
This is a repository copy of Automatic generation of alignments for 3D QSAR analyses .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/171/

Article:

Jewell, N.E., Turner, D.B., Willett, P. et al. (1 more author) (2001) Automatic generation of 
alignments for 3D QSAR analyses. Journal of Molecular Graphics and Modelling, 20 (2). 
pp. 111-121. ISSN 1093-3263 

https://doi.org/10.1016/S1093-3263(01)00110-3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Automatic Generation Of Alignments 
For 3D QSAR Analyses 

 

Nicholas E. Jewell, David B. Turner and Peter Willett1

Krebs Institute for Biomolecular Research and Department of Information Studies, 

University of Sheffield, Western Bank, Sheffield S10 2TN, UK 

 

Graham J. Sexton 
Syngenta, Jealott�s Hill Research Station, Bracknell, RG42 6ET, UK 

 

Abstract  Many 3D QSAR methods require the alignment of the molecules in a dataset, 

which can require a fair amount of manual effort in deciding upon a rational basis for the 

superposition.  This paper describes the use of FBSS, a program for field-based similarity 

searching in chemical databases, for generating such alignments automatically.  CoMFA and 

CoMSIA experiments with several literature datasets show that the QSAR models resulting 

from the FBSS alignments are broadly comparable in predictive performance with the models 

resulting from manual alignments.   

 

 

INTRODUCTION 

 

Current approaches to the design of bioactive molecules make extensive use of 3D QSAR 

methods [1, 2].  These methods seek to establish a statistically significant correlation between 

experimental biological activity data and structural variables characterising the geometric 

distribution in 3D space of properties associated with molecular recognition events.  

Examples of such methods include CoMFA [3], CoMSIA [4], COMPASS [5] and HASL [6].   

 

An important component of many 3D QSAR methods is the need to align the molecules in a 

dataset as a precursor to the calculation of the structural variables.  When all the members of a 

dataset contain a common structural feature, such as a rigid ring template or an obvious 

pattern of pharmacophore points, then the alignments can be generated easily using a least-

squares fitting procedure.  If, however, there is some degree of structural heterogeneity in the 

dataset then a large amount of time may be required at a molecular graphics terminal to obtain 

a satisfactory alignment for the dataset.  The success of such a manual procedure will be 

strongly dependent on the experience of the modeller carrying out the alignment and will 

inevitably involve at least some degree of subjectivity in assessing which atoms (or ring 

centroids or whatever) should be fitted to which. 

                                                 
1 To whom all correspondence should be addressed.  Email:  p.willett@sheffield.ac.uk 
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This paper describes a fully automated procedure for generating the alignments required for 

3D QSAR, specifically the well-known CoMFA and CoMSIA methods.  Our approach is 

based on FBSS (for Field-Based Similarity Searching), a program we have developed 

previously for 3D similarity searching in chemical structure databases but which we have here 

applied to the generation of alignments for 3D QSAR.   Although both similarity searching 

and 3D QSAR involve the generation of molecular alignments, the use of calculated 

molecular similarities as a basis for the latter application is clearly open to debate, since one 

can visualise cases where the parts of molecules that dominate the calculated similarity scores 

are not relevant to the important pharmacophoric features for that dataset.  Accordingly, the 

aim of the work reported here is to provide an approach that is complementary to, rather than 

a replacement for, the manual alignments normally used in QSAR.  Specifically, while the 

automatic alignments could be used directly as the input to a QSAR analysis, we believe that 

their main value may be as an initial screening mechanism in one of two ways.  First, when a 

new dataset is to be analysed, an automatically-generated set of alignments can be processed 

using the 3D QSAR method of choice: if this initial, automated analysis results in a predictive 

QSAR model, then it may be worth the modeller spending time and effort to generate a 

manual set of alignments.  Second, the automatic procedure may suggest non-obvious 

alignments for consideration by the modeller during a second, more detailed, manual analysis.  

Here, we focus on the use of the automatically-generated alignments on their own, to justify 

the potential of the approach; that said, its inherent limitations must always be born in mind.   

