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Abstract

Although kernel approximation methods have been widely applied to mitigate

the O(n3) cost of the n × n kernel matrix inverse in Gaussian process meth-

ods, they still face computational challenges. The ‘residual’ matrix between

the covariance and the approximating component is often discarded as it pre-

vents the computational cost reduction. In this paper, we propose a computa-

tionally efficient Gaussian process approach that achieves better computational

efficiency, O(mn2), compared with standard Gaussian process methods, when

using m≪ n data. The proposed approach incorporates the ‘residual’ matrix in

its symmetric diagonally dominant form which can be further approximated by

the Neumann series. We have validated and compared the approach with full

Gaussian process approaches and kernel approximation based Gaussian process
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variants, both on synthetic and real air quality data.

Keywords: Gaussian process methods, Symmetric diagonally

dominant projection, Kernel approximation, Sustainable development,

Air quality forecasting

1. Introduction

Gaussian process (GP) methods are renowned for providing Bayesian non-

linear and non-parametric solutions to regression and classification tasks [1, 2].

However, they have cubic computational complexity O(n3) for the inversion of

the kernel matrix of size n × n and its determinant [3]. This cubic computa-5

tional cost has effectively limited applications of GPs to data with thousands

of samples [4, 5]. This led to intensive studies of the scalability of GPs during

the last decades [3], with particular interests in adapting GPs for various data

processing and maintaining their capacity, ideally at the same level of full GPs.

The extensive review of Liu et al. [3] on GPs classifies scalable GPs into10

local approximations and global approximations. Local approximations follow

the divide-and-conquer idea to first divide the whole dataset into sub-datasets,

each with m samples. A ‘local’ GP model is next trained on each sub-dataset.

These ‘local’ GP models are aggregated with each GP model responds to inputs

that come from a certain ‘local’ area at the prediction stage. The computational15

cost is in the order of O(m2n) [3]. In the global GP algorithms, all data is

available but sparsity is usually introduced by appropriately selected inducing

points or by sub-sampling of the data. Thus for efficiency improvement, a lot of

global approximation-based works [4, 6, 7] are dedicated to approximating the

kernel matrix Knn and can be further categorised into 1) the Subset of Data20

(SoD) method uses m out of n training samples, resulting in a smaller kernel

matrix Kmm; 2) the sparse kernel method sets to zero all entries smaller than a

criterion value and hence leads to a sparse kernel matrix K̃nn [3]; 3) the low-rank

method, also known as sparse approximation method, approximates Knn with

the eigendecompostion or the Nyström method [8] by a low-rank matrix Lnn.25
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We also notice that Zhu et al. [9] apply the nonnegative matrix factorisation

in the kernel matrix approximation, which obtains online performance with

application in image processing. The SoD and low-rank approximations reduce

the computational complexity to O(m2n) if we do not count the computation

caused by eigendecomposition. The sparse kernel method reduces the cost to30

O(αn3), with α being a coefficient in the range 0 < α < 1.

The third solution is the most popular among all these three global approx-

imations. Especially, the Nyström method [8] has achieved a balance between

accuracy and efficiency and several variants have been proposed [2, 4]. We no-

tice that these methods replace the kernel matrix Knn with a low rank matrix35

Lnn, which can be further factorised as Lnn = BnmBT
nm [10]. The ‘residual’

matrix Ã = Knn−Lnn is usually discarded. This is intuitive from the Sherman-

Morrison-Woodbury formula [11] (equation (2.7.12) in Chapter 2) perspective

K−1
nn = Ã−1 − Ã−1Bnm(Im +BT

nmÃ−1Bnm)−1BT
nmÃ−1. (1)

We can see that the computational cost of K−1
nn remains at O(n3) despite (Im+40

BT
nmÃ−1Bnm)−1 holds the promise of reducing the overall computational cost

of (1) such as when Ã is diagonal. The consequence is that two questions remain

unanswered: 1) Can we take the ‘residual’ matrix Ã into consideration? 2) If

we consider the ‘residual’ matrix, can we achieve comparable results with full

GP models with a lower computational cost?45

This paper aims to provide answers to these two questions. We show that

by projecting Ã to be a Symmetric Diagonally Dominant (SDD) matrix A, we

obtain an approximation of the kernel matrix Knn ≈ Lnn +A accurately and

efficiently. The SDD matrix A shows appealing characteristics such as symme-

try and diagonally dominant, but the challenge in (1) remains. However, the50

SDD matrix characteristics perfectly match the conditions of approximating its

inverse matrix with Neumann series, hence avoiding calculating Ã−1 directly.

We therefore approximate Ã−1 with Neumann series and cut the computational

cost from O(n3) down to O(n2) [12, 13]. By doing so, we provide a way of com-
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puting K−1
nn and derive a new efficient GP implementation. To summarise, the55

main contributions of this paper are threefold:

1) The ‘residual’ matrix between the original kernel matrix and its approxima-

tion matrix is taken into account to approach full GPs performance;

2) The SDD projection and Neumann series are applied to reduce covariance

matrix inversion computational complexity;60

3) Comparisons of the proposed approach with various GP variants with dif-

ferent kernel settings on both synthetic data and air quality data are given,

providing a reference for its potential applications in various fields.

The remaining part of this paper is organised as follows. Section 2 reviews

some of the related works. Section 3 introduces the GP method and how tra-65

ditional kernel approximation methods work. Section 4 details the proposed

approach. Performance validation results and analysis are given in Section 5,

and the paper is concluded in Section 6, with a brief discussion of future work.

2. Related Work

In literature, there are mainly three categories of low-rank approximations,70

i.e. the prior approximation, the posterior approximation, and the structured

sparse approximation [3, 8, 14]. We are particularly interested in the prior

approximation in this paper.

There are two main ways to approximate the prior kernel matrix. The

first one is as we mentioned earlier, by applying an eigendecomposition or the75

Nyström method to reconstruct the kernel matrix with a low rank [15, 16, 17].

