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ABSTRACT

Landmark localisation in medical imaging has achieved great

success using deep encoder-decoder style networks to regress

heatmap images centered around the target landmarks. How-

ever, these networks are large and computationally expensive.

Moreover, their clinical use often requires human interaction,

opening the door for manual correction of low confidence pre-

dictions. We propose PHD-Net: a lightweight, multi-task

Patch-based network combining Heatmap and Displacement

regression. We design a simple Candidate Smoothing strat-

egy to fuse its two-task outputs, generating the final prediction

with quantified confidence. We evaluate PHD-Net on hun-

dreds of Short Axis and Four Chamber cardiac MRIs, show-

ing promising results.

Index Terms— Landmark localisation, confidence, car-

diac MRI, patch-based method, multi-task learning

1. INTRODUCTION

Automated landmark localisation is an important step in

medical image analysis, with convolutional neural networks

(CNNs) dominating this task. For such deep learning meth-

ods, more data means better results [1]. However, in medical

imaging, datasets are often limited in size due to high col-

lection and annotation cost/difficulties. In order to extract

as much value as possible from limited datasets, patch-based

methods analyse an image patch-wise, generating a prediction

of the coordinate for each small section in the image [2, 3].

While this approach can produce vast amounts of unique

training samples, a clear drawback is that each prediction

only takes into account a small local area.

This highlights another key challenge for landmark local-

isation in medical imaging: the prevalence of locally similar

structures in an image. Patch-based approaches are partic-

ularly vulnerable to misidentifications from locally similar

structures due to their strong local focus. Approaches pivoted

to formulate the landmark localisation task as a heatmap esti-

mation problem. For example, encoder-decoder style CNNs

such as U-Net [4] or the Hourglass network [5] analyse the

input image at several resolutions and output a Gaussian

heatmap for each landmark [6, 7, 8]. Each point’s activa-

tion on the heatmap can be seen as the pseudo-probability

of it being the landmark. The network learns to generate a

high response near the landmark, smoothly attenuating the

responses in a small radius around it. Regressing heatmaps

using the encoder-decoder style architecture facilitates both

high and low level analysis of the image, mitigating the effect

of locally similar but globally infeasible points in the image.

Less common are patch-based approaches that also regress

heatmaps. Noothout et al. [9] comes close to this, applying

multitask learning under a patch-based framework to jointly

perform classification and regression on each patch. The

classification task determines whether a patch contains the

landmark, and the regression task estimates the 2D displace-

ment from the patch to the landmark. Rather than regressing

a heatmap, the classification task was formulated as a binary

task: the patch containing the landmark was labelled 1, with

the rest labelled 0. Only the patch classified as containing the

landmark was used to determine the final coordinates. This

multi-task, joint learning leads to a light-weight network and

enhanced localisation performance, with the two tasks shar-

ing a feature representation that improves the performance

of both [10]. However, the resulting network has a strong

local focus and is also susceptible to failure if the predicted

containing patch is incorrect.

In order to increase robustness against misidentifications

while being constrained by a small training set, we require

a model that can learn rich feature representations while ef-

ficiently making use of the training data available. We also

aim to produce a compact model, that is cheap to train. To

this end, unlike encoder-decoder networks that train using full

image samples, we opt to analyse images patch-wise, creat-

ing thousands of training samples from a single training im-

age. To improve robustness while still being a lightweight

model, we propose PHD-Net to perform two similar but dis-

tinctly separate tasks while sharing weights. Our main contri-

butions are twofold: (1) A multi-task patch-based framework

in which one branch of the network focuses on generating lo-

cally accurate candidate predictions, regularised by another

branch focusing on the globally likely landmark location us-

ing heatmap regression. (2) A Candidate Smoothing strategy

that combines the branch outputs to produce a locally accu-

rate, globally feasible prediction, reducing misidentifications

compared to the baseline approach [9]. We use this strategy

to assign a confidence level to the prediction.



(a) The proposed PHD-Net framework.
(b) 4Ch landmarks. (c) SA landmarks.