 

The paper is organised as follows.  The next section gives a brief introduction to the main 

features of FBSS and also reports a simple validation experiment that supports the use of 

FBSS-based alignments in 3D QSAR analyses.  The main experimental results, based on 

CoMFA and CoMSIA analyses of six literature datasets, are described in the third section, 

where the statistical models resulting from our automated alignments are compared with those 

resulting from manual alignments, and the paper concludes with a summary of our major 

findings and suggestions for further work. 

 

 

USE OF FBSS 

 

Many different measures have been described for calculating inter-molecular structural 

similarity [7].  One approach, which derives from the early work of Carbo et al. [8], involves 

the use of molecular field descriptors.  As further developed by Good et al. [9], the approach 

involves positioning a molecule at the centre of a 3D grid and calculating a molecular field 

value (such as the molecular electrostatic potential) at each point of the grid.  The similarity 
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between two molecules is obtained by aligning the corresponding grids so as to give the best 

possible fit of the two sets of field values, and then by calculating a similarity coefficient 

(such as the Carbo index [8]) that reflects the extent of the agreement between the aligned sets 

of values.  This provides a natural, and very elegant, way of quantifying the extent of the 

relationship between a pair of 3D structures, and has been adopted by many workers (see, 

e.g., [10-12]).  FBSS is a program that uses field-based similarity measures for similarity 

searching in chemical structure databases and that uses a genetic algorithm (hereafter a GA) 

to align two molecules� fields so as to maximise the value of the Carbo index [13-16].   

 

In brief, each chromosome in FBSS�s GA encodes the rotations and translations that are to be 

applied to a database structure to align it with the target structure for the similarity search.  If 

no account is taken of conformational flexibility then just the rigid-body rotations are 

encoded; alternatively, if the molecules are allowed to flex, then the chromosome additionally 

encodes the torsional rotations [14], although the experiments reported here consider only 

rigid molecules.  The fitness function is the value of the similarity coefficient resulting from 

that particular encoded alignment.  Three types of Carbo index are calculated in FBSS, using 

the fast Gaussian approximation procedures described by Good et al. [9, 10] for the 

calculation of electrostatic and steric similarities and using an analogous procedure for the 

calculation of hydrophobic similarities (these employing a Gaussian version of the molecular 

lipophilic potential approach of Gaillard et. al. [17]).  Alignments may be made based on a 

single field-type, or on any combination of the three types of field; the experiments reported 

in this paper involved an equally weighted combination.  Here, during the execution of the 

GA, an alignment of a pair of molecules is used to calculate each of the three individual types 

of field-based similarity and then the fitness for the chromosome encoding that alignment is 

the mean of the three resulting similarity values.   

 

The effectiveness of FBSS for database searching has been assessed using sets of active 

structures from the World Drug Index [18] and BIOSTER [19] databases, these experiments 

demonstrating that the program is capable of identifying sets of bioactive molecules that are 

very different from those retrieved by conventional similarity measures based on 2D fragment 

bit-strings [15, 16].  In the work reported here, we have used FBSS alignments as the input to 

a 3D QSAR procedure, and compared the results with those obtained from conventional 

manual alignments; alternative approaches to the automated alignment of structures for 3D 

QSAR are described by Jain et al. [5], Parretti et al. [20] and Lemmen et al. [21], inter alia.  

The use of FBSS for this purpose seems intuitively reasonable, in that FBSS aligns molecules 

on the basis of field variables that are at least analogous to those that comprise the 

independent variables in 3D QSAR methods; the experiments reported in the next section 

provide a range of evidence to justify the use of FBSS for this application. 
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EXPERIMENTAL DETAILS AND RESULTS 

 

Datasets  The experiments used six datasets from the published literature, these differing in 

size, degree of heterogeneity and intended biological target.  In most of these datasets, the 

authors have provided both a training set and a test set together with the 3D co-ordinates of 

the modelled structures, and these data were used in our experiments, hence facilitating the 

comparison of the FBSS-based and the manually-based alignments.   