The second way is by applying variational inference to optimise the Kullback-

Leibler divergence between the exact prior and a cluster of distributions that are

easy to implement, such as Gaussian distributions [4, 18]. While the Nyström

method can reduce the computational complexity, it faces the problem of how to80

determine the low-rank space such that the reconstructed kernel matrix would

provide accurate results. This has stimulated research in two aspects: 1) low-

rank approximation error analysis or finding the error bounds [15, 16, 19]; 2)
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methods that can further improve the approximation accuracy such as greedy

approaches and randomised algorithms [20, 21]. Particularly, Stein [17] reports85

that when neighboring observations are strongly correlated, the performance

of the low-rank approximation becomes poor even if the sum of the m largest

eigenvalues is much greater than the sum of the remaining eigenvalues. Ding et

al. [22] find that bad performance would happen when the length scale of the

kernel is small if we only focus on the high eigenvalue part of the spectrum of the90

kernel matrix. A multi-resolution kernel approximation approach is thus pro-

posed which represents the entire kernel matrix, not just its eigenvectors with

the greatest eigenvalues. This approach is capable of calculating the inverse

matrix directly and has improved performance compared with other GP kernel

approximations considered in [22]. They claim their method is considerably95

more flexible than existing hierarchical matrix decomposition or approxima-

tion [23] methods. Yao et al. propose the kernel-band-projection algorithm for

anomaly detection in hyperspectral imagery. They take bands as mapping sub-

jects, and by mapping bands into the kernel space, they construct a projection

matrix. When the Gaussian kernel function is used, their method avoids the100

inversion calculation of the projection matrix, making the method efficient [24].

Burt et al. [19] adopt the Kullback-Leibler divergence to investigate how the

number of inducing points m that could change along with the change of the

dataset size n, to ensure a certain approximation accuracy. However, this work

falls into the posterior approximation category [25].105

While the approximation methods and approximation accuracy analysis have

been extensively researched, there is little work on how to retain the ‘residual’

matrix Ã in kernel methods. Particularly, methods that take the ‘residual’ ma-

trix into account and achieve a balance between efficiency and accuracy, ideally

at the same level of full GPs or even better, would make a good complemen-110

tary to the GP community. Fig. 1 demonstrates how the covariance matrix is

approximated.
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Figure 1: Matrices involved in the covariance matrix approximation: (a) Knn, (b) Lnn,
(c) the ‘residual’ matrix Ã, (d) A. The Lnn is usually used for approximating Knn, with
Ã = Knn − Lnn discarded. The A is the SDD projection matrix of Ã, and we use Lnn +A

to approximate Knn. The figures are generated from Synthetic dataset 2 with n = 476 for
demonstration.

3. The Gaussian Process Method and Kernel Approximations

3.1. Background Knowledge

Given a set of training data D = {(xi, yi), i = 1, · · · , n} where xi ∈ X is115

the input and yi ∈ R is the observation, we can determine a GP model f(·) to

predict y∗ for a new input x∗. For instance, when the output is one dimensional,

the GP model is formulated as

f ∼ GP
(
f̄(x), k(x,x′)

)
, y = f(x) + ε, ε ∼ N (0, σ2), (2)
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where f̄ : X → R is the mean function defined as

f̄(x) = E
[
f(x)

]
, (3)

and k : X × X → R is the kernel function [19] defined as120

k(x,x′) = E
[
(f(x)− f̄(x))(f(x′)− f̄(x′))

]
, (4)

where ε is the additive independent identically distributed Gaussian measure-

ment noise with variance σ2 6= 0, and E[·] denotes the expectation of a random

variable.

Given xi a D×1 vector, the n inputs can be aggregated into a matrix XD×n,

or briefly X with the corresponding output vector yn×1, or y. Similarly, the125

function values at the test inputs X∗ with dimensions of D×N can be denoted

as f∗, and we next write the joint distribution of y and f∗ as


y

f∗


 ∼ N


0,


Knn + σ2I KnN

KNn KNN




 , (5)

where I represents the identity matrix. Knn + σ2I is the n× n prior covariance

matrix of y with entry Kij = k(xi,xj) + σ2δij , where δij is one iff i = j and

zero otherwise, and xi and xj are column vectors from X. The matrix KNN130

denotes the N × N prior covariance matrix of f∗ with entry Kij = k(xi,xj),

where xi and xj are column vectors from X∗. The matrices KNn and KnN

satisfy KNn = KT
nN , and the entry of the N × n prior covariance matrix of

f∗ and y is Kij = k(xi,xj), where xi is a column vector from X∗ and xj is a

column vector from X.135

By deriving the conditional distribution of f∗ from (5), where the prior mean

is set to be zero for simplicity [6], we have the predictive posterior (also given

in equation (2.22), Chapter 2 of [6]) at new inputs X∗ as

f∗|X,y,X∗ ∼ N
(
f̄∗, cov(f∗)

)
, (6)
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where

f̄∗ , E
[
f∗|X,y,X∗

]
= KNn

[
Knn + σ2I

]−1
y, (7)

is the prediction at X∗, and140

cov(f∗) = KNN −KNn

[
Knn + σ2I

]−1
KT

Nn, (8)

denotes the covariance of f∗.

The hyperparameter θ incorporated in the mean and covariance functions

underpin the predictive performance of GP models, and they are usually esti-

mated by maximising the logarithm of the marginal likelihood

log p(y|X) = −
1

2
yT

(
Knn + σ2I

)−1
y −

1

2
log |Knn + σ2I| −

n

2
log 2π. (9)

3.2. Kernel Approximations145

Scalable GPs have been extensively studied recently, which aims at allevi-

ating the computational complexity while retaining the favourable prediction

quality of GPs [3]. One of the most popular methods for kernel matrix approx-

imation utilises a low-rank matrix to approximate Knn, hence decreasing the

computational complexity from O(n3) to O(m2n) with m ≪ n, as introduced150

in [8]. For instance, in the eigendecomposition paradigm, the Knn is presented

as

Knn = UnnΛnnU
T
nn, (10)

where Unn comprises all the eigenvectors and is orthonormal, and Λnn =

diag(λi), λ1 > λ2 > · · · > 0 is a diagonal matrix with eigenvalues being the

diagonal entries. If we choose eigenvectors corresponding to the m < n largest155

eigenvalues and build Unm ∈ R
n×m and let Λmm = diag(λ1, · · · , λm), we then

have the approximation

(
Knn + σ2I

)−1
≈

(
UnmΛmmUT

nm + σ2I
)−1

= σ−2In − σ−2Unm

(
σ2Λ−1

mm +UT
nmUnm

)−1
UT

nm

(11)

8



following the Sherman-Morrison-Woodbury formula. Clearly, with the existence

of eigendecomposition, this approximation significantly reduces the computa-

tional complexity. However, the computational cost of the eigendecomposition160

is O(n3), which makes the method less favourable.

