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Grasp Classification with Weft Knit Data Glove
using a Convolutional Neural Network

Emmanuel Ayodele1, Tianzhe Bao1, SAR Zaidi1, Ali Hayajneh2, Jane Scott3, Zhiqiang Zhang1, Des

McLernon1

Abstract— Grasp classification using data gloves can enable ther-
apists to monitor patients efficiently by providing concise infor-
mation about the activities performed by these patients. Although,
classical machine learning algorithms have been applied in grasp
classification, they require manual feature extraction to achieve
high accuracy. In contrast, convolutional neural networks (CNNs)
have outperformed popular machine learning algorithms in several
classification scenarios because of their ability to extract features
automatically from raw data. However, they have not been imple-
mented on grasp classification using a data glove. In this study, we
apply a CNN in grasp classification using a piezoresistive textile
data glove knitted from conductive yarn and an elastomeric yarn.
The data glove was used to collect data from five participants who grasped thirty objects each following Schlesinger’s
taxonomy. We investigate a CNN’s performance in two scenarios where the validation objects are known and unknown.
Our results show that a simple CNN architecture outperformed k-nn, Gaussian SVM, and Decision Tree algorithms in both
scenarios in terms of the classification accuracy.

Index Terms— CNN, Data glove, Grasp classification, Knit strain sensors.

I. INTRODUCTION1

PROGRESS measurement is an important factor in the2

rehabilitation of patients. Conventionally, progress mea-3

surement is performed by a physiotherapist who manually4

checks the progress at the injured joint. This method is costly5

as it involves frequent travel by the patient or physiotherapist.6

Furthermore, the chance of a physiotherapist’s visit coinciding7

with important progress events is very limited. Therefore,8

researchers have developed several approaches to solve this9

challenge. Particularly, all approaches can be categorised into10

two major methods. These methods are a) Camera-based11

methods and b) Wearable devices. Camera-based methods12

involve using cameras to detect motion at the joints of the13

patient and processing the data into relevant information [1].14

Although, there have been successful applications of this15

approach in research studies, the commercial adoption of this16

method has been constricted by the fear of intrusion into the17

privacy of the patient [2]. In addition, the use of a camera-18

based method limits the movement of the patient to within19

the camera’s view thus restricting the patient from performing20

their daily activities. In contrast, wearable devices can collect21
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data from the affected joint without restricting the movement 22

of the patient. Subsequently, the collected data is uploaded to a 23

computer or the cloud where the physiotherapist can remotely 24

monitor the progress of the patient. Moreover, this enables the 25

physiotherapist to monitor the progress of multiple patients 26

conveniently. 27

Wearable devices are worn by the user and therefore, face a 28

weight constraint as they must be light weight to prevent fur- 29

ther injuries to the affected joint. In the progress measurement 30

of interphalangeal joints, the popular wearable device is a data 31

glove. The conventional design of a data glove is to integrate 32

a strain sensor into a textile data glove by a form of external 33

attachment. This design method leads to bulky data gloves 34

that are conspicuous and therefore, unappealing to patients. In 35

addition, the degradation of this external attachment can cause 36

inaccuracies in the glove’s measurement. 37

The use of weft knit sensors in wearable devices provides a 38

substantial potential in designing textile wearable devices that 39

are light weight, flexible and accurate [3]. Wearable devices 40

that comprise of weft knit sensors include a knee sleeve and a 41

respiration belt [4], [5]. In our earlier work [6], we designed 42

a lightweight textile data glove whose sensors and support 43

structure are wholly textile. The entire glove is fabricated in 44

a single manufacturing process thus eliminating the need for 45

an external attachment between the support structure and the 46

strain sensors. We achieved this by weft knitting conductive 47

yarn and an elastomeric yarn into weft knit sensors and weft 48

knitting the rest of the glove with the elastomeric yarn using 49
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WholeGarmentTM technology. Consequently, our data glove50

