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This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: łCan we use the knowledge learned from

some users to perform gesture recognition for others?ž. This problem is also known as cross-target recognition. It arises in

many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data

from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing

approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user.

Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to

perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a

generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples

collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated

cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it

to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy

of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of

magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.
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1 INTRODUCTION

Human gesture and activity recognition underpins many real-world applications like health care [3, 7], fitness
tracking [12, 19] and safety authentication [38, 47]. Traditionally, gesture recognition was performed using
wearable sensors or devices like a smartphone or smartwatch. Recent studies have shown that it is possible to
achieve device-free activity recognition bymonitoring how human activities affect the wireless signal transmission
path. This leads to a burgeoning research field of wireless sensing [4, 7, 20]. Among all existing device-free
gesture recognition systems, the Wi-Fi-based system is attractive due to the widespread deployment of Wi-Fi
devices [28]. It is particularly useful for smart spaces as it can be easily deployed using as few as two wireless
routers (i.e., low-cost), and being less privacy intrusive than other infrastructure-based solutions such as video
monitoring [51].
Numerous Wi-Fi based gesture recognition systems have been proposed [28, 34, 35]. Unfortunately, existing

approaches have a fundamental drawback by requiring a labour-intensive and time-consuming process of
collecting training measurements to characterize howwireless channel metrics - such as channel state information
(CSI) or received signal strength indicator (RSSI) - are affected by each target gesture performed by each user. The
reason for requiring this expensive training data collection process is clear - the wireless signal characteristics
(e.g., CSI or RSSI) correlate to not only the human gestures but also the user’s physical features (e.g., heights,
weights, and body shape) and behavior habits. However, while it may be feasible to collect such data from each
occupant of a home, asking each employee or visitor to provide training measurements in a smart office setting is
impractical. This drawback limits the scale at which Wi-Fi based gesture recognition can be operated.

Ideally, we would like to build a system from training data collected from a few users, and the learned system
can be applied to many other new users while still achieve high recognition accuracy. Doing so can greatly reduce
the cost and user burden for training data collection, increasing the scale and uptake of Wi-Fi-based gesture
sensing. This open research problem is known as cross-target recognition.

Some of the most recent studies have attempted to utilize adversarial learning [18, 45] to suppress the effect of
user-specific factors in gesture and activity recognition. However, those systems still suffer from two limitations,
preventing their real-world applications. First, due to the limitation of adversarial learning, existing systems
require to identify different users (e.g., user ID/label) before they can perform a correct gesture recognition. Thus,
these cross-target methods are often infeasible in practical use as the user ID is often unavailable to the system.
Second, those learning-based systems require a large volume of training data to learn an efficient recognition
model, but it is prohibitively time-consuming to collect a large amount of data due to user involvement. For
example, it took 277 days to collect 1.2 million measurements for learning a cross-target model; even when each
measurement only takes 20 seconds [49]. It is worth noting that, although there are some cross-environment
gesture recognition systems [18, 45], those systems mainly rely on adversarial learning, and thus their solutions
still have the limitations as we have discussed.
We present CrossGR, a deep-learning-based cross-target gesture recognition system for commercial Wi-Fi

devices. CrossGR is designed to address the two aforementioned limitations of current cross-target recognition
systems. To perform gesture recognition across different targets (i.e., users) without requiring having prior
knowledge of them (i.e., knowing who is performing a gesture), CrossGR uses user-agnostic but gesture-related
features from the wireless channel metric (CSI in this work). To that end, CrossGR employs a novel feature
extraction framework by first employing a convolutional neural network (CNN) to extract all features from the
CSI measurement and then using machine-learned classifiers to identify gesture-related features and remove the
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target-specific ones (e.g., human body and behavioral characteristics) from the CNN-extracted features. By doing
so, we direct the learning framework to focus on using gesture-related, but user-agnostic signal representations
to inform decision making. This in turn eliminates the impact of user domain features, making our gesture
recognition system portable across different users.

While our new gesture-recognition framework provides a potentially powerful capability for learning useful
signal representation, its potential can only be unlocked with sufficient training data. Typical deep learning
algorithms require up to millions of examples to learn an efficient model [27], but collecting such a large number
of training data through user involvement is often infeasible in practice. Our solution for avoiding expensive
training data collection is to generate synthetic training data to complement those real-world samples collected
from the end-users. To this end, we leverage the recent advances in the generative adversarial network (GAN) [15]
that has shown impressive performance on image translation [17] and natural language [44] processing tasks.
Our GAN-based training data synthesizer consists of two models: a generative model and a discriminative model.
The generator is trained to capture and approximate the underlying distributions of real data collected from a few
users for the targeting gestures. By sampling the distribution of the real data in a gesture-related feature space,
we can produce many new synthetic training samples that follow the same distribution of the real-life samples.
The discriminator is trained to estimate the probability that a sample comes from the real dataset but not the
synthetic ones. By jointly optimizing the generator and the discriminator, the generator would become better
in creating synthetic data that are similar to those seen in the real-world; and the discriminator would become
better in recognizing synthetic data. At the end of this generation-discrimination training process, we will obtain
a train data generator that is highly effective in generating synthetic training samples for the targeting features.
We can then populate our training data with many training data, covering the space far more finely than what
can be achieved by real data samples.
We have implemented a working prototype of CrossGR using commercial off-the-shelf Wi-Fi devices. We

evaluate the performance of CrossGR in a typical classroom furnished with desks and chairs. We appliedCrossGR
to perform gesture recognition across ten users and 15 gestures. Our extensive experimental results show that
CrossGR delivers an accuracy of over 82.6% (up to 99.75%). We show that such accuracy is comparable to the
state-of-the-art gesture recognition system, but CrossGR achieves this by using an order of magnitude fewer
training samples collected from the end-users.

Technical contributions. This paper makes the following contributions:

• It introduces a novel target-adaptive scheme to extract user-agnostic but gesture-related features fromWi-Fi
channel measurement (Section 4.4). Our approach does not rely on prior knowledge (e.g., user ID/label) of
the targets, significantly enhancing the practicability of the developed Wi-Fi sensing system.

• It is the first to employ a GAN-based approach to reduce the human involvement (and hence the associated
cost) for collecting training samples to learn a gesture-recognition system (Section 4.3).

