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Original Article

Estimating the

Uncertainty of a Small

Area Estimator Based

on a Microsimulation

Approach

Angelo Moretti1 and Adam Whitworth2

Abstract

Spatial microsimulation encompasses a range of alternative methodological

approaches for the small area estimation (SAE) of target population para-
meters from sample survey data down to target small areas in contexts

where such data are desired but not otherwise available. Although widely

used, an enduring limitation of spatial microsimulation SAE approaches is

their current inability to deliver reliable measures of uncertainty—and hence

confidence intervals—around the small area estimates produced. In this

article, we overcome this key limitation via the development of a measure of

uncertainty that takes into account both variance and bias, that is, the mean

squared error. This new approach is evaluated via a simulation study and
demonstrated in a practical application using European Union Statistics on

Income and Living Conditions data to explore income levels across Italian

municipalities. Evaluations show that the approach proposed delivers accu-

rate estimates of uncertainty and is robust to nonnormal distributions. The
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approach provides a significant development to widely used spatial micro-

simulation SAE techniques.

Keywords

calibration, weighting, synthetic, indirect estimator, raking, resampling

Large-scale surveys are designed to obtain reliable estimates at national level

or, in some instances, for large subnational scales such as regions. These can

be considered to be the planned domains of the survey sampling design

(Benavent and Morales 2016). However, there is a growing demand from

both research and policy communities for various local estimates at more

detailed spatial resolutions such as municipalities or neighborhoods due to

the absence of data at such small area scales from existing census or admin-

istrative sources. However, this small area desire frequently encounters a

problem of unplanned domains, given that for cost reasons such small areas

typically have small or zero sample sizes in the survey sampling design. In

these circumstances, commonly used direct estimators such as the Horvitz–

Thompson estimator (Horvitz and Thompson 1952) that only use sample

survey information either cannot be used (in the case of zero sample size

domains) or provide unacceptably large variability in the estimates to be

practically useful (in the case of small sample size domains).

In such scenarios, indirect small area estimation (SAE) of target popula-

tion parameters has become a relatively widely used and increasingly

demanded methodological technique via a range of SAE approaches. We

refer to Rao and Molina (2015), Whitworth (2013), Rahman and Hardin

(2017), and Marshall (2010) for useful methodological reviews on both

regression-based and microsimulation-based SAE methods. Spatial micro-

simulation approaches, sometimes referred to as survey calibration

approaches (Espuny-Pujol, Morrissey, and Williamson 2018), represent a

family of reweighting approaches to SAE in which the challenge is to

reweight the survey units such that they optimally fit the demographic and

socioeconomic profile of each small area according to a selected set of

benchmark constraints. Part of the appeal of spatial microsimulation

approaches to SAE for both researchers and policy users is their intuitive

and accessible appeal without much of the complex statistical expertise

required within many regression-based SAE methods, particularly as

assumptions fail or more complex outcomes are desired. In those
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circumstances, one advantage of spatial microsimulation approaches over

regression-based SAE estimators is that they tend to be more robust to fail-

ures in model assumptions, given that as model-assisted estimators it is only

necessary that the population be reasonably well described by an assumed

model for that model to be valid (Särndal, Swensson, and Wretman 1992).

Spatial microsimulation SAE approaches have been used to produce small

area estimates across a range of policy areas including childmalnutrition (John-

son et al. 2012), obesity (Edwards et al. 2010), fuel poverty (Office for National

Statistics 2019), income and poverty (Bell, Basel, and Maples 2016; Pratesi

2016; World Bank 2018), regional planning (Clarke and Holm 1987), partici-

pation in sport (Ipsos MORI 2018), and transport (Lovelace, 2016; Ravula-

parthy and Goulias 2011; Tribby and Zandbergen 2012). Spatial

microsimulation SAE approaches have been well validated against known

external data and against alternative regression-based SAE techniques (Moretti

and Whitworth 2019; Tanton, Williamson, and Harding 2014; Whitworth and

Carter 2015). Spatial microsimulation SAE has also been used effectively to

assess the spatial impacts of differing “what if” policy scenarios (Chin and

Harding 2006; Cullinan, Hynes, and O’Donoghue 2006; Tanton and Edwards

2013; Williamson, Birkin, and Rees 1998). For example, Campbell and Ballas

(2013) introduce the SimAlba spatial microsimulation model Scotland in order

to estimate the simulated impact of various policy scenarios on individual’s

health outcomes. In an Australian context, Tanton and Edwards (2013) use

spatial microsimulation SAE to assess the geographical impacts on expected

elderly poverty levels from changes to the state pension (Tanton et al. 2009).