The Nyström method [8] was then proposed to replace the eigendecomposi-

tion to approximate the covariance matrix

Knn ≈ KnmK−1
mmKT

nm, (12)

whereKnm is obtained by randomly choosingm rows or columns ofKnn without

replacement. Williams et al. [8] observe that even when m ≪ n, there is no165

significant accuracy reduction when using (12) in the GP approach. With the

Nyström method and the Sherman-Morrison-Woodbury formula, one can see

from

(
KnmK−1

mmKT
nm + σ2In

)−1
= σ−2In − σ−2Knm

(
σ2Kmm +KT

nmKnm

)−1
KT

nm

(13)

that the computational complexity is reduced from O(n3) to O(mn2).

4. Symmetric Diagonally Dominant Projection-based Gaussian Pro-170

cess

4.1. Symmetric Diagonally Dominant Projection

As discussed in Section 2 and shown in Fig. 1, most kernel approximation

methods can be formulated as

Knn ≈ Lnn, with Knn = Lnn + Ã, (14)

where rank(Lnn) = K ≪ n, and Ã is the ‘residual’ matrix. The Lnn matrix175

is calculated by different methods [6], but the Ã matrix is typically discarded.

Intuitively, full GPs should perform better than the kernel-based approximations

in spite of the heavy computational loads. However, in some classification tasks,

9



the latter seems to outperform the full GPs [8]. This is believed to be caused

by the high correlations of observations of the latent variables. Therefore, how180

the number of latent variables is determined would influence the performance

of GPs variants, and leads to the phenomenon that full GPs sometimes perform

poorer than kernel approximations. In this paper, we show that taking the

‘residual’ matrix Ã into consideration can mitigate the full GP challenges, which

is performed by introducing the SDD projection into (14).185

The SDD projection problem aims at finding an approximation of Knn in

the form

Knn ≈ Lnn +A, (15)

where Lnn =
∑K

k=1 λkξkξ
T
k with K = rank(Lnn) ≪ n, and A is a symmetric

c-diagonally dominant matrix defined as

SDD+
c

=
{
A = (aij)n×n : A = AT, ajj > c

∑
i:i 6=j |aji| for all 1 6 j 6 n

}
,

(16)

with c ∈ R
+ [26], when c = 1, we omit the subscript and denote (16) as SDD+.190

Ke et al. [26] also describe the problem of finding A as

min
(Lnn,A)

‖Knn − Lnn −A‖F , (17)

where ‖ · ‖F is the matrix Frobenius norm. They also provide a nonconvex

solution to (17), which can be achieved at the cost of O
(
n2 max{log(n),K}

)
.

In this paper, algorithm 1 is used to find A ∈ SDD+
c , i.e. satisfying (16),

which is next added to the low rank matrix Lnn to approximate Knn, as shown195

in (15). Please note that PDD+
c
(·) in Algorithm 1 denotes the projection of an

arbitrary matrix to a c-diagonally dominant cone indicated by DD+
c . When

c = 1, we denote it as DD+ for brevity. Here we provide a three-dimensional

example to help understanding Step 6, which is also known as Mendoza-Raydan-

Tarazaga projection [27].200
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Algorithm 1 The Iterative SDD Projection

Input: The covariance matrix Knn and a tolerance criterion (TOL) and TOL
decreasing step η.

Output: A ∈ SDD+
c .

1: Let A(0) = Knn − Lnn, where Lnn = UnmΛmmUT
nm, with m 6 n and

Λmm = diag{λ1, · · · , λm}, Â
(0) = A(0) and J(0) = 0nn.

2: for t = 1, 2, · · · do
3: Â(t) = PDD+

c
(A(t−1) − J(t−1)). ←− Diagonally Dominant Projection

4: A(t) =
(
Â(t−1) + (Â(t−1))T

)
/2. ←− Symmetric Projection

5: J(t) = J(t−1) + (Â(t) −A(t−1)).
6: if ‖J(t) − J(t−1)‖F 6 TOL then

7: A = A(t).
8: if (32) is satisfied then

9: stop.
10: else

11: TOL = TOL - η, continue.
12: end if

13: else

14: continue.
15: end if

16: end for

Example 1: Given a 3× 3 matrix

G =




g11 g12 g13

g21 g22 g23

g31 g32 g33


 , (18)

we can regard each row as a vector and they are depicted in Fig. 2. Without

loss of generality, let’s assume that G is entry-wisely positive and take g3 =

[g31, g32, g33] an example. For some tasks such as dimension reduction, we need

to project g3 to obtain g̃3 = [0, g32, g33] as the best approximation of g3 in205

terms of the minimum Euclidean distance ‖g3 − g̃3‖2. Obviously, if g32 > g33,

we cannot guarantee that a diagonally dominant approximation of G can be

obtained through this type of projection. In this paper, we follow the process

introduced in [27] to guarantee that Ĝ ∈ DD+ is valid for approximating G.

To be specific, for the i-th row of a h × h matrix G (i = 3 and h = 3 in our210
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Figure 2: Illustration of Mendoza-Raydan-Tarazaga projection [27].

case), we first do

• dk =
∑h

k=j gik − gii, where k 6= i and 1 6 k 6 h;

• ck = h− k + 1 for k < i, and ck = h− k + 2 for k > i ;

• d̄k = dk/ck.