• It demonstrates how CrossGR can be implemented using commercial off-the-shelf Wi-Fi devices to deliver
consistently good performance for gesture recognition (Section 7).

2 BACKGROUND

In this section, we introduce CSI and the GAN used in this work.

2.1 Channel Statement Information

In a wireless communication system, the CSI can be obtained from commodity Wi-Fi network interface cards
(NICs) [42], e.g., Intel 5300, Atheros 9580, etc. CSI describes how a signal propagates from a transmitter to a
receiver over multiple sub-carriers. Let 𝑋 (𝑓 , 𝑡) and 𝑌 (𝑓 , 𝑡) represent the transmitted and received signals on the
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hands down

(f) Push

Fig. 1. Gestures considered in this work.

sub-carrier with frequency 𝑓 at time 𝑡 . Then, we have:

𝑌 (𝑓 , 𝑡) = 𝐻 (𝑓 , 𝑡) × 𝑋 (𝑓 , 𝑡), (1)

where, the channel matrix H = (𝐻 (𝑓1, 𝑡), ..., 𝐻 (𝑓𝐾 , 𝑡)) refers to the Channel State Information (CSI), and 𝐾 is

the number of sub-carriers. 𝐻 (𝑓𝑘 ) = ∥𝐻 (𝑓𝑘 )∥ 𝑒
𝑗𝜃 𝑓𝑘 depicts the changes of amplitude ∥𝐻 (𝑓𝑘 )∥ and phase 𝜃 𝑓𝑘 via

sub-carrier 𝑓𝑘 . The Intel 5300 Wi-Fi card reports 𝐾 = 30 OFDM sub-carriers for each transmission [11].

2.2 Generative Adversarial Network

Generative Adversarial Network (GAN) [15] is a neural network framework to generate new data that has the
same statistics as the training data through an adversarial process. GAN consists of two fundamental models:
a generative model G to capture the training data distribution, and a discriminative model D to estimate the
probability of a sample that comes from the training data rather than G.
The network first learns the generator distribution 𝑃𝐺 over training data x. It defines a prior noise vector z

with uniform or Gaussian distribution 𝑃z (z), and builds a mapping function to the data space as 𝐺 (z;𝜃𝑔). It also
defines a discriminator 𝐷 (x;𝜃𝑑 ) representing the probability that x comes from the training data rather than
𝑃𝐺 (x). The D and G are trained simultaneously by adjusting parameters for𝐺 to minimize 𝑙𝑜𝑔(1 − 𝐷 (𝐺 (z)), and
for 𝐷 to minimize 𝑙𝑜𝑔𝐷 (x). Overall, the adversarial learning process is similar to a two-player minimax game [15]
with the following objective function 𝑉 (𝐺 ;𝐷):

min
𝐺

max
𝐷
𝑉 (D,G) = Ex∼𝑃𝐷𝑎𝑡𝑎 (x) [log𝐷 (x)] + Ez∼𝑃z (z) [log(1 − 𝐷 (𝐺 (z)))] . (2)

3 MOTIVATION

In this section, we highlight two practical issues for building an accurate gesture recognition model: the lack of
training data (Section 3.2) and the cost for labelling training data (Section 3.3).

3.1 Experimental Setup

In this work, we recruited 15 volunteers and collected the CSI measurements of 15 commonly seen gestures
given in Fig. 1. The Wi-Fi transceivers are deployed 2 m apart and 1.5 m above the ground in a typical indoor
environment. We repeat the data collection process 10 times for each gesture per participant.
In total, we obtained 2, 250 CSI measurements (15 users ×15 gestures ×10 instances). We use 1, 575 samples

from ten volunteers as the training data and the rest 675 samples from 5 volunteers as the testing data.
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3.2 The Issue of Lacking Training Samples

Fig. 2 shows the amplitude of CSI of Wi-Fi signals when three different users perform in the same gesture. As we
can see, the three CSI amplitude sequences are visually different from each other for the same gesture. As a result,
a model trained on data samples collected from a small number of users is unlikely to be effective for CSI signals
collected from others because of the potentially drastic changes in the CSI signals. In an attempt to visualize
this point, we apply t-SNE [22] to project the CSI data samples collected from five users onto a two-dimensional
feature space, where samples belong to the same user share the same color code. As can be seen from Fig. 3,
data samples form five distinct clusters according to from which user the data is obtained. Here, data samples
are closer to each other from the same user on the feature space, but further away from those from different
users. This diagram also suggests that a model learned on samples collected from a handful of users is unlikely
to cover the problem space of many other users. The lack of neighboring observations means that the model is
unable to reason about the behaviors of other users, which leads to data from other clusters to be incorrectly
predicted. To quantify the differences among data samples, we compute the dynamic time warping (DTW) value
of Wi-Fi signals collected between the same user and different users. The closer the DTW distance is, the more
similar two measurements will be. The cumulative distribution function (CDF) diagram in Fig. 4 suggests that
CSI measurements collected from the same user have a smaller DTW distance than those taken from different
users. This reinforces our observation that using data samples collected from a few users is likely to lead to model
overfitting due to the sparsity of training data.

To further elaborate on the impact of insufficient training data, we test the performance of a gesture recognition
model in two scenarios. The first one is to train and test the model on data collected from the same target users.
The second scenario is to train the model on data collected from some training users, but test the trained model
on data of other users who were unseen during the training phase. We use 5-fold cross-validation to split the
training and testing datasets. This means we partition the data into five sets. We use four sets for training the
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Table 1. Signal features used in CrossGR.

Domain Features

Time Domain min, max, min/max 10th/90th, variance, mean, skewness, standard deviation, kurtosis,
q-quantiles (q=0.25, 0.5, 0.75), inter-quartile range, etc. over a time window.

Frequence Domain domain-frequency ratio, energy, FFT Peaks, etc.

CNN SVM RF KNN
0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
Same datasets Different datasets

Fig. 6. Prediction accuracy with 5-fold cross-validation when the model training dataset includes samples from the test

users (same datasets) and does not include samples from the test users (different datasets).

model and test the trained model on the remaining dataset. We repeat this process five times (folds) until each
group of data is tested at least once and report the average accuracy across testing runs. For the second scenario,
we partition the data by users.

