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Societal Impact Statement

Large areas of tropical forest are degraded. While global tree cover is being mapped 
with increasing accuracy from space, much less is known about the quality of that tree 



     |  269AHRENDS Et Al.

Funding information

Critical Ecosystem Partnership Fund; 
Darwin Initiative, Grant/Award Number: 
25- 019; Marie Curie Actions, Grant/
Award Number: MEXT- CT- 2004- 517098; 
Global Environment Facility; Danish 
International Development Agency; Scottish 
Government’s Rural and Environment 
Science and Analytical Services Division; 
Finnish International Development Agency; 
Leverhulme Trust

cover. Here we present a field protocol for rapid assessments of forest condition. Using 
extensive field data from Tanzania, we show that a focus on remotely- sensed deforesta-
tion would not detect significant reductions in forest quality. Radar- based remote sens-
ing of degradation had good agreement with the ground data, but the ground surveys 
provided more insights into the nature and drivers of degradation. We recommend the 
combined use of rapid field assessments and remote sensing to provide an early warn-
ing, and to allow timely and appropriately targeted conservation and policy responses.
Summary

• Tropical forest degradation is widely recognised as a driver of biodiversity loss and 
a major source of carbon emissions. However, in contrast to deforestation, more 
gradual changes from degradation are challenging to detect, quantify and monitor. 
Here, we present a field protocol for rapid, area- standardised quantifications of 
forest condition, which can also be implemented by non- specialists. Using the ex-
ample of threatened high- biodiversity forests in Tanzania, we analyse and predict 
degradation based on this method. We also compare the field data to optical and 
radar remote- sensing datasets, thereby conducting a large- scale, independent 
test of the ability of these products to map degradation in East Africa from space.

• Our field data consist of 551 ‘degradation’ transects collected between 1996 
and 2010, covering >600 ha across 86 forests in the Eastern Arc Mountains and 
coastal forests.

• Degradation was widespread, with over one- third of the study forests— mostly 
protected areas— having more than 10% of their trees cut. Commonly used opti-
cal remote- sensing maps of complete tree cover loss only detected severe im-
pacts (≥25% of trees cut), that is, a focus on remotely- sensed deforestation would 
have significantly underestimated carbon emissions and declines in forest quality. 
Radar- based maps detected even low impacts (<5% of trees cut) in ~90% of cases. 
The field data additionally differentiated types and drivers of harvesting, with spa-
tial patterns suggesting that logging and charcoal production were mainly driven 
by demand from major cities.

• Rapid degradation surveys and radar remote sensing can provide an early warning 
and guide appropriate conservation and policy responses. This is particularly im-
portant in areas where forest degradation is more widespread than deforestation, 
such as in eastern and southern Africa.

K E Y W O R D S

biodiversity conservation, carbon emissions, community- based forest management, East 
Africa, global forest watch, human disturbance, synthetic aperture radar, village land forest 
reserves

1  | INTRODUC TION

Large areas of tropical forest are degraded through human impacts 
such as overexploitation, fragmentation, pollution, exotic species 
invasion and fire (Sloan & Sayer, 2015). While there is no globally 
agreed definition for forest degradation, it can be broadly defined 
as changes to a forest stand resulting in the long- term reduction 

of particular attributes and functions such as biodiversity, and 
the potential supply of goods and services (FAO, 2011; Ghazoul 
et al., 2015). Deforestation— the complete replacement of forest by 
another land use— is easier to define, detect and monitor, and con-
sequently has been the focus of global policy development (Sasaki & 
Putz, 2009). As a result, the impacts of forest degradation on biodi-
versity and carbon balances are comparatively poorly understood, 
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but they are likely to be substantial (Alroy, 2017). For instance, re-
cent studies have shown that carbon emissions from forest degrada-
tion may have been underestimated and could account for as much 
as 25%– 69% of the combined gross carbon losses due to deforesta-
tion and degradation in the tropics (Baccini et al., 2017; Berenguer 
et al., 2014; Pearson et al., 2017).

Significant progress has been made with measuring deforesta-
tion and forest degradation from space (Woodcock et al., 2020). 
Changes in tree cover can now be monitored at high spatial and 
temporal resolution, providing policy makers and conservation plan-
ners with an unprecedented wealth of data to guide interventions 
(Blackman, 2013; DeVries et al., 2015; Fuller, 2006). The technology 
is also increasingly available to non- specialists (Asner, 2009). While 
there are many easily accessible datasets to assist national and 
global monitoring of forest cover (e.g. Hansen et al., 2013; Miettinen 
et al., 2011; Sexton et al., 2013), remotely- sensed forest degradation 
data are sparser and more challenging to obtain. At a country level, 
quantitative assessments of degradation are often lacking (Romijn 
et al., 2015). Radar data hold particular promise as they overcome 
the challenges presented by cloud cover and variable phenology, and 
they correlate with changes in biomass (McNicol et al., 2018; Mitchell 
et al., 2017; Ryan et al., 2012). However, using such data sources for 
detecting and quantifying degradation from space remains limited 
by the extent to which degradation is associated with a reduction in 
canopy cover and/or biomass (Ryan et al., 2012). Airborne radar and 
light detection and ranging (LiDAR; Ene et al. 2017), as well as the 
use of unmanned aerial vehicles (Baena et al., 2018; Ota et al., 2019) 
can provide higher resolution data, but these technologies require 
expertise, lack global coverage and historical archives, and can be 
prohibitively expensive. Ground- based sensing methods such as 
hemispherical photographs (Fournier & Hall, 2017) and terrestrial 
LiDAR (Decuyper et al., 2018) used to quantify stand structural at-
tributes also hold promise, but again, their implementation requires 
expertise.

