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Abstract

Multidimensional poverty measures have become a standard feature in poverty as-

sessments. A large and growing body of work uses endogenous (data driven) weights to

compute multidimensional poverty. We demonstrate that broad classes of endogenous

weights violates key properties of poverty indices such as monotonicity and subgroup

consistency, without which poverty evaluation and policy targeting are seriously com-

promised. Using data from Ecuador and Uganda we show that these violations are

widespread. Our results can be extended to other composite welfare measures such as

the widely used asset indices.
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1 Introduction

It has become increasingly common to understand deprivation from a multidimensional

perspective. Practitioners undertaking such multidimensional assessments must make sev-

eral non-trivial methodological decisions, including which dimensions and indicators of de-

privation to consider among the several possible and how to combine them into one single

composite index of multidimensional poverty. In combining these dimensions and their indi-

cators into a composite index, a natural question to ask is how much weight should we assign

to each of them. This paper examines, both empirically and analytically, the implications of

using endogenous (i.e. data driven) weights on a set of desirable properties for multidimen-

sional poverty indices (see Bourguignon and Chakravarty, 2003; Alkire and Foster, 2011)

and demonstrates their failure to satisfy these key properties under endogenous weights.

In constructing composite measures such as multidimensional poverty indices, exogenous

weights which are independent of the data set and reflect the normative judgements of

society, or the analyst or the policy-maker, is frequently used. In contrast, we focus on a

growing body of literature which relies on the alternative of endogenous weights, which are

determined by the data set, as a way to reflect the importance of the different indicators

in the composite measure (OECD, 2008; Decanq and Lugo, 2013). We consider endogenous

weights based on statistical methods such as Principal Component Analysis (PCA), as well

as frequency-based weights, which depends on the frequency of deprivation in the different

indicators.1

The applications of these endogenous weights are widespread. For instance, targeting

indices for the Mexican anti-poverty programme ‘Prospera’, popular and well-established

indices such as the Social Progress Index or the Human Needs Index, and the World Food

Program’s Vulnerability Monitoring Exercise, are all constructed using endogenous weights

(see Dávila Lárraga, 2016; Stern et al., 2018; WFP, 2019). Studies such as Asselin and Anh

(2008); Noglo (2017); Dhongde and Haveman (2017) use factorial technique such as Multi-

ple Correspondence Analyses (MCA) to evaluate multidimensional poverty. A strand of the

1Endogenous weights based on data-reduction factorial techniques such as PCA (see e.g. Asselin and Anh,
2008; Asselin, 2009; Alkire et al., 2015; Coromaldi and Drago, 2017; Wittenberg and Leibbrandt, 2017), use
optimisation procedures applied to statistical concepts such as correlation or variance. Meanwhile, depending
on the assumptions, frequency-based weights increase (or decrease) with the proportions of people deprived
in a particular indicator.
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literature even suggests endogenous weights as benchmarks for multidimensional poverty

analyses, claiming that they can be regarded as ‘superior’ approaches in determining the

weighting structures for indicators (see Pasha, 2017; Nájera Catalán and Gordon, 2019; Hesh-

mati et al., 2008). Likewise, examples of frequency-based endogenous weights are ubiquitous

in the literature on multidimensional poverty measurement (e.g. see Deutsch and Silber,

2005; Aaberge and Brandolini, 2014; Whelan et al., 2014; Alkire et al., 2015; Cavapozzi

et al., 2015; Rippin, 2016; Abdu and Delamonica, 2018).

This paper demonstrates that combining a broad class of endogenous weights with a gen-

eral class of multidimensional poverty indices based on the popular counting approach (Alkire

and Foster, 2011), leads to the violation of two fundamental properties in poverty measure-

ment: monotonicity and subgroup consistency.2 Monotonicity states that if the poverty

experience of an individual worsens in any indicator, then the overall poverty experience

of the society to which this individual belongs, should not improve. Subgroup consistency

requires that changes in overall poverty in a population should reflect the changes in poverty

happening at the smaller population subgroup level. For instance, if poverty in a particular

region of a country increases, while poverty of all other regions remains unchanged, then

subgroup consistency implies that overall poverty in the country should not decrease.

Failure of a poverty index to satisfy monotonicity implies that we may observe societal

poverty fall even when poverty of some individuals in that society increased, without any

countervailing decrease in any other individuals’ poverty. Violation of monotonicity can

lead to perverse policies whereby increasing individuals’ deprivation in some indicators can

be deemed beneficial since it will lead to an overall decrease in multidimensional poverty.

Meanwhile, failure of subgroup consistency can lead to a situation where increase in poverty

in some regions or populations subgroups, ceteris paribus, may decrease societal poverty.

This in turn can lead to policies that ignore increasing poverty in one region or one population

subgroup because overall poverty has decreased. Without these key properties, any kind of

comparative and evaluative exercise across time, regions or population groups would be

seriously compromised (see Foster and Shorrocks, 1991).

2The Alkire and Foster (2011) counting approach is followed by over seventy countries and organisa-
tions including United Nations Development Programme’s (UNDP) flagship Multidimensional Poverty Index
(MPI) to evaluate multidimensional poverty (see Alkire et al., 2015; OPHI, 2018).
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We illustrate the violations of monotonicity and subgroup consistency using real-world

data from two countries with structurally different patterns of multidimensional poverty: the

2013/14 Ecuador Living Conditions Survey and the 2015/16 Uganda National Panel Survey.3

In our context, endogenous weights generate a measurement externality since they depend

on the distribution of deprivations across the indicators. Change in one person’s deprivation

status (e.g. because she is no longer deprived in some indicator) affects the poverty scores

of many other people through its impact on the weighting vector. Our appraisal of other

people’s poverty is thus altered, despite the absence of any objective change in their depri-

vation status. By contrast, this measurement externality is non-existent if weights are set

exogenously. Our results can be extended to demonstrate that societal and individual wel-

fare measures like asset indices (see Filmer and Pritchett (2001)) and measures of material

deprivation (see e.g. Guio et al., 2016), suffer from similar problems.

The rest of the paper is organized as follows: Section 2 introduces the notation and

discusses the basic poverty measurement framework including the important properties of

monotonicity and subgroup decomposability. In section 3 we provide examples of endoge-

nous weights used in the paper. Section 4 presents an empirical illustration of violation

of monotonicity and subgroup decomposability under endogenous weights, followed by the

role of externalities in section 5 and the analytical results in section 6. The final section

summarises the paper’s main message with some concluding remarks.

2 Preliminaries: Multidimensional Poverty Measurement

Consider a deprivation matrix XND, with each of the N > 1 rows representing an in-

dividual (or household) and each of D > 1 columns representing a deprivation indicator.4

We denote any individual as n, where n = 1, 2, ..., i, i′, ...N , and any indicator as d, where

d = 1, 2, ..., j, j′, ...D. Let ρXND

nd ∈ {0, 1} denote the deprivation of person n in indicator d in

the deprivation matrixXND. For any individual n, poverty is determined by the deprivations

faced by the individual across the different indicators, which are given by the deprivation

3For robustness, we also undertake Monte-Carlo simulations which show that the violations of mono-
tonicity and subgroup consistency are ubiquitous. The results are presented in Supplementary Appendix
D.

4Without loss of generality, we are not making a distinction between indicators and dimensions in the
analytical part, i.e. sections 5 and 6. In the empirical part, i.e. section 4, we demonstrate our results on
indicators.
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vector Xn• : {ρn1, ..., ρnD}. Further, let X•d be the column vector associated with indicator

d of XND, i.e. {ρ1d, ..., ρNd}. Note that, for our purpose, we assume that individuals are

either fully deprived in an indicator (ρnd = 1) or not at all (ρnd = 0).