Next, we find k̂ such that gik̂ > 0 and d̄k̂ 6 gik̂, and finally the approximation215

matrix Ĝ is generated as follows:

ĝik =





gik + d̄k̂, k = i,

gik − gik, 1 6 k 6 k̂ − 1 and k 6= i,

gik − d̄k̂, k̂ 6 k 6 h and k 6= i.

(19)

Fig. 2 shows a geometrical example of how ĝ3 = [0, ĝ32, ĝ33] is generated.

In this case, we assume that k̂ = 2. Therefore, ĝ31 = g31 − g31 = 0, ĝ32 =

g32 − d̄k̂, and ĝ33 = g33 + d̄k̂. By comparing g̃3 with ĝ3, one sees that they are

both approximations of g3. However, ĝ3 is generated in a way to ensure that220

ĝ33 > ĝ32 stands, such that Ĝ obtained is diagonally dominant. Similarly to the

12



uniqueness of g̃3, ĝ3 is proved to be unique as well [27]. This ensures that if G

has a diagonally dominant counterpart, it would be unique. We are interested in

the latter as it leads to a diagonally dominant matrix Ĝ that is usually positive

definite, which helps us solving the matrix inverse problem in GPs.225

4.2. Neumann Series for Diagonally Dominant Matrix Inversion Approximation

After solving (17) with Algorithm 1, we can next approximate (Knn+σ2I)−1

with

(Knn + σ2I)−1 ≈ (Lnn +A+ σ2I)−1 = (Lnn +M)−1, (20)

where M = A+σ2I. Although the SDD matrix A ensures that M ∈ SDD+
c , the

computational cost of M−1 is still at O(n3). This is not favourable. Therefore,230

we introduce the Neumann series to approximate M−1.

Given a matrix M, the inverse M−1 of which can be expanded as the fol-

lowing Neumann series [13]

M−1 =

∞∑

i=0

(
X−1(X−M)

)i
X−1, (21)

which holds if limi→∞

(
I − X−1M

)i
= 0 is satisfied. In general, we can use

(21) to approximate the inverse of any matrix. However, approximation with235

quick convergence requires M to be diagonally dominant [12, 13]. In our case,

suppose

M = A+ σ2I , DM +EM , (22)

where DM is the main diagonal of M and EM is the hollow. If we substitute X

in equation (21) by DM , we get

M−1 =

∞∑

i=0

(
−D−1

M EM

)i
D−1

M , (23)

which is guaranteed to converge when limi→∞

(
−D−1

M EM

)i
= 0. When Neu-240

mann series given in (23) converges, we can then approximate M−1 with only

13



the first L terms. The L-term approximation is computed as follows:

M̃L =

L−1∑

i=0

(
−D−1

M EM

)i
D−1

M , (24)

For instance, when L = 1, 2, 3, we have the approximations

M̃L =





D−1
M , L = 1

D−1
M −D−1

M EMD−1
M , L = 2

D−1
M −D−1

M EMD−1
M +D−1

M EMD−1
M EMD−1

M . L = 3

(25)

From equations (24) and (25), we see that Neumann series approximation

reduces the cost of M−1 from O(n3) to O(n2) when L ≤ 2, which is of particular245

favour when n becomes large. Wu et al. also mention that the calculation of

the Neumann series can be accelerated by proper adjustment of the terms [13].

As mentioned earlier, when M is diagonally dominant [12, 13], the approxima-

tion would be both quick and accurate, this would help to improve the GPs

performance.250

4.3. Symmetric Diagonally Dominant Projection-based Gaussian Processes

By transforming the ‘residual’ matrix Ã into a diagonally dominant matrix

A, and approximating M−1 with (24), we know the inverse matrix involved in

GPs can be approximated through

(Knn + σ2I)−1 ≈ (Lnn +A+ σ2I)−1

= (KnmK−1
mmKT

nm +M)−1

= M−1 −M−1Knm

(
Kmm +KT

nmM−1Knm

)−1
KT

nmM−1.

(26)

The overall SDD projection-based GP (SDD GP) is described in Algorithm255

2. For brevity, we denote the approximation of Knn as KnmK−1
mmKT

nm. One can

observe from Algorithm 2 that with the proposed SDD GP, the computational

cost is reduced overall from O(n3) to O(mn2), and we are still able to retain

14



Algorithm 2 The SDD projection-based GPs

Input: X the inputs, y the outputs, k the kernel function, σ2 the observation
noise level, TOL a tolerance criterion, and the test inputs X∗

Output: f̄∗ and cov(f∗)
1: Knn ≈ KnmK−1

mmKT
nm +A, with A diagonally dominant ←− Solving (17)

2: L-term Neumann Series Approximation: M̃L ≈M−1, with M = A+ σ2I

3: Cholesky factorisation: C := cholesky(Kmm +KT
nmM̃LKnm)

4: (Knn + σ2I)−1 ≈ M̃L −VTV, with V = C \Ymn and Ymn = KT
nmM̃L.

5: Mean: f̄∗ = KNnQy, with Q = M̃L −VTV

6: Covariance: cov(f∗) = KNN −KNnQKT
Nn, with Q = M̃L −VTV

the ‘residual’ matrix.

4.4. Theoretical Performance Analysis260

By comparing the proposed approach with a full GP model, one can see that

the major difference is demonstrated by

(Knn + σ2I)−1 = (Lnn + Ã+ σ2I)−1 ← GP

≈ (Lnn +A+ σ2I)−1 ← SDD GP.
(27)

Since SDD+
c and Neumann series approximations are key in the proposed ap-

proach, we present a theoretical analysis of their impact on the algorithm per-

formance as follows.265

Lemma 1: Given A as the SDD+ approximation of Ã, one can then take M

as an SDD+
c approximation of Ã+ σ2I, i.e. M ∈ SDD+

c with c > 1 satisfied.

Proof: According to the definition of M, we know that the diagonal entries of

M are mjj = ajj + σ2, j = 1, · · · , n, where ajj are the diagonal entries of A.