provides the feel and appearance of normal clothing while51

being capable of sensing strain.52

Classification of the acquired data into comprehensible53

information is vital for the increased adoption of wearable54

devices as it is impractical for physiotherapists to understand55

the raw data. The use of machine learning in conjunction56

with a data glove to classify acquired data into various sign57

languages is quite popular [7]–[9]. However, only a few studies58

have utilised machine learning techniques in classifying the59

grasps performed with a data glove. Particularly, Bernardin60

et al. [10] employed HMM to classify gestures made with a61

sensor fusion of tactile sensors and Cyberglove. The gestures62

were classified using Kamakura taxonomy into four major63

categories: power, intermediate, precision and thumbless grips.64

Classification accuracy was an average of 85.25% for the65

single-user system and 91.5% for the multiple-user system. In66

addition, Heumer et al. [11] compared 28 different classifiers67

categorised into Lazy, function approximators, Tree-based and68

Rules-based and Bayes classifiers in the classification of69

grasps performed using a Cyberglove. It was observed that70

on average, function approximating classifiers performed best71

with a minimum and maximum accuracy of 81.41% and 86.8%72

respectively. Although, the results of these classical machine73

learning algorithms are quite promising, they are limited by74

the selection of their hand-crafted features. The performances75

of these algorithms are limited because they rely on the manual76

selection of features that best represent the data.77

In contrast, deep neural networks (DNN) extract optimal78

features directly from the data by its layer-by-layer processing79

and in-model feature transformation. This has enabled DNN80

to outperform classical machine learning techniques in various81

applications such as computer vision, speech recognition and82

disease detection [12]–[18]. Convolutional neural networks83

(CNNs) are the most popular DNN algorithms. Typically,84

they comprise of stacked convolutional filters, activation and85

pooling layers that enable its optimal selection of discrimi-86

native features in a time-series data. CNN algorithms have87

been very successful across several fields particularly in the88

field of rehabilitation using electrocardiography (ECG) and89

electromyography (EMG) data [19]–[22].90

Furthermore, CNN algorithms have been employed in grasp91

classification, albeit using a camera-based method. Notably,92

images of 500 objects were classified into four categories:93

pinch, tripod, palmar wrist neutral and palmar wrist pronated.94

In an offline test, the CNN algorithm performed at an accuracy95

of 85% for seen objects and an accuracy of 75% for unseen96

objects [23]. Seen objects were objects used for the algorithm’s97

validation that were included in the training data while unseen98

objects were validation objects that were not included in the99

training data and were therefore novel to the algorithm.100

In addition, CNNs have been utilised successfully in other101

glove-based gesture classification. The taxonomies in these102

studies include sign languages and custom taxonomies [24]–103

[26]. In particular, CNN was used to classify hand poses104

acquired with a data glove [27]. The classification accuracy105

was computed to be 89.4%. However, the study was limited106

to only one participant.107

Although CNN algorithms have performed excellently 108

across several classification applications, to the best of our 109

knowledge, they have not been implemented in grasp classifi- 110

cation using a data glove. Therefore, in this paper, we propose 111

applying CNN in classifying grasps performed with the weft 112

knit data glove. We compare the results with popular classical 113

machine learning algorithms. Our results show that the simple 114

CNN architecture outperforms the classical machine learning 115

algorithms. The structure of the rest of this paper is as follows. 116

Section II describes the data acquisition hardware including 117

the weft knit data glove and its sensor configuration. The 118

CNN algorithm and the classification scenarios are reported 119

in Section III. Sections IV, V and VI illustrate the results, 120

discussion and conclusion respectively. 121

II. DATA ACQUISITION 122

A. Weft Knit Sensor 123

The strain sensors are created by weft-knitting conductive 124

yarn and an elastomeric yarn in a plain knit structure. Further- 125

more, we design a novel architecture (shown in Fig. 1) such 126

that each course of loops from conductive yarn is accompanied 127

by a course of loops from the elastomeric yarn. Particularly, 128

the conductive yarn used is a multi-filament yarn comprising 129

of 80% polyester and 20% stainless steel. It is a Schoeller 130

multifilament conductive yarn commercially available from 131

Uppingham Yarns Ltd. According to its specification sheet, 132

it has a maximum extension of 5.5% and its resistivity varies 133

between (200− 1800Ωm) depending on the yarn tension. We 134

selected a multifilament yarn instead of a coated yarn because 135

coated yarns are subject to environmental degradation. 136

1) Electromechanical model: A simplified electromechan- 137

ical model of the sensor is illustrated in Fig. 1 depicting 138

the resistive circuit of a knit loop in the sensor. The circuit 139

comprises of length resistances Rl and Rh that represent 140

the resistance of the legs and heads/sinkers of the knit loop 141

respectively. These resistances can be calculated as: 142

Rl =
ρLl

Ar

, (1)

