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Abstract: The recent explosion of large volume of standard dataset of annotated images has offered

promising opportunities for deep learning techniques in effective and efficient object detection ap-

plications. However, due to a huge difference of quality between these standardized dataset and

practical raw data, it is still a critical problem on how to maximize utilization of deep learning

techniques in practical agriculture applications. Here, we introduce a domain-specific benchmark

dataset, called AgriPest, in tiny wild pest recognition and detection, providing the researchers and

communities with a standard large-scale dataset of practically wild pest images and annotations, as

well as evaluation procedures. During the past seven years, AgriPest captures 49.7K images of four

crops containing 14 species of pests by our designed image collection equipment in the field environ-

ment. All of the images are manually annotated by agricultural experts with up to 264.7K bounding

boxes of locating pests. This paper also offers a detailed analysis of AgriPest where the validation

set is split into four types of scenes that are common in practical pest monitoring applications. We

explore and evaluate the performance of state-of-the-art deep learning techniques over AgriPest. We

believe that the scale, accuracy, and diversity of AgriPest can offer great opportunities to researchers

in computer vision as well as pest monitoring applications.

Keywords: pest detection; agricultural dataset; AgriPest; deep learning

1. Introduction

Object detection is a classic research topic in the computer vision communities. The
current large volume of standardized object detection datasets [1–3] help to explore many
key research challenges that are related to object detection and evaluate the performance of
different algorithms and technologies. Especially, the recent popularity and development
of deep learning techniques has proved a fact that, given sufficient high-quality annotated
image datasets, deep learning approaches [4–6] can effectively and efficiently achieve the
detection and classification tasks. This results in some practical breakthroughs in many
classic applications, including face recognition [7] and vehicle detection [8]. However, in
some domain-specific object detection applications, there is a huge difference of quality
between standardized annotated dataset and practical raw data. This leads us to the
obvious question: how could we maximize the utilization of deep learning techniques in
practical applications?

Taking an example of typical object detection in smart agriculture application, current
pest monitoring task requires precise and pest detection and population counting in static
image. In this case, computer vision based automatic pest monitoring techniques have
been widely used in real practice. These computer vision techniques deal with pest images
that were captured from fixed stationary, and then adopt traditional image processing
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algorithms to analyze the pest associated features for detection [9]. During this processing,
most of the solutions aim to formulate it as a whole image classification task [10–12].
However, in practical applications, wild pest detection that requires not only classification,
but also localization might be much more important for pest hazard assessment, since a
precise detection performance could provide higher semantic information, such as pest
occurrence areas and pest population counting information in the field.

Despite recent deep learning approaches have showed great success in image recog-
nition [13] or generic object detection applications [14–16], they are often intractable to
be ready-to-use practical methods for showing satisfied performance on pest detection
and classification. Towards this problem, the main reasons are: (1) when comparing with
generic object detection, pest detection in the wild remains an open problem due to a
challenging fact that many discriminative details and features of object are small, blurred,
hidden, and short of sufficient details. These pose a fundamental dilemma that it is hard to
distinguish small object from the generic clutter in the background. (2) The diversity and
complexity of scenes in the wild cause a variety of challenges, including dense distribution,
sparse distribution, illumination variations, and background clutter shown in Figure 1.
These types of scenes might increase the difficulty of applying generic object detection
techniques into tiny wild pest detection task.

(a) Dense distribution of pests (b) Sparse distribution of pests

(c) Illumination variations (d) Background clutter

Figure 1. Example images of AgriPest. These samples indicate four types of typical scenes in pest

detection task.

It is well known that the large-scale image dataset plays a key role in driving efficient
model and enables powerful feature representation. In the field of agricultural pest control-
ling, the first challenge is how to select the field crops and pest species in the large-scale
dataset to build hierarchical taxonomy. From the practical point view of pest reduction,
we consider the field crops that occupy a larger production of food in the world. Under
this consideration, the Food and Agriculture Organization of the United Nations (FAO)
reports that rice (paddy), maize (corn), and wheat are three major field crops for food
production that could provide 700 M, 1000 M, and 800 M tones in 2019 [17]. Besides, there
is also a large planting area in Asia for rape. Among these crops, certain insects and other
arthropods are serious agricultural pests, causing significant crops loss if not controlled.
Some of them, e.g. moth larvae (Lepidoptera) directly feed on the rhizome and leaves of
crops while others mainly feed on nonharvested portions of the plant or suck on plant
juices, such as aphids and leafhoppers [18]. Being damaged by these pests, an estimated
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18–20% of the annual crop production worldwide is destroyed, estimated at a value of
more than $470 billion [19].