The off-diagonal entries of M and A are identical. Therefore, we have270





m11 > c1
∑

i:i 6=1 |a1i|,
...

mjj > cj
∑

i:i 6=j |aji|,
...

mnn > cn
∑

i:i 6=n |ani|,

(28)
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where cj > 1, j = 1, · · · , n hold for σ2 > 0, which is normally the case as

there is no point to consider a zero mean zero variance Gaussian noise. It

is straightforward that by setting c = min{c1, c2, · · · , cn}, Lemma 1 stands.

According to [26], M−1 can be bounded by

||M−1||F 6
c

c− 1
||[diag(M)]−1||F , (29)

which is the condition of making (Lnn+A+σ2I)−1 a good estimator of (Knn+275

σ2I)−1. More details can be found on the right half of Page 2 in [26].

Furthermore, becauseM−1 is approximated in the paper by the L-term Neu-

mann series given in (24), we then investigate the error between (23) and (24)

to demonstrate the approximation performance. Suppose the error is denoted

by280

∆M |L =

∞∑

i=L

(
−D−1

M EM

)i
D−1

M

=
(
−D−1EM

)L ∞∑

i=0

(
−D−1

M EM

)i
D−1

M

=
(
−D−1

M EM

)L
M−1.

(30)

Let’s assume that there exists a column vector hM , such that the l2 norm of

||M−1hM ||2 ≤ ∞. Then according to [13] (Subsection B in Section III), the

l2-norm of ∆M |LhM satisfies

||∆M |LhM ||2 = ||
(
−D−1

M EM

)L
M−1hM ||2

6 ||
(
−D−1

M EM

)L
||F ||M

−1hM ||2

6 ||D−1
M EM ||

L
F ||M

−1hM ||2.

(31)

We can see that if

||D−1
M EM ||F < 1 (32)

holds, then the approximation error approaches zero as L increases [13], im-285

plying that the approximation of (23) by (24) is becoming better. It is also
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demonstrated in [12] that the approximation accuracy of M−1 using (24) is

fairly high when M is diagonally dominant, which is case in our paper.

By increasing L, the approximation performance of Neumann series can be

improved. In addition, we can use the SDD projection to enhance the approxi-290

mation performance. One can see that the matrices A, DM , and EM are linked

through (22), which shows that DM and EM change along with A. When A is

updated by Algorithm 1, a new set of DM and EM are generated according to

(22) subsequently and condition (32) is checked. When the condition is satis-

fied, one can see from (31) that the performance of approximating (23) by (24)295

can be further improved.

5. Performance Validation

5.1. Datasets and Baselines

To validate the proposed approach, we design two sets of experiments. In the

first set, two synthetic datasets and the Mauna Loa CO2
1 data are processed.300

The synthetic datasets are generated by two deterministic functions that are

perturbed by Gaussian noises, as shown in

y = sin(x) + v1, (33)

with v1 ∼ N (0, 0.15) and x ∈ [−5.0, 5.0], and

y = 5x2 ∗ sin(12x) + (x3 − 0.5) ∗ sin(3x− 0.5) + 4 ∗ cos(2x) + v2, (34)

with v2 ∼ N (0, 0.45) and x ∈ [−0.2, 1.2]. We adopt models (33) and (34)

because 1) they are substantially nonlinear functions with function values known305

at any given inputs, and this comparison of the proposed approach with other

approaches can demonstrate well their performance. 2) The impact of different

noises on the solutions can be easily demonstrated. This helps to generate

1https://iridl.ldeo.columbia.edu/SOURCES/.KEELING/.MAUNA LOA/
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datasets with various noise levels, including outliers, to test the robustness of

the proposed approach. 3) The number of samples can be easily controlled to310

test the proposed approach on datasets of different sizes.

In the second set, we separately process temperature and NO2 concentration

data from Sheffield, the United Kingdom, and from Peshawar, Pakistan. For the

data in the second set, we converted the original time stamp (year-day-hour-

minute) into decimal form first, then both the time and the observation are315

standardised for all the GP models. In our case, the data were collected every

15 minutes in both cities from June 22, 2019 to July 14, 2019. Therefore, four

samples can be collected in each hour and 96 samples are accumulated per day.

This information enables us to convert the year-day-hour-minute time stamps

into decimal numbers through320

tdec = tyear + (tday − 1) + (thour ∗ 4 + tminute/60 ∗ 4)/96, (35)

where tdec is the decimal number, tyear is the year, tday denotes the day, for

example, the 173-th day of the year is June 22, 2019, thour is the hour, and

tminute is the minute. Note that since the data were collected every 15 minutes,

tminute can only be 0, 15, 30, and 45 and this is part of the current validation.

Since the proposed approach belongs to the group with prior approximation,325

we hence compare it with full GP variants with different kernels [6] and a sparse

GP model, i.e. the Fully Independent Training Conditional (FITC) [2, 4] GP.

We also compare the developed approach with the variants where the ‘residual’

Ã are discarded. We denote the model as SDD− GP for short.

5.2. Performance Metrics330

In order to assess the overall performance of different GP variants, we employ

the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to

evaluate the prediction performance. These two metrics are defined as:

MAE =
1

Ns

∑Ns

i=1
|yi − ŷi|, (36)
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RMSE =

√
1

Ns

∑Ns

i=1
(yi − ŷi)2, (37)

where yi and ŷi indicate the i-th true value and prediction, respectively, Ns is335

the number of samples in the testing set.

Note for Sheffield and Peshawar NO2 and temperature datasets, and the

Mauna Loa CO2 dataset, we do not have ‘exact’ function values. To evaluate the

performance, we compare observations with predictions of different GP models.

5.3. Implementation Details340

We have implemented the SDD GP and the SDD− GP with Python based

on GPy 2, and adjusted the full GP and the sparse GP from GPy to process

our data for comparison.