Fig. 1: (a) The multi-task model learns two regression tasks simultaneously and the candidate smoothing generates the final

coordinate value and quantifies confidence. (b) Landmarks for 4 chamber (4Ch) CMR: Magenta = tricuspid valve; Yellow =

mitral valve; Red = apex of left ventricle. (c) Landmarks for Short Axis (SA) CMR: Magenta = superior right ventricle insertion

point valve; Yellow = inferior right ventricle insertion point; Red = inferior lateral reflection of right ventricle free wall.

2. METHOD

In the multitask network of [9], the regression and classi-

fication tasks share parameters in the convolutional layers.

The network processes images patch-wise, with the regres-

sion task predicting the log 2D displacement from the centre

of each patch to the landmark location. The classification task

predicts whether the landmark is contained in the patch using

a binary mapping. During training, subimages are randomly

sampled from the image and used as training samples. In test-

ing, the whole image is taken as input, and the displacement

prediction from the patch with the highest classification score

is used to calculate the landmark’s predicted location [9].

PHD-Net has a similar formulation but two key differ-

ences: (1) Heatmap regression: Instead of considering the

classification task as binary, we regress a Gaussian heatmap

centered around the landmark-containing patch to provide

smoother supervision. (2) Coordinate calculation: To im-

prove the robustness and accuracy of the final coordinate

prediction, we propose a Candidate Smoothing strategy. We

consider each patch’s prediction from the displacement output

as a small Gaussian blob, producing locally accurate candi-

date predictions, and then regularise them by the predicted

Gaussian heatmap from the heatmap regression branch.

Fig. 1a shows the framework for PHD-Net, illustrated on

cardiac MRI (CMR). We adopt the architecture of [9] as the

backbone of our network. In short, it composes three convo-

lutional layers of 32 filters with 3 × 3 kernels, each followed

by a maxpooling layer with 2 × 2 kernels. After these layers

the input is broken into 8× 8 pixel patches, each patch being

represented by a single channel. Three convolutional layers

with the same properties as follow, before branching into two

sets of fully connected layers with 64 and 96 filters, mod-

elled as 1 × 1 convolutional layers. One branch outputs the

displacement prediction, and the other outputs the heatmap

prediction. The model is compact with only 0.06M trainable

parameters, enabling fast training.

2.1. Joint Displacement and Heatmap Regression

We make two predictions for each patch: the heatmap value

and the displacement from the centre of the patch to the land-

mark. This provides two opportunities to discover the land-

mark: the displacement regression branch focuses on generat-

ing pixel-precise candidate coordinates, and the heatmap re-

gression branch focuses on the more coarse object-detection

task. Framing the task in this fashion facilitates predictions

that are pixel-precise despite the output map’s low resolution

compared to the full image (due to patch-wise predictions, not

pixel-wise). The total loss LA, consists of the displacement

loss Ld and the heatmap loss Lh:

LA = Ld + Lh. (1)

The displacement loss Ld is a weighted sum of the mean

squared error (MSE) between the predicted and annotated 2D

displacement of each patch. The further the patch is from the

landmark, the lower its predictive power. Thus, we dampen

the effect of distant patches in two ways: (1) we apply the

log function to the displacement labels [9] and (2) we weigh

closer patches as more important than distant ones by multi-

plying the error of the patch-wise predictions by a Gaussian

heatmap centered around the landmark.

The heatmap loss Lh is the MSE between the predicted

patch-wise heatmap and the ground truth patch-wise heatmap.

To generate the ground truth heatmap we define the mean as

the patch containing the landmark, with a predefined standard

deviation. For a landmark li contained in the patch (lxi , l
y
i ),

the 2D Gaussian heatmap image is defined as the 2D Gaussian

function: Gi(x | µ = (lxi , l
y
i );σ) : R

d → R.

The patch mapping’s peak value is on the patch contain-

ing the landmark, with values smoothly attenuating with dis-

tance. Each patch’s heatmap value now represents a psuedo-

probability of the landmark being contained in it.