In this experiment, we consider four widely used classifiers: a Convolutional Neural Network (CNN), a Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), and a Random Forest (RF) model. These models take as
input features from both the time and the frequency domains given in Table 1. The detailed settings about the
CNN classifier is given in Fig. 5. It can automatically extract informative features from the input CSI amplitude
sequence. We use three convolutional layers and set the number of filters for each layer to 64. The size of the
filters is 3, 5, 7, respectively. We use max pooling to down-sample the features in the pooling layer with a step size
of 2. After flattening, two fully connected layers are used to extract features with ReLU as activation functions
further. To reduce the overfitting, we add one dropout layer in which the rate is 0.5. Finally, the softmax Loss
function as a classifier determines the label corresponding to the input.
Fig. 6 reports the average accuracy for each classifier under the two evaluation settings. As we can see from

the diagram, all machine learning models perform poorly on unseen users. The CNN is best-performing model,
but its prediction accuracy drops from 95% to 36% on previously unseen users. This is not supervising as machine
learning models are brittle, and changes in the data distribution can lead to skewed prediction results. This is a
problem known as out-of-distribution [16]. These results highlight the significant effect that the number and
distribution of training programs have on the quality of predictive models. Without good coverage of the feature
space, any machine learning methodology is unlikely to produce high-quality recognition models, leading to a
poor generalization ability. To improve the generalization ability of a gesture recognition model, we need to find
ways to generate sufficient training data to cover a complex, high dimensional problem. CrossGR is designed to
offer such capability by generating synthetic training data.
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Fig. 7. An overview of CrossGR.

3.3 The Cost of Collecting Training Data

We have shown that a learned gesture recognition model could give poor performance when it is applied to
new users. This is due to the limited number of training samples and the distribution of training data within the
feature space. To improve the generalization ability of a model, we must provide sufficient training data to allow
machine learning algorithms to model a complex, high-dimensional problem space. Unfortunately, collecting
a large number of training samples involved a large number of users is extremely expensive. For example, the
work presented in [49] had to collect 1.2 million activity samples to train an accurate model for 100 users. If we
assume that collecting each sample takes 20 seconds, the whole process will take around 277 days - which is too
expensive in practical use. Our novel approach, described in the next section, solves this problem by automatically
generating an unbounded number of synthetic training samples. Our approach thus provides a low-cost method
to generate training data to cover the feature space with fine granularity, which in turn allows one to build an
accurate recognition model.

4 OUR APPROACH

This section presents the overview and the detailed design of CrossGR, including the CSI pre-processing module,
data augment scheme, and target-adaptive scheme.

4.1 System Overview

CrossGR consists of the following four components, as depicted in Fig. 7.

• Data Collection Module:We first collect a small set of raw CSI measurements when different users move
into the monitoring area. We then divide the collected measurements into the training dataset and testing
dataset.

• CSI Pre-processing Module: After collecting data, we adopt the Butterworth filter to remove the high-
frequency noise in the Wi-Fi signals. Then, we use the degree matrix and dynamic time warping (DTW) to
select sub-carriers that are affected by the gesture. The detailed descriptions are in Section 4.2.

• Data Augment Scheme: To reduce labor costs, we apply the generative adversarial network (GAN) to
the training data to generate a large number of synthesis signals that are similar to yet different from the
collected ones. We also utilize a convolutional neural network to obtain fine-grained synthetic data. We
detail the scheme in Section 4.3.
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Fig. 9. The pattern of different sub-carriers.

• Target-adaptive Scheme: To avoid the requirement of prior-knowledge (i.e., user ID/label) for the targets,
we design a target-adaptive scheme to remove target-related features and only keep gesture-related features.
The detailed design is in Section 4.4.

4.2 CSI Pre-processing Module

CrossGR collects CSI measurements from the commodity Intel 5300 Wi-Fi card with 30 OFDM sub-carriers for
each transmission. When the transmitter has 1 antenna and the receiver has 3 antennas, we get 1 × 3 × 30 = 90

CSI time series.

4.2.1 Signal Denoise. The CSI values are noisy due to the defective hardware. It is crucial to remove the noise
to achieve accurate gesture recognition. The key observation is that the noise has a higher frequency when
compared to the gesture associated signal. In other words, the gesture induced frequency variations are at the
low end of the spectrum. Accordingly, CrossGR employs the Butterworth filter on all sub-carriers in the time
domain. In particular, with the carrier frequency of 5.825 GHz, the speed of a gesture with a frequency of 80 Hz is
2.06 m/s after considering the round-trip path length change. We set the cut-off frequency 𝜔𝑠 of the Butterworth
filter as 𝜔𝑠 = 80/(𝑓𝑛/2), where 𝑓𝑛 is the sampling rate with the value of 1,000 in our experiments. Fig. 8 displays
the amplitudes of the original CSI waveform and the resultant from the Butterworth filter. It shows that the
Butterworth filter successfully removes most of the noise from the CSI measurements. After that, we normalize
all the collected data.

4.2.2 Sub-carrier selection. In practice, the Wi-Fi signals bounce off surrounding objects after being reflected
from the human body, creating a multipath profile indicative of the human body and their activities. However,
not all sub-carriers are affected equally by multipath reflections. We have two observations in the time domain:

• Due to the frequency selective fading caused by multipath effects of wireless channels, the amplitude variations

of different sub-carriers are inconsistent even for the same gesture. For instance, as shown in Fig. 9(a) and
Fig. 9(b), the 56th and 43rd CSI sub-carriers have completely different amplitude fluctuations between 0.6 s
and 1.9 s in the łdouble punchž gesture. The 43rd sub-carrier showing two peaks is a more transparent
illustration of how the gesture affects the wireless channel. Such a signal pattern provides a fine-grained
basis for accurately recognizing gestures.

• Due to the hardware noise, some sub-carriers are submerged and cannot reveal gesture information through

amplitude changes in the time domain. As exhibited in Fig. 9(c), the amplitude change of the 62nd CSI
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Fig. 10. The training process of our GAN-based wireless signal synthesizer.

sub-carrier is wholly immersed into the noise. Consequently, we cannot correctly identify the start point
and endpoint of the łdouble punchž gesture.

