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Abstract—Reliability is a critical factor in designing of Wireless Body Area Networks (WBANs). In this letter, we propose 

a resource scheduling strategy and solving an optimization problem that maximize the reliability of the transmission of 

emergency-critical sensory data. We jointly consider transmission mode, relay selection, time slot allocation and transmit 

power of each body sensor and formulating the scheduling problem to be a Markov Decision Process (MDP). In this 

strategy, the scheduling decision is made by each body sensor that do not have complete and global network information. 

Owning to the formulated problem is non-convex and the high computation complexity, we propose a deep reinforcement 

learning algorithm to solve the problem. Numerical results reveal that the proposed strategy is capacity of guaranteeing 

the reliability of transmission with an acceptable convergence speed. 

 
Index Terms—wireless body area networks, deep reinforcement learning, resource scheduling, reliable transmission 

 

I. INTRODUCTION 

The emergence of Wireless Body Area Networks (WBANs) is 

encouraging new innovative function to make the daily healthcare 

more efficient, thus paving the path to intelligent medical services in 

the forthcoming smart city [1]. Different with the traditional wired 

healthcare devices, WBANs consist of a number of heterogeneous 

invasive and/or non-invasive body sensors and one hub with the 

communication function in the form of wireless to continuously 

monitor the physiological signals of the human body and transmitting 

the real-time data to the doctors without any interruption [2]. The 

utilization of WBANs brings various benefits to daily life. However, 

it also faces one tremendous challenge in the practical deployment 

that is how to guarantee the reliability of the transmission as the data 

in a healthcare-oriented WBANs is emergence-critical in nature. To 

the best of our knowledge, the investigation on transmission 

reliability for WBANs is in its infancy to date, despite having some 

pioneering studies intended to study the network performance of 

WBANs in terms of throughput, packet loss and energy efficiency [3-

7].  

In [3], a fair and efficient radio resource allocation scheme is 

proposed to maximize the overall throughput of WBANs. The 

problem is formulated as a sum-utility maximization problem and a 

dual decomposition method is proposed to solve the optimal solution. 

However, the proposed method involves high computation 

complexity and the authors did not give the evaluation. In [4], a 

transmission power allocation scheme is proposed to improve the 

capacity and the outage probability of WBANs. Simulation results 

shown that the proposed scheme outperforms the water-filling and 

truncated-inversion approaches. Authors of [5] formulated the 

transmission power and time slot allocation optimization problem to 

be a Markov Decision Process to provide a high-quality service of 

WBANs. However, in this work, the model of channel fading is not 

discussed. 

 
Corresponding author: Yi-Han Xu (xuyihan@njfu.edu.cn).”  

Compared to the existing works, we aim to maximize the end-to-

end reliability of WBANs based on Deep Reinforcement Learning 

(DRL) algorithm. In particular, we formulate the resource scheduling 

problem to be a Markov Decision Process (MDP) by tactfully 

designing the state space, action space and reward function. Moreover, 

owning to the problem is non-convex, we propose a DRL algorithm 

to solve the maximization problem maximize and demonstrating how 

the transmission reliability can be guaranteed. Finally, we verify the 

proficiency and performance merits of the proposed resource 

scheduling strategy through numerical simulations. 

II. Network Model 

In this letter, we consider a single scenario of WBAN, in which a 

hub and multiple heterogeneity body sensors are deployed. We denote 

hub as H and 𝑁  body sensors as  𝑆𝑛, 𝑛 ∈ (1, 2, … , 𝑁) . In order to 

strength the utilization of network resource, both direct and 

cooperative transmission modes are supported by network layer as 

recommended by IEEE 802.15.6 standard [8]. For cooperative 

transmission mode, only two-hop transmission is allowed to avoid the 

stability issue and the redundant of signaling overhead. We use a 

binary indicator  𝛼𝑆𝑛 ∈ {0, 1} 𝑛 ∈ (1, 2, … , 𝑁)  to denote which 

transmission mode is utilized by n-th body sensor. In MAC layer, 

Time Division Multiple Address (TDMA) is employed, in which each 

transmission frame includes K number of time slots and the time slot 

set is denoted as 𝜓 = (1, 2, … , 𝐾). We set 𝑡0 = 0 and 𝑡𝐾 = 𝑇. Thus, 

the duration of each time slot can be represented as  𝜏𝑘 = 𝑡𝑘 −𝑡𝑘−1  ∀𝑘 ∈ 𝜓. 