Let each indicator of XND be weighted, where weight in indicator d is represented as

wXND

d . Then we have a weighting vector of strictly positive entries: wXND = (wXND

1 , ..., wXND

D ),

such that:
∑D

d=1w
XND

d = 1. As alluded before, weights can be determined either en-

dogenously or exogenously. The values of exogenous weights can, for instance, remain

constant across different deprivation matrices because, by definition, they are indepen-

dent from the data; whereas endogenous weights take into account the distribution of

deprivation in each indicator. Thus, under endogenous weights, two different depriva-

tion matrices XND and X′
ND will have different weights for the indicators. Specifically,

wXND = (wXND

1 , wXND

2 , ..., wXND

D ) and wX′

ND = (w
X′

ND

1 , w
X′

ND

2 , ..., w
X′

ND

D ), where for some j

and j′, wXND

j 6= w
X′

ND

j and wXND

j′ 6= w
X′

ND

j′ . We describe the specific weighting functions

used in our analysis in Section 3.

2.1 Individual Poverty

Individual poverty is measured through a two-step procedure: (i) identifying whether

an individual is multidimensionally deprived based on the number of indicators they are

deprived in, and if so, (ii) computing a weighted aggregate of their deprivation over all the

indicators (see Alkire and Foster (2011)). Thus, the resulting individual poverty function

has two components: a poverty identification function, ψ, and a poverty severity function, s

(Silber and Yalonetzky, 2013).

Similar to Alkire and Foster (2011), a person is identified as multidimensionally deprived

if their total deprivation count is at least as high as an exogenously specified cutoff 0 < k ≤ 1.

We use the identification function ψ : [0, 1] → {0, 1} where:

ψ(tn; k) = I(tn ≥ k). (1)

and tn =
∑D

d=1 vdρnd is the total deprivation count of individual n with v1, ..., vD representing
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weights adding up to 1.5 When 0 < k ≤ min{v1, ..., vD} the poverty identification function

follows a union approach whereby any person with at least one deprivation is deemed poor. On

the other extreme, when k = 1, poverty identification follows an intersection approach which

regards as poor only those who are deprived in all indicators. Between both extremes, lies

the intermediate approach to identification where k ∈ (0, 1) (Alkire and Foster, 2011; Pasha,

2017). Although our results will hold for intermediate cases too, for the empirical analysis

we use the union approach to identification which is adopted in practice by a swathe of the

literature, especially studies using endogenous weights based on data-reduction techniques

(e.g. Asselin and Anh, 2008; Asselin, 2009; Coromaldi and Drago, 2017).

The severity component, s : [0, 1] → [0, 1] measures the severity of the multiple-deprivation

experience (Chakravarty and D’Ambrosio, 2006; Alkire and Foster, 2011; Silber and Yalonet-

zky, 2013), where for individual n the weighted deprivation score (or counting function) is:

Cn(XND) =
D
∑

d=1

wdρnd (2)

The severity component satisfies the following properties: s(Ci) > s(Cj) whenever Ci > Cj,

s(0) = 0 and s(1) = 1. Additionally we may also include the restriction that s′′(Cn) ≥ 0

(assuming differentiability of s). Thus the severity function is monotonic in the weighted

deprivation count of each individual and it increases at a non-decreasing rate. Straightfor-

ward examples of s(Cn) used in the literature include s(Cn) = Cn (Alkire and Foster, 2011),

s(Cn) = eαCn − 1 with α > 0 (Chakravarty and D’Ambrosio, 2006), or s(Cn) = (Cn)
β with

β ≥ 1 (Datt, 2019).

Thus, for any deprivation matrix XND, the poverty function for individual n, pXND
n :

{0, 1} × [0, 1] −→ [0, 1], takes the form:

pXND
n (tn, Cn; k) = ψ(tn; k)s(Cn). (3)

It combines the identification and the severity components to yield a measure of overall

5The weights v are exogenous and different from wXND . We suggest using exogenous weights at the
identification stage in order to avoid violating the Focus axiom (see Alkire and Foster (2011, p. 480)), which
captures the idea that improvements in the well-being of the non-poor should not change the level of societal
poverty.
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poverty at the individual level. In order to align our empirical illustration in section 4 to

some of the most commonly used poverty functions in multidimensional poverty analyses

(see e.g. Atkinson, 2019), we calculate individual poverty based on a linear severity function:

pn = ψ(tn; k)Cn.
6

2.2 Societal Poverty

We aggregate across all the individual poverty functions (as in 3) to derive a societal

poverty function. We follow a commonly used societal poverty function P : [0, 1]N −→ [0, 1],

which is non-decreasing and additively separable in its constituent parts:

P (XND; k) =
1

N

N
∑

n=1

pXND
n . (4)

Societal poverty indices like P are expected to fulfill certain desirable properties. Chiefly

among them is monotonicity, which requires societal poverty not to decrease if a poor indi-

vidual suffers from an additional deprivation. For a formal definition, consider a deprivation

matrix XND, where individual i is deemed poor, i.e. ψ(ti; k) = 1 . Then let X′
ND be ob-

tained from XND by a simple increase of deprivation in indicator j of individual i in XND;

meaning that: (i) ρ
X′

ND

ij = 1, (ii) ρXND

ij = 0 and (iii) ∀(n, d) 6= (i, j), ρ
X′

ND

nd = ρXND

nd . Then the

monotonicity axiom can be written as:

Axiom 1 Monotonicity (M): Suppose X′
ND is obtained from XND by a simple increase of

deprivation in indicator d of individual i, then ∆P = PX′
ND − PXND ≥ 0.

Another important property is subgroup consistency (Foster and Shorrocks, 1991; Alkire

and Foster, 2011), which requires societal poverty to change (e.g. in a country across time)

in the same direction of a change in the poverty levels of a subgroup (e.g. within a region

across time), if the poverty levels of all other subgroups remain unchanged. For a formal

definition, consider a subgroup decomposable deprivation matrix XND formed by vertical

concatenation of two matrices XN1D and XN2D where N = N1 + N2. We represent it as

XND = (XN1D ‖ XN2D). Then the axiom of Subgroup Consistency can be stated as:

6Our empirical results also hold for the quadratic case s(Cn) = (Cn)
2. They are available upon request.
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Axiom 2 Subgroup Consistency (SC): Suppose XND = (XN1D ‖ XN2D) and YND =

(YN1D ‖ YN2D) be two subgroup-decomposable deprivation matrices. P satisfies subgroup

consistency if

[P (XN1D;w
XN1D , k) > P (YN1D;w

YN1D , k) and P (XN2D;w
XN2D , k) = P (YN2D;w

YN2D , k)]

⇒ P (XND;w
XND , k) > P (YND;w

YND , k).

3 Examples of Endogenous Weights

Consider a deprivation matrix XND. Then examples of frequency-based weights, for

indicator j are given by:

wF
j =

f(X•j)
∑D

d=1 f(X•d)
, (5)

where f ′(X•j) ≷ 0 (assuming differentiability of f). One example of f with f ′(X•j) > 0

is f(X•j) =
∑N

n=1 ρnjψ(tn; k)/N which implies that as more people become deprived in an

indicator, it becomes a more important indicator of multidimensional poverty, and hence it

should carry a higher weight in the composite index. On the other hand, an example of f

with f ′(X•j) < 0 is: f(X•j) = − ln(
∑N

n=1 ρnjψ(tn; k)/N) (see Deutsch and Silber, 2005, p.

150). Another possibility is: f(X•j) = 1− (
∑N

n=1 ρnjψ(tn; k)/N), which essentially captures

the intuition that if deprivation in one particular indicator becomes endemic, it may no

longer serve as a distinguishing factor and hence should be weighted less in the composite

index.

Another common way of constructing composite indices with endogenous weights consists

of identifying orthogonal linear combinations of the standardized column vectors of XND,

denoted asX∗
•d, ∀d = 1, 2, ..., D, in such a way as to reproduce their variance and interlinkages

as closely as possible. This logic underlies a range of factorial techniques for data reduction,

including Factor Analysis, PCA and MCA (Asselin and Anh, 2008).