143

Rh =
ρLh

Ar

, (2)

where Ar is the cross-sectional area of the conductive yarn. Ll 144

and Lh are the lengths of the loop legs and loop head/sinker 145

respectively as shown in Figure 1 and can be calculated using 146

any of the several geometrical models of a knit loop [28]–[30]. 147

The contact resistance is the major factor in the piezore- 148

sistivity of the weft knit sensor. According to Holm’s contact 149

theory, a contact resistance occurs when two conductors are in 150

contact with each other. This contact resistance is dependent 151

on the contact pressure between the conductors. The elasticity 152

of the weft knit structure and the elastomer causes the contact 153

pressure between the conductive yarn loops to change when it 154

is extended. This contact pressure affects the contact resistance 155

as shown in the Holm’s contact resistance equation below: 156

Rc =
ρ

2

√

πH

nP
, (3)
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Fig. 1. Weft knit sensor design and its equivalent electrical circuit.

where, Rc is the contact resistance, ρ is the electrical re-157

sistivity, H is the hardness of the material used, n is the158

number of contact points and P is the contact pressure between159

the conductive loops. The equivalent (total) resistance of the160

sensor comprising of the contact resistances and the length161

resistances can be calculated using Kirchhoff’s circuit analysis.162

2) Sensor Characterisation: A strain test was performed163

to illustrate the electromechanical behaviour of the sensor164

configuration used in the glove. The experiment was performed165

using a tensile testing machine (Instron 3369) and a digital166

multimeter. Three sensors were knitted with 72 courses (row167

of knitted loops) and 36 wales (column of knitted loops).168

Due to the sensor’s architecture, there were 36 courses of169

conductive yarn and 36 courses of elastomeric yarn. The170

sensors were stretched at a speed of 10mm/min until they171

reached 35% extension while their resistance was measured172

with a multimeter.173

The average result of the tensile test is shown in Fig 2. It was174

observed that the sensor’s resistance reduced exponentially as175

its extension increased. This occurred because as the sensor176

was extended, the contact pressure between the conducting177

loops increased thereby reducing the contact resistance and178

consequently, the equivalent resistance. The change in equiv-179

alent resistance reduced significantly as the extension of the180

sensor surpassed 25% because contact resistance between the181

loops was negligible due to the high contact pressure. This182

section is vital as it illustrates the electrical behaviour of the183

sensor as it is extended by movements at the interphalangeal184

joints. Furthermore, the results of the tensile test show that185

the sensor does not exhibit a perfectly linear piezoresistivity.186

The exponential piezoresistivity of the sensor may increase the187

difficulty in classifying acquired data.188

B. Data Glove189

The data glove illustrated in Fig. 3a is a wholly knitted190

textile glove with no external attachment between the support191

structure and the strain sensors. This was achieved by knitting192

the sensors and the support structure in a single fabrication193

process using WholeGarmentTM technology. Data is trans-194

mitted by sewing conductive thread from the sensors in the195

data glove to the analog-digital converters (ADC) located196

in the microprocessor (Arduino Lilypad). A voltage divider197

circuit enables the ADC to convert the resistance of the198

0 5 10 15 20 25 30 35
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Fig. 2. Tensile test illustrating sensor’s piezoresistivity.

(a) (c)(b)

Support 
structure

Weft Knit 
sensors

Fig. 3. (a) Fabricated weft knit data glove, (b) Front view of the
data glove and its embedded measurement setup, and (c) Back view
illustrating connection with conductive thread.

weft knit sensors to digital values between 0 and 1023. The 199

microprocessor is connected to a computer (Intel I7-8750H, 200

16GB RAM, Nvidia GTX1060) for offline processing on 201

MATLAB R2019. The USB port of the computer also powers 202

the microprocessor. Furthermore, positive and negative con- 203

nections are prevented from creating a short circuit by sewing 204

the negative connections at the back of the glove and positive 205

connections at the front of the glove. The measurement setup 206

is depicted in Fig. 3(b) and (c). 207

C. Experimental Setup 208

This study was approved by the Faculty Research Ethics 209

Committee of University of Leeds, UK (reference: MEEC 210

19-006). There were five healthy participants in this study 211

including three males and two females. All participants signed 212

an informed consent form. 213

The Schlesinger taxonomy [31], [32] was used in this study 214

for selecting the grasp types. This taxonomy is widely known 215

to be the earliest study to accurately categorise the different 216

grasps of a human hand [33]. We selected this taxonomy as a 217

research constraint that acts as a base in which more patient- 218

tailored taxonomies can be built upon. 219

For each grasp type shown in Fig. 4, 5 objects were selected 220

for the experiment. These objects and their corresponding 221

grasp type are enumerated in Table I. The participants per- 222

formed five grasps per object thereby providing a total of 223

750 samples (5 participants x 5 grasps x 30 objects). Each 224
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TABLE I

OBJECTS USED IN THE EXPERIMENT AND THEIR GRASP TYPES

Grasp Type Objects

Cylindrical Water bottle, flask, coffee cup, can, plastic bottle.