2.2. Candidate Smoothing

The next challenge is to calculate the final coordinate values

from the model’s outputs. We propose a strategy to combine

the outputs from both branches into a final coordinate pre-

diction value, increasing robustness against misidentifications

and assigning a confidence level to the prediction. The key

idea behind this strategy is to use a large number of patches to

produce locally precise but ambiguous candidate predictions,

which are then regularised to filter out the globally unlikely

locations.



First, we find the 128 × 128 area section of the Gaussian

heatmap with the highest summed activations. Second, for ev-

ery patch contained in this area, we plot the prediction from

the displacement branch as a small Gaussian blob with a stan-

dard deviation of 1. The mapping is additive, meaning if mul-

tiple patch’s predictions overlap, the Gaussian values add on

to each other. This produces a 128× 128 mapping containing

pixel-precise candidate locations for the landmark, M c
i (li):

M c
i (li) =

P∑

j=1

Gi(c
i
j + dij ;σ = 1), (2)

where for each of P patches in the 128× 128 subimage, cij is

the center of the patch and dij is the inverse log predicted dis-

placement. The candidate points are precise to a local degree,

but since each patch predicts a location blind to its surround-

ings, it can fail due to locally similar structures.

To solve this we smooth the mapping by multiplying

it with the up-sampled and smoothed Gaussian heatmap

predicted by the heatmap branch Gi(x;w,b) to create a

smoothed map:

Ms
i (x) = Gi(x;w,b)⊙M c

i (li). (3)

Multiplying the mapping by the predicted Gaussian heatmap

suppresses the globally infeasible predictions determined by

the heatmap regression branch, while retaining pixel-precise

predictions from the displacement regression branch. To ob-

tain the final coordinate value, we take the peak pixel of the

new heatmap.

We assign a confidence level to each prediction. Dur-

ing validation, we determine a threshold by calculating a

weighted average of the 10% least accurate predictions’ peak

values, weighted according to the magnitude of the error. In

testing, if the final heatmap’s peak value is below this thresh-

old, we can infer that there was no clear consensus among the

patches of the landmark’s location, and consider it low con-

fidence prediction. Otherwise, the prediction is considered

high confidence.

3. EXPERIMENTS AND RESULTS

For all experiments we trained PHD-Net for 500 epochs us-

ing a batch size of 32 and a learning rate of 0.001, using the

Adam Optimiser. Early stopping was employed if the vali-

dation set’s loss was not improved for 75 epochs. The sizes

of the sub-images used in training were 128 × 128 pixels.

All landmark localisation experiments were conducted using

a fixed 8-fold cross validation.

3.1. Data

We evaluate PHD-Net on a dataset from the ASPIRE Reg-

istry [11]. Each subject has a four chamber (4ch) view and/or

a short axis view (SA). Each CMR sequence has a spatial

resolution of 512 × 512 pixels, where each pixel represents

0.9375mm of the organ, and 20 frames (we use the first

frame). There are 303 SA images, and 422 4ch images, each

Table 1: PHD-Net results for binary and Gaussian (std = 2)

maps and different coordinate calculation strategies. Mean

error and standard deviation (std) are in mm across all land-

marks over a fixed 8-fold cross validation.

Mapping Coordinate Calculation Error ± std (mm)

Binary [9] Simple [9] 22.76 ± 29.18

Gaussian Simple [9] 6.08 ± 23.64

Gaussian Candidate Smoothing 4.73 ± 15.39

with three annotated landmarks (shown in Fig. 1b and Fig.

1c). The 4ch dataset represents a more challenging landmark

localisation task as the images have much higher variability

than the SA dataset.

3.2. Evaluation of Heatmaps and Candidate Smoothing

We perform an ablation study on the SA images to demon-

strate the effectiveness of our proposed loss and coordinate

calculation strategy compared to our baseline [9]. Table 1

shows the results comparing using a binary map to a Gaus-

sian heatmap, where we experimentally select a standard de-

viation of 2. We find using a Gaussian heatmap noticeably

outperforms a simple binary map, due to its smoother super-

vision and ability to encode some uncertainty in the predic-

tion. The table also demonstrates that using our Candidate

Smoothing strategy outperforms solely using the highest clas-

sifying patch [9]. Best performance was seen when using both

heatmaps and Candidate Smoothing.