In our setting, let Σ denote the variance-covariance matrix of {X∗
•1, ...,X

∗
•D}. One way to

account for the binary nature of the elements in these vectors is to define the off-diagonal ele-

ments of Σ as bivariate tetrachoric correlation coefficients. Let us also denote the eigenvalues

of Σ as λ1, ..., λD in descending order, and as ν1, ..., νD the corresponding D×1 eigenvectors.
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Then the ℓ-th principal component, aℓ, is given by:

aℓ = X∗
NDνℓ =

D
∑

j=1

νℓ,jX
∗
•j, ∀ℓ = 1, 2, ..., D, (6)

and its variance is V (aℓ) = λℓ, ∀ℓ = 1, 2, ..., D. In practice, the first principal component is

the most commonly used ‘summary’ indicator that can be derived from PCA (Asselin and

Anh, 2008). Being linear combinations of standardised variables, principal components do

not have a specific unit of measure or a cardinal interpretation (see e.g. Jolliffe and Cadima,

2016). They can be re-scaled by means of a monotonic transformation that preserves the

ordering of individuals by their scores in that component. In particular, the first principal

component can be re-scaled such that ã1 ≡ a1∑D
j=1

νj
, with V (ã1) = λ1

(
∑D

j=1
νj)2

. This implies

that:

ã1 = X∗
NDw

PCA =
D
∑

j=1

wPCAjX∗
•j (7)

where wPCA
j ≡ νj

∑D
j′=1

νj′
∀j = 1, ..., D and

∑D

j=1w
PCA
j = 1.

Intuitively, the first principal component approach gauges the extent to which each in-

dicator contributes to reproducing the largest portion of the total variance in the dataset.

This is entirely driven by the indicators’ variance-covariance matrix. After standardisation,

the indicators that are, overall, highly correlated with the others will receive higher weights.

The reason is that these highly correlated indicators form a ‘dominant’ indicator subset

that essentially determines the first principal component. Conversely, those indicators that

hold weak correlations with the elements of this ‘dominant’ indicator subset are regarded as

redundant, and thus receive lower weights in the principal component.

4 Empirical Illustration

To illustrate the violations of monotonicity and subgroup consistency under endogenous

weights, we consider the case of Ecuador and Uganda. As any endogenous weighting pro-

cedure, PCA and frequency weights are data-adaptive techniques, which is the reason why

our empirical illustration concerns two countries with different multidimensional poverty

9



patterns.7

4.1 Data and Indicators

We use nationally representative household-level data for both countries: Encuesta de

Condiciones de Vida 2013-14 for Ecuador (N=108,093) and Uganda’s National Panel Survey

2015/16 (N=17,465). Based on the Oxford Poverty & Human Development-UNDP’s global

Multidimensional Poverty Index (MPI) our analysis considers ten indicators pertaining to

three wellbeing dimensions namely education, health and living standards (OPHI, 2018).

We argue that this index is ideal for our illustration due to its wide acceptance in academic

and policy-making spheres (Atkinson, 2019; World Bank, 2018). The dimensions and their

indicators along with the deprivation thresholds are presented in Table 1 (Appendix B).

Figure 1: Deprivation Headcount Ratios

Note: Cm: Child mortality, Nutr : Nutrition; Satt : School attendance; Educ: Years of
schooling; Elct : Electricity; Wtr : Drinking water; Sani : Sanitation; Ckfl : Cooking
fuel;Hsg : Housing; Asst : Assets

Deprivation headcount rates are lower in Ecuador compared to Uganda in every indicator

7See OPHI (2018) for a recent description of multidimensional poverty patterns in these countries.
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(Fig. 1). Hence, for instance, if rare deprivations are considered particularly important to

gauge poverty (Deutsch and Silber, 2005), then deprivations with the lowest frequencies will

be assigned higher frequency-based weights (under a union approach). This is the case of

electricity and school attendance in Ecuador, and school attendance and nutrition in Uganda.

Conversely, deprivations with the highest frequencies will be assigned lower weights, as they

are more commonly observed in the data. This is the case of nutrition and sanitation in

Ecuador, and cooking fuel and electricity in Uganda.

Regarding PCA weights, note that, in Ecuador, the health indicators have relatively low

tetrachoric correlations with the rest of the indicators (ranging in absolute value between

0.064 and 0.226; Table 2 in Appendix B). Meanwhile, the living standard indicators have

higher correlations with the rest (coefficients ranging between 0.116 and 0.816). Thus, using

first principal components, health indicators would have lower weights compared to living

standards’. In Uganda, the health indicators are weakly correlated with rest of the indicators

(with absolute value of coefficients between 0.07 and 0.35 and mostly below 0.20). Hence,

child mortality and nutrition would have a relatively low weight.

4.2 Simulations: Weighting Vectors, Monotonicity and Subgroup Consistency

Now we compare indices based on exogenous and endogenous weights in order to show

that the latter violate monotonicity and subgroup consistency. Our baseline scenario is

defined by the deprivation matrices effectively observed in both datasets, XND (country

labels omitted for the sake of notational simplicity). We induced changes to these matrices

by adding random deprivations in nutrition (Nutr). Based on our discussion above, we choose

this indicator for our illustration because of its distinctive correlation and frequency patterns

in both countries. However, we also simulated deprivations in access to safe drinking water

(Wtr) and electricity (Elct) to provide a broad coverage of the heterogeneity in observed

deprivation across the various indicators.8

As a starting point, we assign random identifiers to the population in each country that is

non-deprived in nutrition. We use these identifiers to form random ventiles of non-deprived

8The results of changes in access to safe drinking water and electricity are available in a Supplementary
Appendix C. Monte-Carlo simulations corroborating the likelihood of encountering violations of the two
properties in a wide array of alternative settings are also available in a Supplementary Appendix D.
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people. Then, in a cumulative process, we gradually assign deprivations to each random

ventile; we first assign deprivations to 5% of the relevant population, then to an additional

5% (for a total of 10%) and so on until, finally, assigning the deprived status to 95% of the

part of the population originally non-deprived in nutrition.

We denote the ensuing deprivation matrices as Xsi
ND, with si = {0, 5%, 10%, ..., 95%}

representing the proportion of initially non-deprived individuals who are assigned depriva-

tions in indicator i (nutrition, in our case). Note that X0
ND = XND, and that ∀s′i > si, X

s′
i

ND

objectively represents a Pareto-inferior state of affairs where nobody has fewer deprivations

and at least one person has more deprivations vis-a-vis Xsi
ND.

Throughout our analysis we adopt a union approach to identify the poor.9 Hence the

weighting choices are only relevant for the individual poverty functions. We follow the

global MPI (OPHI, 2018) to select an exogenous nested-weighting scheme, whereby each

dimension is assigned an equal weight (1/3). In turn, indicators within poverty dimensions

are also assigned equal weights; the education and health indicators are assigned a 1/6

(=0.1667) weight, and each living standards dimension is assigned a 1/18 (=0.0667) weight.

We compute endogenous weights using (i) PCA based on the tetrachoric correlations, and

(ii) frequency weighting operationalised by f(X•j) = − ln(
∑N

n=1 ρnjψ(tn; k)/N) (see equation

5).

As expected, in the baseline PCA weighting vector for Ecuador (PCA, snutr=0 column in

Table 3), living standard indicators tend to have higher weights, followed by the education

indicators and then the health indicators. In Uganda (PCA, snutr=0 column in Table 3),

with health indicators having low weights while living standard indicators tend to have the

highest. In both countries, when nutrition deprivations increase, this indicator is assigned

lower weight. That is, the added deprivations reconfigure the correlations patterns between

this indicator and the rest in such a way that nutrition becomes less important in the first

principal component. In compensation, all the other indicators in Ecuador are given higher

weights in a relatively uniform manner. In Uganda, higher weights tend to be assigned to

education, housing and assets.