At the other end of the spectrum, there are detailed field assess-
ments (Thompson et al., 2013), such as permanent sample plots for 
assessing changes in forest vegetation. Collecting data on species, 
stem diameter, height, crown cover and various biotic and abiotic 
parameters, they are an extremely important tool in biodiversity and 
environmental research (Baker et al., 2017), and are used to locally 
characterise biodiversity, growing stock, biomass, carbon, ecosys-
tem function and impacts of degradation. However, permanent plots 
are also labour intensive and time consuming to set up, and survey-
ing them requires expertise. Consequently, few countries conduct 
exhaustive plot- based inventories as part of their national forest re-
porting, and even fewer consistently monitor them (FAO, 2011). In 
addition, while permanent plots are essential to understand the im-

pacts of degradation, they are often not the most effective method 
to understand the extent and patterns of degradation itself. Unless 
they are systematically placed to cover an entire area at high density, 
they rarely capture the breadth of degrading activities that occur. 
On the contrary— the presence of researchers and permanent tags 
on trees may deter illegal activities. Plots are also often placed in a 

stratified random or subjective fashion, that is, purposefully located 
in pre- selected areas viewed as representative of a given vegeta-
tion type and/or level of disturbance. In addition, as degradation is 
generally not the main focus, it is often not quantified in a robustly 
comparable and systematic way.

Consequently, while countries increasingly monitor wall- to- wall 
forest cover change using remote sensing, and they also have some 
inventory data, they still lack representative quantitative data on 
forest degradation (Romijn et al., 2015). Difficulties with monitor-
ing forest degradation and associated gaps in policy interventions 
create opportunities for unregulated and/or illegal logging and 
corruption. There can be a tendency to shift the blame for forest 
loss among actors, whereby existing prejudice against already mar-
ginalised groups such as farmers practising shifting cultivation or 
charcoal producers may be reinforced (Hosonuma et al., 2012; Ryan 
et al., 2014). Knowledge of which forests are degraded, where deg-
radation is likely to spread to next, and what the main drivers are is 
vital for formulating appropriately targeted policy interventions and 
management.

Here we present a framework protocol for rapid area- 
standardised assessments of forest condition. The protocol sits in 
the middle of the spectrum between detailed ground surveys and re-
mote sensing, and its implementation does not require professional 
training. The protocol assesses human use and disturbance, which 
depending on their levels and the forest type may lead to a deterio-
ration of stocks and services, and thus degradation.

Using the example of threatened and highly biodiverse forests in 
Tanzania, we investigate:

1. how ground data collected using this protocol compare to 
remotely- sensed datasets; specifically, radar- based maps of 
biomass change (McNicol et al., 2018) and commonly used 
maps of complete tree cover loss (which underpin ‘Global Forest 
Watch’; Hansen et al., 2013);

2. the value of ground data for understanding and predicting degra-
dation in combination with spatially explicit models (e.g. whether 
data collected using this approach in 1996– 2010 could have pre-
dicted human impacts in 2020).

The overall aim is to assess whether these rapid assessments 
are a useful addition to remote sensing and detailed vegetation as-
sessments in (permanent) plots in informing conservation policy and 
practice.

2  | METHODS

2.1 | Protocol overview

The method presented here rapidly quantifies standing woody re-
sources and resource extraction in forests with a view to gauging for-
est condition (Frontier Tanzania, 2001). While the protocol is flexible 
and can be adjusted to the target vegetation and area, methodological 
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details naturally need to be standardised to facilitate comparisons. The 
assessment is done along transects, which typically have a width of 
10 m. Their length is variable and can be adjusted to the target vegeta-
tion type and forest size. The transects are located in either a random, 
stratified random or systematic fashion, and should cover the forest 
edge as well as the interior. Within each transect, all trees, as well as 
stumps and other signs of human use (such as charcoal production 
or clearance for agriculture) are recorded. The minimum assessment 
threshold is typically 5 cm diameter at breast height (dbh; measured 
1.3 m above ground), but this can be adjusted to the type of vegeta-
tion being surveyed. In its simplest form, the method focusses on as-
sessing the number of cut trees versus those that are (left) standing or 
died naturally. Size categories can be added to distinguish cutting for 
different end uses. Depending on the aims of the sampling, recording 
can consist of simple counts within categories, or include more de-
tailed information such as diameter (over bark), height, species iden-
tification and voucher collection. Identifying at least the commonly 
used timber species will indicate resource preference and hint at the 
likely nature of the market behind that— for example, whether trees 
are cut for local use or international export (Furukawa et al., 2011) 
(noting that timber trade names often refer to collectives of species 
and/or an entire genus, i.e. overharvesting of individual species can 
be masked when using trade names only). However, the time spent 
collecting, measuring and identifying trades off against the primary 
aim of the method— to rapidly cover many areas, often with the help 
of non- specialists, in order to obtain reasonably reliable estimates of 
degradation and to support the identification of areas in need of con-
servation interventions. A detailed protocol and a recommended set 
of core measurements are provided as part of the Table S4.