A common error with the naive coordinate resolution is

landmark misidentification, causing gross errors. Since the

simple strategy only considers the patch with the highest clas-

sification prediction value, the information from the surround-

ing patches is ignored, and a small error in the classification

branch can lead to a complete misidentification. The Candi-

date Smoothing strategy ensures that even when the Gaussian

activation is not particularly high on the correct patch, the

additive consensus the patches achieved from the regression

branch can overpower the suppression from the failed classi-

fication branch in Eq. (3).

3.3. Comparison

We evaluate PHD-Net on both SA and 4Ch images, compar-

ing it to the baseline network [9] and two other approaches:

(1) Hourglass [5]: We follow the authors’ description to im-

plement the model, downscaling the input images to 256×256
pixels, and learning a 64 × 64 heatmap for each landmark.

We use a single stacked hourglass, leading to 6M trainable

parameters. We train for a maximum of 1000 epochs us-

ing the Adam optimiser, employing early stopping. Through

experimentation, we selected a learning rate of 0.001, batch

size of 3 and standard deviation of 1 for the Gaussian labels.

(2) U-Net [4]: We use the MONAI framework1, designing

the model with 5 encoding-decoding levels, creating 1.63M

learnable parameters. Again, we downsample the input im-

age to 256 × 256 pixels to create more capacity parity with

1Project MONAI, www.github.com/Project-MONAI



Table 2: Localisation error in mm. The All group represents

all images in the dataset, and HiC represents the subset of

images PHD-Net considered as high confidence.

Short Axis Images 4 Chamber Images

Model All (100 %) HiC (56 %) All (100 %) HiC (42 %)

Baseline [9] 24.79 ± 31.82 24.98 ± 33.98 52.90 ± 35.58 24.98 ± 33.98

Hourglass [5] 5.76 ± 8.48 4.54 ± 4.61 13.33 ± 21.63 8.40 ± 12.71

U-Net [4] 5.93 ± 12.75 4.22 ± 6.52 7.78 ± 9.82 5.72 ± 4.50

PHD-Net 4.73 ± 15.39 2.97 ± 2.20 9.51 ± 25.89 4.40 ± 4.58

PHD-Net. The output heatmaps are full size (256× 256). We

train for a maximum of 1000 epochs employing early stop-

ping, with an experimentally selected batch size of 2, learning

rate of 0.001 using the Adam Optimiser and standard devia-

tion of 8 for the Gaussian labels.

Table 2 shows the results for both SA and 4ch images. For

SA, PHD-Net performs the best by a significant margin, also

discriminating well between high confidence and low confi-

dence predictions. For 4ch, U-Net has the lowest error, fol-

lowed by PHD-Net. However, when considering the predic-

tions PHD-Net indicated as high confidence, PHD-Net per-

forms the best. Fig. 2 shows the difference between all 4ch

predictions and those labelled as high confidence by PHD-

Net more clearly. The 4ch images were more challenging,

with 14% less high confidence predictions. In addition, al-

most all models performed better on the high confidence sub-

set, indicating PHD-Net is truly discriminating between dif-

ficult and easy images. Finally, Hourglass and U-Net models

[5, 4] can predict multiple landmarks at once compared to

PHD-Net’s single landmark prediction, but they respectively

have 100× and 27× more learnable parameters, making them

significantly more expensive to train.

4. CONCLUSION

This paper proposed a lightweight, confidence-quantifying

model for landmark localisation for cardiac MRI, named

as PHD-Net. It takes a patch-based, multi-task approach

with joint heatmap and displacement regression. It uses a

candidate smoothing strategy to fuse multi-task outputs to

generate the final prediction and quantify the confidence. We

performed evaluation on a dataset covering two scanning pro-

tocols. PHD-Net achieved localisation error better or similar

to more expensive comparison models and can accurately

discriminate between high and low confidence predictions.
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(a) All. (b) High-confidence in PHD-Net.
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images.
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