In case of direct mode, we define a binary indicator  𝛽𝑆𝑛𝑘 ∈{0, 1}, (𝑛 ∈ (1, 2, … , 𝑁), ∀𝑘 ∈ 𝜓 )  to denote which time slot is 

assigned to a specify body sensor. In this model, we reasonably 

assume that: 1) the hub can only receive data from one body sensor at 

each time slot; 2) in each time frame, each body sensor only be 

assigned at most one time shot for transmission. The purpose of these 

two assumptions is to maintain the fairness of transmission 
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opportunity of each body sensor. Therefore, two constraints can be 

derived as Equations 1 and 2:  ∑ 𝛽𝑆𝑛𝑘𝑁
𝑛=1 ≤ 1, 𝑘 ∈  𝜓         (1) 

∑ 𝛽𝑆𝑛𝑘𝐾
𝑘=1 ≤ 1, 𝑛 ∈ (1, 2, … , 𝑁)        (2) 

In case of cooperative mode, we assume that the K number of time 

slots are allowed to allocate to both source-relay (S-R) and relay-hub 

(R-H) links. Similarly, we define an indicator 𝛿𝑆𝑛→𝑆𝑚𝑘 ∈{0, 1}, (𝑛, 𝑚 ∈ (1, 2, … , 𝑁), ∀𝑘 ∈ 𝜓 ) to denote that the k-th time slot 

is allocated to n-th body sensor for transmitting data to the m-th body 

sensor, which is the relay of the n-th body sensor. Meanwhile, 𝛿𝑆𝑚→𝐻𝑘 ∈ {0, 1}(𝑚 ∈ (1, 2, … , 𝑁), ∀𝑘 ∈ 𝜓 ) to indicate the m-th body 

sensor forwards the data from n-th body sensor to the hub at the k-th 

time slot. Practically, we believe that each source sensor can select 

one relay sensor during any time slot and each relay sensor can only 

forward data from one source sensor at any time slot. Thus two 

constraints are obtained as Equations 3 and 4: ∑ 𝛿𝑆𝑛→𝑆𝑚𝑘𝑁
𝑚=1,𝑚≠𝑛 ≤ 1,    ∑ 𝛿𝑆𝑛→𝑆𝑚𝑘𝑁

𝑛=1,𝑛≠𝑚 ≤ 1         (3) 
∑ 𝛿𝑆𝑚→𝐻𝑘𝑁

𝑛=1,𝑛≠𝑚 ≤ 1,     ∑ 𝛿𝑆𝑚→𝐻𝑘𝑁
𝑚=1,𝑚≠𝑛 ≤ 1         (4) 

Moreover, we believe that each link can only be assigned at most 

one time slot and the transmission of S-R link should be prior to the 

transmission of R-H link. Thus, we can obtain another two constraint 

as Equations 5 and 6: ∑ 𝛿𝑆𝑛→𝑆𝑚𝑘 ≤ 1𝐾
𝑘=1 , ∑ 𝛿𝑆𝑚→𝐻𝑘𝐾

𝑘=1 ≤ 1  𝑛 ≠ 𝑚         (5) 

∑ 𝛿𝑆𝑛→𝑆𝑚𝑘𝑥
𝑘=1 − ∑ 𝛿𝑆𝑚→𝐻𝑘𝐾

𝑘=𝑥+1 ≥ 0, 𝑥 ∈ (1, 2, … , 𝐾 − 1)        (6) 

