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Power-Law Stretching of Associating Polymers in Steady-State Extensional Flow1

Charley Schaefer1, ∗ and Tom C. B. McLeish12

1Department of Physics, University of York, Heslington, York, YO10 5DD, UK3

(Dated: January 4, 2021)4

We present a tube model for the Brownian dynamics of associating polymers in extensional flow.
In linear response, the model confirms the analytical predictions for the sticky diffusivity by Leibler-
Rubinstein-Colby theory. Although a single-mode DEMG approximation accurately describes the
transient stretching of the polymers above a ‘sticky’ Weissenberg number (product of the strain
rate with the sticky-Rouse time), the pre-averaged model fails to capture a remarkable development
of a power-law distribution of stretch in steady-state extensional flow: while the mean stretch is
finite, the fluctuations in stretch may diverge. We present an analytical model that shows how
strong stochastic forcing drives the long tail of the distribution, gives rise to rare events of reaching
a threshold stretch, and constitutes a framework within which nucleation rates of flow-induced
crystallization may be understood in systems of associating polymers under flow. The model also
exemplifies a wide class of driven systems possessing strong, and scaling, fluctuations.

The natural or artificial production of high-5

performance polymeric materials requires precise control6

over flow-induced crystallization. This phenomenon7

involves in turn a highly non-trivial interdependence8

between the molecular level of bond-orientation-9

dependent nucleation, and the macroscopic level, where10

the temperature-dependent rheology generates stretch11

of entire chain segments [1–5]. Remarkably, nature12

has found a way to control robustly the flow-induced13

self-assembly of silk from an intrinsically disordered14

state (a solution of random-walk polymers) prior to15

forming high-performance fibers under flow at ambient16

conditions [6–14]. Key to achieving the final properties17

is that silk is processed in semi-dilute aqueous conditions18

[10], where nucleation can be induced through the19

stretch-induced disruption of the solvation layer [15].20

How sufficient polymer stretch can be achieved in a21

limited time under modest flow conditions[9, 16] has22

so far remained unexplained. An important clue has23

been the observation of strain hardening [9, 16], which24

in B. mori silk [16] turned out to be triggered by a25

small number of calcium bridges [14, 17] that act as26

‘sticky’ reversible intermolecular crosslinks akin to those27

in synthetic ‘sticky polymers’ [18–26]. For this class of28

molecules, a molecular understanding of the non-linear29

rheology and crystallization of sticky polymers has so30

far relied on computationally expensive (albeit coarse-31

grained to some degree) molecular dynamics simulations32

[5, 27–32]. Simpler molecular models coarse-grained at33

the level of entanglements, but able to capture the vital34

slow processes, remain absent.35

In the present work, we address this need by follow-36

ing the central idea by de Gennes and Edwards of re-37

placing the many-chain problem with a single chain in38

a tube-like confinement imposed by its environment of39

entanglements [33, 34], and solve the Brownian dynam-40

ics of the chain in 1D [35]. This approach is simple yet41

powerful, and has led to the development of widely ap-42

plied finite-element solvers [36–39], a physical explana-43

tion for the (apparent) 3.4 power dependence of the re-44

laxation time of polymer melts on the molecular-weight45

[40], and a comprehensive understanding of the rich non-46

linear rheology of (bimodal) polymer blends [41, 42]. In47

the spirit of other theory and modeling work on associat-48

ing polymers [38], in this letter we add a description for49

the stochastic attachment and detachment of associating50

monomers to the tubular environment developed for full51

non-linear flows. The model shares some structural simi-52

larities with early ‘transient network’ approaches to poly-53

mer melt and solution rheology [43], also demonstrating54

a hitherto unrecognised feature of those models.55

The starting point of our contribution is to consider56

a chain consisting of N Kuhn segments with length57

b, and Ze entanglements (hence, with tube diameter58

a = b(N/Ze)
1/2). The configuration of the chain is given59

by the spatial coordinates Ri of monomers i = 1, . . . , N60

along the curvilinear direction along the tube, which61

evolve with time according to the Langevin equation62

[35, 40, 41]63

ζ
∂Ri

∂t
=

(

3kBT

b2
∂2Ri

∂i2
+ fi

)