The above observations illuminate that we can select sub-carriers to conduct accurate gesture recognition.
Statistical analysis tells that most sub-carriers’ amplitude variations efficiently reveal the influence of gestures on
the wireless channel. Hence, to obtain more specific CSI sub-carriers, we utilize a degree matrix 𝑀𝐷 to select
signals and avoid introducing noise:

𝑀
𝑗
𝐷
=

𝑛
∑

𝑗=1
𝑊𝑖 𝑗 , (3)

where𝑊 =

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝐷𝑇𝑊 (𝑖, 𝑗) is similarity matrix calculated using dynamic time warping (DTW) [32], 𝑛 is the

number of sub-carriers with a value of 90 in our experiment. Finally, we choose the first 30 sub-carriers given by
degree matrix.

4.3 Data Augment Scheme

Usually, it requires a mass amount of CSI measurements to train an accurate gesture recognition model. However,
the data collection process is time-consuming and labor-exhausting. Inspired by the GAN, CrossGR attempts to
reduce human involvement and cost via a signal synthesizer. Fig. 10 illustrates the process of training a wireless
signal synthesizer using GAN. The framework contains a generator𝐺 and a discriminator 𝐷 .𝐺 is to synthesize
pseudo data which has similar yet different distribution to the real training data.𝐷 is to verify that the data sample
is from the real data rather than the generator. The optimization between the generator and the discriminator
ensures that the generated data has the most approximate distribution to the training data.

Specifically, the generator and discriminator work similarly to that conditional GAN [24]. Based on Equation 2,
the objective function becomes the following:

min
𝐺

max
𝐷
𝑉 (𝐷,𝐺) = Ex∼𝑃𝐷𝑎𝑡𝑎 (x) [log𝐷 (x|y)] + Ez∼𝑃z (z) [log(1 − 𝐷 (𝐺 (z|y)))] . (4)

4.3.1 Data Formulation. We provide a general description of the data definition. Given a training dataset
𝑋 𝑟 = {𝑥𝑟1 , 𝑥𝑟2 , ..., 𝑥𝑟𝑀 } with the corresponding label 𝑌 =

{

𝑦1, 𝑦2, ...𝑦𝐾
}

, 𝐾 is the number of gesture categories,
and a testing dataset 𝑋𝑢 = {𝑥𝑢1 , 𝑥𝑢2 , ..., 𝑥𝑢𝑁 } without identity labels. The generator synthesizes signals based on a
label from 𝑌 as 𝑋𝑔 = {𝑥𝑔1 , 𝑥𝑔2 , ..., 𝑥𝑔𝐿 }, where the value of𝑀 , 𝑁 and 𝐿 may not equal. For simplicity in description,
we define an overall dataset 𝑋 , which is the union of 𝑋 𝑟n 𝑋𝑢 and 𝑋𝑔, i.e.,

𝑋 = 𝑋 𝑟 ⊔ 𝑋𝑢 ⊔ 𝑋𝑔 . (5)
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Fig. 11. Illustrations of the real-world Wi-Fi signal and the synthetic signal.

4.3.2 Signal Generator. The generator 𝐺 automatically generates outputs mapped from a random noise vector
𝑧𝑔 with label 𝑦. The goal is to synthesize the pseudo data 𝑥𝑔 which can not be distinguished from real data
distributions, G : (𝑧𝑔, 𝑦) → 𝑥𝑔. However, unlike the precise synthetic image and natural language by GAN, the
synthetic wireless signal is more easily distorted by noise during the generation process. We take one sub-carrier
as an example. Compared with original Wi-Fi signals in Fig. 11(a), the synthetic data is noisy in Fig. 11(b). Noise
components retain even if the synthetic signal is refined using a Savitzky-Golay filter (also known as least-square
smoothing filter). What’s worse, the extracted feature from synthetic data is not only bound to gesture information
but also include noise information brought by the process of fitting distribution.

To make the generator better fit the original data distribution, we add convolution operations to extract efficient
features [31] automatically. The convolution operation can make the synthetic data more distinct while restoring
the specific characteristics, thus resolving noise interference. Also, we utilize the Savitzky-Golay filter to remove
the residual noise further. Fig. 11(c) indicates that the synthetic data is more fine-grained than the output of GAN
in Fig. 11(b) and the filtered data becomes smoother. Note that synthetic data is labelled. We update generative
network parameters with the following loss function:

𝐿𝑔 = − 1
𝑚

∑

(𝑧𝑔,𝑦)

log(𝐷 (𝐺 (𝑧𝑔, 𝑦))), (6)

where𝑚 is the number of noise samples in a minibatch.

4.3.3 Signal Discriminator. The discriminator 𝐷 takes < 𝑥𝑟 , 𝑦 > and < 𝑥𝑔, 𝑦 > as inputs and gives the probability
of the input being synthetic data. Like the generator, to make the discriminator better to extract useful features,
we introduce convolution operations to improve discrimination accuracy. In order to reach a better antagonistic
result, we use batched signals to train the discriminator to identify real data and synthetic data. We update the
parameters with the following loss function:

L𝑑𝑔 = − 1
𝑚

[

∑

𝑥𝑔,𝑦
log (1 − 𝐷 (𝑥𝑔, 𝑦)) +

∑

𝑥𝑟 ,𝑦
log𝐷 (𝑥𝑟 , 𝑦)

]

, (7)

where 𝐷 (𝑥,𝑦) = 𝑅/𝐹 , is the probability of the input being a synthetic Wi-Fi signal, and 1 − 𝐷 (𝑥,𝑦) is that of a
real one. 𝑅 and 𝐹 means from the real data and synthetic data, respectively.

4.3.4 Training the network. In the training stage, we iteratively update the parameters until taking the minimum
overall loss function. We employ an alternate method to train 𝐺 and 𝐷 . It also has a two-player minimax game,
and the generation-discrimination process terminates when the discriminator can not distinguish the synthetic
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Fig. 12. Overview of the target-adaptive scheme.

signals from the real ones. Note that we select Stochastic Gradient Descent(SGD) with a learning rate of 0.0002 to
optimize network parameters.