From the above analysis, the instantaneous Signal to Interference 

plus Noise Ratio (SINR) of direct transmission mode in the k-th time 

slot can be derived as Equation 7: 𝑆𝐼𝑁𝑅𝑛,𝑘𝑑= 𝑝𝑛,𝑘𝑑 ∙ 𝑔𝑆𝑛→𝐻∑ ∑ 𝛿𝑆𝑛1→𝑆𝑚𝑘 ∙ 𝑝𝑛1,𝑚,𝑘𝑠 ∙ 𝑔𝑆𝑛1→𝑆𝑚 + 𝑛0𝑁𝑚=1,𝑚≠𝑛,𝑛1𝑁𝑛1=1,𝑛1≠𝑛  (7) 

Furthermore, the instantaneous SINR of cooperative transmission 

mode in the k-th time slot includes two parts: the SINR of S-R link 

and the R-H link, which are given as Equations 8 and 9: 𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘𝑠→𝑟 = 𝑝𝑛,𝑚,𝑘𝑠→𝑟 ∙ 𝑔𝑆𝑛→𝑆𝑚𝐼𝑛,𝑚,𝑘𝑠→𝑟 + 𝑛0          (8) 

𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘𝑟→𝐻 = 𝑝𝑛,𝑚,𝑘𝑟→𝐻 ∙ 𝑔𝑆𝑚→𝐻𝐼𝑛,𝑚,𝑘𝑟→𝐻 + 𝑛0          (9) 
Where: 𝐼𝑛,𝑚,𝑘𝑠→𝑟 = ∑ ∑ 𝛿𝑆𝑛1→𝑆𝑚1𝑘 ∙ 𝑝𝑛1,𝑚1,𝑘𝑠→𝑟 ∙𝑁

𝑚1=1𝑚1≠𝑛,𝑛1,𝑚
𝑁

𝑛1=1 𝑛1≠𝑛,𝑚 𝑔𝑆𝑛1→𝑆𝑚 

+ ∑ 𝛽𝑆𝑛1𝑘𝑁
𝑛1=1 𝑛1≠𝑛,𝑚 ∙ 𝑝𝑛1,𝑘𝑑 ∙ 𝑔𝑆𝑛1→𝑆𝑚 

+ ∑ ∑ 𝛿𝑆𝑚1→𝐻𝑘 ∙ 𝑝𝑛1,𝑚1,𝑘𝑟→𝐻 ∙𝑁
𝑚1=1𝑚1≠𝑛,𝑛1,𝑚

𝑁
𝑛1=1 𝑛1≠𝑛,𝑚 𝑔𝑆𝑚1→𝑆𝑚 

and 𝐼𝑛,𝑚,𝑘𝑟→𝐻 = ∑ ∑ 𝛿𝑆𝑛1→𝑆𝑚1𝑘 ∙ 𝑝𝑛1,𝑚1,𝑘𝑠→𝑟 ∙𝑁
𝑚1=1𝑚1≠𝑚,𝑛1

𝑁
𝑛1=1 𝑛1≠𝑚 𝑔𝑆𝑛1→𝑆𝑚 

According to Shannon’s theorem, the transmission rate of the 

direct mode 𝑅𝑛𝑑  can be obtained by Equation 11: 𝑅𝑛𝑑 = ∑ 𝛽𝑆𝑛𝑘 ∙ 𝐵 ∙ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛,𝑘𝑑 )𝐾
𝑘=1          (11) 

Whereas, the transmission rate of the cooperative mode 𝑅𝑛𝑐 

includes both the transmission rate of S-R link 𝑅𝑛𝑐,𝑠→𝑟 and R-H 

link 𝑅𝑛𝑐,𝑟→𝐻, which are can be given by Equations 12 and 13: 𝑅𝑛𝑐,𝑠→𝑟 = ∑ ∑ 𝛿𝑆𝑛→𝑆𝑚𝑘 ∙ 𝐵 ∙ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘𝑠→𝑟 )𝐾
𝑘=1

𝑁
𝑚=1 𝑚≠𝑛          (12) 

𝑅𝑛𝑐,𝑟→𝐻 = ∑ ∑ 𝛿𝑆𝑚→𝐻𝑘 ∙ 𝐵 ∙ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘𝑟→𝐻 )𝐾
𝑘=1

𝑁
𝑚=1 𝑚≠𝑛          (13) 

However, it should be noted that the overall transmission rate of 

the cooperative mode  𝑅𝑛𝑐 is limited by the smaller rate of S-R link 

and R-H link. Thus, the 𝑅𝑛𝑐 = min  (𝑅𝑛𝑐,𝑠→𝑟 , 𝑅𝑛𝑐,𝑟→𝐻). 