When considering the targeted field crops and pest species, using computer vision
for pest monitoring is expected to have a domain specific dataset. However, current
public datasets for agricultural pest recognition and detection have several limitations:
(1) most of them typically cover a small number of samples [20,21], which results in poor
generalization, so that the model might not work well on recognizing pests with various
attitudes. (2) Many datasets that are target at solving the problem of pest recognition, in
which pest objects occupy a large ratio in images [22,23]. However, pests always show to
be with tiny sizes in real-life scenes. Besides, most of the images in these datasets contain
only one insect pest category, which might be unusual in practical pest images. (3) Some of
the datasets collect images in laboratory or non-field environment while using trap devices
or from Internet, where these pest images hold a highly simple background, making it
difficult to cope with the complexity of practical fields [9,24].

In this paper, we introduce a domain-specific benchmark dataset, called AgriPest,
in tiny wild pest detection, providing the researchers and communities with a standard
large-scale dataset of practically wild pest images and annotation, as well as standardized
evaluation procedures. Different from other public object detection datasets, such as MS
COCO [1] and PASCAL VOC [2], which are collected by searching on the Internet, a
task-specific image acquisition equipment is designed to build our AgriPest. During this
process, we spend over seven years collecting the images due to seasonal and regional
difficulty. AgriPest captures 49.7K images of four fields’ crops and 14 species of pests
by smartphone in the field environment. All of the images are manually annotated by
agricultural experts with up to 264.7K bounding boxes of locating pests. This paper also
offers a detailed analysis of AgriPest, where the validation set is split into four types
of scenes that are common in practical pest monitoring applications. Benefiting to the
practical precision agriculture applications, our AgriPest could provide a large amount of
valuable information for precise pest monitoring that could help to reduce crop production
loss. Specifically, the current agriculture automation system could deploy a deep learning
pest detection method for building effective pest management policy, such as choice and
concentration of pesticide, as well as natural enemies controlling and production estimation.
We believe our efforts could benefit future precision agriculture and agroecosystems.

The major contributions of this paper lie in three folds:

• To the best of our knowledge, the largest scale domain-specific dataset AgriPest con-
taining more than 49.7 K images and 264.7 K annotated pests is published for tiny pest
detection research. This benchmark will significantly promote the effectiveness and
usefulness of applications of new object detection approaches in intelligent agriculture,
e.g., crop production forecast.

• AgriPest defines, categories, and establishes a series of detailed and comprehensive
domain-specific sub-datasets. Its first category contains two typical challenges: pest
detection and pest population counting. Subsequently, it categories four types of the
validation subsets of AgriPest dense distribution, sparse distribution, illumination
variations, and background clutter, which are common in practical pest monitoring
applications.

• Accompanying AgriPest, we build the practical pest monitoring systems that are
based on deep learning detectors deployed in the task-specific equipment, in which
we give comprehensive performance evaluations of the state-of-the-art deep learning
techniques in AgriPest. We believe that AgriPest provides a feasible benchmark dataset
and facilitate further research on the pest detection task well. Our dataset and code
will be made publicly available.

2. Related Work

The emergence of deep learning techniques has led to significantly promising progress
in the field of object detection [25], such as SSD [4], Faster R-CNN [5], Feature Pyramid
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Network (FPN) [6], and other extended variants of these networks [26–29]. CNN has
exhibited superior capacities in learning invariance in multiple object categories from large
amounts of training data [23]. It enables suggesting object proposal regions in the detection
process and extract more discriminative features than hand-engineered features. The
experimental results on the MS COCO [1] and PASCAL VOC [2] dataset show that Faster
R-CNN [5] is an effective region-based object detector towards general object detection
in the wild with an Average Precision (AP) up to 42.7% with IoU 0.5. In Faster R-CNN,
Region-of-Interest (RoI) pooling is used to extract features on a single-scale feature map.
However, targeting at small object detection, FPN [6] is the state-of-the-art technique
for small object detection over MS COCO dataset with AP up to 56.9% with IoU 0.5. By
building up a multi-scale image pyramid, FPN enables a model to detect all of the objects
across a large range of scales over both positions and pyramid levels. This property is
particularly useful to tiny object detection.