For each dataset, we take Nt samples, which is 75% the number of samples

as training data and the left as testing data, with size Ns. To be specific,345

for the two sets of synthetic data and the Mauna Loa CO2 dataset, there are

635 samples for each. For the Sheffield and Peshawar temperature and air

quality data, we use 2016 samples. This makes Nt = 477 for the Mauna Loa

CO2 and the synthetic datasets, and Nt = 1512 for the Sheffield and Peshawar

temperature and air quality datasets. For sparse GP, we set the number of350

inducing points to roughly 1.5% the number of samples. For the SDD GP

and SDD− GP, we take m eigenvectors for covariance matrix approximation

to achieve good performance. We increase m from 5 up to half of the number

of samples and record the corresponding RMSE and MAE, to investigate the

impact of m on the performance. The iteration index t in Algorithm 1 is set to355

15 for results generation. To study the algorithms’ performance, we use various

kernels as listed in Table 1 to design composition kernels to capture different data

patterns. The Squared Exponential Automatic Relevance Determination (SE-

ARD) kernel is also applied to each dataset for comparison. The kernel settings

are given in Table 2. The hyperparameters are estimated by maximising the360

2https://sheffieldml.github.io/GPy/
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Table 1: Covariance kernels used in this paper.

Kernel Name Covariance Function

Squared Exponential kSE(x, x
′) = σ2

s exp
(
− (x−x′)2

2ℓ2s

)

Rational Quadratic kRQ(x, x
′) = σ2

r

(
1 + (x−x′)2

2αℓ2r

)−α

Periodic kPer(x, x
′) = σ2

p exp
(
− 2 sin2(π|x−x′|/p)

ℓ2p

)

White kW(x, x′) = σ2
noise if x = x′, else kW(x, x′) = 0

Squared Exponential ARD kSE-ARD(x, x
′) = σ2

se exp
(
−
∑N

i=1
(xi−x′

i)
2

2ℓ2
i

)

Table 2: Kernel settings for performance evaluation.

Datasets Kernel Setting 1 Kernel Setting 2

Synthetic 1 kSE + kPer kSE-ARD

Synthetic 2 kSE + kPer kSE-ARD

Mauna CO2 kSE + kPer ∗ kSE + kRQ + kW kSE-ARD

Sheffield/Peshawar Temp kSE + kPer ∗ kSE + kRQ kSE-ARD

Sheffield/Peshawar NO2 kSE + kPer ∗ kSE + kRQ kSE-ARD

logarithm marginal likelihood as shown in (9). We use ‘GP-ARD’ for brevity

hereafter to indicate that the SE-ARD kernel is used.

5.4. Performance and Analysis

Fig. 3 shows the logarithm RMSE of different GP implementations on the

synthetic dataset 1, synthetic dataset 2, and the Mauna Loa CO2 dataset. We365

can see that the performance of the proposed SDD GP converges to that of the

full GP, for both kernel setting 1 and 2. We also notice that kernels would affect

the performance of GP variants as well as the proposed approach. For instance,

Figs. 3(a) and 3(c) show that GP variants with the SE-ARD kernel (kernel

setting 2) outperform their counterparts with kernel setting 1, whereas Fig. 3(b)370

shows that GP variants with kernel setting 1 perform better in terms of RMSE.

To further generalise the results, we change the variances for both (33) and (34)

and show how they affect the proposed approach in terms of RMSE. The results
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Figure 3: Logarithm RMSE of different methods on the Synthetic and the Mauna Loa datasets:
(a) Synthetic dataset 1; (b) Synthetic dataset 2; (c) Mauna Loa dataset.

are given in Fig. 4, where Figs. 4(a) and 4(b) are the results generated with

kernel setting 1, and Figs. 4(c) and 4(d) are generated with kernel setting 2.375

One can see that as the noise variances become big, the prediction RMSE of

the proposed approach shows an increasing trend for both functions, for both

kernel settings 1 and 2. This is intuitive as the proposed approach is essentially

a regression model, whose performance could be degraded by noises.

Fig. 5 shows the RMSE of GP variants with different kernels on Sheffield380

and Peshawar NO2 and temperature datasets, respectively. One can see from

these figures that the SDD GP generally outperforms the SDD− GP and the

sparse GP. We can also see that as m increases, the SDD GP outperforms or is

comparable with the full GP when kernel setting 1 is used. When the SE-ARD
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Figure 4: The impact of noise on the performance of the proposed approach: (a) Synthetic
dataset 1 with kernel setting 1; (b) Synthetic dataset 2 with kernel setting 1; (c) Synthetic
dataset 1 with kernel setting 2; (d) Synthetic dataset 2 with kernel setting 2.

kernel is used, we can see that the performance of SDD GP-ARD approaches385

the full GP-ARD as m increases till converge.

When focusing on the performance of the proposed approach with different

kernels, i.e. SDD GP and SDD GP-ARD, we see that when m increases, their

performance in terms of RMSE drops and then tends to converge. The same

rule applies to the SDD− GP and SDD− GP-ARD. However, the latter does not390

always show the convergence trends. Particularly, the performance of the SDD−

GP changes dramatically along with m as given in Fig. 5(c) and 5(d). This

is because when the ‘residual’ matrix Ã is considered, a better approximation

of the covariance matrix is achieved, hence leading to better performance of

the SDD GP compared with the SDD− GP. When m keeps increasing, the395
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Figure 5: Logarithm RMSE of different methods on Peshawar and Sheffield NO2 and tem-
perature: (a) Peshawar NO2; (b) Sheffield NO2; (c) Peshawar temperature; (d) Sheffield
temperature.

‘residual’ matrix can be neglected, and the performance of SDD GP and SDD−

GP becomes similar. Similar trends can be observed for SDD GP-ARD and

SDD− GP-ARD. It is worth mentioning that when the SE-ARD kernel is used,

the RMSEs change less dramatically compared with the results generated by

using the kernel setting 1.400

To further demonstrate that taking the ‘residual’ matrix Ã into account

would improve the performance, we have compared the RMSE and MAE of

1) SDD GP with the SDD− GP; 2) SDD GP-ARD with the SDD− GP-ARD

on each dataset. Table 3 shows the percentage when the SDD GP (SDD GP-

ARD) outperforms the SDD− GP (SDD− GP-ARD) in terms of RMSE and405

MAE, respectively. We see that the percentage of the SDD GP (SDD GP-
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Table 3: The percentage of results with RMSE and MAE of the SDD GP smaller than the
SDD− GP: ONE indicates kernel setting 1 in Table 2 is used; TWO indicates kernel setting
2 in Table 2 is used.