Hence, the transmission rate of the n-th body sensor can be 

expressed as Equation 14: 𝑅𝑛 = 𝛼𝑆𝑛 ∙ 𝑅𝑛𝑑 + (1 − 𝛼𝑆𝑛) ∙ 𝑅𝑛𝑐 , 𝑛 ∈ (1, 2, … , 𝑁)        (14) 

As we mentioned earlier, different with other networks, WBAN 

concentrates mainly on the reliable transmission of the emergency-

critical information. Hence, the transmission rate may not significant 

important. We define a novel metric: delivery probability, to indicate 

the reliability level of transmission link. The delivery probability is 

the probability of successfully deliver the payload of sensory data 

with the size of B bits within an acceptable time 𝑇𝑐𝑐𝑡. The delivery 

probability can be expressed as Equation 15: 𝑃𝑟𝑏 {∑ ∑ 𝑅𝑛𝑁
𝑛=1 ≥ 𝐵𝑇𝑐𝑐𝑡

𝐾
𝑘=1 } , ∀𝑛 ∈ 𝑁         (15) 

Where, 𝑇𝑐𝑐𝑡  is the channel coherence time and 𝐵  is definitely 

depends on the advancement of the monitoring/detecting services 

supported by the body sensor. 

To this end, the resource scheduling strategy can be formulated as: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛼𝑆𝑛 , 𝛽𝑆𝑛𝑘 , 𝛿𝑆𝑛𝑘 , 𝑝𝑛,𝑘 ,           𝑃𝑟𝑏                   (16) 

s.t. ∑ 𝛽𝑆𝑛𝑘𝑁
𝑛=1 ≤ 1, 𝑘 ∈  𝜓,     ∑ 𝛽𝑆𝑛𝑘𝐾

𝑘=1 ≤ 1, 𝑛 ∈ (1, 2, … , 𝑁)  
∑ 𝛿𝑆𝑛→𝑆𝑚𝑘𝑁

𝑚=1,𝑚≠𝑛 ≤ 1,    ∑ 𝛿𝑆𝑛→𝑆𝑚𝑘𝑁
𝑛=1,𝑛≠𝑚 ≤ 1 

∑ 𝛿𝑆𝑚→𝐻𝑘𝑁
𝑛=1,𝑛≠𝑚 ≤ 1,     ∑ 𝛿𝑆𝑚→𝐻𝑘𝑁

𝑚=1,𝑚≠𝑛 ≤ 1 

∑ 𝛿𝑆𝑛→𝑆𝑚𝑘𝐾
𝑘=1 ≤ 1, ∑ 𝛿𝑆𝑚→𝐻𝑘𝐾

𝑘=1 ≤ 1  𝑛 ≠ 𝑚 

∑ 𝛿𝑆𝑛→𝑆𝑚𝑘𝑥
𝑘=1 − ∑ 𝛿𝑆𝑚→𝐻𝑘𝐾

𝑘=𝑥+1 ≥ 0, ∀𝑥 ∈ (1, 2, … , 𝐾 − 1) 
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𝑝𝑛,𝑘𝑑 ≤ 𝑝𝑛𝑚𝑎𝑥 ∀𝑛 ∈ (1, 2, … , 𝑁), ∀𝑘 ∈ 𝜓 𝑝𝑛,𝑚,𝑘𝑠→𝑟 ≤ 𝑝𝑛𝑚𝑎𝑥 𝑛, 𝑚 ∈ (1, 2, … , 𝑁), 𝑛 ≠ 𝑚, ∀𝑘 ∈ 𝜓  𝑝𝑛,𝑚,𝑘𝑟→𝐻 ≤ 𝑝𝑛𝑚𝑎𝑥𝑛, 𝑚 ∈ (1, 2, … , 𝑁), 𝑛 ≠ 𝑚, ∀𝑘 ∈ 𝜓 