Benefitting from the success of these object detection methods, many applications
have been developed in recent years [30–32]. Towards pest detection in the wild, deep
learning methods might not achieve satisfactory performance, because an excellent object
detection application using deep learning techniques usually need to be trained by large
enough training dataset. Although there exist a few datasets for solving agricultural
issues [33,34], most public large-scale datasets for tiny objects, especially agricultural pest
images, cover limited data volume, which causes deep learning methods on pest detection
to be restricted [21–23]. Besides, a large number of current pest related datasets are collected
in the controlled laboratory or non-field environment, which could not satisfy the practical
requirements of pest monitoring applications in the field [24]. Moreover, these datasets
mainly focus on the pest recognition task, rather than pest detection, so the pest objects
occupy a large ratio in images [20]. On the contrary, our proposed AgriPest is built to
address practical issues in pest monitoring applications, so all of the images are collected
in the wild fields and each pest is annotated with bounding box for detection as well as
pest population counting.

3. AgriPest Dataset

3.1. Taxonomy

IP102 provides its pest taxonomy from 102 pest species [23]. However, among these
pest insects, lots of them are not necessary to be prevented in practical agriculture because
of their low level for harming fields in certain types of crops. Besides, there are several
works that points out rice and wheat are two major crops that are degraded by pests [35].
Therefore, we reform the pest taxonomy of IP102 and focus on pests occuring in four types
of crops. Finally, we obtain 14 categories of pests in four super-classes corresponding to
four common field crops: wheat, rice, corn, and rape. Within these super-classes, each
pest is a subordinate class (also known as sub-class) of a super-class. For example, rice
planthopper (RPH) is a sub-class that spoils rice crop, which is one of the super-classes. By
this taxonomy system, we build a hierarchical structure of pest categories in AgriPest and
the sample of each category is visualized in Figure 2.

3.2. Image Acquisition

Current datasets, such as MS COCO, usually collect images using Google or Bing
image search. However, most of images on the Internet are not suitable for building a
practical pest monitoring application. Besides, the pest monitoring task is novel and specific,
ordinary cameras might not be convenient for capturing pests in the root of crops. Thus,
there is no proper image acquisition devices for our task. In order to make the captured
image reasonable for practical pest occurrence in wild field, we come up with the following
requirements: (1) each image must contain at least one type of pest species discussed in
Section 3.1. (2) The distance between camera and pest should be various to help the diversity
of AgriPest. (3) All of the captured pests need to show their different poses and gestures as
they are observed in the real world and overlap is also allowed among these pests.
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(a) WM (b) SA (c) SG (d) RP (e) SW

(f) RPH (g) CM (h) RM (i) DP (j) GM

(k) CP (l) MA (m) PS (n) CA

Figure 2. Sample visualization for each pest category in AgriPest. (WM: Wheat mite, SA: Sitobion

avenae, SG: Schizaphis graminum, RP: Rhopalosiphum padi, SW: Sticky worm, RPH: Rice plan-

thopper, CM: Cnaphalocrocis medinalis (symptom), RM: Rhopalosiphum maidis, DP: Dichocrocis

punctiferalis, GM: Guenee Mythimnaseparata walker, CP: Cruciferae padi, MA: Meligethes aeneus,

PS: Phyllostachys striata, CA: Ceuthorrhynchus asper).

To meet these requirements, we design a task-specific independent research and
development equipment for wild pest image collection whose structure are illustrated
in Figure 3. This apparatus is developed with three components in the stand: mobile
client, CCD camera, and temperature-humidity sensor. When using this equipment in
the field crop, we first adjust the stand height according to the pest locations of the
crop, e.g., higher than the crop for wheat, since most pests usually occur in the leaves.
Subsequently, we deploy a mobile client and CCD camera in the stand and randomly
rotate the hinge of the stand to make the CCD camera cover various viewpoints during
image capturing. The parameters of CCD camera are set to 4 mm focal length with an
aperture of f/3.3. At the same time, mobile client is connected with CCD camera by wireless
network to help users photograph pest images conveniently. In addition, we also adopt a
temperature and humidity sensor to record current high-level environment information to
help pest annotation process, since some certain pest species might occur under specific
environments. Therefore, under our image acquisition, we could capture numerous pest
images from the field crop. Finally, we consciously photograph the images in various
typical places to improve the dataset diversity in order to balance the distribution of our
AgriPest dataset. Furthermore, the candidate images are manually filtered to eliminate
those containing few pests. The total number of images captured in AgriPest is 49.7K.