Hook Mug, bag strap, headphones, kettle, back pack.

Lateral Key, CD, ruler, id card, spoon.

Palmar breadboard, phone, match box, multimeter, plastic case.

Spherical Lemon, orange, apple, mouse, onion.

Tip Pen, pencil, chopstick, stylus, ball pen.

grasp was for 30 seconds and participants were allowed to225

take breaks during the experiment to prevent fatigue.226

III. DEEP LEARNING APPROACH227

A. Data Pre-processing228

Data was recorded by the glove at a frequency of 20 hertz229

from the five sensors located at the distal interphalangeal230

joints. For each 30 seconds grasp of an object, 3000 (600231

x 5 sensors) data values were recorded. This data obtained232

in the time series represents the signal features. As CNN233

requires a 3d image as an input, each grasp is represented234

as a 600x5x1 array. In this array, the first dimension (600235

elements) represents the acquisition of 30 seconds of data236

at 20 hertz from each sensor while the second dimension237

(5 elements) represents the five sensors that transmit data to238

the microprocessor. Furthermore, the temporal order in which239

the data was acquired was unaltered. A short transition time240

was implemented between each new grasp to facilitate the241

collection of data. This transition time was later removed from242

the data to ensure that only the grasping period was recorded243

from the glove. In addition, this eliminated the complexities244

that involve the starting position of the grasping hand.245

We perform no feature extraction or filtering of the data for246

CNN or the classical machine learning algorithms as this study247

aims to show the performance of algorithms in classifying248

raw data from weft knit sensors. Particularly, as research on249

classification using weft knit sensors is still nascent, it would250

be impractical to extract features manually.251

B. CNN Algorithm252

Convolutional Neural Networks are feed forward deep neu-253

ral networks consisting of stacks of convolutional and pooling254

layers and then one or more fully connected layers [34], [35].255

The convolutional layers employ convolution in extracting the256

features from the input data. Particularly, feature maps are257

generated by convolving the input signal with filters (kernels)258

consisting of neurons with learnable weights and biases. The259

convolution operation of the g-th feature map on the f -th260

convolutional layer located at position (a, b) can be described261

as:262

v
a,b
f,g = σ



bf,g +
∑

i

Xf−1
∑

x=0

Yf−1
∑

y=0

w
x,y
f,g,iv

a+x,b+y
f−1,i



 , (4)

where bf,g is the feature map’s bias, w
x,y
f,g,i is from the263

weight matrix, X and Y are the kernel’s height and width264

respectively, and σ(·) is a non-linear activation function such 265

as Rectified Linear Unit (RELU), Sigmod or Tanh. In our 266

architecture we use a RELU non-linear function and it can 267

be represented as: 268

σ(k) = max(0, k). (5)

