. Health Technol Assess 2017; 21: 1–238.

7. Fu Y, Jung AW, Torné RV, et al. Pan-cancer computational histopa-
thology reveals mutations, tumor composition and prognosis. Nat
Cancer 2020; 1: 800–810.

8. Kather JN, Heij LR, Grabsch HI, et al. Pan-cancer image-based detection
of clinically actionable genetic alterations.Nat Cancer 2020; 1: 789–799.

78 J Krause et al

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd.
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2021; 254: 70–79
www.thejournalofpathology.com

 10969896, 2021, 1, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.5638 by T

est, W
iley O

nline L
ibrary on [14/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.nice.org.uk/guidance/dg27/chapter/4-Evidence
https://www.nice.org.uk/guidance/dg27/chapter/4-Evidence
http://www.pathsoc.org
http://www.thejournalofpathology.com


9. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and
mutation prediction from non-small cell lung cancer histopathology
images using deep learning. Nat Med 2018; 24: 1559–1567.

10. Kather JN, Pearson AT, Halama N, et al. Deep learning can predict
microsatellite instability directly from histology in gastrointestinal
cancer. Nat Med 2019; 25: 1054–1056.

11. Echle A, Grabsch HI, Quirke P, et al. Clinical-grade detection of
microsatellite instability in colorectal tumors by deep learning.
Gastroenterology 2020; 159: 1406–1416.

12. Schmauch B, Romagnoni A, Pronier E, et al. A deep learning model
to predict RNA-Seq expression of tumours from whole slide images.
Nat Commun 2020; 11: 3877.

13. Echle A, Rindtorff NT, Brinker TJ, et al. Deep learning in cancer
pathology: a new generation of clinical biomarkers. Br J Cancer

2021; 124: 686–696.
14. Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade compu-

tational pathology using weakly supervised deep learning on whole
slide images. Nat Med 2019; 25: 1301–1309.

15. Calderaro J, Kather JN. Artificial intelligence-based pathology for
gastrointestinal and hepatobiliary cancers. Gut 2020. https://doi.org/
10.1136/gutjnl-2020-322880 [Epub ahead of print].

16. The Cancer Genome Atlas Network. Comprehensive molecular charac-
terization of human colon and rectal cancer.Nature 2012; 487: 330–337.

17. Levine AB, Peng J, Farnell D, et al. Synthesis of diagnostic quality
cancer pathology images by generative adversarial networks.
J Pathol 2020; 252: 178–188.

18. Murali LK, Lutnick B, Ginley B, et al. Generative modeling for renal
microanatomy. Proc SPIE Int Soc Opt Eng 2020; 11320: 113200F.

19. Gadermayr M, Gupta L, Appel V, et al. Generative adversarial net-
works for facilitating stain-independent supervised and unsupervised
segmentation: a study on kidney histology. IEEE Trans Med Imaging

2019; 38: 2293–2302.
20. Safarpoor A, Kalra S, Tizhoosh HR. Generative models in pathology:

synthesis of diagnostic quality pathology images. J Pathol 2020; 253:
131–132.

21. Han T, Nebelung S, Haarburger C, et al. Breaking medical data shar-
ing boundaries by using synthesized radiographs. Sci Adv 2020; 6:
eabb7973.

22. van den Brandt PA.Maastricht Pathology 2018. 11th Joint Meeting of
the British Division of the International Academy of Pathology and
the Pathological Society of Great Britain & Ireland, 19–22 June
2018. J Pathol 2018; 246(suppl 1): S1–S46.

23. van den Brandt PA, Goldbohm RA, van’t Veer P, et al. A large-scale
prospective cohort study on diet and cancer in The Netherlands. J Clin
Epidemiol 1990; 43: 285–295.

24. Macenko M, Niethammer M, Marron JS, et al. A method for normal-
izing histology slides for quantitative analysis. Proc 2009 IEEE

International Symposium on Biomedical Imaging: From Nano to

Macro, 2009; 1107–1110; DOI: https://doi.org/10.1109/ISBI.2009.
5193250.

25. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adver-
sarial networks. v1. arXiv.org 2014. Available from: https://arxiv.
org/abs/1406.2661. [Accessed 4 February 2021]. Not peer
reviewed.

26. Zhang X, Zhou X, Lin M, et al. ShuffleNet: an extremely efficient
convolutional neural network for mobile devices. v2. arXiv.org
2017. Available from: https://arxiv.org/abs/1707.01083. [Accessed
4 February 2021]. Not peer reviewed.

27. Tellez D, Litjens G, Bándi P, et al. Quantifying the effects of data aug-
mentation and stain color normalization in convolutional neural net-
works for computational pathology.Med Image Anal 2019; 58: 101544.

28. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach

Learn Res 2008; 9: 2579–2605.
29. Coudray N, Tsirigos A. Deep learning links histology, molecular

signatures and prognosis in cancer. Nat Cancer 2020; 1:
755–757.

30. Deshpande S, Minhas F, Graham S, et al. SAFRON: stitching across
the frontier for generating colorectal cancer histology images. v1.
arXiv.org 2020. Available from: http://arxiv.org/abs/2008.04526.

[Accessed 4 February 2021]. Not peer reviewed.

SUPPLEMENTARY MATERIAL ONLINE
Figure S1. Visualization of the flow of all samples

Figure S2. Additional activation maps, related to Figure 4

Table S1. Overview of the results

Table S2. Overview of the image sets

Table S3. Step-by-step explanation of experiment #1 in Table S1

Table S4. Hyperparameter sets

Table S5. Step-by-step explanation of experiment #2 in Table S1

Deep learning detects genetic alterations in synthetic histology images 79

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd.
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2021; 254: 70–79
www.thejournalofpathology.com

 10969896, 2021, 1, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.5638 by T

est, W
iley O

nline L
ibrary on [14/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1136/gutjnl-2020-322880
https://doi.org/10.1136/gutjnl-2020-322880
https://doi.org/10.1109/ISBI.2009.5193250
https://doi.org/10.1109/ISBI.2009.5193250
http://arxiv.org
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
http://arxiv.org
https://arxiv.org/abs/1707.01083
http://arxiv.org
http://arxiv.org/abs/2008.04526
http://www.pathsoc.org
http://www.thejournalofpathology.com

	Deep learning detects genetic alterations in cancer histology generated by adversarial networks
	Introduction
	Materials and methods
	Ethics statement
	Image selection and preprocessing
	Development of generative models
	Classification network models
	Comparison of real and synthetic image tiles
	Statistical analysis
	Implementation and code availability

	Results
	Conditional GANs generate realistic image patches with multiple tissue types
	Synthetic images retain latent genetic information
	Improving the performance of genetic classifiers with generated images

	Discussion
	Acknowledgements
	Author contributions statement
	References