Syn. 1 Syn. 2 M. L. CO2 S. Temp P. Temp S. NO2 P. NO2

MAE ONE 50% 75% 100% 59% 59% 53% 69%
RMSE ONE 50% 88% 100% 59% 53% 53% 69%
MAE TWO 100% 100% 78% 94% 65% 74% 94%
RMSE TWO 100% 100% 78% 94% 65% 79% 100%

ARD) outperforms the SDD− GP (SDD− GP-ARD) is all equal to or bigger

than 50%. This again demonstrates considering Ã would help to improve the

proposed GP model’s performance.

We also list the minimum and median RMSE and MAE of the GP variants on410

each dataset. The median RMSE and MAE are considered as they demonstrate

the resilience of the proposed approach. To be specific, the minimum and median

RMSEs and MAEs of the GP variants on synthetic dataset 1, synthetic dataset

2, and the Mauna Loa CO2 dataset are given in Table 4 and 5, respectively.

One can see from Table 4 that the SDD GP achieves the minimum RMSE on415

all three datasets, and the minimumMAE on synthetic dataset 2 and the Mauna

Loa CO2 dataset. When it comes to the median RMSE and MAE as shown in

Table 5, we see that the full GP variants show better performance except on

synthetic dataset 1, where the SDD GP-ARD achieves the best performance.

Table 4: The performance comparison among different methods and kernels on the synthetic
and public datasets. We take the minimum RMSE and MAE for the SDD GP (SDD GP-ARD)
and SDD− GP (SDD− GP-ARD).

Syn. 1 Syn. 2 M. L. CO2

—— RMSE MAE RMSE MAE RMSE MAE
SDD GP 0.053 0.187 4.502 1.832 11.054 2.735

SDD− GP 0.321 0.433 4.681 1.933 1.219e+04 99.151
Full GP 0.079 0.203 5.466 2.013 103.459 8.298
Sparse GP 0.579 0.641 19.876 3.718 148.698 11.168
SDD GP-ARD 0.057 0.194 11.410 2.932 13.444 3.049

SDD− GP-ARD 0.057 0.194 29.806 4.520 13.447 3.051
Full GP-ARD 0.195 0.052 29.805 4.520 13.563 3.063
Sparse GP-ARD 0.211 0.065 30.684 4.926 14.540 3.173

The corresponding results on Sheffield and Peshawar NO2 and temperature420

datasets are separately given in Table 6 and 7. One can see that the SDD-

GP performs the best in general on the Peshwar temperature and Sheffield
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Table 5: The performance comparison among different methods and kernels on the synthetic
and public datasets. We take the median RMSE and MAE for the SDD GP (SDD GP-ARD)
and SDD− GP (SDD− GP-ARD).

Syn. 1 Syn. 2 M. L. CO2

—— RMSE MAE RMSE MAE RMSE MAE
SDD GP 1.267 0.871 6.155 2.049 114.708 8.362

SDD− GP 0.606 0.648 6.858 2.205 3.948e+04 184.845
Full GP 0.079 0.203 5.466 2.013 103.459 8.298
Sparse GP 0.579 0.641 19.876 3.718 148.698 11.168
SDD GP-ARD 0.057 0.194 29.806 4.520 144.676 10.577

SDD− GP-ARD 0.057 0.194 29.806 4.520 1.325e+05 348.360
Full GP-ARD 0.057 0.195 29.805 4.520 13.563 3.063

Sparse GP-ARD 0.065 0.211 30.684 4.926 14.540 3.173

NO2 datasets. It also achieves the smallest MAE on the Sheffield temperature

dataset. Otherwise, the SDD− GP slightly performs better than the SDD GP.

When it comes to the median RMSE and MAE, the SDD GP outperforms the425

full GP variants except on the Sheffield temperature and NO2 datasets.

Table 6: The performance comparison among different methods and kernels on Sheffield and
Peshawar datasets. We take the minimum RMSE and MAE for the SDD GP (SDD GP-ARD)
and SDD− GP (SDD− GP-ARD).

S. Temp (℃) P. Temp (℃) S. NO2 (µg/m3) P. NO2 (µg/m3)

—— RMSE MAE RMSE MAE RMSE MAE RMSE MAE
SDD GP 0.125 0.270 0.965 0.819 0.404 0.394 0.077 0.212

SDD− GP 0.115 0.270 0.970 0.827 0.413 0.395 0.075 0.209

Full GP 0.329 0.482 1.416 1.005 1.0472 0.779 0.664 0.578
Sparse GP 0.661 0.695 1.485 1.025 1.074 0.762 0.675 0.652
SDD GP-ARD 0.473 0.586 1.021 0.880 0.427 0.436 0.712 0.722

SDD− GP-ARD 0.484 0.599 1.022 0.881 0.431 0.446 0.713 0.721
Full GP-ARD 0.494 0.604 1.008 0.870 0.431 0.446 0.697 0.731
Sparse GP-ARD 0.689 0.701 1.005 0.868 0.503 0.519 0.726 0.755

In general, as m increases, the performance of the developed approach

reaches the performance of a full GP variant with the same kernel. When we

adopt the minimum and median RMSE and MAE as metrics, we have shown

that the performance of the proposed SDD GP (SDD GP-ARD) and the full430

GP (full GP-ARD) alternates. Fig. 3 and 5 also show that when m is small,

the full GP variants outperform the proposed approach with the same kernels

in general. This is because when m is too small, entries of the ‘residual’ ma-

trix Ã are still significantly big, forcing it to be SDD would not improve the

approximation accuracy of the covariance matrix.435

In addition to the aforementioned validation results, we also test the pro-
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Table 7: The performance comparison among different methods and kernels on Sheffield and
Peshawar datasets. We take the median RMSE and MAE for the SDD GP (SDD GP-ARD)
and SDD− GP (SDD− GP-ARD).