9This ensures the fulfillment of the focus axiom. We could easily extend our analysis to different identi-
fication cut-offs based on equation 1.
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Turning now to the frequency weights, as expected, in the baseline (Freq. snutr = 0

columns in Table 3), the highest frequency weights go to electricity and school attendance

in Ecuador, and to school attendance and nutrition in Uganda. In turn the lowest weights

are assigned to nutrition and sanitation in Ecuador, and to cooking fuel and electricity in

Uganda.

4.2.1 Violations of Monotonicity and Subgroup Consistency

We assess the empirical response of three additively decomposable societal poverty func-

tions with linear severity components to the gradual increase of deprivations. Each function

corresponds to one weighting procedure; namely exogenous (denoted by EX), PCA, and

frequency-based (denoted by F). Omitting the country index, the poverty functions are,

respectively: P si
1 = 1

N

∑N

n C
EX,si
n , P si

2 = 1
N

∑N

n C
PCA,si
n , P si

3 = 1
N

∑N

n C
F,si
n . The poverty

identification functions ψsi are omitted purposefully, as we are adopting a union approach to

poverty identification, meaning ψsi(tn; 0) = 1 for all n, in order to satisfy the focus axiom.

Our results confirm that: (i) monotonicity and subgroup consistency are never violated

under exogenous weights, whereas (ii) these axioms are violated under endogenous weights.10

Regarding violations of monotonicity, in both countries (see Fig. 2), the poverty measure

constructed with exogenous weights, P si
1 , is in theory a non-decreasing function of si. In

our simulations it increases monotonically with a gradual increase of nutrition deprivations.

That is P
s′i
1 − P si

1 ≥ 0 ∀s′i ≥ si. This is not true for P si
2 and P si

3 : Indeed Figure 2 shows

that in Ecuador P si
2 − P 40i

2 < 0 for some 45% ≤ s ≤ 95%, and that P si
3 − P 35i

3 < 0 for

all 40% ≤ s ≤ 95%; while in Uganda, P si
2 − P 70i

2 < 0 for some 75% ≤ s ≤ 95%, and

that P si
3 − P 50i

3 < 0 for all 55% ≤ s ≤ 95%. Thus, there are many instances where these

poverty measures based on endogenous weights decrease despite the constant increase in

the proportion of people suffering nutrition deprivations, ceteris paribus. These are flagrant

violations of monotonicity.

To assess possible violations of subgroup consistency, we assign another set of addi-

tional deprivations in an identical way, except that the non-deprived population eligible for

10For conciseness, we discuss the results of added nutrition deprivations (i = nutr). Those of added
deprivations in electricity and water lead to the same qualitative conclusions and can be found in the
Supplementary Appendix (C).
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Figure 2: Violations of Monotonicity: Nutrition Indicator

added deprivations is solely concentrated in one specific sub-national region in each country.

The regional poverty measures take an identical form as their national-level counterparts.

Omitting the country index, the poverty functions for a generic region R are given by:

P si
1,R = 1

NR

∑NR

n∈R C
EX,si
n∈R , P si

2,R = 1
NR

∑NR

n∈R C
PCA,si
n∈R , P si

3,R = 1
NR

∑NR

n∈R C
F,si
n∈R.

We focus on the Eastern region in Uganda (26.4% of the sample) and the Coast in

Ecuador (33.1%), but we verified that choosing other regions11 does not alter our main

qualitative results: subgroup consistency is never violated under exogenous weights, but it

can be violated under endogenous weights.

In both countries, the regional and national poverty measures under exogenous weights

increase (monotonically) with additional nutrition deprivations in that region (Fig. 3).

11Our data in Ecuador allows for a representative disaggregation of the additively decomposable poverty
functions at the level of four geographical regions: Mountains (47.7% of the sample), Coast (33.1%), Amazon
(17.6%) and Galapagos Island (1.6%). In Uganda, this is possible for four regions as well: Central (25.9%),
Eastern (26.4%), Northern (23.9%) and Western (22.8%).
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Figure 3: Violations of Subgroup Consistency: Nutrition Indicator

That is (P
s′i
1,R − P si

1,R ≥ 0) =⇒ (P
s′i
1 − P si

1 ≥ 0), ∀s′ ≥ s. By contrast, the sub-national

poverty measures based on PCA or frequency-based weights often increase (decrease) while

the respective national poverty measures decrease (increase), ceteris paribus. Indeed in

Ecuador: (P
s′i
2,R − P si

2,R > 0) =⇒ (P
s′i
2 − P si

2 < 0) for some s′ > s with s, s′ > 20%, and

(P
s′i
3,R − P si

3,R < 0) =⇒ (P
s′i
3 − P si

3 > 0), ∀ 30% ≤ s, s′ ≤ 65% such that s′ > s (Figure

3). Likewise, in Uganda: (P
s′i
2,R − P si

2,R < 0) =⇒ (P
s′i
2 − P si

2 > 0) for some s′ > s with

s, s′ > 75%, and (P
s′i
3,R − P si

3,R < 0) =⇒ (P
s′i
3 − P si

3 > 0), ∀s, s′ > 40% such that s′ > s (Fig.

3).

5 Endogenous Weights and Measurement Externalities

Why do we observe these violations of basic properties when using endogenous weights?

In this section, we investigate this issue in greater depth. We focus on the weighted de-

privation score Cn (see equation 2) because the weighting choice affects the scores, which
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in turn impact on the individual poverty functions under the counting approach to poverty

measurement.12

Consider a deprivation matrix XND, where individual i is identified poor. Let X′
ND be

obtained from XND by a simple increase of deprivation in indicator j of individual i in XND

(as defined in Section 2.2). Then the change in the deprivation score of any individual n 6= i,

who is also identified as poor, is:

∆Cn = C
X′

ND
n − CXND

n = ρnj∆wj +
D
∑

d=1
d 6=j

ρnd∆wd, (8)

where ∆Cn = C
X′

ND
n −CXND

n ; and ∆wd = w
X′

ND

d −wXND

d , ∀d ∈ {1, 2, ..., D},. For simplicity

of notation we denote ρXND

nj = ρnj, ρ
X′

ND

nd = ρ′nd. For the ith individual who became deprived

in the jth indicator, we know that ρ′ijw
′
j − ρijwj = w′

j. Thus, ∆Ci due to a change in the

deprivation of person i with respect to indicator j, is given by:

∆Ci = w′
j +

D
∑

d=1
d 6=j

ρid∆wd. (9)

As long as person i is also deprived in some other indicator, the changes in the other weights

produced by the change in i’s status regarding j (i.e. ∆wd, ∀d 6= j) also affect the total change

in Ci. These same changes in weights led by the change in deprivation status of person i

in indicator j produce, in turn, changes in the deprivation score of every other person.

Proposition 1 below captures how changes in ρij can impact weights in each indicator and,

through that channel, the counting function of everybody besides person i:

Proposition 1 Suppose X′
ND is obtained from XND by a simple increase of deprivation in

12In theory the weighting choice should also affect the identification functions. But, as previously dis-
cussed, a combination of endogenous weights in the identification function with an intermediate approach
to poverty identification violates the focus axiom. Meanwhile the extreme identification approaches, union
and intersection, never violate the focus axiom but neither do they rely on deprivation weights.
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indicator j for individual i. For all n 6= i:

(i) if ∀d, ρnd = 0, or ∀d, ρnd = 1, then ∆Cn = 0,

(ii) if 0 <
∑D

d=1 ρnd < D, then







∆Cn S 0 ⇐⇒ ∆wj S 0 if ρnj = 1

∆Cn T 0 ⇐⇒ ∆wj S 0 if ρnj = 0
.

Proof: See Appendix A.