 

The datasets are as follows:  

• The classic set of steroids with binding affinity data towards corticosteroid binding 

globulin (CBG) that forms a de facto benchmark for the evaluation of any QSAR method 

[22].  Specifically, we employed the 31 structures (a 21-compound training set and a 10-

compound test set) reviewed by Wagener et al. [23], with the exception of molecule-31 

(one of the test-set compounds that is known to be poorly predicted in QSAR analyses of 

this dataset) giving a 21-compound training set and a 9-compound test set. 

• Sicsic et al. [24] report CoMFA analyses of a set of diverse melatonin receptor 

antagonists.  These authors constructed many different alignments and the resulting 

CoMFA models before selecting an optimum model based on fitting to compound-12 and 

on the removal of four of the original training-set compounds.  This reduced dataset (44-

compound training set and 9-compound test set) was used in the experiments here.   

• Winn et al. [25] describe the synthesis, testing and structure-activity analysis of a set of 

non-peptidic endothelin antagonists.  This was divided into a training set of 49 

compounds and a test set of 6 compounds in a previous HQSAR study [26].  

• Βöhm et al. report CoMFA and CoMSIA analyses of a set of 88 benzamidine analogues 

showing selective activity to three separate receptor systems (thrombin, trypsin and 

Factor Xa) in the blood clotting cascade [27], this involving a 72-compound training set 

and a 16-compound test set.  The Factor Xa data was not used here as it was found to give 

uniformly poor QSAR models, however derived. 

• Klebe et al. report CoMFA and CoMSIA analyses of a 76 thermolysin inhibitors [28], this 

involving a 61-compound training set and a 15-compound test set.   

 

Validation study.  Our initial experiments were carried out to ascertain the extent to which 

FBSS-based similarities were related to alignments that could be used to derive good 

predictive QSAR models.  As noted above when describing FBSS, its GA seeks an alignment 

of two molecules� fields that maximises the Carbo similarity for those molecules, with the 

inherent assumption that the largest possible similarity corresponds to the most appropriate 
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alignment for similarity searching.  As a starting point for the present QSAR application, we 

make the analogous assumption that the largest possible similarity between a member of the 

dataset and the most active member corresponds to the most appropriate alignment for 

submission to the 3D QSAR procedure.  The validity of this assumption was tested by means 

of the simple procedure summarised in Figure 1. 

 
The classic steroid dataset was the first to be studied with this validation test. FBSS was used 

to align each member of the dataset with the most active molecule (deoxycortisol) 75 times, 

and that alignment selected in each case for which the final calculated similarity was the 

largest.  The mean similarity over the 20 compounds (the full training set less deoxycortisol) 

was then calculated and the resulting alignments submitted for the CoMFA analyses.  These 

were performed (both here and elsewhere in the paper) using the SYBYL QSAR and 

Advanced QSAR modules in the SYBYL molecular modelling package with the default 

CoMFA parameters [29].  Specifically, a grid spacing of 2.0Å was used in the preliminary 

validation experiments, with a spacing of 1.0Å in all the subsequent experiments; an energy 

cut-off of 30 kcal/mol was used and energy normalisation effected using the COMFA_STD 

procedure (in which each variable in a column is divided by the standard deviation of the 

whole block; steric or electrostatic), with a MIN_SIGMA value of 2.0.  Leave-one-out cross-

validation was carried out using SAMPLS [30], with the optimum statistical model being 

defined as the one with the number of components corresponding to the lowest cross-

validated standard error (SCV); similar results to those presented here were obtained when the 

optimum number of components was derived from the �5% rule� (where additional 

components are selected as long as the q² value increases by at least 5% q² units through 

inclusion of that component [31]).   