A pooling layer is added between convolutional layers to 269

increase the invariance of the feature maps to minor changes 270

in the input. It achieves this by aggregating the neighbouring 271

outputs as a representative of the spatial region. In earlier 272

studies, average pooling was the standard. However, maximum 273

pooling has become the benchmark in state-of-the-art CNN 274

approaches [34]. Similar to traditional neural networks, the 275

fully-connected (FC) layer(s) classifies the input signal based 276

on the extracted features obtained from previous layers. 277

C. CNN Architecture 278

An ablation study was performed to determine the opti- 279

mal CNN configuration. Four parameters (i.e. the number of 280

convolutional blocks, the number and size of convolutional 281

filters, and the dropout layer’s probability) were varied to 282

create 16 CNN configurations. These parameters are known 283

to significantly impact the performance of a CNN [36]. The 284

configurations and their parameters are shown in Table II. 285

All other parameters were constant for all configurations. 286

In particular, each convolutional block had a rectified unit 287

layer (RELU) acting as a nonlinear activation function, a 288

downsampling pooling layer with filters of size 2x1 and a 289

dropout layer to reduce overfitting. The last convolutional 290

block was connected to a fully-connected layer with 6 hidden 291

units representing the 6 grasp types, a softmax layer which 292

employs a cross entropy loss function and a classification layer. 293

Moreover, the networks were trained at a dynamic learning 294

rate using stochastic gradient descent. The initial learning rates 295

were 0.001 and were reduced by 95% after every 10 epochs. 296

The batch sizes were fixed at 16 and the number of epochs 297

was 36. 298

These configurations were utilised in classifying the data 299

in two experiments. In the first experiment, one grasp was 300

used as the validation data while the remaining 4 grasps were 301

used as the training data i.e (80% training data and 20% 302

validation data). Thereafter, cross validation was performed 303

by repeating the experiment 5 times where each grasp was 304

utilised as the validation data. In the second experiment, the 305

CNN configurations were trained with 4 out of 5 objects with 306

the remaining object as the validation data i.e (80% training 307

data and 20% validation data). Cross validation was also 308

performed by repeating the experiment 5 times where each 309

object was used as the validation data. The average accuracy 310

of each CNN classifier in both experiments was calculated. 311

These experiments were performed on Participant 1’s data with 312

the aim of utilising the best CNN configuration in terms of 313

classification accuracy on an expanded experiment comprising 314

of all participants. 315

The results of this study are also shown in Table II. It 316

was observed that CNN configurations with two convolution 317

blocks had a higher accuracy than similar configurations with 318
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Fig. 4. Grasp types of objects used in the study (Schlesinger taxonomy).

Thumb
Index
Middle

Ring

Little

Input image 
(600 x 5 x 1)

Signals from data glove #1 Conv. block
➢ 64 conv. filters (Size: 3x3, 

Padding: 0, Stride: 2x1)
➢ RELU layer
➢ Max pooling (Size: 2x1, 

Stride:1) 
➢ Dropout Layer (0.1)

Cylindrical

Hook

Palmar

Spherical

Lateral

Tip

FC block
➢ Fully 

connected 
layer (6 units)

➢ Soft max layer
➢ Classification 

layer

Grasp taxonomy#2 Conv. block
➢ 64 conv. filters (Size: 3x3, 

Padding: 0, Stride: 2x1)
➢ RELU layer
➢ Max pooling (Size: 2x1, 
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➢ Dropout Layer (0.1)

Fig. 5. CNN architecture (C15) for grasp classification.

TABLE II

CNN CONFIGURATIONS AND THEIR RESPECTIVE PARAMETERS.

Config. Conv.

Filter

size

No of

Conv.

Filters

No of

Conv.

blocks

Dropout

Proba-

bility

Accuracy Run

time

C1 3x2 32 1 0.1 81.00 4.5s
C2 3x2 32 1 0.2 82.67 4.4s
C3 3x2 32 2 0.1 83.67 6.0s
C4 3x2 32 2 0.2 82.00 6.1s
C5 3x2 64 1 0.1 79.67 5.0s
C6 3x2 64 1 0.2 76.33 5.0s
C7 3x2 64 2 0.1 83.67 6.7s
C8 3x2 64 2 0.2 81.00 6.9s
C9 3x3 32 1 0.1 78.67 4.7s
C10 3x3 32 1 0.2 80.67 5.0s
C11 3x3 32 2 0.1 83.67 6.3s
C12 3x3 32 2 0.2 82.00 6.1s
C13 3x3 64 1 0.1 81.00 5.1s
C14 3x3 64 1 0.2 78.33 5.1s
C15 3x3 64 2 0.1 86.00 6.2s
C16 3x3 64 2 0.2 82.34 6.3s

only one convolutional block. However, the higher accuracy319

occurred at a computation cost as observed in the increased run320

times seen in configurations with two convolutional blocks.321

In particular, configurations with two convolutional blocks322

had run times that were on average 1.5 seconds longer than323

similar configurations. However, the aim of this ablation study 324

was to select the optimal CNN configuration in terms of its 325

accuracy. Therefore, classifier C15 illustrated in Fig. 5 was 326

seen to achieve the highest average classification accuracy and 327

was selected as the optimal CNN configuration. Moreover, in 328

comparison with configurations with two convolutional blocks, 329

the computation time of C15 was relatively low. No further 330

optimisation of C15 was performed in its implementation 331

on the expanded experiment. This study was important in 332

ensuring that the optimal parameters were selected for the 333

CNN algorithm. 334

D. Classification Scenarios 335

In this study, we evaluate the performance of the selected 336

CNN (C15) and other algorithms on the following classifica- 337

tion scenarios. These scenarios are: 338

1) Object seen: This scenario exemplifies applications 339

where the validation objects are known. That is, the objects in 340

the validation data are part of the training data. Traditionally, 341

classifiers will achieve high accuracy in this scenario but 342

because weft knit sensors experience hysteresis and drift, the 343

performance of the classifiers will be adversely affected. In this 344

scenario, the classifiers were trained with 4 out of 5 grasps 345
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of an object and validated with the last grasp of the object346