3.3. Professional Data Annotation

We invite 20 agricultural experts to annotate these images that are filtered from raw
data, who are experienced and knowledgeable in agriculture area, due to our desire to
label numerous object instances in 49.7K agricultural images of our large-scale dataset.
Specifically, we cooperate with the researchers from Academy of Agricultural Sciences
and associate professors in the School of Agriculture and Forestry, which make up of our
image annotation team. In order to guarantee the correctness of the annotations, each
expert only focuses on pest species of one sup-class so these invited experts are grouped
into four groups, each of whose is responsible for annotating the corresponding crop, so it
could be ensured that every image is annotated by at least five agricultural experts. In data
annotation, the images are first categorized into their sup-classes. The sup-class could be
perfectly categorized, because the image source is recorded during collection. Subsequently,
the expert groups annotate the pest species and their locations using bounding boxes,
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respectively. Finally, all of the experts synergistically check the correctness of each labeled
instance. The final object instance annotation results follow this criterion: one bounding
box and its category could be accepted only when it is agreed by over five experts. The
bounding boxes annotations of pests follow the format of Pascal VOC.

Figure 3. Wild pest image acquisition and pest monitoring equipment.

3.4. Dataset Structure and Splits

For validating the practical application value of AgriPest, we randomly split the
whole images into training and validation subsets, which are split at the sub-class level. In
total, AgriPest is split into 44,716 training and 4991 validation images for pest detection
in the wild task. Besides, we attempt to split these images by keep the similar ratio at
different sup-classes, which could ensure the distribution of validation subset is the same
as training subset. Table 1 illustrates detailed splits of these two subsets. Note that the
sizes of pests would not occupy at most 3% areas over the whole image, because we aim to
detect pests of tiny sizes. Furthermore, to investigate various types of scenes in the practical
pest detection, we further manually split the validation subset into four types of scenes,
including dense distribution, sparse distribution, illumination variations, and background
clutter, which are typical scenes in pest monitoring applications. Note that there exist gaps
among the four validate subsets, e.g., Wheat Sticky is not in “dense” subset. We explain
this phenomenon by various habits of pest species, in which several kinds of pests damage
the field without group occurrence, while some other ones usually gather into clique in the
field crops. Table 2 illustrates the detailed statistics of these four challenges.

3.5. Comparison with Other Datasets

We compare AgriPest with several existing datasets from two aspects, i.e., comparison
with generic object detection datasets and comparison with datasets that are related to the
task of insect pest recognition or detection to further motivate the construction and usage
of our dataset. Table 3 illustrates the comparison.

When compared to the PASCAL VOC dataset, which is one of the largest and typical
generic object detection datasets, our AgriPest contains over four times more sample
images and eight times more annotated objects. In addition, both PASCAL VOC and MS
COCO organize lots of common categories of objects in their images so the average size of
targeted objects shows to be large (16.76% and 7.74% areas over whole image respectively).
However, for in-field tiny pest objects, AgriPest tends to concentrate more their real-life
body sizes, in which the pests only occupy average 0.16% area over the whole image in
AgriPest that is dozens of times smaller than those in generic object detection datasets, as
shown in Figure 4. When compared to traditional generic object detection task that only
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supports single-depth taxonomy hierarchy and single-scenario in test set, pest monitoring
requires a high-level complicated validation metho. Therefore, AgriPest could provide
hierarchical categories for pest samples and multi-scenario validation, as shown in Table 3.

With respect to comparison with some other existing insect pest datasets, our AgriPest
could also take great advantages over other datasets for the pest classification task [20–22]
(Figure 5a), while the insect pests show to be small in AgriPest images. In terms of back-
ground, a few current pest detection datasets contain images that are captured from the
non-field environment [23] (Figure 5b). Under these limitations, most existing insect pest
datasets are difficult to be applied to practical pest monitoring applications. AgriPest
targets at tiny pest detection task to meet the requirements of practical applications. Fur-
thermore, AgriPest still cover a larger number of images collected in the wild fields than
those current insect pest datasets (Figure 5c).