2.2 | Example application

2.2.1 | Study area

The study area (see also Methods S1) spans the Eastern Arc 
Mountains and part of the coastal forests, both of which are of global 
importance for biodiversity conservation due to high levels of local-
ised endemism (Mittermeier et al., 2011; Olson & Dinerstein, 2002; 
Stattersfield, 1998). These forest systems also provide critical eco-
system services to local communities and the nation as a whole 
(Ashagre et al., 2018; Fisher et al., 2011; Schaafsma et al., 2014; 
Swetnam et al., 2011). In southern Africa (here defined as roughly 
−1° to −34° latitude), the livelihoods of an estimated 150 million peo-
ple are thought to be dependent on the goods and services provided 
by woodlands and forests (Ryan et al., 2016). Rapid urbanisation and 
population growth mean that demand for wood products is substan-
tial and increasing, with fuel wood being the main source of energy 
for over 90% of the population (Bailis et al., 2005). The Tanzanian 
forestry sector— both formal and informal— is an important source of 
income, GDP and employment (Doggart et al., 2020; United Republic 
of Tanzania, 2001). While the trade in wood products is often small- 
scale and livelihood driven (Cavanagh et al., 2015), wood is also 

exported to generate foreign revenue (Lukumbuzya & Sianga, 2017). 
Exact figures are difficult to obtain (Lukumbuzya & Sianga, 2017), 
but although Tanzania has a comprehensive legal framework for the 
conservation and management of forest resources, and although the 
forests studied here mostly occur in protected areas, overharvesting 
is likely to be widespread (Milledge et al., 2007). An ability to monitor 
and to identify drivers and patterns of forest loss and degradation is 
vital to the conservation of these forest systems, and to ensure the 
long- term provision of forest resources for sustainable livelihoods.

2.2.2 | Field data

The data used for this example application were collected between 
1996 and 2010 (median 2004– 2005) by a wide range of institutions 
and individual collectors (see Acknowledgements). In total, there 
were 551 transects of 10 m width with a combined length of 609 km 
from 86 forests. The transects were placed in either a systematic 
or stratified random fashion to sample both easily accessible and 
remote areas (Figure 1a). All transects recorded standing, naturally 
dead and cut trees in two size categories: ‘poles’ (slender stems 
frequently used in house construction; 5 to 15 cm dbh), and ‘trees’ 
(>15 cm dbh). In total 430,116 stems and stumps were recorded. 
Stumps were classed into two age categories: recent (generally cut 
≤6 months prior to observation) or old (>6 months), and records 
were made of all other types of extractive activities such as the 
presence of charcoal kilns. A small subset of transects (n = 45 cover-
ing 18.75 ha in the coastal forests; Ahrends et al., 2010) made more 
detailed assessments, including exact dbh measurements and spe-
cies identification. For spatially explicit analyses (comparison with 
remotely- sensed datasets and modelling) we excluded 11 transects 
where there was a mismatch in recorded length and/or locality, and 
the length or locality inferred from the transects’ GPS coordinates.

2.2.3 | Comparison with remotely- sensed datasets

We compared the ground data against two remotely- sensed datasets:

1. widely used maps for tree cover loss produced by the initiative 
‘Global Forest Watch’ (Hansen et al., 2013), hereafter GFW, 
which are based on Landsat data and assess complete canopy 
loss at an approximate resolution of 28 m on the ground;

2. a radar- based dataset (McNicol et al., 2018) (hereafter MN18), 
which uses a probabilistic approach to map deforestation and 
degradation in southern Africa between 2007 and 2010 based 
on L- Band radar from ALOS- PALSAR; MN18 aggregated the data 
from a resolution of 25 m to 100 m. We focussed on cells with a 
probability ≥0.5 of degradation or deforestation.

For both comparisons we looked at buffers of up to 100 m around 
transects. The ground data were restricted to the relevant period of 
satellite data acquisition (2000– 2005 for comparisons to GFW, and 
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2007– 2010 for comparisons to GFW and MN18). Only ‘recent’ stumps 
(i.e. stumps no older than 6 months) were included. Degradation 
counted as ‘detected’ if the remotely- sensed data reported a pixel as 
degraded or deforested anywhere within that buffer. Here we focus on 
true positives only. Due to widespread harvesting, it was not possible 
to assess the rate of false positives. Specificity (the true negative rate) 
however has equally important implications for the practical applica-
tion of these datasets and should ideally be assessed in future studies.

2.2.4 | Modelling and predicting degradation

We used a spatially explicit modelling approach to investigate which 
factors were most influential in explaining the spatial patterns of 
degradation, and whether the spread was predictable. Models were 
developed using Boosted Regression Trees— an ensemble method, 
which combines regression trees and boosting, and fits multiple sim-
ple regression trees in a forward iterative fashion. The algorithm is 

able to fit complex non- linear patterns and interactions, and han-
dles different type of predictor variables (Elith et al., 2008). We fo-
cussed on three dependent variables: (a) density of charcoal kilns, 
(b) percentage of poles (stems 5– 15 cm dbh) cut and (c) percentage 
of trees (>15 cm dbh) cut. A transect constituted an individual data 
point. For modelling the percentage of trees cut we discarded tran-
sects with an overall tree density <50 ha−1 and no reported logging 
(n = 25), assuming that in these areas there were hardly any trees 
to be cut in the first place. We considered 15 candidate predictors 
representative of physical accessibility, likely demand, availability 
of resources, forest management type and tenure (Tables S1 and 
S2). For each dependent variable we tested eight models with dif-
ferent (pre- selected) combinations of predictors (Table S3), includ-
ing a correction for spatial autocorrelation. The final models were 
selected based on model performance when validated against test 
data (cross- validation correlations on up to 25% of randomly set 
aside test data) and maximum parsimony in terms of the number 
of predictors used (Table S4). Further details on model settings, 

F I G U R E  1   Transects and field data. (a) 
The location of the disturbance transects 
and percent tree cover according to 
Hansen et al. (2013). Note that this 
includes tree crops, for example cashew 
nut, explaining the large areas of tree 
cover outside reserves (denoted by thin 
black lines). (b– d) Kernel density maps 
of different forest condition measures: 
percentage of poles cut (5– 15 cm dbh) 
(b), larger trees cut (>15 cm dbh) (c), and 
the density of charcoal kilns (d). The bold 
black line indicates the area to which 
models were extrapolated (see overview 
map; in a– d only partly visible) 
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parameterisation and performance are summarised in Tables S3– 
S5, and software notes are provided in Methods S2. In order to test 
the predictive ability of the models we extrapolated them at 1 km 
resolution for all ~12,000 km2 of forest reserves in the study area, 
using predictor values for 2020 (from scenarios developed in 2010; 
Swetnam et al. 2011). These scenarios (broadly correctly) predicted 
population to increase at a rate of 3% annually, but they are con-
servative in that they did not make predictions around infrastructure 
expansion. The predictions were then compared to actual tree cover 
losses recorded by GFW and local reports on degradation.