(i.e. 120 images for training and 30 images for validation per347

participant). Cross validation was performed by repeating this348

experiment 5 times where each grasp of an object was selected349

as the validation data and computing the average accuracy.350

Furthermore, this was repeated for all participants and the351

average accuracy was recorded.352

2) Object unseen: This scenario illustrates applications353

where the objects grasped by the patient are unknown. It354

ensures that the therapist is provided with some information355

about the grasp type despite the object being held by the356

patient is not part of the training data set. In these experiments,357

the classifiers were trained with 4 out of the 5 objects in each358

grasp type and were validated with the last object (120 images359

for training and 30 images for validation per participant).360

Similar to the object seen experiment, cross validation was361

performed by repeating the experiment 5 times where each362

object was selected as the validation data and the average363

accuracy was computed. In addition, the experiment was364

repeated for all participants.365

E. Comparative Machine Learning Techniques366

In this study, popular machine learning techniques were367

implemented to compare their performance with the CNN in368

the various applications. These techniques include k-nearest369

neighbours (k-nn), Support Vector machine (SVM) and Deci-370

sion Trees (trees) [37]–[41]. The default parameters in Matlab371

R2019’s Machine Learning Toolbox were selected for the372

various configurations of these techniques. As there are no373

classification studies with weft knit sensors, these parameters374

were chosen from a popular and reliable toolbox to provide a375

verifiable comparative study.376

1) k-nearest neighbours (k-nn): k-nn is a probabilistic pat-377

tern recognition technique that classifies a signal output based378

on the most common class of its k nearest neighbours in379

the training data. The most common class (also referred to380

as the similarity function) can be computed as a distance381

or correlation metric. In this study, we select the Euclidean382

distance as the similarity function as it is the most commonly383

used metric in k-nn. The number of k-neighbours was varied to384

be 1, 10 and 100 for fine, medium and coarse k-nn techniques385

respectively. The probability density function p(M, cj) of the386

output data M belonging to a class cj with jth training387

categories can be computed as:388

p(M, cj) =
∑

nzǫknn

d(M, nz)V (nz, cj), (6)

where nz is a neighbour in the training set, V (nz, cj). The389

Euclidean distance d(M, nz) of output data M and neighbour390

nz can be calculated as:391

d(M, nz) =

√

√

√

√

k
∑

z=1

(Mz − nz)2. (7)

2) Gaussian SVM: Traditionally, support vector machines392

(SVM) is a supervised learning method used for performing393

linear classification. However, the data obtained during exper-394

iment cannot be separated using linear hyperplanes because of395

TABLE III

ACCURACY OF CNN CLASSIFIER FOR EACH PARTICIPANT IN THE TWO

CLASSIFICATION SCENARIOS

Participants Object seen Object unseen

Mean Std. Mean Std.

P1 91.33 2.66 76.00 4.90
P2 87.33 9.29 74.00 13.40
P3 80.67 4.90 69.33 12.54
P4 82.67 6.80 66.67 8.69
P5 99.33 1.33 92.67 9.98

Average 88.27 5.00 75.73 9.90

TABLE IV

ACCURACY OF THE CLASSIFIERS IN THE TWO CLASSIFICATION

SCENARIOS. THE BEST CLASSIFIER IS HIGHLIGHTED WITH A BOLD

FONT.

Classifier Object seen Object unseen Run time

Mean Std. Mean Std.