Table 1. Statistics on Two Subsets for AgriPest with training subset and validation subset. ‘size (%)’

indicates the average areas of pests over the whole images. For each class, the number of images

(containing at least one insect the class), the number of objects and the average number of objects per

image are shown in this table. Note that, because single image may contain objects of several classes,

the totals in the ‘#images’ columns are not simply the sum of the corresponding columns.

Field Crop Pest Name Size(%)
Training Validation All

#images #objects #images #objects #images #objects

wheat

WM 0.089 11,505 54,423 1278 6095 12,783 60,518
SA 0.086 5230 26,385 588 2844 5818 29,229
SG 0.075 5997 34,262 656 3819 6653 38,081
RP 0.100 697 1634 72 133 769 1767
SW 1.512 2901 2980 303 320 3204 3300

rice
RPH 0.143 9572 72,027 1074 8268 10,646 80,295
CM 0.407 2215 14,352 247 1580 2462 15,932

corn
RM 0.042 189 11,865 36 2325 225 14,190
DP 2.930 529 576 70 84 599 660
GM 2.941 1565 1699 155 174 1720 1873

rape

CP 0.060 193 9328 15 699 208 10,027
MA 0.061 3668 5035 404 570 4072 5605
PS 0.391 2368 2421 276 281 2644 2702
CA 0.325 388 492 44 57 432 549

total 44,716 237,479 4991 27,249 49,707 264,728

Table 2. Statistic on validation subset of AgriPest split in four typical scenes. Note that single image

may contain more than one type of scene, the totals shown in the ‘#images’ columns are not simply

the sum of the corresponding columns.

Field Crop Pest Name
Dense Sparse Illumination Background Clutter

#images #objects #images #objects #images #objects #images #objects

wheat

WM 178 1745 1064 4205 214 760 56 324
SA 236 2036 241 632 211 935 31 121
SG 210 2296 310 1199 209 1014 69 700
RP 17 46 55 87 25 49 15 27
SW - - 303 320 105 109 236 253

rice
RPH 116 1918 876 8925 77 482 1052 8095
CM 74 654 99 504 21 145 63 355

corn
RM 36 2325 - - 6 261 28 2010
DP - - 70 84 - - 66 80
GM - - 155 174 21 23 134 151

rape

CP 11 663 3 24 2 172 4 24
MA - - 375 502 1 2 37 101
PS - - 270 274 - - 21 24
CA - - 18 31 - - 26 26

total 786 11,683 3743 16,961 835 3952 1811 12,291
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Table 3. Comparison with Other datasets. ‘Det.’ and ‘Rec.’ indicate the object detection and image recognition task that

datasets focus on.

Dataset Task #Images #Objects Size(%) Collection Environment Hierarchical Categories Multi-Scenario Validation

PASCAL VOC [2] Det. 33K 79K 16.76 - - -
MS COCO [1] Det. 123K 896K 7.74 - - -

Xie et al. [22] Rec. 4.5K - - in-field X -
Alfarisy et al. [21] Rec. 4.5K - - in-field - -
Liu et al. [20] Rec. 5.1K - - in-field - -
IP102 [23] Rec. 75K - - in-field - -
Ding et al. [9] Det. 0.2K 4.4K - non-field - -
MPD2018 [24] Det. 88K 580K 0.26 non-field - -

AgriPest Det. 49K 264K 0.16 in-field X X

Figure 4. Comparison of PASCAL VOC and our domain-specific AgriPest dataset.

(a) images from pest recognition datasets

(b) images from non-field environment datasets

(c) images from AgriPest.

Figure 5. Comparison with other insect pest datasets.
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4. Experiments

4.1. Experimental Settings

For pest recognition and detection task, the choice of feature is treated as the most
significant component. To comprehensively evaluate our AgriPest dataset, we adopt
deep learning architectures as benchmarks. For this pest detection task, we select several
state-of-the-art methods that are categorized into one-stage architectures and two-stage
region-based architectures, including SSD [4], RetinaNet [36], FCOS [37], Faster R-CNN [5],
FPN [6], and Cascade R-CNN [38].