3  | RESULTS

3.1 | Observed rates of tree cutting

Tree cutting (here ≥5 cm dbh; see Notes S1 for trees >15 cm dbh) 
occurred in all but one forest between 1996 and 2010. Over one 
third of forests surveyed during this time had at least 10% of trees 
≥5 cm dbh cut (mean among transects). Cutting levels were highly 
variable across forests, ranging from 0% to 81% with a mean of 10% 
(±15% SD) and a median of 5% (±6% MAD [median absolute devia-
tion]). The availability of standing trees was greatly reduced in some 
forests, being as low as <100 stems ≥5 cm dbh per ha in some of the 
most degraded forests (as opposed to >1,000 in some of the least 
degraded forests, and a mean stem density of 849 ± 89 SE). Losses 
were particularly severe in the lowland coastal forests (mean across 
forests 20% ±28% SD; median 8% ±8% MAD), which are in direct 
vicinity of Dar es Salaam, a major centre of demand. Cutting levels 
for larger trees were similar to those of trees ≥5 cm dbh (Notes S1).

While the above statistics represent tree cutting over several 
years (the lifetime of a stump), the density of recent stumps can be 
seen as indicative of offtake rates at a given time (with a recent stump 
generally being 6 months or maximally 1 year old). On average (among 
forests) there were 3 (±0.74 SE) recent stumps >15 cm dbh per ha be-
tween 1996 and 2010. If logging rates were thus three to six trees per 
ha and year, then some 2.2– 4.3 million trees >15 cm dbh would have 
been felled annually across the forest reserves in the study area (here 
restricted to ~7,200 km2 with tree cover ≥50% according to GFW). 
Using a very simple above- ground tree biomass function (Chave 
et al., 2001; FAO, 2011) (which does not assume any knowledge of spe-
cies or stand- level wood densities) this would be equivalent to a gross 
carbon loss of 0.41– 0.82 TgC per year if the cut trees were 20 cm dbh. 
However, establishing above- ground carbon is extremely challenging 
without detailed dbh measurements and at least approximate wood 
density estimates. In addition, recent tree cutting was highly spatially 
and temporally clustered. While our data thus did not allow for a ro-
bust quantification of annual carbon losses between 1996 and 2010, 
they did however indicate that losses were substantial. In addition, 
there was evidence for an increase in cutting rates over the 14 years 
covered by the data— from less than one tree per ha and year (approxi-
mately) pre 2000 (0.4 ± 0.36 SE), to around three trees per ha and year 
between 2000 and 2005 (3.3 ± 1 SE), and around four trees per ha and 

year post 2005 (4 ± 1.2 SE). Out of 16 forests that have been visited 
twice (in ~2004 and ~2010) 13 had a greater density (and 14 a larger 
percentage) of recently cut trees in 2010 (Figure S1).

A subset of transects (n = 45 covering 18.75 ha in the coastal for-
ests; Ahrends et al., 2010) with more detailed assessments allowed 
for the computation of above- ground tree biomass based on exact 
dbh and species or genus level wood specific gravity (extracted from 
Chave et al. 2009). Following equation 7 from Chave et al. (2014) and 
assuming a carbon fraction of dry matter of 0.5 we estimate that the 
area lost 8.9 MgC per ha due to cutting (over the lifetime of a stump), 
and 1.1 MgC in the year of the survey (2004/2005). Reducing the 
data to the type of information that would be available with the 
simpler counting methodology (and assuming that poles measure 
10 cm dbh and trees 20 cm dbh) we calculate a loss of 8.1 MgC per 
ha using Chave et al. (2001). Figures for standing carbon are 28.4 
and 35.3 MgC per ha, respectively. Thus, (a) the area lost a significant 
amount of standing carbon due to cutting (24% over the lifetime of 
a stump, and 4% in the survey year, which was characterised by a 
logging boom; Milledge et al., 2007); and (b) while the simple rapid 
counting methodology can provide rough carbon estimates, more 
detailed dbh measurements and the inclusion of at least stand- level 
averages for wood- specific gravity will considerably enhance the ac-
curacy of these estimates.

3.2 | Comparison with remotely- sensed datasets

There was broad agreement between the spatial patterns of tree 
(cover) losses recorded in the field and by GFW. However, as one 
would expect, more subtle degradation was not picked up by this 
dataset focusing on complete tree cover loss in ~28 × 28 m cells. 
GFW reported tree cover losses for only 20% of the transects that 
recorded new tree cutting between 2000 and 2005. The larger the 
proportion of cut trees the more often GFW detected loss (Table 1). 
A very similar picture emerged when looking at a lower dbh thresh-
old of ≥5 cm dbh (Table S6).