Fine k-nn 83.87 10.30 69.47 14.63 0.86s
Medium k-nn 77.07 8.65 69.07 8.93 0.85s
Coarse k-nn 32.53 7.53 30.80 6.72 0.85s
Fine SVM 39.60 6.79 27.07 5.88 1.39s

Medium SVM 82.80 8.13 70.53 10.52 1.34s
Coarse SVM 79.20 8.81 70.27 11.82 1.32s

Fine tree 68.13 10.06 58.40 12.42 0.92s
Medium tree 68.13 10.06 58.40 12.42 0.95s
Coarse tree 57.47 7.72 53.47 8.24 0.90s

CNN 88.27 5.00 75.73 9.90 6.20s

the close resemblance of some grasp types and the hysteresis 396

and drift that occur in a weft knit strain sensor. In order to 397

use SVMs for non-linear classification, we apply Gaussian 398

kernels which can map the data into an unlimited dimension 399

space. Three variations of Gaussian SVM were implemented 400

by selecting 7.9, 32, and 130 on the kernel scale for fine, 401

medium and coarse Gaussian SVM respectively. The decision 402

function for Gaussian SVM classification of pattern data u can 403

be represented as: 404

f(u) = sign

( h
∑

k=1

λkck exp
(−‖uk − u‖

2

2σ2

)

+ t

)

, (8)

where ck is the class label for the k-th support vector uk, λk 405

is the Lagrange multiplier, and t is the bias. 406

3) Decision Tree: Decision tree is a supervised learning 407

technique that aims to split classification into a set of decisions 408

that determine the class of the signal. The output of the algo- 409

rithm is a tree whose decision nodes have multiple branches 410

and its leaf nodes deciding the classes. Three configurations of 411

the Decision tree algorithm were implemented by varying the 412

maximum number of splits as 100, 20 and 4 for fine, medium 413

and coarse Decision tree respectively. 414

IV. RESULTS 415

A. Object seen 416

Fig. 7 illustrates the accuracy of the classifiers when the 417

object to be grasped is known. CNN outperforms all the 418

classical classifiers with an average accuracy of 88.27%. This 419

accuracy is slightly lower than results obtained by commercial 420

data gloves in other classification scenarios. This is caused 421

by the drift that occurs in weft knit sensors. Drift causes the 422
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Fig. 6. Confusion matrix depicting the average results of the object
seen scenario.
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Fig. 7. Object seen. Bars represent mean accuracy of the classifier and
error-bars illustrate the standard deviation.

output of the sensor to stray despite the absence of change in423

its extension.424

Fig. 6 illustrates the confusion matrix of the average results425

of all participants in the object seen scenario. The confusion426

matrix shows that grasps of Hook, Lateral, Spherical and Tip427

are classified excellently at 87.2%, 92.8%, 92% and 92.8%428

respectively. In contrast, the average classification accuracy429

of Cylindirical and Palmar grasps were significantly lower at430

80% and 84.8% respectively.431

Fig. 8 depicts a detailed view of the average classifier432

class performance on each participant. CNN outperforms all433

classifier classes for each participant in terms of its mean434

accuracy. In particular, it outperforms other classifier classes435

by an average of 21% in terms of its mean classification436

accuracy.437

B. Object unseen438

Fig. 10 depicts the accuracy of the classifiers when the vali-439

dation object is unknown. This exemplifies applications where440

the glove may be used to grasp objects not within the training441

data. It was observed that the accuracy of the classifiers in442

this scenario were lower than the accuracy seen in object seen443

scenario. This was expected as it is common in glove-based444

gesture classification because the validation objects are not445

P1  P2  P3  P4  P5
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Fig. 8. Detailed results of object seen. Bars represent mean accuracy
of the classifier class performance for each participant and error-bars
illustrate the standard deviation.

Fig. 9. Confusion matrix depicting the average results of the object
unseen scenario.

part of the training data (i.e., they are unknown). Nonetheless, 446

CNN outperforms the classical machine learning methods with 447

an average accuracy of 75.73%. 448

Fig. 11 illustrates an expanded view of the performance 449

of each classifier class on the participants. CNN outperforms 450

other classifier classes in each participant in terms of its mean 451

accuracy. Particularly, for P5, it outperforms the next best 452

classifier class by 23.8%. 453

Fig. 9 depicts the confusion matrix of the average results 454

of all participants in the object unseen scenario. Similar to 455

the results obtained in the object seen scenario, the algorithm 456

struggled with classifying Cylindrical and Palmar objects with 457

classification accuracy of 63.2% and 68.8% respectively. In 458

contrast, higher classification accuracy were achieved in Hook, 459

Lateral, Spherical and Tip objects with accuracy of 72.8%, 460

84%, 79.2% and 86.4% respectively. 461

V. DISCUSSION 462

In the last decade, the implementation of convolutional 463

neural networks in several applications has been very popular. 464

These applications include image and text classification, dis- 465

ease recognition and gait classification. In these applications, 466

CNN has outperformed popular machine learning algorithms 467
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Fig. 10. Object unseen. Bars represent mean accuracy of the classifier
and error-bars illustrate the standard deviation.
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Fig. 11. Detailed results of object unseen. Bars represent mean
accuracy of the classifier class performance for each participant and
error-bars illustrate the standard deviation.