4.4 Target-adaptive Scheme

The raw CSI measurements contain not only signal channel information resulting from gesture activities, but
also multi-paths resulting from specific user characteristics (e.g., the height, weight, and body shape of the target
user) and the environment. We would like to filter out the user and environmental characteristics from the CSI
measurements because we want to make the decision-making process of our gesture recognition model to be
independent of the user and the environment. To this end, we design a target-adaptive scheme that automatically
removes the target-related features and only keeps gesture-related features. This process is illustrated in Fig. 12.
It includes three parts: two branches and one base network. The base network first uses a stack of shared
convolutional layers to extract all features related to both targets and gestures from CSI measurements. Then,
one branch named łtarget-adaptive classifierž aims to identify and extract gesture-related features, and the other
branch called łfeature estimating pathž seeks to remove the noisy target-related features.

4.4.1 Base Network. A convolutional neural network can extract useful features from wireless signals thanks to
its superior feature learning capabilities [45, 46]. Therefore, we use a stack of shared convolutional layers as the
feature extraction layers in base network, which aims to learn general but informative representations of Wi-Fi
signals before target-adaptive classifier and feature eliminating path, as shown in Fig. 13(a). Given the input
signals 𝑋 , the feature representation 𝐹 is as follow:

Fb= CNN (𝑋 ;𝜃𝑏) , (8)

where 𝜃𝑏 is the set of all parameters in CNNs.
However, it is challenging to extract general but informative representations for labelled and unlabelled data.

To do so, we reconstruct the extracted features into signals based on a reconstruction path after the feature
extraction layers. The reconstructed signals try to reproduce the original data as much as possible. As shown in
Fig. 13(b), we first upsample the input. Then we use 2D kernels as filters at each convolutional layer for each
CNN block and the batch norm layer to normalize each layer. At last, an activation function ReLU is to introduce
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Fig. 13. Structure of base network.

the non-linearity relationship between the layers of the neural network. Previous approaches show that a more
traditional loss, such as 𝐿1 or 𝐿2 distance, can improve performance. However, it only considers the difference
between the reconstructed signal point and the sample point, neglecting the relationship between those points in
a small area. As a result, the output of the reconstruction layers is overconfidence and unsmooth. Considering
the continuity of each sub-carrier and the correlation between sub-carriers, and inspired by computer vision, we
propose a point-correction loss function to improve the model’s performance:

𝐿𝑝𝑎𝑖𝑟 =
1
𝑛

𝑛
∑

𝑖=1

(

log𝑥∗𝑖 − log𝑥𝑖
)2
− 1
𝑛2

(

𝑛
∑

𝑖=1

(

log𝑥∗𝑖 − log𝑥𝑖
)

)2

, (9)

where 𝑥∗ is the reconstructed signal, and 𝑥 is the ground truth. This function not only focuses on the relationship
between the reconstructed signal points and the sample points but also the correlation among these points in a
small area. It will automatically correct points that are not predicted rightly.

4.4.2 Target-adaptive Classifier. After the base network, we obtain all features consisting of the gesture-related
features and the target-related features. We use a target-adaptive classifier to identify the gesture label to obtain
the common gesture-related features across different users. As we have described earlier, our key insight is that the
higher the classifier accuracy is, the more precise the features are in capturing the gesture-specific characteristics.
As a result, training a highly accurate classifier also helps us in extracting fine-grained, gesture-related features.
As exhibited in Fig. 14, based on the outputs of the base network (i.e., 𝐹𝑏 ), we utilize two convolution layers with
2D kernel and a fully connected layer followed by an activation function to extract the representation further 𝐹𝑐 :

Fc= CNN (𝐹𝑏 ;𝜃𝑐 ) , (10)

where 𝜃𝑐 is the set of all parameters. To predict the gesture label, we use the softmax function to non-linearly
map 𝐹𝑐 to the 𝐾-dimensional gesture prediction distribution, which corresponds to the 𝐾 labels provided by the
training dataset in our system:

𝑦𝑐 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑐𝐹𝑐 + 𝑏𝑐 ), (11)

where𝑊𝑐 and 𝑏𝑐 are parameters. The labelled and unlabelled data are fed into the target-adaptive classifier,
thus 𝑦𝑐 =

[

𝑦𝑙𝑐 , 𝑦
𝑢
𝑐

]

, where 𝑦𝑙𝑐 represents the predicted probabilities of labelled data (i.e. real signals and synthetic
signals) and 𝑦𝑢𝑐 represents the predicted probabilities of unlabelled data (i.e. test signals). For labelled data, the

predicted distribution 𝑦𝑙𝑐 is compared to the ground truth 𝑦 via the cross-entropy loss as follow:

L𝑐 =
𝐾
∑

𝑖=1
−𝑦𝑖 log𝑦𝑙𝑖𝑐 . (12)

, Vol. 1, No. 1, Article . Publication date: February 2021.



CrossGR: Accurate and Low-cost Cross-target Gesture Recognition using Wi-Fi • 13

Pooling layer Flatten layer Dense layer

Unlabelled data Labelled data Synthetic data

Co
nv

Co
nv

Codes
Label

Discriminator 
Network

Fig. 14. Structure of target-adaptive classifier.

Co
nv

Co
nv

Codes
Label

Pooling layer Flatten layer Dense layer

Unlabelled data Labelled data Synthetic data

Fig. 15. Structure of feature eliminating branch.

Unlike labelled data, the cross-entropy for unlabeled data cannot be calculated because the explicit label is
unknown in advance. Nevertheless, inspired by adversarial learning, we try to put them into the discriminator of
the GAN. We attempt to use the discriminator to identify the authenticity of unlabeled data and the predicted
label. The discriminator identifies the synthetic data with the real labels (i.e., < 𝑥𝑔, 𝑦 >) from the generator and
the real data with the predicted labels (i.e., < 𝑥𝑢, 𝑦𝑢𝑐 >) from the classifier as false. Note that the unlabelled data
is the real data collected from the real-world. The classifier aims to predict a pseudo label given the real data.
Therefore, we can verify the output of classifier through the discriminator:

L𝑑𝑐 = − 1
𝑚

∑

𝑥𝑢 ,𝑦𝑐
log (1 − 𝐷 (𝑥𝑢, 𝑦𝑐 )), (13)

and thus we update the L𝑑𝑐 with the regularization term 𝜆𝑑 set to 0.0001 as follow:

L𝑑 = L𝑑𝑔 + 𝜆𝑑L𝑑c . (14)

4.4.3 Feature eliminating path. As depicted in Fig. 12, we use an auxiliary network, namely the feature eliminating
path, to guide the base network to focus on extracting gesture-related features to feed into the target-adaptive
classifier for downstream gesture recognition. Note that this auxiliary network is merely used during the training
phase to assist feature extraction. It does not participate in gesture classification once the entire network is
trained and deployed. Our goal here is to find a set of features that can maximize the discriminative information
across gesture classes. Our key insight is that that user- and environment-specific characteristics are likely to be
gesture-agnostic. As a result, they would be relatively consistent regardless of what gesture is being performed.
If we could identify such characteristics, we could then be able to remove them from the feature set given by the
base network.