To illustrate this with specific examples, Figure 2 shows a com-
parison of ground data and remotely- sensed data for three coastal 
reserves visited in 2004. While GFW detected some canopy losses 
between 2000 and 2005 (affecting 2% of the area with ≥50% canopy 
cover in 2000), degradation on the ground was already severe (with 
a mean of 11 ± 7 SD recently cut trees ≥5 cm dbh, and 10 ± 7 SD 

charcoal pits per ha). GFW record large losses from these areas in 
the following years (26% of the area with ≥50% canopy cover in 
2000), confirming the early warning signals provided by the ground 
data. Indeed, a field survey in 2016 estimated that, since 2004, the 
density of trees in these areas had halved, with timber tree densi-
ties having dropped threefold, and above- ground carbon being re-
duced by 40% (Ahrends et al., 2020). In one of the reserves (Vikindu) 
large areas of forest had entirely disappeared by 2016 (Figure 2l). 
The GFW data did not reflect Vikindu's severe state of degradation 
in 2004 (when much of the natural vegetation had been replaced 
by Eucalyptus, and widespread logging and charcoal production was 
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occurring), nor the disappearance of large parts of the remaining for-
est by 2016. Less than 1% tree cover loss was detected by GFW 
between 2000 and 2005, and ‘only’ another 15% loss between 2006 
and 2018 (1% and 18% of tree cover ≥50%, respectively).

The radar- based maps on the other hand did detect subtle 
changes in forest condition. MN18 classed at least one pixel as either 
degraded or deforested in 81% of transects that recorded losses be-
tween 2007 and 2010, whereas GFW recorded losses for less than a 

Trees >15 cm dbh recently 

cut (2000– 2005) N transects

N transects with ≥1 pixel recording tree cover 
loss between 2000 and 2005 according to 

GFW

100- m buffer

50- m 

buffer

28- m 

buffer

>0% 88 31 (35%) 23 (26%) 18 (20%)

≥1% 55 20 (36%) 15 (27%) 11 (20%)

≥5% 18 12 (67%) 9 (50%) 5 (28%)

≥10% 9 7 (78%) 5 (56%) 2 (22%)

≥25% 2 2 (100%) 1 (50%) 1 (50%)

≥50% 1 1 (100%) 1 (100%) 1 (100%)

TA B L E  1   Comparison of on- the- 
ground losses and tree cover losses 
recorded by Hansen et al. (2013; GFW) 
between 2000 and 2005 (with a spatial 
resolution of ~28 m)

F I G U R E  2   Comparison of ground data 
collected in 2004 and maps generated 
by Hansen et al. (2013; GFW) for three 
coastal reserves: Pugu (a– c), Ruvu South 
(d– g), and Vikindu (h– l). Their location 
is shown in the overview map (m). Left 
panels (a), (d) and (h) show the location 
of transects (colours reflect rates of new 
cutting). The dark green background is 
tree cover ≥50% in 2000 reported by 
GFW. Black lines are reserve outlines. 
Purple areas have experienced tree cover 
loss between 2000 and 2005 according to 
GFW. Much of the degradation recorded 
on the ground (e.g. see pictures b, e, f, 
i, j taken in 2004) is not reflected in the 
remotely- sensed deforestation maps. 
The GFW maps register larger tree cover 
losses in subsequent years (2006– 2018; 
right panels (c), (g) and (k)), confirming the 
early warning signal set by the ground 
data (e.g. l) 

Pugu Forest Reserve 

(a) Transects (see legend) and 
tree cover loss recorded by 
GFW for 2000-2005 (purple) 

(b) Example pictures of the 
situation on the ground in 2004 

(c) Tree cover loss recorded 
by GFW for 2000-2005 
(purple) and 2006-2018 (red) 

 
 

Ruvu South Forest Reserve 

(d) [as in a] (e) [as in b] (f) [as in b] (g) [as in c] 

 

Vikindu Forest Reserve 

(h) [as in a] (i) [as in b] (j) [as in b] (k) [as in c] 

 
   

Transects recording recent 
cuts 

(l)Vikindu in 2016 

 

(m) 

 
 

 No recent cuts 

 >0 – 1%  

 >1 – 5% 

 >5 – 10% 

 >10% 

( )
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third of these transects (Table 2 and Table S7). As above, the larger 
the percentage of cut trees, the more often losses were detected 
from space. The field data did not allow for a robust quantification 
of specificity (false positive rate) of either dataset; there were only 
three transects from 2007– 2010 that recorded no losses at all (re-
cent and old), and both GFW and MN18 recorded losses for one of 
these transects. The losses may well have occurred after the ground 
data were collected (mostly 2009), and/or may not have taken the 
form of tree cutting.

Overall, MN18 and GFW recorded similar amounts of deforesta-
tion (187 and 198 km2, respectively) between 2007 and 2010 (data 
aggregated to 100- m resolution, and masked to 9,565 km2 in forest 
reserves for which there were radar data). Aggregated to the scale of 
individual reserves (n = 143), the two datasets provided moderately 
correlated estimates of percentages of area deforested (Pearson's 
R = 0.51). Assessing both deforestation and degradation, MN18 re-
ported an additional 727 km2 of degradation. While some reserves 
experienced both deforestation and degradation, the degradation 
data did not correlate with the deforestation data, and instead high-
lighted a different set of reserves as particularly impacted.

3.3 | Modelled predictions of resource harvesting

Forest resource extraction increased steeply with accessibility and 
proximity to centres of demand (Figures S2– S4). Particularly in the 
case of charcoal production, and to some extent in the case of tree 
cutting, models that only considered local factors such as popula-
tion density and management type performed less well than models 
that included predictors representative of city distance and wider 
population pressure (with a correlation [R] between predictions and 
test data under 10- fold cross validation of 0.57 as opposed to 0.75 in 
the case of charcoal burning, and 0.62 versus 0.68 in the case of tree 
cutting; Table S4). Protected area management explained some vari-
ation (Tables S4 and S5), with harvesting being highest in unreserved 
areas. However, it is important to note that the reserve categories 
conflate a range of factors, for example, all productive reserves 
analysed here were situated at Tanzania's easily accessible coast. 
In addition, sample sizes were unequal (e.g. there were over 400 

transects for 54 government forest reserves, and only 27 transects 
for 13 reserves on village land). Management on its own explained 
comparatively little variation (with cross- validation correlations of 
0.39– 0.56), which will in part be due to the data inadequacy men-
tioned above, and in part due to the overriding influence of demand 
and accessibility. For more details see Figure S5.