(1− pi) + ε̇ζRi, (1)

with ∂R/∂i = a at i = 1 and at i = N , ζ the monomeric64

friction, kBT the thermal energy, and fi a stochastic force65

given by the equipartition theorem66

〈fi(t)〉 = 0; 〈fi(t)fi′(t
′)〉 = 2kBTζδ(i

′ − i)δ(t′ − t). (2)

In the absence of stickers, this equation predicts the67

Rouse diffusivity [34]68

DR =
a2

3π2τeZe
=

kBT

ζN
(3)

and the variance of quiescent contour-length fluctuations69

〈|RN−R1|
2〉 = aZe/3. The strain rate, ε̇, is in one spatial70

dimension equivalent to the strain rate in the GLaMM71

model [41].72
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To model the binding and unbinding of monomers to73

the environment, we introduce a stochastic state vari-74

able pi(t), which takes values of either zero or unity for75

each monomer i, which represents the ‘open’ and ‘closed’76

states of a monomer, respectively. An open monomer i77

is unbound and is free to diffuse and respond to the drag78

exerted by the flow field, as well as to relax stress in ad-79

joining segments. If this monomer represents a sticker,80

it may close through either association or bond-swapping81

events [44, 45]. The effective closing rate, ki,close, sets the82

probability 1− exp(−ki,close∆t) = ki,close∆t+O(∆t2) of83

closing after a time interval ∆t for small ∆t. In every84

time step of our simulations a random number r ∈ [0, 1]85

is drawn and the sticker is closed if r < ki,close∆t ≪ 186

[37] and is now kinetically trapped by its environment87

and is unable to diffuse or to respond to local stress in88

the polymer. Hence, the closed sticker advects with the89

background flow. The sticker may re-open according to90

the same recipe as above, but now with an opening rate91

ki,open.92

In principle, for copolymers or polymers with in-93

tramolecular (secondary) structures, each monomer can94

have different opening and closing rates. Here, we con-95

sider polymers with N Kuhn segments of which Zs ≪ N96

are chemically identical stickers. The non-sticky seg-97

ments are always open, while the stickers may switch be-98

tween open and closed states with rates kclose and kopen.99

The opening rate is approximately constant if the force100

within the chain does not significantly decrease the ac-101

tivation energy for sticker dissociation. For instance, for102

silk the activation barrier is 8kBT ≈ 24 pN · nm [14] and103

instantaneous bond dissociation over 0.1 nm requires ap-104

proximately a force of 240 pN. To produce this force, f ,105

chain alignment alone is not enough (3kBT/a) while by106

Gaussian stretching [46]107

f = 3kBT (Rs −Rs,0)/R
2
s,0, (4)

it would be required to stretch the quiescent distance be-108

tween stickers, Rs,0 ≈ 9 nm, [47] to Rs ≈ 1800 nm (using109

the sticker- rather than the entanglement strand tacitly110

assumes Zs
>
∼ Ze). On the other hand, full extension111

of the substrand between stickers is already achieved at112

Rs ≈ 200 nm [48]: in practice, therefore it seems likely113

the destabilization of the stickers by the chain tension oc-114

curs, for silk, in the same regime where finite-extensibility115

effects emerge [49]. By approximating kopen as a con-116

stant, it can be related to the rheological sticker lifetime117

as τs = k−1
open [14, 19, 26, 28–31], and the closing rate118

is given by kclose = kopenp/(1 − p), with p the time- or119

ensemble-averaged fraction of closed stickers. Hence, we120

will treat p and τs as free model parameters [19].121

We have benchmarked our model in the absence of122

flow using the Likhtman-McLeish model for linear non-123

sticky polymers[35] (this linear rheological response is124

not shown here) and using the sticky-Rouse diffusivity,125

DSR = DSR(Ze, τe, Zs, τs, p) as calculated by Leibler et126
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FIG. 1. Comparison between the stretch ratio λ of a sticky
polymer (Ze = Zs = 10, τs = 104τe, p = 0.95, Zs = 10)
against time t in units of the sticky Rouse time τSR at a range
of flow rates from ε̇ = 0.056τ−1