To that end, our feature eliminating path network aims to quantify if we feed a specific set of features (given
by the base network), how will that affect the probability distribution given by a softmax layer of the feature
eliminating path network. This is done by measuring the difference in the probability distribution across the
gesture labels using a dedicated loss function. When considering 𝑁 (e.g., 15 in this work) gestures, the softmax
layer of the feature eliminating path component will output a probability distribution across 𝑁 classes, with all the
probabilities sum up to 1.0. If the features fed into the softmax layer are largely gesture-independent, we would
expect all gesture classes to have more or less the same probability (i.e., close to 1.0/𝑁 ). If this is the case, it means
the features used for classification do not provide sufficiently discriminating information to distinguish different
gesture classes; and hence should not be used for gesture prediction. By back-propagating such findings to the
base network during the training phase, we can guide the base network to extract feature-relevant information
and ignore that is not.
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Fig. 16. The experimental setup layout in (a) and experimental scenario in (b).
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Our feature eliminating path is a subnet of our neural network, as shown in Fig. 15. It consists of two convolution
layers and a fully connected layer. The representation 𝐹𝑒 after the subnet is as follow:

Fe= CNN (𝐹𝑏 ;𝜃𝑒 ) , (15)

where 𝜃𝑒 is the set of all parameters. After that, we also use the softmax function to map 𝐹𝑒 to the gesture
prediction distribution non-linearly:

𝑦𝑒 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑒𝐹𝑒 + 𝑏𝑒 ), (16)

where𝑊𝑒 and 𝑏𝑒 are parameters. To enable accurate extraction of target-related features, we reject the precise
classification probability in a specific category. Therefore, we compare the predicted distribution 𝑦𝑒 with the
ground truth, which equals to 1

𝐾
via the cross-entropy loss as follow:

L𝑒 = − 1
𝐾

𝐾
∑

𝑖=1
log𝑦𝑖𝑒 . (17)

In essence, loss function L𝑒 extracts gesture-agnostic features by trying to assign equal probabilities to different
classes of CSI measurements. Note that we take both labelled (i.e., real and synthetic signals) and unlabelled
data as inputs. In this way, after the unlabelled data tune the parameters of the feature eliminating path and
base network, the target-adaptive classifier is forced to predict labels with features representing unlabelled
distributions.

5 IMPLEMENTATION

Hardware setup. We build a prototype of CrossGR using one transmitter and one receiver. The transmitter
is a TP-link TL-WR890N 450M router with three antennas work in 802.11n AP mode at a 5.825 GHz frequency
band. The receiver is a laptop with an Intel 5300 Wi-Fi NIC and one antenna. The laptop is configured with
a 3.6 GHz CPU (Intel i7-4790) and an 8 GB memory. The transmission rate in our experiment is set as 1, 000
packets per second which are widely used in past gesture recognition systems [30, 49]. Our software prototype is
implemented as Matlab and Python programs.

Environment setup. We conducted extensive gesture recognition experiments in three indoor environments to
evaluate the performance of CrossGR: a classroom (default setup) furnished with desks and chairs, a spacious
corridor environment and a meeting room with furniture like tables and chairs. Fig. 16 illustrates the layout of
those environments with a 2 m × 2 m sensing area. The laptop is placed 2 m away from the router and all devices
are held up at a height of 1.2 m.
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Fig. 18. t-SNE visualization of the real-world data and the synthetic data. Different symbol colors denote different gestures.

Specifically, blue stands for circle, purple stands for dodge, green stands for the double flick, yellow stands for double punch,

red stands for hands up and hands down.

Dataset. We invited 60 volunteers to participate in our experiment. The participants have different heights,
weights, and somatotype, as shown in Fig. 17. Specifically, there are 39 males whose height varies from 1.65 m to
1.88 m and weight varies from 50 kg to 85 kg; 21 females whose height varied from 1.54 m to 1.69 m and weight
varies from 43 kg to 70 kg. We consider a total of 15 gestures as shown earlier in Fig. 1. To collect CSI data for
gesture recognition, each participant performs each gesture 20 times. We obtain 18, 000 CSI measurements in total
(60 users × 15 gestures × 10 instances). In the default experimental setting, we split 16, 200 samples of fifty-four
volunteers as the training data and the rest 1, 800 samples of six volunteers as the testing data. Moreover, we use
GAN to generate 30, 000 synthetic samples for each gesture to expand training data.

6 MICRO-BENCHMARK

To illustrate the effectiveness of the data augment scheme and target-adaptive scheme, we run the following two
benchmark experiments.

6.1 Verification of Data Augment Scheme

In order to verify the effectiveness of GAN in generating data, we use t-SNE [22] to conduct joint dimension
reduction processing for the original Wi-Fi signal and the synthetic data generated. We choose five gestures for
illustrations. Firstly, we reduce the dimensionality of collected Wi-Fi signals from the real world, as shown in
Fig. 18(a). Ideally, those synthetic data should be as close to their corresponding real data as possible. Therefore,
we perform joint dimensionality reduction on synthetic data and real data. Fig. 18(b) and Fig. 18(c) demonstrate
that, for each class, their real data and synthetic data are well-aligned. It implies that GAN can fit the original
Wi-Fi signal distribution well and expand the diversity of data to a certain extent.