 

The extent of the space searched by the GA in FBSS is controlled by the size of the 

population, the number of generations for which the program is run and the selection pressure 

that is used.  This was exploited here with the intention of obtaining a set of sub-optimal 

solutions so as to demonstrate the existence of a relationship between similarity and q².  The 

entire procedure (fitting each compound 75 times to the template to find the best alignment, 

calculating the mean of the resultant FBSS similarities, carrying out the CoMFA analysis of 

the dataset using the set of FBSS-derived alignments, and noting the predictivity of the final 

statistical model as represented by the q² value) was executed with 20 different sets of GA 

parameters, these covering the ranges 1-5000 for the number of iterations, 10-200 for the 

population size and 1.1-5.0 for the selection pressure: the resolution of the translations and 

rotations encoded in the chromosomes were the default values of 1ǖ and 1.4û [13].  The 20 

pairs of mean FBSS similarities and q² values were then plotted to give the scattergram shown 
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in Figure 2 with, as might be expected, the largest q² values corresponding to larger numbers 

of iterations, larger populations and smaller selection pressures.  The correlation between the 

FBSS similarities and the q² values is notable (Spearman coefficient of rank correlation, ρ = 

0.654, with p ≤ 0.005), thus supporting our basic assumption that an alignment with a high 

FBSS similarity is appropriate for use in a 3D QSAR analysis; indeed, if a correlation is not 

observed then the dataset is not suitable for alignment using the whole-molecule procedure 

suggested here.  The point marked by a circle in Figure 2 represents the similarity and q² 

values obtained for the manual alignments provided by Wagener et al. [23], and it will be 

seen that this point fits well with the correlation obtained from the FBSS alignments.  

Comparable results are obtained with other datasets in that increasingly close relationships 

between the similarity and q² values are evident as the former is increased by altering the GA 

parameters; Figure 3, for example, demonstrates the relationship (ρ = 0.894, with ρ = 0.933 

when discarding any data that has molecular similarity lower than 0.50) for the thrombin 

dataset.  

 

While there is a clear general trend for high similarities to correspond to high q² values, the 

relationship is not an exact one: for example, there are several pairs of points in Figures 2 and 

3 where a higher similarity corresponds to a lower q² value.  This is hardly surprising given 

the global nature of the similarities that are used, with the whole of the molecules that are 

being compared being involved in the similarity calculation, but does not seem to be a serious 

problem if the FBSS alignments are to be used in an initial, screening role.  

 

Evaluation of alignments.  The validation study above focused on the effect of GA 

variations on an entire dataset; we now describe a further, more detailed comparison of the 

sets of manual and FBSS alignments for the individual molecules in a dataset.  As noted 

above, the FBSS alignments are generated by mapping each molecule, I, in a dataset to the 

most active compound, A, in that dataset.  By noting the manual alignment of I and A, it is 

then possible to calculate the root mean-squared deviation (RMSD) between the sets of heavy 

atoms for the manual alignment of I and the automated alignment of I.  Each such RMSD 

value corresponds to one of the FBSS similarity values and these can be plotted to ascertain 

the relationship, if any, between them.  Typical examples of the resulting scattergrams are 

shown in Figures 4 and 5, these being for the steroid and endothelin datasets, respectively.  In 

both cases, a well-marked negative correlation is observed (ρ = 0.786 and 0.991) thus 

showing that the greater the FBSS similarity, the closer the FBSS alignment is to the manual 

alignment; conversely, those molecules where it was possible to obtain only a low similarity 

generally end up in alignments that are quite different from the corresponding manual 
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alignments.  This provides further evidence to support the view that high FBSS similarities 

will be able to provide predictive QSAR models.  

 

CoMFA and CoMSIA analyses  Having demonstrated the potential of FBSS for the analysis 

of our QSAR datasets, the main experiments involved a comparison of the effectiveness of 

QSAR models derived using manual and FBSS alignments.  The FBSS alignments in these 

runs were generated using 10000 iterations, a 125-member population and a selection 

pressure of 1.1, this representing a time of about 30 seconds to align a pair of structures using 

a single field type.  The experiments involved both CoMFA and CoMSIA analyses, these 

being carried out using the standard SYBYL parameter settings: these have been described 

previously for CoMFA while the CoMSIA analyses used all five of the available field types 

(steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor) with 

the attenuation factor set to the default value of 0.3. 