SR to 22.3τ−1
SR in logarithmic

steps. The sticky Rouse time is τSR = [DR/DSR]τR with DR

the bare Rouse diffusivity, τR = τeZ
2
e the bare Rouse time

and DSR the sticky diffusivity (see inset). In the main panel,
the symbols are obtained by averaging over five Brownian
dynamics simulations with different random number seeds;
the lines represent the single-mode model in Eq. (5). The inset
shows consistence of the simulated sticky-Rouse diffusivity
(symbols; averaged over 25 random number seeds) with the
sticky-reptation model (lines) of Leibler et al. [19].

al. [19] (see the inset of Figure 1). For the non-linear127

dynamics of sticky polymers, so far no comparisons be-128

tween analytical predictions with simulations or experi-129

ments have been reported. The first strategy to address130

this is to evaluate how well a DEMG-type single-mode131

approximation performs [49], with chain friction renor-132

malized by averaging over the stochastic sticker dynam-133

ics:134

dλ

dt
= ε̇λ+

1

τSR
(1− λ) (5)

where the stretch ratio, λ ≡ (RN −R1)/Ze, is presumed135

to be uniform over the backbone of the chain. The exten-136

sion rate is proportional to the stretch ratio itself. The137

retraction rate is determined by (1 − λ) (in the absence138

of flow, λ = 1 at steady state) and by the sticky-Rouse139

time, τSR ≡ [DR/DSR]τS. In the main graph of Figure 1,140

we present comparison between this simple approxima-141

tion and our simulations, (the approximations inherent142

in the DEMG require that the simulation time be divided143

by a factor 1.2 to result in the close agreement shown).144

This confirms that the intuitive ‘sticky Weissenberg num-145

ber’ for the stretch transition is Wi = ε̇τSR. For Wi > 1146

an exponential runaway stretch emerges as expected. In147

contrast to non-sticky polymers, however, we will argue148

that the stress and fluctuation in stretch may diverge149

below this stretch transition when the pre-averaging ap-150

proximation inherent in DEMG is avoided.151
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While non-sticky polymers in steady state show a152

Gaussian stretch distribution with a width that is de-153

termined by the (effective) number of entanglements, we154

have observed rather large stretch fluctuations for the155

sticky polymer at extension rates of the order of, but be-156

low, the critical value. Indeed, the symbols in Figure 1157

are averaged over five simulations for a chain with 10158

stickers which are on average closed a fraction p = 0.95159

of time. For simulations with p < 0.9 these fluctuations160

become much larger and difficult to distinguish graphi-161

cally. Indeed, while the mean stretch is finite, the fluctu-162

ations in stretch diverge above a certain flow rate below163

the stretch transition.164

For three of the flow rates shown in Figure 1 we have165

plotted the stretch distribution, P (λ), in Figure 2. For166

small flow rates, the stretch distribution is Gaussian,167

lnP (λ) ∝ (1−λ)2 (solid curves), as in the quiescent state.168

However, for increased flow rates deviations emerge in the169

high-λ tail of the distribution. Importantly, the polymer170

stretch may resemble the mean stretch for long times171

compared to the sticky-Rouse time, and only in ‘rare172

events’ the stickers may remain closed sufficiently long173

for the stretch to reach deep into the tail of the distribu-174

tion (see inset).175
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FIG. 2. The steady-state probability distribution, P (λ),
is plotted against the stretch ratio, λ. The symbols are ob-
tained from the steady-state simulations of Fig. 1 at the flow
rates (ε̇τSR = 0.446, 0.668 and 0.780; the curves are Gaussian
fits. For an increasing flow rate, the high-stretch tail is no
longer Gaussian but becomes a power law, P (λ) ∝ λ−ν . The
inset shows the stretch ratio against time for ε̇τSR = 0.780
and visualizes how this distribution includes ‘rare events’ of
enormous chain stretch. For a sufficiently large flow rate, ν
decreases. If ν > 2, the mean value of λ is finite (as it should
in steady state); however, if also ν ≤ 3, the fluctuations in
stretch, characterized by the expectation value of λ2, diverge.