We choose VGG16 [39] as CNN backbone for SSD and ResNet-50 [40] the other object
detection approaches that are pretrained on ImageNet [13] and then fine-tuned on AgriPest.
For fair comparison, the learning algorithms and hyper-parameters are set to be same and
all of the models are trained to be optimal. Specifically, a Mini-batch Stochastic Gradient
Descent [41] is used as our optimizer with the batch size of 2. The base learning rate is set
to 0.01 and linear drop strategy for learning policy is used in our experiments, in which the
learning rate drops by 0.1 at 8th and 11th epoch and the total training epoch is 12 referenced
by Detectron [42]. The weight decay and momentum parameters are set to 0.0001 and 0.9,
respectively. The experiments are implemented using PyTorch and performed on two
NVIDIA 1080Ti GPUs with 12 GB memory.

4.2. Evaluation Metrics

We employ several comprehensive metrics for evaluation in order to evaluate the
performance of CNN models on AgriPest. In our AgriPest, there are two sub-tasks for
pest monitoring including pest detection and pest population counting. Firstly, we utilize
the Average Precision (AP) with Intersection over Union (IoU) in [0.50:0.05:0.95], AP0.50

and AP0.75 as the pest detection performance evaluation metrics. The IoU is defined as the
intersection over the union between predicted box and ground truth. Besides, Precision and
Recall are also two major metrics that are employed in our dataset, which describe the false
positive reduction and misdetection rate respectively. Secondly, for the pest population
counting challenge, we evaluate different models with both the Mean Absolute Error and
Mean Squared Error by following the convention of crowd counting task [43]. The MAE
and MSE would be averaged among classes. Generally, MAE measures the pest population
counting accuracy while MSE measures the robustness of the estimates.

5. Results and Discussion

5.1. Wild Tiny Pest Detection Results

On the AgriPest dataset, we build some experiments to evaluate the performance of
our approach. We select six state-of-the-art object detection methods for comparison, three
of which are one-stage architectures (SSD512, RetinaNet, and FCOS), while the other three
are two-stage methods (Faster R-CNN, FPN, and Cascade R-CNN).

Table 4 shows the multiclass tiny pest detection performance under these methods.
Generally, two-stage architectures could achieve better performance than one-stage meth-
ods, outweighing approximately two to four points AP. This could be explained by that
most of pests in our AgriPest hold tiny sizes so the coarse-to-fine object detection strat-
egy adopted by region-based methods could lead to more precise pest classification with
fine features. This phenomenon seems to be much more pronounced on smaller objects.
For example, pest CP that holds 0.006% size gets over 10 points AP improvement be-
tween these two types of methods. Among these approaches, SSD512 performs poorly
on most categories of pests. This indicates that, when the image is scaled to be small
(512 × 512 resolution), the features of targeted tiny pests might be hard to extract and
current state-of-the-art methods still could not satisfy real-world applications.

In addition, we illustrate the detection results using AP0.50, AP0.75, and AP[0.50:0.05:0.95]

as metrics in Tables 5 and 6. As it could be observed, most of methods could obtain satisfied
performance on IoU 0.5, but obtain a significant decrease when a higher IoU is the set
AP threshold. Thus, existing object detection methods might not work well on highly
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precise pest localization, because lots of ground truths are too small to be localized. Overall,
these detection results demonstrate that AgriPest exhibits high difficulty on wild tiny pest
detection as well as its research value.

Table 4. Average Precision (AP) for Multiclass Pest Detection Results with Intersection over Union (IoU) 0.5. The pest

categories are summarized into three groups according to their size proportion in image. Large: SW, DP, GM (∼3%),

Middle: CM, PS, CA (∼0.4%), Small: WM, SA, SG, RP, RPH, RM, CP, MA (<0.1%)

Method
Wheat Rice Corn Rape

WM SA SG RP SW RPH CM RM DP GM CP MA PS CA Mean

SSD512 [4] 54.09 48.69 45.74 71.84 89.66 54.68 28.36 29.75 88.52 87.63 24.42 89.02 90.84 84.04 63.38
RetinaNet [36] 59.60 47.79 48.17 76.15 90.44 60.45 39.41 25.76 90.32 89.82 14.46 89.05 90.88 88.00 65.03
FCOS [37] 62.83 55.98 54.21 83.60 90.15 62.40 38.85 39.18 85.15 89.81 33.51 88.35 90.55 81.66 66.22
Faster R-CNN [5] 57.67 47.68 51.59 72.64 89.78 60.15 40.72 32.83 89.00 90.15 18.67 88.49 90.87 87.86 65.58
FPN [6] 63.05 58.19 57.58 81.92 90.19 62.13 40.38 44.50 88.76 89.97 37.92 88.81 90.80 88.11 70.20
Cascade R-CNN [38] 60.99 58.95 58.32 82.61 89.85 62.38 41.44 46.27 90.09 89.96 40.75 89.14 90.58 90.26 70.83

Table 5. AP0.75 performance of pest detection methods.