 

The best CoMFA models (using the default combination of both electrostatic and steric fields) 

obtained from the analysis of the datasets using the FBSS alignments are listed in Table 1, 

with the corresponding results from the manual alignments (either those of the original 

authors or those generated by us for the endothelin dataset) listed in Table 2.  An inspection 

of the manual and automated results suggests that the two approaches yield broadly 

comparable levels of predictive performance.  Thus, if we consider the pr-r² values, manual is 

better (to two decimal places) for three of the datasets and automated for three of them; the 

corresponding figures for the q² values are three and two, with one (the melatonin receptor 

antagonists) being the same.  

 

Considering the steroid dataset in more detail, Figure 6 shows the manual and automated 

alignments and Figures 7 and 8 the corresponding CoMFA maps.  It will be seen from Figure 

6 that while the automated alignments are not identical to the manual ones, they are very 

similar; it is thus hardly surprising that the steric and electrostatic maps resulting from the 

alignments (in Figures 7 and 8, respectively) are very similar in overall shape and would 

provide broadly comparable levels of information to the drug designer in a realistic CoMFA 

application.   

 

The sets of automated and manual alignments were then used as the input to CoMSIA 

analyses.  The results obtained are listed in Tables 3 and 4 and are analogous to those 

obtained in the CoMFA studies, in that the two sets of alignments produce broadly 

comparable sets of predictive models.  Specifically, manual is better (to two decimal places) 

for four of the datasets and automated for two of them, considering both the pr-r² values and 

the q² values.  Here again, the manual and automated alignments and the resulting maps are 
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very similar.  Thus, Figure 9 shows the alignments for the thrombin dataset, and Figure 10 the 

resulting CoMSIA steric maps. 

 

Finally, Figure 11 shows the alignments for the thermolysin dataset.  The FBSS alignments 

are obviously much less consistent than the manual ones here, and this is reflected in the 

manual q² values being noticeably superior to the automated ones; however, the converse 

applies if the pr-r² values are considered. 

 

The experiments thus far have used the published sets of modelled co-ordinates for our six 

datasets.  However, the intended use is, as noted previously, as a precursor to a more detailed 

study, in which case it is unlikely that fully modelled structures would be available for the 

generation of the QSAR model.  It could thus be argued that the results in Tables 1 and 3 

over-estimate the ability of FBSS to generate good predictive QSARs as these tables are 

based on carefully modelled structures that would not be available in practice.  We have 

hence carried out additional sets of experiments in which the 3D structures for the compounds 

in our six datasets were generated using CONCORD followed by MOPAC optimisation, thus 

mirroring the level of structural information that might be expected at the start of an analysis.  

The results of using these non-modelled structures are summarised in Tables 5 and 6, which 

can be compared with the results in Tables 1 and 3, respectively.  It will be seen that the 

models developed from alignments using these simpler structures are sometimes poorer than 

the models developed from the fully modelled structures (e.g., the q² values) but they still 

exhibit significant predictive power (especially in the case of the CoMSIA analyses) thus 

validating their use for the screening-like application proposed here. 

 

 

DISCUSSION AND CONCLUSIONS 

 

In this paper, we have described the use of an automated procedure for generating the 

alignments required by many 3D QSAR methods.  Experiments with several CoMFA and 

CoMSIA datasets demonstrate that our procedure can be used to support conventional, manual 

approaches to the generation of 3D QSAR models.   

 

The idea of suggesting alignments by automatic means is not a novel one, with the SYBYL 

field-fit routine having been first described a decade ago [32].  The use of the routine has been 

reported by several workers (see, e.g., [33-35]) but is quite complex in operation [36], 

involving the inclusion of weighted field-fit energy penalties as additional parameters in the 

Tripos force field.  More recently, Paretti et al. have described a procedure that is analogous to 

that reported here [20] but that uses Monte Carlo and simplex procedures for the generation of 
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the alignments, rather than a GA, and PLS analysis of N×N similarity matrices, rather than 

CoMFA and CoMSIA.  Importantly, their method encompasses full conformational flexibility; 

however, it has only been applied to a single QSAR dataset for which r² and q² values are 

reported.   