The relative importance of predictors differed for the different 
types of disturbances. Spatial patterns in tree cutting were almost 
entirely explained by urban population pressure (a distance decay 
function of population density; Table S1), with additional variation ac-
counted for by distances to Dar es Salaam, roads, major cities, and 
steepness of terrain. Patterns in charcoal production were also mainly 
related to distance to Dar es Salaam and population pressure. Pole cut-
ting, on the other hand, was best explained by a multitude of factors, 
including management, distances to Dar es Salaam, roads and cities, 
and local population density (Table S5). In interpreting the relative im-
portance of predictors, it is important to note covariation and a degree 
of inter- exchangeability between them (Table S2). For instance, drop-
ping population pressure from the full model only had a moderate ef-
fect on model performance as long as population size and city distance 
where still present. However, overall there was a notable difference 
between tree cutting and charcoal production on the one hand (almost 
entirely explained by variables related to accessibility from urban cen-
tres), and pole cutting on the other hand where local population den-
sity and management played a greater role in explaining the variation.

All final models performed reasonably well, achieving 10- fold 
cross validation correlations between 0.68 and 0.78 (Table S4). 
When setting aside 20% of the reserves as test data, it was generally 
possible to predict the top three most degraded forests from the 
rest of the data.

In order to broadly investigate whether the model for tree harvest-
ing (>15 cm dbh) was able to indicate areas under future threat, we ex-
trapolated the model to ~2020 and compared the predictions to tree 
cover losses recorded by GFW between 2000 and 2018 (Figure 3) and 
local reports (see below). There was general agreement between the 
areas predicted to face high levels of cutting by ~2020 and tree cover 
loss detected by GFW (Figure 3). Obvious differences arose in areas 
managed as rotational plantations, where GFW detected large losses 
while the model predicted low impacts (Figure 3a). For instance, Sao 

TA B L E  2   Comparison of on- the- ground losses, tree cover losses recorded by Hansen et al. (2013; GFW) and deforestation and 
degradation recorded by McNicol et al. (2018; MN118) for 2007– 2010 within a 100- m buffer around transects. The numbers of transects 
differ because of gaps in the data generated by MN18

Trees >15 cm dbh recently 

cut (2007– 2010)

N 

transects

N transects ≥1 pixel tree cover 
loss 2007– 2010 (GFW)

N 

transects

N transects ≥1 pixel deforestation/degradation 
2007– 2010 (MN18)

Deforestation Degradation

Deforestation or 

degradation

>0% 52 15 (29%) 42 6 (14%) 33 (79%) 34 (81%)

≥1% 30 7 (23%) 23 4 (17%) 21 (91%) 21 (91%)

≥5% 6 1 (17%) 3 1 (33%) 3 (100%) 3 (100%)

≥10% 3 1 (33%) 1 1 (100%) 1 (100%) 1 (100%)

≥25% 1 1 (100%) 0 Na Na Na
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Hill southwest of Iringa has lost a lot of tree cover due to plantation 
rotation, but according to local reports the non- plantation natural 
forest is not impacted by degradation (BirdLife International, 2013). 
In several other areas the model predicted high levels of tree cutting 
and GFW did not report major losses; here the modelled predictions 
were generally confirmed by local reports suggesting that degrada-
tion has occurred, but may not (yet) have manifested as complete 
tree cover loss at the Landsat pixel scale. For example, Chome Nature 
Forest Reserve and Kwizu and Chambogo Forest Reserves in the 
Pare Mountains, Kisimagonja in the West Usambara Mountains, and 
Nianganje in the Udzungwa Mountains (Figure 3b) are all reported 
to have been extensively degraded (BirdLife International, 2020a, 
2020b; Gereau et al., 2014; Makero & Malimbwi, 2012). Moderate 
levels of disturbance have also been reported for Uluguru and Mkingu 
Nature Forest Reserves (Gereau et al., 2014). However, it is important 
to note that all of these reports are qualitative and terms such as ‘ex-
tensively degraded’ or ‘managed well’ are likely to be used in different 
ways across the reports. In addition, while GFW measure complete 
tree cover loss in 28- m pixels the model predicts tree harvesting pres-
sure (not clear felling). Thus, the GFW data cannot be used to validate 
the model predictions and vice versa.

4  | DISCUSSION

Here, we presented a tested protocol for rapid quantitative assess-
ments of degradation in the field, and we compared data collected 
with this method in Tanzanian forests with optical and radar- based 
remotely- sensed datasets. Covering over 600 ha our field data al-
lowed for one of the first large- scale independent tests of these 

spatial datasets in southern Africa. Radar- based maps (McNicol 
et al., 2018) appeared to perform well, with even low levels of tree 
cutting generally coinciding with the detection of biomass loss. 
However, our study also suggests that there still is an important 
role for field data, which provided valuable additional information 
on the types of degradation and likely drivers. For instance, patterns 
in the field data implied that a major driver of forest degradation is 
demand for woody resources emanating from larger cities— a pattern 
that has also been confirmed in radar- based assessments (McNicol 
et al., 2018). The field data additionally allowed for a finer differen-
tiation of the underlying processes, suggesting, for example, that it is 
specifically the urban demand for timber and charcoal which drives 
a lot of harvesting (whereby charcoal production was particularly 
high close to Dar es Salaam, whereas timber cutting was more wide-
spread), with important consequences for where and how to target 
conservation interventions.