Method
Wheat Rice Corn Rape

WM SA SG RP SW RPH CM RM DP GM CP MA PS CA Mean

SSD512 [4] 17.14 16.55 9.08 35.32 41.56 16.28 4.32 5.06 45.21 46.12 3.14 44.26 41.21 41.97 26.23
RetinaNet [36] 19.23 17.89 10.84 38.15 44.88 19.01 6.21 7.51 47.32 48.24 6.28 47.23 44.54 48.25 28.97
FCOS [37] 19.21 18.01 10.62 38.03 42.98 21.06 6.02 7.15 46.88 48.15 5.04 45.56 42.78 50.58 28.72
Faster R-CNN [5] 18.04 17.21 10.13 36.02 42.78 17.54 5.62 6.77 46.33 47.57 4.41 45.69 42.47 45.54 27.58
FPN [6] 19.98 20.01 12.54 38.26 42.50 22.17 7.18 9.14 47.95 48.76 7.05 47.03 44.51 51.65 29.91
Cascade R-CNN [38] 20.85 23.84 14.01 41.16 44.41 23.45 11.06 11.97 49.63 50.10 12.12 49.87 45.82 53.77 32.29

Table 6. AP[0.50:0.05:0.95] performance of pest detection methods.

Method
Wheat Rice Corn Rape

WM SA SG RP SW RPH CM RM DP GM CP MA PS CA Mean

SSD512 [4] 20.81 21.12 13.43 39.45 43.12 23.47 7.94 10.07 49.03 49.47 8.31 48.15 45.41 52.12 30.85
RetinaNet [36] 24.16 24.84 15.97 41.81 45.62 26.73 11.02 11.96 52.15 53.03 10.56 50.32 47.28 52.85 33.45
FCOS [37] 25.62 26.13 14.05 40.76 44.51 26.03 11.56 12.04 51.43 52.78 11.04 49.43 46.78 53.20 33.24
Faster R-CNN [5] 22.84 24.89 13.67 40.45 44.13 24.72 11.15 10.83 52.17 52.54 10.01 47.46 45.26 51.52 32.26
FPN [6] 25.12 27.78 17.71 42.86 47.54 28.10 13.23 14.02 55.16 54.36 12.84 51.73 47.15 55.34 35.21
Cascade R-CNN [38] 27.94 29.63 20.15 44.07 48.96 30.01 15.14 15.63 55.56 54.89 14.41 51.87 47.41 55.89 36.54

5.2. Precision-Recall Analysis

We evaluate the Precision-Recall (PR) by comparing the six object detection methods
in AgriPest shown in Figure 6 in order to further analyze the detailed detection results.
It is obvious that these methods could obtain the satisfied performance for most of pest
categories especially for those with relatively large sizes, such as pest SW, DP, and GM.
However, for a few certain classes, such as RM and CP, existing methods might not work
well on misdetection reduction (low recall). Furthermore, the precision keeps dropping
dramatically with the slight improvement of recall, which indicates that false positive
reduction might also not be well performed. This could be attributed to two reasons.
Firstly, for these ‘hard’ categories, there are a large number of pests that are densely
distributed in each image (around 60 pests per image for RM and 50 for CP), leading to
poor recall performance, which is also evidence for low AP from Table 2. Secondly, the
training samples for RM and CP are insufficient in AgriPest, in which there are 189 and
193 images for training, respectively. In this case, models may not effectively learn the
highly discriminative features for these pests from their background context.
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(a) SSD512 (b) RetinaNet

(c) FCOS (d) Faster R-CNN

(e) FPN (f) Cascade R-CNN

Figure 6. Comparison with other insect pest datasets.