Note that only in indicator j we increase individual i’s deprivation. If individual n is

deprived in j, then an increase (respectively decrease) in the weight of j leads to an increase

(respectively decrease) in n’s deprivation score. Otherwise, if n is not deprived in j then

an increase (respectively decrease) in the weight of j reduces (respectively increases) n’s

deprivation score. There is no impact if n is either not deprived in any indicator or deprived

in all indicators. Hence, a change in one person’s deprivation status in one indicator changes

the deprivation score for others too. Thus, there are clear measurement externalities among

individuals which lead to violations in a poverty measure’s key properties (Section 6).

6 Endogenous Weights and Societal Poverty

We show how poverty measures based on endogenous weights violate monotonicity and

sub-group consistency.

6.1 Monotonicity

One of the main implications of Proposition 1 for societal poverty indices based on en-

dogenous weights is that they violate monotonicity (Axiom 1); which implies, inter alia, that

when poor individuals in a society become less deprived, societal poverty may increase and

viceversa. In order to understand how this situation comes about, it is important to derive

the impact produced by this change in the deprivation status of person i on the societal

poverty index.

For any XND, let Pr[ρnj = 1|n 6= i] ≡ 1
N−1

∑N

n=1,n 6=i I(ρnj = 1|n 6= i) (and similar

definition for Pr[ρnj = 0|n 6= i]). Suppose X′
ND is obtained from XND by a simple increase
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deprivation in indicator j of individual i. For any individual i′, let the change in poverty be

denoted by ∆pi′ = p
X′

ND

i′ − pXND

i′ . Then:

∆P = 1
N
∆pi

+N−1
N

Pr[ρnj = 1|n 6= i] 1
(N−1)Pr[ρnj=1|n 6=i]

∑N

n=1,n 6=i I(ρnj = 1|n 6= i)∆pn

+N−1
N

Pr[ρnj = 0|n 6= i] 1
(N−1)Pr[ρnj=0|n 6=i]

∑N

n=1,n 6=i I(ρnj = 0|n 6= i)∆pn

(10)

where

∆pn = ψ(tn; k)s(C
XND
n +∆Cn)− ψ(tn; k)s(C

XND
n ). (11)

(N − 1) Pr[ρnj = 1|n 6= i] and (N − 1) Pr[ρnj = 0|n 6= i] represent the total number of

individuals who are deprived in dimension j and not deprived in dimension j, respectively.

Hence, the change in societal poverty, ∆P as given by (10), is the population weighted sum

of (i) the change in person i’s individual poverty (∆pi), (ii) the average change in deprivation

of individuals other than i who are deprived in j, i.e.
∑N

n=1,n 6=i I(ρnj = 1|n 6= i)∆pn/{(N −

1) Pr[ρnj = 1|n 6= i]} and (iii) the average change in deprivation of individuals other than i

who are not deprived in j, i.e.
∑N

n=1,n 6=i I(ρnj = 0|n 6= i)∆pn/{(N − 1) Pr[ρnj = 0|n 6= i]}.

In the following discussion we show how the three components highlighted above react to

an increase in one person’s deprivation. First we show that for individual i whose deprivation

in jth indicator increased ∆pi ≥ 0.

Corollary 1 Let X′
ND be obtained from XND by a simple increase of deprivation in indicator

j of individual i. Then i’s poverty function (equation 3) does not decrease, that is ∆pi ≥ 0.

Proof: See Appendix A.

Since an increase in a person’s deprivation does not decrease their individual poverty

function, the main problem with counting poverty functions relying on endogenous weights

lies elsewhere with the presence ofmeasurement externalities. Next we assess how the poverty

of other people changes as a result of the change in i’s deprivation. Two helpful corollaries

stem from (8) combined with Proposition 1 and the individual poverty definition (3):

Corollary 2 Let X′
ND be obtained from XND by a simple increase of deprivation in indicator
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j of individual i. Suppose ∆wj > (<)0. For any individual n 6= i:

∆pn ≥ (≤)0 ⇐⇒ ∆wj > |
∑D

d=1,d 6=j ρnd∆wd| if ρnj = 1

∆pn ≤ (≥)0 ⇐⇒
∑D

d=1,d 6=j ρnd∆wd < (>)0 if ρnj = 0
.

Corollary 2 demonstrates that, with endogenous weights, ∆ρij 6= 0 is bound to produce

changes in the poverty of other individuals, based on their deprivation status regarding j.

In particular the poverty levels of those deprived in j and those not deprived in j will move

in opposite directions. Hence, a priori, expression (10) may be positive, negative, or even nil.

Thus we can deduce the following result:

Proposition 2 Let X′
ND be obtained from XND by a simple increase of deprivation in indi-

cator j of individual i. Then, for all societal poverty funtions in (4) ∆P = PX′
ND −PXND T

0, thereby violating monotonicity (Axiom 1).

This is a general result, not relying on any particular functional form of the weighting

function, or any particular parameters or data. It demonstrates that the change in societal

poverty, ∆P , resulting from a change in deprivation in any one indicator experienced by any

one poor individual would be ambiguous, thereby violating monotonicity (Axiom 1).

For specific endogenous weights and datasets we can actually pinpoint situations in which

monotonicity will be violated in the event of a simple increase of one deprivation in one

individual, as stated by Proposition 2. For example, if the weight of indicator j increases

due to a simple increase in deprivation of individual i in indicator j, then we know from

corollary 2 that, on top of the increase in the individual poverty of i, the individual poverty

of everyone else deprived in j will also increase, whereas the individual poverty of those

not deprived in j will decrease. Then, based on equations (10) and (11), a violation of

monotonicity will happen if the total sum of decreases in individual poverty is higher than

the total sum of increases in individual poverty (which includes i’s). Thus, for ∆wj > 0,

violation of monotonicity (∆P < 0) will happen if:

∑N

n=1,n 6=i I(ρnj = 0|n 6= i)|∆pn| >
∑N

n=1,n 6=i I(ρnj = 1|n 6= i)∆pn +∆pi. (12)
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The sum on the left-hand side of equation (12) depends positively on the total change in

poverty of those not deprived in j; whereas the expression on the right-hand side depends

on (i) the total change in poverty of individuals initially deprived in j, and (ii) the change

in poverty of i.13 A violation of monotonicity in this scenario will be more likely with higher

proportions of people initially not deprived in j and higher reductions in their individual

poverty levels (vis-a-vis the increase in individual poverty of those initially deprived in j).

If, on the other hand, the weight of indicator j decreases due to a simple increase in

deprivation of individual i in indicator j, then we know from Corollary 2 that the individual

poverty of everyone else deprived in j will decrease, whereas the individual poverty of those

not deprived in j will increase, on top of the increase in the individual poverty of i. Then,

following equations (10) and (11), a violation of monotonicity will occur, again, if the total

sum of decreases in individual poverty is higher than the total sum of increases in individual

poverty (which includes i’s), i.e. for ∆wj < 0 montonicity will be violated (∆P < 0) will

happen if:

∑N

n=1,n 6=i I(ρnj = 0|n 6= i)∆pn +∆pi <
∑N

n=1,n 6=i I(ρnj = 1|n 6= i)|∆pn|. (13)

The expression on the left-hand side of equation (13) depends on (i) the total change in

poverty of individuals not deprived in j, and (ii) the change in poverty of i; whereas the sum

on the right-hand side depends on the total change in poverty of individuals deprived in j.

A violation of monotonicity in this scenario will be more likely with higher proportions of

people initially deprived in j and higher reductions in their individual poverty levels (vis-a-vis

the increase in poverty of those initially not deprived in j).

Finally, note that, by contrast, with exogenous weights the score of everybody, except

i, remains unaltered: ∆Cn = 0, ∀n 6= i. Consequently: ∆pn = 0, ∀n 6= i. Hence, finally,

∆P = 1
N
∆pi. That is, with exogenous weights, societal poverty changes coherently with the

change in person i’s individual poverty, as the latter does not affect the poverty measurement

of anybody else. Hence, monotonicity is fulfilled.