because of its ability to automatically extract features from468

the data set. In contrast, machine learning algorithms require469

manual feature extraction techniques such principal compo-470

nent analysis or dimensionality reduction to produce accurate471

classification accuracy. However, despite its popularity, there472

has been no research on its application to grasp classification473

from data obtained with a piezoresistive data glove. There-474

fore, this study aims to bridge that gap by implementing a475

CNN architecture that outperforms classical machine learning476

algorithms in this application.477

Our results show that a simple CNN architecture outper-478

forms k-nn, Gaussian SVM and Decision Tree algorithms in479

both classification scenarios. Moreover, the simplicity of our480

CNN architecture is intentional. Particularly, the absence of481

research illustrating the implementation of CNNs in this ap-482

plication caused us to investigate the performance of a simple483

architecture before applying more complex CNN architectures.484

However, the computation cost of CNN was higher than the485

comparative algorithms as seen in the run times shown in Table486

IV. This was expected as CNN and deep learning algorithms487

are known for their higher computational costs as a result of488

their automatic feature extraction.489

In addition, the results in Table III illustrate that the490

accuracy of all algorithms are higher for P5 (participant 5) 491

than for other participants. This transpired because the data 492

glove was created to fit the hand size of this participant. 493

This illustrates the potential of textile wearables, as the one- 494

size-fits-all constraints can be eliminated by fabricating these 495

devices alongside the conventional size measurements (for 496

example: XS-extra small, S-small, M-medium, L-large etc.) 497

that have been used in the clothing industry for several 498

decades. Therefore, by utilising weft knit sensors, higher 499

classification accuracy can be achieved by creating perfectly 500

fitting wearables based on the user’s physical dimensions. 501

Furthermore, the results of this study in Table IV show that 502

the average accuracy of most classifiers reduced in the second 503

classification scenario. This scenario depicted an application 504

of the glove where the grasp type of the object is unknown. 505

Consequently, the validation data set comprises objects not 506

in the training data set. Therefore, it is a more difficult 507

classification problem for the algorithms. However, despite this 508

difficulty, CNN still outperforms other classifiers. 509

Although, CNN outperforms other classifiers, its average 510

accuracy among the participants is less than 90%. However, 511

we have shown that for participants for whom the glove 512

is specifically designed for, then the average accuracy was 513

much higher (>99% for seen objects and >92% for unseen 514

objects) regardless of whether the validation object was part 515

of the training set. This is remarkable for classification using 516

weft knit sensors as they are still technologically immature 517

and struggle with hysteresis and drift. This is a fertile area 518

for further research as more deep learning architectures such 519

as LSTM (long short-term memory) or CNN-LSTM can be 520

applied in the classification of their raw data. Recently, a 521

study illustrated the use of LSTM on grasp classification 522

using a knitted glove [42]. It will be interesting to compare 523

the performance of CNN to LSTM in grasp classification 524

from data acquired with a knitted data glove. Although the 525

memory properties of LSTM should provide an advantage over 526

CNN [26], CNN has also been seen to outperform LSTM 527

[24]. Therefore, it will be interesting to see if more com- 528

plex deep learning algorithms improve the accuracy of grasp 529

classification using data gloves. Higher performances (>95% 530

average accuracy) in this application may rapidly increase the 531

commercial adoption of data gloves in rehabilitation. 532

VI. CONCLUSION 533

In this paper, we have pioneered the use of convolutional 534

neural networks on grasp classification using a piezoresis- 535

tive data glove. Our simple CNN architecture consisting of 536

only two convolutional blocks outperformed classical machine 537

learning techniques in the two classification scenarios. No- 538

tably, the average classification accuracy of our CNN algo- 539

rithm was 88.27% and 75.73% in the object seen and object 540

unseen scenarios respectively. Future work will involve the 541

application of more robust deep learning approaches such as 542

RNN and CNN-LSTM to improve the accuracy in gesture 543

prediction applications using a larger dataset of participants. 544
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