S. Temp (℃) P. Temp (℃) S. NO2 (µg/m3) P. NO2 (µg/m3)

—— RMSE MAE RMSE MAE RMSE MAE RMSE MAE
SDD GP 0.629 0.664 0.985 0.839 0.603 0.532 0.148 0.314

SDD− GP 0.647 0.694 1.303 0.963 0.902 0.634 0.148 0.314
Full GP 0.329 0.482 1.416 1.005 1.047 0.779 0.664 0.578
Sparse GP 0.661 0.695 1.485 1.025 1.074 0.762 0.675 0.652
SDD GP-ARD 0.489 0.602 1.022 0.880 0.435 0.450 0.715 0.724

SDD− GP-ARD 0.490 0.603 1.022 0.880 0.697 0.548 0.715 0.724
Full GP-ARD 0.494 0.604 1.008 0.870 0.431 0.446 0.697 0.731
Sparse GP-ARD 0.689 0.701 1.005 0.868 0.503 0.519 0.726 0.755

posed approach with kernel setting 1 and 2 on data with outliers, in comparison

with the corresponding full GP variants. The results are shown in Figs. 6 and

7, respectively. The outliers are generated by adding noises with prominent

variances to both (33) and (34). To be specific, we set the variance of v1 to 0.5440

and the variance of v2 to 1.65, which generates noise of comparable scales with

the real value of (33) and (34).

(a) (b)

(c) (d)

Figure 6: Impacts of outliers on (33) and (34), with kernel setting 1 in Table 2: (a) Full GP
with v1 ∼ N (0, 0.50); (b) SDD with v1 ∼ N (0, 0.50); (c) Full GP with v2 ∼ N (0, 1.65); (d)
SDD with v2 ∼ N (0, 1.65). The shaded areas indicate the 95% confidence interval.
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(a) (b)

(c) (d)

Figure 7: Impacts of outliers on (33) and (34), with kernel setting 2 in Table 2: (a) Full
GP-ARD with v1 ∼ N (0, 0.50); (b) SDD GP-ARD with v1 ∼ N (0, 0.50); (c) Full GP-ARD
with v2 ∼ N (0, 1.65); (d) SDD GP-ARD with v2 ∼ N (0, 1.65). The shaded areas indicate the
95% confidence interval.

We can see from Figs. 6 and 7 that the proposed approach is still able to

produce comparable results as full GP variants with the same kernel despite

the impact of outliers. It is worth mentioning that just like noises, kernels445

could affect the performance of GP models as well. This can be observed from

the difference between Fig. 6(a) and Fig. 7(a), as well as from the difference

between Fig. 6(d) and Fig. 7(d).

We then increase the number of samples and test the proposed approach over

larger scale datasets compared with aforementioned settings. To be precise, we450

set the number of samples to 6,000 and 12,000 respectively for both (33) and

(34). The proposed approach with kernel setting 1 and 2 are applied to process

the data separately and the results are given in Fig. 8 and Fig. 9, respectively.

Figs. 8(a) and 8(b) are the results from SDD GP with 6,000 and 12,000 samples

from (33). Fig. 8(c) and 8(d) separately show the results of SDD GP with 6,000455

and 12,000 samples from (34). The corresponding results obtained by using the
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(a) (b)

(c) (d)

Figure 8: Performance of the proposed approach on large scale datasets, with kernel setting 1
in Table 2 used: (a) SDD GP with 6,000 samples from (33); (b) SDD GP with 12,000 samples
from (33); (c) SDD GP with 6,000 samples from (34); (d) SDD GP with 12,000 samples
from (34). v1 ∼ N (0, 0.15), v2 ∼ N (0, 0.45). The shaded areas indicate the 95% confidence
interval.

SDD GP-ARD to process data from (33) are given in Figs. 9(a) and 9(b),

whereas Figs. 9(c) and 9(c) show the results achieved by using SDD GP-ARD

to process data from (34). As the number of samples increases, the full GP

variants become slow for the new datasets, while the proposed approach still460

achieves comparable results more efficiently than the full GP variants as shown

in Table 8. It is worth mentioning that GP variants using the kernel setting 2

are generally more efficient than those using kernel setting 1.

Table 8: Efficiency comparison of SDD GP (SDD GP-ARD) and full GP (full GP-ARD) with
different kernel settings

Syn. 1 Syn. 2

Sample Number 635 6,000 12,000 635 6,000 12,000
SDD GP Time (s) 2.3 50.6 673.8 3.2 60.6 590.4
Full GP Time (s) 5.1 123.6 1566.2 6.5 126.0 1476.4
SDD GP-ARD Time (s) 1.6 38.9 200.2 1.5 52.2 239.2
Full GP-ARD Time (s) 3.4 83.2 454.5 3.5 108.6 509.5
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(a) (b)

(c) (d)

Figure 9: Performance of the proposed approach on large scale datasets, with kernel setting
2 in Table 2 used: (a) SDD GP-ARD with 6,000 samples from (33); (b) SDD GP-ARD with
12,000 samples from (33); (c) SDD GP-ARD with 6,000 samples from (34); (d) SDD GP-ARD
with 12,000 samples from (34). v1 ∼ N (0, 0.15), v2 ∼ N (0, 0.45). The shaded areas indicate
the 95% confidence interval.

6. Conclusion

In this paper, we propose a new kernel matrix approximation approach that465

considers the residual matrix and compares it with traditional kernel approx-

imation methods. The key novelty of the paper stems from considering the

residual matrix in covariance matrix approximation. The residual matrix is

approximated by a symmetric diagonally dominant matrix whose inverse can

be easily approached by the Neumann series. A new Gaussian process variant470

denoted as SDD GP is hence built upon the proposed approximation method,

which achieves comparable or better performance compared with full GP on

both synthetic datasets and real air quality datasets, with lower computational

complexity. Furthermore, the SE-ARD kernel is applied in addition to the com-

position kernels, to demonstrate the generality of the proposed approach.475

We have applied the Mendoza-Raydan-Tarazaga projection to help us achieve
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a symmetric diagonally dominant projection of the residual matrix. We ob-

served that the projection algorithm can affect the efficiency of the proposed

approach, despite good prediction performance. Hence, we shall continue with

the efficiency improvement of the proposed approach in the future.480
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