Degradation was pervasive in the study area, meaning that a focus 
on deforestation would significantly underestimate losses of carbon 
and declines in forest quality. Indeed, the ‘Global Forest Watch’ data 
(GFW), which are commonly used in national forest inventories and 
conservation assessments, and which measure complete canopy loss 
at a 28- m spatial resolution, did not routinely detect even high lev-
els of cutting associated with severe impacts on the ground in terms 
of loss of natural vegetation and carbon. This echoes findings from 
other studies which show that small- scale deforestation tends to be 
underestimated by GFW, particularly in areas with low and/or sea-
sonally dry woody cover (Bos et al., 2019; McNicol et al., 2018) where 
time- series analyses (Verbesselt et al. 2010, 2012) may perform bet-
ter (Bos et al., 2019); but also in moist forest in Tanzania (Hamunyela 
et al., 2020) and elsewhere (Bos et al., 2019; Milodowski et al., 2017). 

F I G U R E  3   Comparison of tree cover losses according to Hansen et al. (2013; GFW) and modelled prediction of tree cutting by 2020. 
Note that the legends are not directly comparable. (a) The percent area (in forest reserves) affected by tree cover losses between 2000 
and 2018 according to GFW. (b) The mean predicted percentage of trees (≥15 cm dbh) cut. The model achieved a 10- fold cross- validation 
correlation between actual and fitted values of 0.68 (±0.04 SE); for details on model parameterisation and performance see Tables S4 and 
S5 and Figure S2. The general patterns between modelled and actual tree (cover) losses appear similar. Circled areas in (a) contain reserves 
managed as plantations, where tree cover losses are larger than the model would suggest. Circled areas in (b) experienced less detectable 
tree cover losses than the model suggests but are highly degraded according to local reports 
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This is not a critique of the data generated by GFW, but it serves 
as a reminder that in areas where smaller scale deforestation and 
degradation are a significant cause of carbon emission and biodiver-
sity loss, such as southern and eastern Africa (Baccini et al., 2017; 
McNicol et al., 2018; Pearson et al., 2017; Sedano et al., 2020), it is 
necessary to go beyond easily accessible deforestation data and to 
use a combination of approaches to detect these changes.

While radar data correlated well with disturbance on the ground, 
they cannot detect activities that have little impact on vegetative 
biomass— such as low levels of harvesting, collection of non- timber 
products, hunting, or the introduction of invasive alien species 
(McNicol et al., 2018; Ryan et al., 2012). Using remotely- sensed 
data, it is also very challenging to distinguish types of disturbances, 
plantations versus natural forests, and primary vegetation versus 
the rapid secondary growth following logging (Asner et al., 2004). 
Here we counted degradation as ‘detected’ even if only one pixel 
in or around a transect, that is, an area of up to ~20 ha, was classed 
as degraded or deforested. It is entirely possible that the removed 
tree(s) was not detected, and that the reported biomass loss was due 
to an unrelated co- incidental process or noise. Finally, given that al-
most all transects used in this study contained tree stumps, it was 
not possible to robustly establish the specificity (=false positive rate) 
of the radar dataset with our data. In summary, while radar data give 
increasingly accurate wall- to- wall quantifications of degradation, 
there is still an important role for field data in aiding their interpre-
tation, and providing an ‘even earlier’ warning signal in terms of sub-
tle changes that can be detected before there is any notable impact 
on canopy or biomass. Similarly, early warning signals can also be 
provided by ground- based sensing, for example, hemispherical pho-
tography and terrestrial LiDAR (Decuyper et al., 2018; Fournier & 
Hall, 2017).

Capturing the spatial patterns and types of degrading activi-
ties, particularly when they are illegal, requires surveying relatively 
large areas. Field- based inventories and monitoring are however 
frequently restricted to a small sub- sample of areas of interest 
(O'Connell, 2018). The framework presented here can be used for 
quick assessments of large areas without professional training, 
thereby also allowing for community participation (Danielsen 
et al., 2011; DeVries et al., 2016). Details can be adapted to the target 
system and question (but should of course be standardised to ensure 
comparability; for a recommended set of core measurements, please 
see the Supporting information: Field Protocol file). In particular, we 
would recommend using a higher size class resolution than used here 
and/or detailed dbh measurements. Our models for tree cutting per-
formed less well than those for pole cutting and charcoal burning, 
which is likely due to tree harvesting >15 cm dbh serving a multitude 
of purposes, ranging from high- grade export timber to local con-
struction and partly also charcoal production. Differentiating three 
to five size classes can still be done rapidly by eye, and even detailed 
dbh measurements are not too time- consuming. Particularly, if com-
bined with the identification of main timber species, this would pro-
vide more information on likely markets and scale of operation. Such 
higher resolution data would also enable estimation of likely levels of 

sustainability of the resource extraction, whereby a decline in high- 
value species and/or larger trees are often indicators of unsustain-
ability (Ahrends et al., 2010). In addition, more details, particularly 
on stem sizes, would also improve estimates of above- ground car-
bon (loss), which could only be crudely estimated using the simple 
counts. Another useful potential addition is collaborative work with 
social scientists in order to capture local knowledge, and to under-
stand whether the resource extraction leads to win- lose or lose- lose 
scenarios locally (Smith et al., 2019). The transects can be done as 
a stand- alone activity or in addition to more detailed assessments 
in long- term vegetation plots (The SEOSAW Partnership, 2020), op-
portunistic botanical sampling or other types of surveys. Rapid tran-
sects cannot replace the depth of assessment possible in permanent 
plots, and large plots are also necessary for the calibration of radar 
(McNicol et al., 2018) as using narrow transects to relate radar to bio-
mass is very challenging (Réjou- Méchain et al., 2014; Smith, 2018).