5.3. Scene Analysis

Table 7 illustrates the detection results in dense distribution, sparse distribution,
illumination variations, and background clutter using Cascade R-CNN [38] as a pest
detector in order to evaluate the influence of various scenes for wild pest detection. The
results show that pests sparsely distributed in images are the easiest to be detected, with
more than 70% AP being obtained for most of pest species, while dense distribution is the
most difficult challenge for wild tiny pest detection. This is in line with the conclusion
that most of object detection approaches could not detect well on pest RM and CP, which
usually occur with dense cliques in the field. On the contrary, for the pest species that
do not gather together, the detector could perform well on detection, even when the
background is cluttered. Apart from the distribution influence, illumination variation is
also the unavoidable challenges in practical pest monitoring.

5.4. Pest Population Counting Results

In AgriPest, pest population counting is another task for practical pest monitoring
applications, because precise population estimation is important in assessing crop damage
degree and pest severity. Table 8 presents the average Mean Absolute Error (MAE) and
Mean Square Error (MSE) while using six object detection methods for pest population
counting. As it can be seen, Faster R-CNN achieve the best results in both MAE and MSE.
Besides, two-stage approaches dramatically outperform one-stage approaches in this task.
Thus, for tiny pest counting, region-based methods could precisely maintain the correctness
of detected pest population.
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In Figure 7, we compare these object detection methods in greater details. We evenly
group the test images of each classes into 5 groups according to pest population in an
increasing order. From this figure, it can be seen that, in the group 1 and 2, where the
images contain a few pests, the six methods seem to show the similar population counting
performance, which indicates that these approaches might not incorrectly detect pests.
With the number of pests increasing, the errors, including absolute error and squared
error, start boosting and the difference between two types of methods also becomes larger.
Therefore, it is verified that two-stage methods perform more accurately and robustly to a
large variance of pest number as well as density.

Table 7. Detection results on four challenges (AP with IoU 0.5). Sparse distribution, illumination

variations, and background clutter. We use Cascade R-CNN [38] as the pest detector.

Field Crop Pest Name Dense Sparse Illumination Clutter

wheat

WM 35.87 74.71 48.54 60.48
SA 34.12 72.47 47.98 58.66
SG 33.96 72.14 47.67 58.15
RP 62.36 83.84 67.54 82.17
SW - - 89.77 90.21

rice
RPH 38.42 75.72 50.51 62.34
CM 15.22 51.46 34.15 41.05

corn
RM 19.68 61.26 - -
DP - - 89.62 91.05
GM - - 88.49 90.23

rape

CP 14.58 56.28 32.74 43.19
MA - - 87.48 89.67
PS - - 89.14 90.88
CA - - 88.85 90.92

Table 8. Average MAE and MSE on pest population counting performance.

Method MAE(avg) MSE(avg)

SSD512 [4] 9.23 13.28
RetinaNet [36] 8.79 12.76
FCOS [37] 10.09 14.25
Faster R-CNN [5] 4.46 7.41
FPN [6] 4.75 7.66
Cascade R-CNN [38] 4.94 7.97

(a) MAE (b) MSE

Figure 7. Average MAE and MSE for pest population counting with six state-of-the-art methods.
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5.5. Limitations and Future Work

Despite that we implement some state-of-the-art object detection approaches with
good performance in AgriPest, there are two limitations for future study. Firstly, the
problem of unbalanced data structure has not been well solved. Specifically, pest RM
and CP are two difficult pest categories in wild pest detection, because AgriPest does
not contain sufficient data for model to learn them while they usually occur in cliques
with tiny sizes in images, as visualized in Figure 8. Secondly, employing existing generic
object detection approaches in our wild tiny pest detection task is not a qualified solution.
Future work will focus on covering a larger number of categories and it develops a novel
domain-specific algorithm for this task.

(a) Failure case of pest RM (b) Failure case of pest CP

Figure 8. Detection result visualization for pest RM and CP.

6. Conclusions

In this work, we collect a domain-specific benchmark dataset, named AgriPest, to-
wards large-scale tiny pest detection in the wild. Our dataset covers 49.7K images and
264.7K annotated pest objects of 14 common pest species. When compared with other
insect pest dataset, AgriPest targets at wild tiny pest detection in practical science. In addi-
tion, the validation images are split into four challenges that are common in practical pest
monitoring applications. The images in AgriPest are collected by our designed task-specific
equipment that is also deployed in practical pest monitoring application in the field. We
implement and evaluate some state-of-the-art generic object detection methods in AgriPest.
The experimental results demonstrate the difficulty and particularity of our AgriPest. We
believe this work will help to advance future research on wild pest detection task and
practical precision agriculture applications.
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