13We consider the absolute value of the change in poverty of those who are not deprived in indicator j

because the change in their poverty is negative when ∆wj > 0.
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6.2 Subgroup Consistency

A key implication of Proposition 1, is that societal poverty indices based on endogenous

weights can also violate subgroup consistency (Axiom 2). In other words, we may find that

poverty in a subgroup of the population had declined, with all the other subgroups’ remaining

unchanged, yet poverty of the whole society increased. Repeated application of subgroup

consistency allows for comparing situations when poverty of more than one subgroup changes.

In such case violation of subgroup consistency will essentially imply that societal poverty may

decline even if the poverty of all the sub-populations have increased. Thus, this is a powerful

axiom which ensures that changes in the poverty of the total population is consistent with

the changes happening at the subpopulation level. We claim the following:

Proposition 3 For any deprivation matrix XND and any societal poverty measure given by

the additively decomposable function in (4), if its value P (XND;w, k) depends on w, which

represents the class of endogenous weights with weights adding up to 1, then P fails to satisfy

subgroup consistency (Axiom 2).

Proof: See Appendix A.

Proposition 3 demonstrates, in general terms, that endogenous weights lead to the vi-

olation of subgroup consistency (Axiom 2). Note that the class of endogenous weights

considered is very general, which covers both the PCA and frequency based weighting used

in our empirical applications.

7 Conclusions

The use of endogenous weights in multidimensional poverty measurement has enjoyed

some popularity, yet the implications of letting weights depend on the dataset have not

been studied in depth, above and beyond some reflections and sensible warnings (e.g. Alkire

et al., 2015). In this paper we focused on a broad class of endogenous weights based on sev-

eral instances of policy applications. We find that endogenous weighting leads to violations

of monotonicity and subgroup consistency for a general class of multidimensional poverty
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indices. Changes in the deprivation status of a household (or individual) generate measure-

ment externalities through the endogenous weights in the form of changes in the deprivation

score of other households (or people), despite the absence of any changes in their deprivation

profiles.

Even though we focus on poverty indices, our analysis is equally relevant to composite

welfare indices. For example, in the case of asset indices, each binary indicator could denote

ownership of a specific asset (e.g. equal to one) or lack thereof (e.g. equal to zero). The asset

score for each individual or household could be the weighted sum of the binary indicators.

This is equivalent to the deprivation score (equation 2) in our paper. The societal poverty

index in our paper can then be interpreted as the societal asset index which would essentially

be the average of the individual or household asset scores. Monotonicity in that context

would require that a loss of ownership of any asset (e.g. losing livestock) by an individual

should not lead to an increase in overall societal asset index. Similarly, subgroup consistency

would imply that if the asset score of a subgroup decreases, with asset scores of other

subgroups unchanged, then the overall societal asset index should not increase. In all such

cases where properties of monotonicity and subgroup consistency are required, our results

hold and the use of endogenous weights would be problematic.

Of course, resorting to exogenous weights involves tricky, even potentially arbitrary

choices. Best-practice suggestions for choosing exogenous weights are in their infancy, but

certainly emerging. For instance, Esposito and Chiappero-Martinetti (2019) monitor multi-

dimensional poverty in the Dominican Republic using exogenous weights generated from a

separate field experiment.

One way of using endogenous weights, while satisfying monotonicity and subgroup con-

sistency, could involve computing endogenous weights with one particular dataset and then

leave them fixed toward future comparisons. This is precisely what Asselin and Anh (2008)

do in their application to poverty comparisons in Vietnam with weights derived from MCA.

However this option would not really simplify the complexity of the decision regarding weight

selection, since one would still need to decide which dataset to use in order to compute the

weights for poverty comparisons (e.g. should one use a particular dataset or pool datasets?).

Moreover, as pointed out by Alkire et al. (2015, p. 99), if datasets are pooled to compute
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weights based on data reduction techniques (e.g. MCA, principal component analysis, factor

analysis, etc), there is no guarantee that a poverty comparison will be robust to sample

updating, e.g. adding new time periods and including the new datasets in a recalculation

of weights. Clearly, the latter decisions are hardly less arbitrary than choosing a vector of

exogenous weights.
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A Appendix: Proofs

Proof of Proposition 1: Case (i): Suppose individual n is not deprived in any indicator.

In that case, ∀d ∈ {1, 2, ..., D}, ρnd = 0. Thus from (8), we know that ∆Cn = 0. Now

suppose individual n is deprived in all D indicators. Since
∑D

d=1wd = 1, we can deduce

that:

∆wj = −
D
∑

d=1
d 6=j

∆wd. (A1)

Hence, from (8), ∆Cn = 0. Case (ii): Suppose for n, ρnj = 1 and ∃d 6= j such that ρnd = 0.

Then, from (A1), we can infer, |∆wj| >

∣

∣

∣

∣

∣

∑D

d=1
d 6=j

ρnd∆wd

∣

∣

∣

∣

∣

, since the right-hand side of the

inequality aggregates over only those indicators in which individual n is deprived, except j.

Thus: ∆Cn T 0 ⇐⇒ ∆wj T 0.

On the other hand if, for n, ρnj = 0; then from (8) we get: ∆Cn =
∑D

d=1
d 6=j

ρnd∆wd.

This implies,
∑D

d=1
d 6=j

ρnd∆wd T 0 if ∆wj S 0. Thus, ∆Cn T 0 ⇐⇒ ∆wj =S 0.

Proof of Corollary 1: First we prove that ∆ρij > 0 leads to ∆Ci > 0. From equation

(9) we can get:

∆Ci = w′
j +

D
∑

d=1
d 6=j

ρid∆wd, (A2)

where w′
j is the weight of indicator j in X′

ND. Since
∑D

d=1 ∆wd = 0, then ∆wj ≷ 0 implies
∑D

d=1,d 6=j ∆wd ≶ 0. Thus:

|∆wj| =

∣

∣

∣

∣

∣

∣

∣

∣

D
∑

d=1
d 6=j

∆wd

∣

∣

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

∣

∣

D
∑

d=1
d 6=j

ρid∆wd

∣

∣

∣

∣

∣

∣

∣

∣

. (A3)
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Suppose, ∆wj > 0. Thus from (A3) |w′
j| > |

∑D

d=1,d 6=j ρid∆wd| which from (A2) implies

∆Ci > 0. Likewise if ∆wj < 0, we know from (A3)
∑D

d=1,d 6=j ∆wd > 0. Given w′
j > 0

we can deduce from (A2) that ∆Ci > 0. Let ti be the (exogenously weighted) number of

indicators in which individual i is deprived and k is the cut-off for the (weighted) number of

indicators one has to be deprived to be identified as poor. Then if ti ≥ k, given ∆Ci ≥ 0

and the definition of pn, we can infer that ∆pn ≥ 0. Likewise, if ti < k and t′i ≥ k given

∆Ci > 0, then again ∆pn > 0. Otherwise ∆pn = 0.

Proof of Proposition 3: Consider a deprivation matrix decomposed by subgroups

XND = (XN1D ‖ XN2D) where N = N1 +N2, ∀n ∈ XN1D, ρnj = 1 and ∀n ∈ XN2D, ρnj = 0.