6.2 Verification of Target-Adaptive Scheme

To verify the effectiveness of our target-adaptive scheme, we compare our scheme against the well-known CNN
method. The framework of a CNN-based neural network is shown in Section 3. In this benchmark, we take 5
gestures as an example. Ideally, there should be five aggregated categories, i.e., each category shows the features
of one gesture. We first visualize and compare features extracted by the existing CNN method and our target-
adaptive scheme via t-SNE. Fig. 19(a) shows the features extracted by the CNN method. As we can see, different
categories are overlapped because these features contain both target-related features and gesture-related features.
Fig. 19(b) shows features extracted by our target-adaptive scheme. Now, there are obvious boundaries between
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(a) Visualization of CNN extracted features. (b) Visualization of our target-adaptive scheme extracted

features.
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Fig. 19. Comparisons between our scheme and CNN in feature extraction and recognition across 5 different targets. There

are five gestures: blue stands for circle, red stands for dodge, green stands for the double flick, yellow stands for double

punch, purple stands for hands up and hands down.

different categories because our scheme can remove the target-related features and only keep the gesture-related
features. Then, we compare the recognition accuracies when using features extracted by CNN and our scheme.
Fig. 19(c) shows that the accuracy of CNN extracted features is as low as 32% for identifying five gestures. In
contrast, the accuracy of our scheme extracted features is more than 88%, as shown in Fig. 19(d). Overall, the two
experiments demonstrate the advantages of our target-adaptive scheme in removing target-related features and
achieving a high accuracy across different targets.

7 PERFORMANCE EVALUATION

7.1 Overall Performance

To evaluate the overall performance of CrossGR, we conduct two experiments when the number of gestures to
target is 10 and 15, respectively. For the two experiments, we have six different targets/users and use the same
default experimental setting. Fig. 20 shows confusion matrices of the recognition accuracy for different gestures.
The average accuracy of our system is 87.4% and 82.6% when the number of gestures is 10 and 15. It implies that
our system can achieve high accuracy for cross-target gesture recognition.

7.2 Comparisons with Existing Recognition Models

To illustrate the advantages of CrossGR, we compare CrossGR against several alternative recognition approaches,
namely Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), and Convolutional
Neural Network (CNN). The first three approaches (i.e., SVM, KNN, and RF) use traditional features (listed in
Table 1) for gesture recognition. The CNN and CrossGR extract deep features for gesture recognition. In the
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Fig. 20. The confusion matrix of gesture recognition accuracy across six different targets/users.
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Fig. 22. Impact of the number of synthetic data samples.

experiment, we use the default experimental setting for training and testing datasets. Fig. 21 shows the gesture
recognition accuracy of the five approaches. All existing approaches output disappointing results, i.e., less than
50% accuracy for most cases. Because existing approaches can not remove the features that are related to the
human body and behavioral characteristics, resulting in large errors for new users. In contrast, CrossGR achieves
the best accuracy by extracting unique gesture-related features and removing the noisy target-related features.

7.3 Impact of the Amount of Synthetic Data

In this section, we evaluate the impact of the amount of synthetic data added for training our system. To do
so, we evaluate the accuracy of our system when the number of synthetic data is 0, 1, 000, 5, 000, 15, 000, and
30, 000. For each number of synthetic data, our system is tested with a number of 5 gestures, 10 gestures, and 15
gestures. The results are shown in Fig. 22. As we can see, when we only use the collected data to train the model,
i.e., the number of synthetic data added is 0, CrossGR only achieves an average accuracy of 73% for 5 gestures.
While the average accuracy increased to 91% when the number of synthetic data grows to 30, 000. When the
number of gestures is 10 and 15, we also see a similar accuracy increase trend by adding more synthetic data. It
demonstrates that the generated synthetic data can effectively improve the system accuracy.
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Fig. 24. Impact of the number of users

in testing datasets.
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vironments.

7.4 Impact of Training Dataset Diversity

Signals collected from the real world are the library for training GAN and generating synthetic data. Therefore,
different amounts of real data have different effects on the performance of the system. We conduct gesture
recognition experiments by varying the number of training datasets, and evaluating the impact of the number of
datasets on the system performance. Specifically, we changed the number of users in the training dataset from 36

to 54. Each user performs each gesture 20 times. We take 5 gestures as an example and use GAN to generate
30, 000 synthetic samples as the training data in all experiments. The number of users in the testing dataset is
fixed as 6. Fig. 23 shows that the accuracy increases when the number of users increases in the training dataset.
For example, the accuracy increases by nearly 14% when the number of users increases from 36 to 48.

7.5 Impact of Testing Dataset Diversity

This experiment studies the impact of the number of volunteers in the testing dataset on the system performance.
We take five gestures as an example and vary the number of volunteers from 2 to 10 in the testing dataset. We
use CSI measurements collected from 50 volunteers and 30, 000 synthetic samples for each gesture category as
training data. Fig. 24 shows that the system achieves the best accuracy of 99.75% when there are only two test
users and relatively high accuracy of 87.42% when the number of testing users increases to 10. Overall, these
results demonstrate that CrossGR is robust to the growth of testing users number.

7.6 Evaluation in Different Environments

In this experiment, we applied CrossGR to 5 gestures in three environmental settings: a classroom, a meeting
room, and a corridor environment, as shown in Fig 16.We collect CSI measurements of gesture activities performed
by the same six participants in the three environments. We train CrossGR and test CrossGR using data collected
from each environment. Fig. 25 reports the performance of CrossGR in different environments. CrossGR gives
consistent performance across different environments, giving over 80% of the prediction accuracy. This evaluation
suggests our approach is generally applicable, giving consistent good performance across different environments.

To evaluate the impact of a changing environment, we moved furniture in both the classroom (by moving the
chairs at least 1 meter away from their original position ) and the meeting room (by moving the chairs into the
sensing area). We tested how the change of environment affected a deployed model. We report the performance
of both settings in in Fig. 25, where we denote the classroom experiment as łslight environmental changež and
the meeting experiment as łdrastic environmental changež. As expected, the environmental changes have an
impact on CrossGR ’s performance. For the classroom experiment, we observe a modest decrease in recognition
accuracy, less than 4%. For the meeting room experiment, we see a slightly higher drop in the accuracy of 7%,
because the chairs were moved into the sensing area. Since our work focuses on cross-target prediction, CrossGR
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is not designed to address drastic environmental changes and has a limitation in adapting to environmental
changes. Nonetheless, the overall performance of the system is still robust when the environmental changed is
small.