A key benefit of field data is that they can provide information on 
the type of biomass loss (e.g. charcoal, poles, planks or agricultural 
clearing) and sometimes on the type and sophistication of equipment 
that was used, allowing insights into the likely drivers and tailoring 
interventions appropriately (Doggart et al., 2020). Here we showed 
that while pole cutting may partly be driven by local demand, ac-
tivities such as tree cutting and charcoal production correlated al-
most entirely with distances to major cities such as Dar es Salaam. 
Degradation thus appeared to be mainly driven by energy and tim-
ber demand emanating from larger cities and international markets, 
as opposed to mainly local demand (Ahrends et al., 2010)— a pat-
tern that has been observed throughout southern Africa (McNicol 
et al., 2018; Sedano et al., 2020). Deforestation on the other hand 
is thought to be mainly driven by agriculture, highlighting the need 
for coordinated policy responses (Doggart et al., 2020; Hamunyela 
et al., 2020). It should also be noted that while the clear spatial pat-
terns meant that degradation was to some extent predictable, dy-
namics in markets, human behaviour and policies can lead to rapid 
changes on the ground— such as the introduction of sesame farm-
ing in Tanzania (Brockington, 2019; Gross- Camp et al., 2019; Müller 
et al., 2014). Thus, although models can to some extent be used to 
extrapolate patterns in space and time, there is a clear need for reg-
ularly updated data (Sloan & Pelletier, 2012).

Protection on the ground has had some success in halting deg-
radation but the type of management was less important in explain-
ing patterns of forest condition than demand and accessibility. This 
suggests that any form of protection can be better than none, and 
putting land under the tenure and management of local commu-
nities might be a more mutually beneficial way to reserve some of 
the 170,000 km2 of forest on general land in Tanzania (Mbwambo 
et al., 2012) than excluding rural populations from the resources 
their livelihoods rely upon. Tree cutting in village- owned reserves 
only slightly exceeded levels in protective forests and nature re-
serves, and this was to be expected as village land forest reserves 
often allow sustainable extraction. The effectiveness of village 
participation in forest management on government- owned land 
(co- management) could not be robustly assessed because much of 



278  |     AHRENDS Et Al.

the data were collected when joint forest management agreements 
were in very early stages (Mbwambo et al., 2012).

The early warning provided by both radar and field data com-
pared to GFW is a key advantage, because severe degradation 
and deforestation often follow the early stages of degradation 
(FAO, 2011)— a sequence we also observed here. However, in terms 
of (temporal) data availability, a significant advantage of GFW is that 
the readily processed data are freely available on an annual basis 
with global coverage, explaining their widespread use. This is not yet 
true for radar- based maps; although raw data are now freely avail-
able, costs arise in the form of trained technician(s) and fieldwork to 
relate radar backscatter to biomass. In areas where there already are 
vegetation plots for calibration and ground- truthing, a trained spatial 
analyst will need around two weeks (currently ~£1.5k at UK post-
graduate salary) to produce biomass maps for an area of ~1 million 

ha. If no field data are available around 10 sufficiently sized (~1 ha) 
vegetation plots are needed at an approximate cost of £2k per plot 
(in East Africa). Species identification, data cleaning and analysis re-
quire approximately 2 months, that is, total costs amount to c. £26k. 
This is a significant initial investment, but once calibration plots are 
available, the costs of radar analyses are low compared to those 
of field surveys. To give an example, a rapid survey of 26 ha in 10 
Tanzanian forests in 2016 (with detailed dbh measurements for ~15k 
trees; ~85% identified to species) cost around ~£30k, that is, ~£1.2k 
per ha. This involved 40 field days with a team of five people, and 
4 months herbarium work and data cleaning. If species identifica-
tion is not required, the costs will come down to around ~£350 per 

ha for field work and £100 per ha for data cleaning. (This assumes 
that time spent in the field is approximately half; depending on the 
vegetation, the transects can almost be done at walking pace if spe-
cies identification is not attempted, that is, covering >1 ha per day 
is generally realistic.) Thus, annually updated maps of biomass loss 
are minimally ~£1.5k for radar versus minimally ~£13.5k for rapid 
surveys (30 transects of 1- km length to capture sufficient variation; 
mapped area size depends on levels of heterogeneity and desired 
accuracy). In practice, a reasonable compromise may be to produce 
at least annual radar- based maps of biomass change, combined with 
rapid field surveys at 3– 5- year intervals to facilitate a better under-
standing of the nature and drivers of biomass loss.

Strictly speaking, the method presented here only quantifies 
woody resource extraction and not necessarily degradation. The 
latter is challenging to establish— particularly in systems where lit-
tle is known about regeneration and growth rates. However, while 
systems adapted to frequent natural disturbance may be resilient to 
some resource extraction, the selective extraction of larger trees in 
old- growth forest can negatively impact ecosystem function and bio-
diversity (Jew et al., 2015; Tripathi et al., 2019; Yguel et al., 2019). In 
addition, while there is controversy over the role of wood products in 
carbon storage, the damage to the surrounding vegetation in denser 
forests, as well as the associated transportation and processing of 
the timber, tend to lead to substantial emissions (Ingerson, 2009; 
Pearson et al., 2014). Resource extraction in old- growth forests thus 
requires careful regulation. The vast majority of extraction recorded 

here took place in protective (as opposed to productive) reserves, 
and was consequently mostly unregulated and illegal with no con-
comitant legal revenue benefits for Tanzania as a state (Milledge 
et al., 2007).

In conclusion, the consideration of degradation in global forest 
reporting is important— particularly in southern Africa where the 
area affected by degradation is likely to be double the size of the 
area that is deforested, and overall carbon emissions from forest 
degradation are likely to exceed those from deforestation (McNicol 
et al., 2018). We recommend to routinely use radar- based monitor-
ing combined with, wherever possible, rapid field assessments to 
better understand the quality of forests and the reasons for their 
decline, to provide an early warning, and to allow for informed and 
timely policy interventions.
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