 

There are several ways in which our work can be extended.  First, and most obviously, we 

have taken no account of conformational flexibility in the work reported here.  FBSS does 

allow for flexible fitting [14] but while this generally results in better alignments (in the sense 

that higher Carbo similarity values are obtained) these are normally associated with very 

highly strained structures.  Such conformations can be filtered to some extent by inclusion of 

an appropriate energy calculation in the GA�s fitness function, but this is extremely time-

consuming and we have also found that its inclusion has little effect on the quality of the 

resulting CoMFA models; we are currently considering a more sophisticated approach based 

on the use of torsion libraries derived from the Cambridge Structural Database as a component 

of the GA�s fitness function.  An alternative approach suggested by a referee might be to pre-

sample conformational space for each molecule and then to swap the conformers in and out 

during the generation of the model, an approach that is both simple to implement and easy to 

parallelise.  Secondly, we should note that the datasets used here are mostly quite simple in 

nature, thus making it difficult to test one of the main potential benefits of the suggested 

approach, viz the possibility of suggesting non-obvious alignments for consideration by during 

a modelling problem.  We have, however, recently completed a QSAR analysis of 124 

structurally diverse antibacterial phenolics where the FBSS alignments were noticeably 

different from manual fitting, whilst demonstrating superior predictive ability [37]; further 

such datasets need to be analysed to determine the generality of this behaviour.  Finally, while 

we have focused here on the use of FBSS, several other programs have been designed to align 

pairs of 3D molecules, and we are currently evaluating the effectiveness of several such 

programs [9, 21, 38] for the generation of 3D QSAR models. 
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Dataset q² SCV N r² S F pr-r² 

Steroids 0.866 0.466 3 0.982 0.170 315 0.917 

Melatonin receptor antagonists 0.717 0.704 5 0.982 0.179 407 0.547 

Endothelin antagonists 0.456 2.534 3 0.894 1.121 126 0.852 

Thrombin inhibitors 0.514 0.745 5 0.927 0.290 167 0.451 

Trypsin inhibitors 0.479 0.659 5 0.936 0.232 192 0.663 

Thermolysin inhibitors 0.374 1.694 4 0.874 0.758 98 0.436 

 

Table 1.  CoMFA models obtained using FBSS alignments 

 

 

Dataset q² SCV N r² S F pr-r² 

Steroids 0.851 0.477 2 0.928 0.331 117 0.856 

Melatonin receptor antagonists 0.723 0.706 6 0.980 0.191 297 0.790 

Endothelin antagonists 0.394 2.618 1 0.553 2.250 58 0.133 

Thrombin inhibitors 0.689 0.592 4 0.882 0.365 125 0.478 

Trypsin inhibitors 0.619 0.569 6 0.942 0.221 176 0.696 

Thermolysin inhibitors 0.639 1.309 6 0.919 0.622 102 0.384 

 

Table 2.  CoMFA models obtained using manual alignments. 

 

 

Dataset q² SCV N r² S F pr-r² 

Steroids 0.844 0.553 6 0.995 0.094 513 0.763 

Melatonin receptor antagonists 0.731 0.687 5 0.945 0.311 130 0.666 

Endothelin antagonists 0.561 2.301 4 0.860 1.298 68 0.926 

Thrombin inhibitors 0.561 0.714 6 0.949 0.242 203 0.422 

Trypsin inhibitors 0.557 0.599 3 0.833 0.368 123 0.699 

Thermolysin inhibitors 0.386 1.692 5 0.908 0.655 109 0.576 

 

Table 3  CoMSIA models obtained using FBSS alignments 
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Dataset q² SCV N r² S F pr-r² 