From the Equation 16, we can found that the scheduling problem 

is a mixed integer nonlinear programming problem, which cannot be 

directly solved by convex optimization methods. Therefore, we intend 

to formulate the problem to be a DFMDP by tactfully designing the 

state space, action space and the reward function. In this DFMDP, 

each body sensor acts as agent and exploring the unknown 

communication environment to obtain experiences, and then 

iteratively learned to get its optimal policy. Therefore, the state space, 

action space and the reward function can be designed as follows: 

1) The state of each individual body sensor could include the global 
channel information and its own observation. Therefore, the state 
of each body sensor contains its own channel power gain and the 
interfering channel from other links, for all 𝑛 ∈ 𝑁. 

2) The action in this scenario should be the resource scheduling 
variables which including transmission mode  𝛼𝑆𝑛 , time slot 
allocation  𝛽𝑆𝑛𝑘  , relay selection 𝛿𝑆𝑛𝑘   and power control  𝑝𝑛,𝑘 . In 
summary, the resource scheduling strategy can be expressed as a 
set of {𝛼𝑆𝑛 ,  𝛽𝑆𝑛𝑘 , 𝛿𝑆𝑛𝑘 ,  𝑝𝑛,𝑘}. 

3) The reward function in this DFMDP is the average delivery 
probability of links, which is expressed as Equation 16. 

To solve the problem, despite the classical Q-learning algorithm 

can be a candidate tool, but herein, we intend to exploit the deep 

reinforcement learning algorithm to find the optimal scheduling 

strategy. The reason for this intention is because the deep 

reinforcement learning algorithm employs the Deep Q-Network 

(DQN) instead of the Q-table in Q-learning algorithm to train and 

improve the learning process [9]. Therefore, the approximate value 

of 𝑄(𝑠𝑘 , 𝑎𝑘) in classical Q-learning can be rewritten as 𝑄(𝑠𝑘, 𝑎𝑘 , ω), 

where  ω is the weight of Deep Neural Network (DNN). After the 

approximation, the optimal policy 𝜋∗(s) can be obtained by Equation 

17: 𝜋∗(s) = arg𝑚𝑎𝑥𝑎𝑘 𝑄∗(𝑠𝑘 , 𝑎𝑘+1, ω)           (17) 

Where, 𝑄∗(𝑠, 𝑎) is the optimal Q-value via DNN approximation. 

DQN will choose the approximated action 𝑎𝑘+1 = 𝜋∗(𝑠𝑘+1). Then 

the approximated 
~𝑄(𝑠𝑘 , 𝑎𝑘) can be given as Equation 18: ~𝑄(𝑠𝑘, 𝑎𝑘 , ω) = 𝑟(𝑠𝑘 , 𝑎𝑘, ω) + γ𝑚𝑎𝑥𝑎𝑘+1[Q(𝑠𝑘+1, 𝑎𝑘+1, ω )]     (18) 

The value of ω is updated by minimizing the loss as expressed in 

Equation 19: Loss = E [(~𝑄(𝑠𝑘, 𝑎𝑘 , ω) − Q(𝑠𝑘+1, 𝑎𝑘+1, ω ))2]        (19) 

The pseudo code of the proposed deep reinforcement learning 

resource scheduling strategy is given in Algorithm 1. 