7.7 Impact of the Number of Sub-carriers

We now evaluate how the number of sub-carriers affects the accuracy and training overhead of CrossGR. To
do so, we varied the number of sub-carriers from 30 to 90. Fig. 26 and Fig. 27 respectively show the impact of
the sub-carrier number on the model accuracy and training time. We can observe that using 30 sub-carriers is a
sweet spot between training overhead and model accuracy. Using 90 sub-carriers incurs three folds more training
overhead, but only yields a 3% improvement in the prediction accuracy. Using a higher number of sub-carriers as
the model inputs also require more training data and training epoch. We choose to use 30 sub-carriers as our
model inputs because it gives a good trade-off between model accuracy and training overhead.

8 DISCUSSIONS

CrossGR is among the first attempts to tackle cross-target gesture recognition with a limited number of real
training examples. Naturally, there is room for improvement and future work. We discuss a few points here.

Mode collapse. GANs can suffer from a common problem called mode collapse where the generator may learn
to produce some specific types of outputs that seem most plausible to the discriminator [23]. This is typically
due to a local minimum in the discriminator learning process. This problem is just as true for our GAN model.
As we have seen in Fig. 22, the accuracy of CrossGR reaches a plateau when using 15, 000 training samples.
Using more training samples beyond this point yields little performance benefit (less than 2% improvement in
accuracy). This is because the generator starts producing a similar set of synthetic data samples beyond 15, 000,
and the additional samples offer little performance gain for the downstream machine learning model. There are
numerous strategies to remedy this issue [25]. Adopting these methods to improve the quality of the synthetic
data generated by CrossGR is our future work.

Interpretability. Machine learning techniques, in general, have the problem of relying on black boxes. Theoretical
analysis for the capability and boundaries of a deep neural network is currently an active research field [5, 43].
Providing a theoretical proof of the underlying working mechanism of CrossGR is beyond the scope of this
work, and is our future work. One way to gain insight into why the model fails to produce the desired result
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is to train an interpretable model (or the so-called surrogate models) like linear regressor to approximate the
predictions of the underlying black-box model [6].

Environmental robustness. CrossGR has been evaluated in relatively static environments with no interference
from other people around, where the environment changes little over time. How to improve the robustness of
wireless sensing in a drastically changing environment is a currently active research field [51]. We will look into
integrating some of the recent advances in this line of research to CrossGR and evaluate the performance of the
resulting system in a more complex and dynamic environment.

9 RELATED WORK

Gesture and activity recognition is a typical application in wireless sensing. Over the past decades, many
researchers have proposed several systems for recognizing human gestures and activities. They can be roughly
categorized into wearable sensor-based, vision-based, and wireless-based.
Wearable sensor based. Current wearable device-based sensing systems detect human activities through var-

ious sensing devices [13, 14, 36]. For example, HeadScan [14] uses wearable sensors to capture and recognize
human activities. BodyScan [13] can recognize many activities when a user carries a smartphone and wears a
wristband/smartwatch. However, all these methods require on-body sensors.

Vision based. Vision-based gesture recognition systems capture images from cameras to track human motion
and have been widely studied due to their high accuracy and universality [1, 37, 50]. However, they all have the
following defects. Firstly, those systems are limited to the light condition and the viewing angle in the environment.
Secondly, they can not work appropriately in non-line-of-sight situations. Thirdly, there are security issues such
as privacy leaks in practical applications.
Wireless based. Recent years have witnessed many gesture and activity recognition systems based on the

wireless signal. These systems don’t require targets to wear any device, are not affected by light conditions, have
less privacy leakage, and can capture the fine-grained changes in wireless channels [2, 4, 8, 20, 21, 26, 28, 29, 39ś
41, 48]. E-eyes [41] identifies the activity by comparing the CSI measurements against known profiles. CARM [40]
quantifies the correlation between CSI dynamics and human activities. Zhang et al. [48] propose a diffraction-based
sensing model to establish a relationship between CSI readings and human activity in the First Fresnel Zone(FFZ).
WiMU [34] recognizes simultaneously performed gestures on commodity Wi-Fi devices. Unfortunately, none of
these systems can cross-target and cross-environment because the features used for identification depend on
human characteristics and environment.

Many innovations have been developed to adapt the recognition system in various domains [9, 33]. WiAG [35]
lies in the translation function to generate virtual training samples for different locations. Widar3.0 [51] uses a
model to recognize gestures since they design a novel environment-independent feature named body-coordinate
velocity profile (BVP) that can generalize the ability of cross-domain. CrossSense [49] uses a machine learning
model to generate training samples for cross-site sensing, and EI [18] removes environmental factors from CSI
by using the adversarial network. Unfortunately, it is impractical to transfer these approaches to overcome
cross-target issues directly. They either need to re-train the model for a new domain or restrict the user’s behavior
in advance when performing gestures.
Recently, some state-of-the-art works focus on the cross-target issue. For example, EUIGR [45] suppresses

environment-related factors and obtains the user-specific features via adversarial learning but requires the user
ID information in advance. FiDo [10] uses a joint classification-reconstruction structure to predict locations for
new users and uses Variational Autoencoders (VAEs) to generate synthetic fingerprints. Although it does not
require a label of the user domain, it cannot reconstruct the unique gesture-related features, resulting in the
unstable performance.
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These systems achieve expected performance on cross-domain. However, they fail to take into account the
challenge of cross-target, and they all require intensive data collection. As a departure from the prior work,
CrossGR works effectively for overcoming dataset bias and employs a GAN to generate an unbound number of
data from a small set of Wi-Fi training measurements.

10 CONCLUSION

We present CrossGR, a novel cross-target Wi-Fi gesture recognition system. CrossGR aims to significantly reduce
the overhead of collecting gesture training data across users. It is designed to work with no prior knowledge
(such as who is performing gestures) of the target. It achieves this by using the deep neural network to extract
the user-agonistic gesture features from the Wi-Fi channel information. To provide sufficient data to train the
gesture-recognition model, CrossGR employs a generative adversarial network to first learn the distribution of a
small set of real-world examples collected from a small number of users. It then samples from the distribution to
produce an unbounded number of synthetic training samples to cover the problem space, allowing one to train
an accurate recognition model without incurring great overhead for training data collection.

We demonstrate the benefit of CrossGR by applying it to perform gesture recognition across 10 users and 15
gestures. Our extensive evaluation shows that delivers comparable or even better gesture recognition performance
compared to state-of-the-art recognition systems, but using an order of magnitude less training samples collected
from the end-users. The result is a new low-cost approach for cross-target gesture recognition with high accuracy.
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