Suppose X′
ND = (XN1D ‖ X′

N2D
), where X′

N2D
is obtained from XN2D by a simple increase

of deprivation of person i in indicator j, i.e. ∆ρij = 1, i ∈ XN2D. Suppose for X′
N2D

:

∆wj = wj(ρij = 1) − wj(ρij = 0) < 0. To be subgroup consistent it must be the case that

∆PX′

ND
−XND S 0 if and only if ∆PX′

N2D
−XN2D S 0. Applying (10) we get:

∆P
X

′

N2D
−XN2D

=
1

N2

∆p
X′

N2D
−XN2D

i +
1

N2

N2
∑

n 6=i

I(ρnm = 0)∆p
X′

N2D
−XN2D

n . (A4)

In (A4), ∆p
X′

N2D
−XN2D

i ≥ 0 from Corollary (1). Also ∆p
X′

N2D
−XN2D

n ≥ 0 ∀n 6= i due to

Corollary 2. Therefore, ∆P
X

′

N2D
−XN2D ≥ 0. Now:

∆P
X

′

ND
−XND

=
1

N
∆p

X
′

ND
−XND

i +
1

N
[

N
∑

n 6=i

I(ρnm = 0)∆p
X

′

ND
−XND

n +
N
∑

n 6=i

I(ρnm = 1)∆p
X

′

ND
−XND

n ]

(A5)

Again, in (A5) ∆p
X

′

ND
−XND

i ≥ 0. Likewise,
∑N

n 6=i I(ρnm = 0)∆p
X

′

ND
−XND

n ≥ 0. However,

from Corollary 2,
∑N

n 6=i I(ρnm = 1)∆p
X

′

ND
−XND

n ≤ 0. Therefore, ∆P
X

′

ND
−XND S 0, unlike

∆PX′

N2D
−XN2D ≥ 0. In fact, with N1 → ∞, we can obtain ∆P

X
′

ND
−XND ≤ 0.
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B Appendix B: Data and Tables

Table 1: Dimensions, Observed Indicators and Deprivation Thresholds

Dimension Indicators A person is deprived if...

Health
Child mortality Any child has died in the household.

Nutrition Any adult under 70 years of age in the house-
hold have low BMI or any child under 5 is
underweight.

Education
School attendance Any school-aged child in the household is not

attending school up to the age at which he/she
would complete class 8.

Years of schooling No household member aged 10 years or older
in the household has completed five years of
schooling.

Living Standards

Electricity The household has no electricity.
Drinking water The household does not have access to im-

proved drinking water or safe drinking wa-
ter is at least a 30-minute walk from home,
roundtrip.

Sanitation The household’s sanitation facility is not im-
proved, or it is improved but shared with other
households.

Cooking fuel The household cooks with dung, wood or char-
coal.

Housing The household has a dirt, sand, dung or other
unspecified type of floor.

Assets The household does not own more than one
radio, TV, telephone, bike, motorbike or re-
frigerator and does not own a car or truck.

Source: Adapted from OPHI (2018).
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Table 2: Tetrachoric Correlation Coefficients
Ecuador

Cm Nutr Satt Educ Elct Wtr Sani Ckfl Hsg Asst
Cm 1.000 0.112 0.167 -0.109 0.222 0.134 0.149 0.225 0.152 0.168
Nutr 0.112 1.000 0.226 -0.205 0.190 0.153 0.116 0.176 0.064 0.141
Satt 0.167 0.226 1.000 0.056 0.369 0.253 0.297 0.342 0.206 0.361
Educ -0.109 -0.205 0.056 1.000 0.252 0.209 0.248 0.369 0.375 0.435
Elct 0.222 0.190 0.369 0.252 1.000 0.662 0.632 0.721 0.289 0.816
Wtr 0.134 0.153 0.253 0.209 0.662 1.000 0.500 0.542 0.165 0.513
Sani 0.149 0.116 0.297 0.248 0.632 0.500 1.000 0.537 0.406 0.587
Ckfl 0.225 0.176 0.342 0.369 0.721 0.542 0.537 1.000 0.587 0.714
Hsg 0.152 0.064 0.206 0.375 0.289 0.165 0.406 0.587 1.000 0.472
Asst 0.168 0.141 0.361 0.435 0.816 0.513 0.587 0.714 0.472 1.000

Uganda
Cm Nutr Satt Educ Elct Wtr Sani Ckfl Hsg Asst

Cm 1.000 0.146 0.092 0.154 0.286 0.100 0.142 0.019 0.076 0.085
Nutr 0.146 1.000 0.171 0.191 0.346 0.109 0.226 -0.070 0.162 0.134
Satt 0.092 0.171 1.000 0.392 0.321 0.136 0.316 0.118 0.365 0.433
Educ 0.154 0.191 0.392 1.000 0.628 0.211 0.410 0.126 0.431 0.546
Elct 0.286 0.346 0.321 0.628 1.000 0.471 0.503 0.334 0.700 0.609
Wtr 0.100 0.109 0.136 0.211 0.471 1.000 0.136 0.239 0.273 0.135
Sani 0.142 0.226 0.316 0.410 0.503 0.136 1.000 0.072 0.588 0.425
Ckfl 0.019 -0.070 0.118 0.126 0.334 0.239 0.072 1.000 0.189 0.174
Hsg 0.076 0.162 0.365 0.431 0.700 0.273 0.588 0.189 1.000 0.507
Asst 0.085 0.134 0.433 0.546 0.609 0.135 0.425 0.174 0.507 1.000

Note: Cm: Child mortality, Nutr : Nutrition; Satt : School attendance; Educ: Years of
schooling; Elct : Electricity; Wtr : Drinking water; Sani : Sanitation; Ckfl : Cooking
fuel;Hsg : Housing; Asst : Assets
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Table 3: Indicator Weights by Structure and Proportion of People Assigned Deprivations in
Nutrition
height Ecuador
Indicator Exog. PCA Freq.

snutr=0 snutr=50 snutr=95 snutr=0 snutr=50 snutr=95
Cm 0.167 0.045 0.045 0.046 0.099 0.103 0.105
Nutr 0.167 0.037 0.014 0.005 0.061 0.019 0.001
Satt 0.167 0.080 0.080 0.081 0.135 0.141 0.144
Educ 0.167 0.072 0.077 0.078 0.103 0.108 0.110
Wtr 0.056 0.114 0.117 0.118 0.086 0.090 0.092
Elec 0.056 0.144 0.147 0.148 0.148 0.154 0.157
Sani 0.056 0.124 0.127 0.128 0.072 0.075 0.077
Ckfl 0.056 0.143 0.146 0.147 0.104 0.108 0.110
Hsg 0.056 0.097 0.100 0.101 0.103 0.107 0.109
Asst 0.056 0.145 0.148 0.149 0.088 0.092 0.094
Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Uganda
Indicator Exog. PCA Freq.

snutr=0 snutr=50 snutr=95 snutr=0 snutr=50 snutr=95
Cm 0.167 0.046 0.046 0.047 0.133 0.149 0.157
Nutr 0.167 0.062 0.022 0.008 0.158 0.057 0.005
Satt 0.167 0.098 0.102 0.103 0.285 0.320 0.337
Educ 0.167 0.127 0.133 0.135 0.124 0.138 0.146
Wtr 0.056 0.075 0.078 0.079 0.087 0.097 0.102
Elec 0.056 0.155 0.160 0.162 0.013 0.014 0.015
Sani 0.056 0.119 0.123 0.124 0.023 0.026 0.028
Ckfl 0.056 0.054 0.059 0.061 0.001 0.001 0.002
Hsg 0.056 0.136 0.142 0.144 0.055 0.061 0.065
Asst 0.056 0.128 0.135 0.137 0.121 0.136 0.143
Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes:
1. Cm: Child mortality, Nutr : Nutrition; Satt : School attendance; Educ: Years of
schooling; Elct : Electricity; Wtr : Drinking water; Sani : Sanitation; Ckfl : Cooking
fuel;Hsg : Housing; Asst : Assets. 2. snutr reflects the percentage of households with added
deprivations in nutrition.
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C Supplementary Appendix: Additional Results (NOT FOR PUBLICATION)

In this appendix we present the results for added deprivations in two alternative indi-

cators: electricity and water. Ecuador has the lowest deprivation in electricity while for

Uganda it represents the third highest deprivation. When it comes to water deprivation,

for Uganda it is in the middle -neither high nor very low, while for Ecuador it is the third

highest deprivation.