Algorithm 1. The deep reinforcement learning resource scheduling 
strategy 

1. initialize replay memory D to the number of body sensors 𝑁 

2. initialize the Q-network Q with random weights ω 

3. for episode = 1 to M do 

4.    Initialize the WBAN scenario, receive initial observation 
state 𝑠1 

5.    for k = 1 to K do 

  select a random action 𝑎𝑘 (𝛼𝑆𝑛 ,  𝛽𝑆𝑛𝑘 , 𝛿𝑆𝑛𝑘 ,  𝑝𝑛,𝑘) with the 
probability ε 

6.       Otherwise select 𝑎𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄∗(𝑠𝑘 , 𝑎𝑘 , ω) 

7.       perform action 𝑎𝑘  and observe immediate reward 𝑟𝑘 

(𝑃𝑟𝑏𝑘) and  
next state 𝑠𝑘+1 (𝑔𝑠𝑛) 

8.       store transition (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘, 𝑠𝑘+1) in D 

9.       select randomly samples c(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from D 

10.       the weights of the DNN are updated by using stochastic  
      gradient descent with respect to the ω to minimize the loss 

      as Equation 19 

11.       update the policy π(𝑠𝑘) = arg𝑚𝑎𝑥𝑎𝑘+1𝑄∗(𝑠𝑘, 𝑎𝑘+1, ω) after 
every 

      a fixed number of steps 

12.    end for 

13. end for 

III. Simulation Results And Analysis 

We evaluate the performance of the proposed deep reinforcement 

learning resource scheduling strategy in this section. The WBAN 

scenario considered includes a hub and multiple heterogeneous body 

sensors are deployed in different positions for various detection 

purposes. The hub is located at the center of the topology with the 

communication range of 10m. Each body sensor is randomly placed 

with the distance range from 2 to 5 m. We set 200 time instants for 

one episode and the delivery probability is averaged to reduce the 

instability. The DNN contains two fully connected hidden layers, in 

which 64 neurons and 32 neurons are set respectively. For each setting, 

we generate 100 independent runs and average the performance. 

In WBAN scenario, the reliable transmission of emergence-critical 

information is vital. Therefore, Fig. 1 compares the optimization 

process for average delivery probability achieved by deep 

reinforcement learning algorithm with classical Q-learning algorithm. 

From the result, we can observed that the deep reinforcement learning 

algorithm tends to stable after 50 episodes rather than 80 episodes for 

the Q-learning algorithm, which indicates that the deep reinforcement 

learning algorithm has the higher convergence speed than the Q-

learning algorithm. Another important finding is that the deep 

reinforcement learning algorithm exceeds the Q-learning algorithm 

approximate 18% after 80 episodes. 

 
Fig. 1. The optimization process for delivery probability of body sensors 

Fig. 2 depicts the average delivery probability against the number 

of deployed body sensors while the payload size B of each body 

sensor is randomly distributed between 0.4 Mbit and 1.6 Mbit. It can 

be observed that as the body sensors increase, the delivery probability 

decreases for all strategies. This is because the increase of the 

deployed body sensor will cause more mutual interference among 
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each other. However, we still can find that the deep reinforcement 

learning strategy achieves the best delivery probability and the 

random scheduling strategy has the worst value. This is due to the fact 

that the random scheduling strategy schedules network resource 

randomly which generates catastrophic mutual interference among 

body sensors. 

 
Fig. 2. Average delivery probability against number of body sensors 

Fig. 3 presents the average delivery probability against the 

different payload size B of each body sensor while the number of body 

sensor is constantly set to 6. It is clear that the deep reinforcement 

learning strategy achieves the highest desirable delivery probability 

throughout all the cases. This is because the deep reinforcement 

learning strategy always enables to find the optimal scheduling 

strategy to guarantee the delivery probability. Remarkably, even in 

the worst case that B is set to the maximum size of 1.6Mb, the 

proposed deep reinforcement learning strategy still achieves 91.4% of 

average delivery probability. 

 
Fig. 3. Average delivery probability against different payload size 𝐵 

IV. CONCLUSION 

In this letter, we introduce a deep reinforcement learning based 

resource scheduling strategy for WBANs. We first jointly consider 

the transmission mode, relay selection, time slot allocation and 

transmit power of each body sensor, and formulating the resource 

scheduling strategy to be a DFMDP by designing the state space, 

action space and the reward function. After that, we propose a deep 

reinforcement learning algorithm to find the optimal strategy of 

maximizing the average delivery probability of each body sensor to 

guarantee the reliability of the transmission of emergency-critical 

sensory data. Finally, simulation results shown the effectiveness of 

the proposed strategy. 
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