Steroids 0.769 0.579 1 0.834 0.490 96 0.898 

Melatonin receptor antagonists 0.781 0.620 5 0.920 0.374 87 0.635 

Endothelin antagonists 0.424 2.608 3 0.798 1.546 59 0.353 

Thrombin inhibitors 0.756 0.532 6 0.950 0.240 208 0.453 

Trypsin inhibitors 0.726 0.482 6 0.934 0.234 192 0.929 

Thermolysin inhibitors 0.643 1.290 5 0.892 0.709 91 0.377 

 

Table 4.  CoMSIA models obtained using manual alignments  

 

 

Dataset q² SCV N r² S F pr-r² 

Steroids 0.775 0.587 2 0.939 0.305 139 0.640 

Melatonin receptor antagonists 0.601 0.836 5 0.962 0.257 194 0.821 

Endothelin antagonists 0.294 2.825 1 0.603 2.119 71 0.656 

Thrombin inhibitors 0.401 0.834 6 0.944 0.256 182 0.428 

Trypsin inhibitors 0.494 0.650 5 0.902 0.287 121 0.748 

Thermolysin inhibitors 0.233 1.842 2 0.604 1.323 44 0.423 

 

Table 5.  CoMFA models obtained using FBSS alignments and non-modelled 3D structures 

 

 

Dataset q² SCV N r² S F pr-r² 

Steroids 0.672 0.708 2 0.874 0.439 62 0.839 

Melatonin receptor antagonists 0.579 0.847 4 0.859 0.490 60 0.827 

Endothelin antagonists 0.394 2.647 2 0.822 1.435 106 0.706 

Thrombin inhibitors 0.474 0.782 6 0.931 0.283 146 0.425 

Trypsin inhibitors 0.524 0.635 6 0.911 0.274 111 0.730 

Thermolysin inhibitors 0.281 1.848 6 0.970 0.378 290 0.270 

 

Table 6.  CoMSIA models obtained using FBSS alignments and non-modelled 3D structures 
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1. Select the most active molecule in an n-member QSAR dataset as a template against 

which the other n-1 molecules are to be aligned. 

2. Use FBSS to align each molecule with the template molecule and calculate the mean 

similarity when averaged over all of the n-1 alignments. 

3. Use the resulting aligned dataset as the input to a CoMFA analysis and calculate q², i.e., 

the cross-validated r² value, for the resulting QSAR model. 

4. Repeat Steps 2 and 3 several times, with each invocation of FBSS having a different 

parameter setting for its GA so as to control the extent of the search of alignment space 

that takes place. 

5. Calculate the correlation between the mean similarity values and the values calculated in 

Steps 2 and 3, respectively. 

 

Figure 1. Validation study for the generation of QSAR alignments using FBSS 
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Figure 2. Plot of the average FBSS molecular similarity against the square of the 

crossvalidated correlation coefficient, q2, for the steroid dataset.  The circle point represents 
the results obtained with the manual alignments.  

 14



 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average Molecular Similarity from FBSS run

Q
2 

fr
om

 R
es

ul
tin

g 
C

oM
F

A
 A

na
ly

si
s

 

 
Figure 3. Plot of the average FBSS molecular similarity against the square of the 

crossvalidated correlation coefficient, q2, for the thrombin dataset.  The circle point 
represents the results obtained with the manual alignments. 
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Figure 4. Plot of the molecular similarity against the RMSD for the steroid dataset  
(stars represent test set data, squares represent training set data) 
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Figure 5. Plot of the molecular similarity against the RMSD for the endothelin dataset 
(stars represent test set data, squares represent training set data) 

 

 

Figure 6. Alignment of steroid dataset to most active compound using a) manual and b) 

automated methods 
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Figure 7. Steric CoMFA maps for the steroid dataset using a) manual and b) automated 

alignments 

 

 

 18



 

Figure 8. Electrostatic CoMFA maps for the steroid dataset using a) manual and b) automated  

alignments 

 

  

 

Figure 9. Alignment of thrombin dataset to most active compound using a) manual and b) 

automated methods 

 

  

 

Figure 10. Steric CoMSIA maps for the thrombin dataset using a) manual and b) automated  

alignments 
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Figure 11. Alignment of thermolysin dataset to most active compound using a) manual and b) 

automated methods 
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