In comparing the weights of the indicators, from Table 3, one can see that in Uganda,

electricity with an initial PCA weight of 0.155 and water with initial PCA weight of 0.075

are, respectively, the highest and the fourth lowest out of ten indicators. Similarly, for

initial inverse-frequency weights in Ecuador, electricity with 0.148 and water with 0.086 are,

respectively, the highest and third lowest out of ten indicators. Thus, between Ecuador

and Uganda, the electricity and water indicators cover a wide range of PCA and frequency

weights.

As before, in each country we assign random identifiers to the population that is non-

deprived in each of the two indicators, one at a time. We use these identifiers to form

random ventiles of non-deprived people in each indicator. Then, in a cumulative process for

one indicator at a time, we gradually assign simulated deprivations to each random ventile;

we first assign simulated deprivations to 5% of the relevant population, then to an additional

5% (for a total of 10%) and so on until 95%.

The figures in subsection C.1 show violations of monotonicity followed by a set of figures

depicting violations of subgroup consistency in subsection C.2. In each case, we assess the

consequence of changes in electricity followed by water for Ecuador and Uganda, respectively.

C.1 Violation of Monotonicity

C.1.1 Electricity
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Figure 4: Violations of Monotonicity: Ecuador

Figure 5: Violations of Monotonicity: Uganda

C.1.2 Water

Figure 6: Violations of Monotonicity: Ecuador
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Figure 7: Violations of Monotonicity: Uganda

C.2 Violation of Subgroup Consistency

C.2.1 Electricity

Figure 8: Violations of Subgroup Consistency: Ecuador
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Figure 9: Violations of Subgroup Consistency: Uganda

C.2.2 Water

Figure 10: Violations of Subgroup Consistency: Ecuador

In each of the cases above, one can clearly see that both monotonicity and subgroup con-

sistency are violated by endogenous weights, but not by exogenous weights. These additional

illustrations are not an exhaustive account of all possible empirical scenarios, but they cover

an array of situations that enable us to safely illustrate that violations of monotonicity and

subgroup consistency are widespread.
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Figure 11: Violations of Subgroup Consistency: Uganda

D Illustration with Synthetic Data

We show here that violations of monotonicity and subgroup consistency are pervasive in

more general contexts. To do this, we apply a Monte-Carlo procedure to create synthetic

datasets consisting of four partially correlated binary indicators.

First, we generate the continuous variables underlying the binary indicators with random

draws from a multivariate normal distribution such that X = (X1, ..., X4) ∼ N4(µ,Σ). The

mean vector µ ≡ (m1,m2,m3,m4) is set to define heterogeneous deprivation rates across

indicators: m1 = U(0.2, 0.25),m2 = U(0.4, 0.5),m3 = U(0.6, 0.75), and m4 = U(0.8, 1).

Thus, deprivations are least prevalent in indicator 1, and most prevalent in indicator 4.

The off-diagonal elements of Σ are set to define partially correlated indicators with Σij =

U(0.2, 0.8), ∀i 6= j. Thus our parametrisation aims at defining a set of indicators that

have some common variation giving sense to the notion of a ‘principal’ component in PCA

analyses, while not being perfectly redundant. We then use matrix X to create a dataset

consisting of four vectors, one for each binary indicator, defined as Yj = ■(Xj ≥ 0.5), j =

1, ..., 4, with Yj sized (1000× 1), ∀j.

For any given synthetic dataset, we implement a procedure similar to the one we used to

assess the real-world data and randomly assign additional deprivations among the initially

non-deprived fictitious population the following way:

1. We first assign random identifiers to the observations that are non-deprived in each
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one of the four indicators, one indicator at a time.

2. We then use these identifiers to form random ventiles of non-deprived observations for

each indicator.

3. Finally, for each binary indicator we gradually assign deprivations to each random

ventile cumulatively; we first assign deprivations to 5% of the relevant observations,

then to an additional 5% (for a total of 10%) and so on, until finally assigning the

deprived status to 95% of the part of the population originally non-deprived in the

assessed indicator.

Note that in this synthetic data-based approach there are two sources of bias. First,

there may be bias associated with the initial dataset, which comes from a random population,

unlike real-world data. Second, there may be bias related to the random process of additional

deprivation assignment. To account for the first source of bias, we simulate ten synthetic

datasets. For each one of these, we repeat the deprivation-assignment process ten times,

yielding a total of hundred realisations of our simulation procedure for each simulation setting

(comprising specific choices of poverty cutoffs, weighting function, etc.). This enables us to

determine the proportion of violations of the axioms, i.e. the number of times the axioms

are violated out of a hundred random instances.

For completeness, our analysis covers a finite set of potentially meaningful poverty cutoffs

(i.e. k-values), namely union (min{w1, ..., wD}), 0.25, 0.50, 0.75, and 0.99 (near intersection).

D.1 Violations of Monotonicity

We find that violations of monotonicity under endogenous weights may happen for all the

considered k-values. Figure 12 shows our simulation results for k=0.50 (i.e. an intermediate

poverty cutoff) and one out of the ten simulated datasets as an illustration. The shaded

areas represent instances where societal poverty, P , decreases while deprivations among the

population increase.

Violations of monotonicity are ubiquitous under frequency and PCA-based weights, while

they are non-existent under exogenous weights (as expected). This is true irrespective of
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Figure 12: Societal Poverty Measure P (k = 0.5) for Cumulative Ventiles of Additional
Deprivations: Illustration with a Synthetic Dataset

the dataset we use. Figure 13 depicts our main simulation results, namely the proportion of

simulations in which violation of monotonicity occurs for each cumulative ventile. We can

clearly see that, under (inverse) frequency weights, these violations are more likely to happen

if additional deprivations appear in indicators with higher initial incidence (e.g. indicators

3 and 4 versus 1 and 2). Importantly, if a large proportion of the originally non-deprived

population becomes deprived (say from ventile 13 onwards), violations of monotonicity occur

in every single simulation under frequency weights. Violations of this axiom under PCA

weights are much less predictable across indicators, yet they are hardly less problematic. If

a high proportion of the originally non-deprived population becomes deprived (i.e. higher

ventiles), violations of monotonicity arise in around half of the simulations.

D.2 Violations of Subgroup Consistency

To assess violations of subgroup consistency, we follow the exact same procedure and

parametrisation described above to create two 500-observation datasets, each representing

a subnational region. We then combine them to form a 1000-observation national dataset.
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Figure 13: Proportion of Violations of Monotonicity with P (k = 0.5) for Cumulative Ventiles
of Additional Deprivations

Assignment of additional deprivations also follows the procedure described above, but it

solely affects observations in one of the subnational regions.

For consistency, Figure 14 shows simulation results for k=0.50 and one dataset as an

illustration, where we plot the evolution of poverty at the national (red lines) and the sub-

national levels (blue lines) as deprivations among the population increase. The shaded areas

denote instances where poverty at the subnational level increases while it decreases at the

national level.

Figure 15 shows the proportion of simulations in which we encounter violation of subgroup

consistency, for each cumulative ventile. Again, violations of subgroup consistency appear

widely under endogenous weights while they never occur under exogenous weights. These

violations are less frequent than monotonicity violations, yet they still occur in up to 30%

of the simulations. Interestingly, if deprivations appear in large part of the initially non-

deprived population, violations of subgroup consistency can occur in almost every simulation

under PCA weights (see indicators 1 and 2).
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Figure 14: Societal Poverty Measure P (k = 0.5) for Cumulative Ventiles of Additional
Deprivations: Illustration with a Synthetic Dataset

Figure 15: Proportion of Violations of Subgroup Consistency with P (k = 0.5) for Cumulative
Ventiles of Additional Deprivations
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