In the following, we will explore the problem analyti-
cally using a ‘sticky dumbbell model’ to explore and clar-
ify the underlying causes of the power-law tail in the
stretch distribution, and explore how it can be tuned by
the flow rate. This minimal model that captures the

essential physics is equivalent to a single polymer strand
either attached to the bulk deformation at both ends (the
closed state) or free to relax (the open state). The rate
by which the polymer switches between the two states
is given by the usual opening and closing rates. We can
now address the development of stretch under extensional
flow through a pair of coupled partial differential equa-
tions for the time-dependent stretch distributions Po(t, λ)
and Pc(t, λ) for each state using the master equation

∂Pc

∂t
= −

∂

∂λ
[Pcε̇λ]− kopenPc − kclosePo,

∂Po

∂t
= −

∂

∂λ

[

Po

(

ε̇λ+
1− λ

τR

)]

+ kopenPc − kclosePo.

(6)

Note that this evolution equation invokes a single-mode176

approximation and ignores thermal fluctuations: the177

stretch distribution emerges from the coupling between178

a closed state in which the polymer is stretched and the179

open state in which it can retract. Under strong flow180

conditions, the effective driving noise is completely dom-181

inated by the stochastic state-switching, with thermal182

noise negligible.183
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FIG. 3. The power-law stretch distribution, P (λ) ∝ λ−ν

for large λ, observed in Fig. 2 is replicated analytically in a
sticky dumbbell model for a sticky polymer (Ze = 10, p =
0.9, τs = 1000τe), which has two stickers near the end of the
chain that are simultaneously either open or closed (lines).
The dashed curve is the Gaussian stretch distribution under
quiescent conditions. In linear steps, the flow rate is increased
up to ε̇τR = 0.05. The symbols are obtained in simulations
with 2, 6, 12 and 36 beads (from red to light blue). For small
flow rates, where ν < 3, the simulated power-law tails of P (λ)
(symbols) are in agreement with Eq. (8). The inset shows the
transient behavior of the simulation with ε̇τR = 0.05.

We calculate the steady-state stretch distribution at184

strong stretch by setting the left-hand side of Eq. (6) to185

zero and taking λ ≫ 1. The result can be solved ana-186

lytically since in these conditions the differential system187

becomes homogeneous. We therefore find the power-law188
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relation189

P (λ) ∝ λ−ν , (7)

with the exponent given in terms of the three dimension-190

less parameters of the system, p, ε̇τR, τR/τs by191

ν = 1 +
1

1− ε̇τR

p

1− p

τR
τs

−
1

ε̇τs
. (8)

We compare this power-law to our sticky dumbbell simu-192

lations in Figure 3. In passing, we note that this model193

also provides an example of one of a family of driven,194

stochastic, systems together referred to as ‘multifractals’195

[50] in which a divergent and scaling structure of fluctua-196

tions arises, not just at a single critical point, but within197

a large region of state space, and with a universal critical198

exponent replaced by a family, dependent on the degree199

of forcing.200

For sufficiently small flow rates, we find a reasonable201

agreement between our multibead simulations and the202

analytical approximation for the simple sticky dumbbell203

(under these conditions, ν > 3). While the simula-204

tion for chains with just two beads (i.e., with a single205

Rouse mode) agrees well with the approximate theory,206

the higher Rouse modes in the multibead chain provide207

an additional relaxation mechanism for the retraction of208

the chain ends alike contour-length fluctuations. Hence,209

the single-mode approximation slightly overestimates the210

width of the stretch distribution of a real chain (i.e., a211

multibead chain). The discrepancy between the single-212

mode and multibead chain becomes apparent if the flow213

rates are high for the exponent ν to approach or go be-214

yond a value 3 (this occurs at (1 − p)ε̇τR ≈ τR/(2τs)).215

This is not a coincidence: if ν = 3 the magnitude of the216

fluctuations diverge, 〈λ2〉 → ∞. Although the fluctua-217

tions diverge for ν = 3, the mean 〈λ〉 remains finite as218

long as ν ≤ 2 (the equality holds approximately when219

(1 − p)ε̇τR ≈ τR/τs). For even larger flow rates, i.e., for220

ν ≤ 1 (at (1− p)ε̇τs = 1) the stretch distribution can no221

longer be normalized and true runaway stretch emerges.222

These various regimes are displayed in Figure 4 in terms223

of the dimensionless parameters of the system. Note that224

the stress is σ ∝ (1 − λ)2 and the tail of the stress dis-225

tribution is P (σ) ∝ λ−ν/2: the mean stress diverges for226

ν ≤ 4 and its variance diverges for ν ≤ 6.227

The single-mode dumbbell model clarifies the route228

through which the divergent fluctuations arise. Crucially,229

when a stretched strand is freed from the network, it may230

not relax entirely before reattachment (this effect is ig-231

nored in classical treatments of transient network models,232

which in consequence overlook the strong stochastic fluc-233

tuations they physically imply). Such continuous inter-234

change between convecting and relaxing strands, together235

with the occurrence of longer-than-average attachment236

times for some segments, allow the exploration of very237

large chain stretches in steady-state.238

2

5(1 − p2)

0
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steady state

τ s
/τ

R
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d
ivergin
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FIG. 4. State diagram of a sticky dumbbell. For a short
sticker lifetime, polymer stretching takes place if the Weis-
senberg number, (1 − p)ε̇τR, is larger than unity. p is the
time-averaged fraction of closed stickers and τR is the bare
Rouse time. For a finite sticker lifetime, the mean and the
variance of the stress, σ, and the stretch, λ, diverge in differ-
ent regimes. The curves are given by Eq. 8 for ν = 2, 3, 4, 6
as discussed in the main text.

To illustrate the potential consequences of this effect,239

we consider nucleation rates in steady-state extensional240

flow, assuming that polymer crystal phase may nucleate241

around chains beyond a critical stretch ratio λ∗ [1]. As-242

suming that the chain is relaxed prior to sticker closing at243

time t = 0, its stretch ratio develops as λ(t) = exp(ε̇t) un-244

til it opens at a time τopen. This time is drawn from the245

probability distribution p(τopen) = τ−1
s exp(−τopen/τs),246

so the probability that the critical stretch is reached is247

p∗ = λ
−1/ε̇τs
∗ . The probability that λ∗ is not reached af-248

ter n attempts is (1 − p∗)
n, and therefore the expected249

number of attempts needed is250

〈n〉 =

∑

∞

n=1 n(1− p∗)
n

∑

∞

n=1(1− p∗)n
= λ

1/(ε̇τs)
∗ . (9)

An attempt occurs, on average, after time intervals251

1/kopen + 1/kclose = τs/p. If the number density252

of chains is ρ, then combining these results gives an253

extension-rate-dependent nucleation rate per volume J =254

[ρp/τs]λ
−1/(ε̇τs)
∗ . We expect that the form255

ln J = A−
B

ε̇τs
, (10)

with A and B flow-independent coefficients, carries over256

to the multi-sticker chain provided that the substrand257

between stickers is sufficiently long and τs can be treated258

as a constant (see our discussion on Eq. (4)). This consti-259

tutes a first prediction for the rate of flow-induced crys-260

tallization of associating polymers in steady-state exten-261

sional flow, which along with the prediction of strong262

stretch fluctuations will help the interpretation of the263

(noisy) non-linear rheology of silk [9, 16], e.g., using con-264

focal microscopy [51] and controlled variations of ionic265
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content in the solution [52], and thereby aid the develop-266

ment of its synthetic counterparts [15].267

In conclusion, we have numerically solved the 1D268

stochastic Langevin equation of an aligned entangled269

sticky polymer in an effective medium and in extensional270

flow. We show that this computationally inexpen-271

sive simulation method captures the combined polymer272

physics of reptation, contour-length-fluctuations and re-273

sponse in extensional flow, associating stickers. Crucially,274

it does not pre-average any fluctuations in chain stretch,275

and predicts that in steady-state flow a small number of276

chains (rather than all of them) stretches to a large ex-277

tent: this seems a promising energy-efficient strategy to278

trigger the flow-induced crystallisation of polymers. For279

quantitatively accurate simulations, it will be essential to280

include a description for finite chain extensibility, as well281

as a description for the chain stretch reducing the sticker282

binding energy and hence their lifetime.283
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