However, despite these widespread applications and contributions, an

important long-standing limitation of spatial microsimulation SAE approaches

is their continued inability to deliver estimates of uncertainty around central

point estimates at small area level. More specifically, one faces something of a

trade-off with any SAE approach in seeking via the indirect SAE estimates to

reduce variance compared to the direct estimates while acknowledging that

those direct estimates are unbiased compared to the indirect SAE estimates

that are inherently biased. As such, it is essential when calculating the uncer-

tainty of any SAE estimator that the mean squared error (MSE) is used, given

that this takes into account both variance and bias. However, calculating MSE

is often challenging in an SAE content and particularly so in spatial micro-

simulation approaches. In the case of design-based estimators, the design

weights are known before the sample selection and are therefore nonrandom

meaning that analytical approximations of MSE are available (Särndal et al.

1992). However, this is no longer the case in spatial microsimulation

approaches to SAE when reweighing algorithms are used as the weights
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become random variables themselves. In these scenarios, analytical approx-

imation of MSE becomes highly challenging, given that bias and variance

cannot be computed in closed form such that empirically based resampling

techniques are instead required to estimate their uncertainty (Chen and Shen

2015). Some analytical approximations have been suggested in the literature

(D’Arrigo and Skinner 2010; Deville and Särndal 1992), but Chen and Shen

(2015) highlight important practical challenges around the requirement for

joint selection probabilities that are rarely computed or known in practice.

Empirical attempts to estimate the uncertainty around spatial microsimula-

tion SAE estimates have been proposed in recent years (Chen and Shen 2015;

Nagle et al. 2014; Whitworth et al. 2017), though none entirely successful. In

response, this article develops a novel modified parametric bootstrap technique

in order to estimate the uncertainty of spatial microsimulation small area esti-

mates basedon theMSEsuch that it captures both bias and variance components

in the uncertainty estimate, unlike previous attempts. Our approach benefits

from clear statistical properties under a linear model and can be used flexibly

across alternative spatial microsimulation SAE techniques.

The remainder of this article is structured as follows. In the second sec-

tion, the general problem of SAE of the population mean using iterative

proportional fitting (IPF) is outlined. In the third section, the challenge of

uncertainty estimation in SAE contexts is further described, and our

approach to MSE estimation via bootstrap is detailed. In the fourth section,

the bootstrap approach is evaluated via a simulation study, and in the fifth

section, a practical data application focusing on Italian Statistics on Income

and Living Conditions (SILC) data is presented to illustrate the approach.

The sixth section provides a concluding discussion focusing on wider impli-

cations for spatial microsimulation SAE and potential next steps for research.

SAE With IPF

This section sets out the SAE problem of the population mean and formally

introducing the IPF spatial microsimulation approach used in the later devel-

opment of our proposed uncertainty estimator.

The General SAE Problem for a Small Area Mean

Let us consider a sample s � O of size n drawn from the target finite pop-

ulation O of size N. Let d ¼ 1; . . . ;D denote the small areas for which we

want to compute the small area estimates. N � n are the nonsampled units

and these are denoted by r, hence sd ¼ s \ Od is the subsample from the

4 Sociological Methods & Research XX(X)



small area d of size nd, n ¼
PD

d¼1 nd , and s ¼ [dsd . rd denotes the non-

sampled units in small area d with Nd � nd dimension. Here, the target

parameter is the population mean �Y d ¼ N�1d

PNd

i¼1 ydi of the variable Y for

area d, with ydi denoting the value of variable Y for ith unit from dth area.

Due to the unplanned domain problem, nd may be too small (even zero)

for many small areas in the survey data to compute reliable direct estimates

of �Y d from the survey data based on �̂Y
Direct

d ¼
P

i2sd
wdi

� ��1P
i2sd

ydiwdi,

where wdi denotes the design weight for ith unit from dth area in sd. The

direct survey estimate comes from a standard direct estimator and is based on

sample survey information only. They are weighted averages where the

weights are the design weight based on the complex survey design. As a

consequence, there is a need in such circumstances to consider indirect SAE

estimation techniques using auxiliary information if one wishes small area

estimates either at all (in the case of zero survey sample sizes) or with

reduced uncertainty (in the case of low small area survey sample sizes).

There is a bias-variance trade-off in operation when doing so such that any

reductions in variability must naturally be balanced with acknowledgment of

increased bias in the indirect SAE estimates compared to the unbiased direct

estimates (Rahman and Harding 2017; Rao and Molina 2015).

Reweighing Using the IPF Algorithm

IPF is one of three main spatial microsimulation approaches to SAE—

IPF, generalized regression reweighting and combinatorial optimization.

To demonstrate our approach to the estimation of uncertainty in spatial

microsimulation SAE, we focus on the IPF algorithm, given that this is

both widely used and a constructively challenging test of our MSE esti-

mator, given that its iterative nature renders the survey weights random

variables themselves (Chen and Shen 2015; Rahman et al. 2013; Simpson

and Tranmer 2005).

Like all spatial microsimulation SAE approaches, IPF can be understood

as a reweighting optimization problem where the aim is to reweight the

survey units (e.g., individuals or households) such that they optimally fit

the demographic and socioeconomic profile of each small area according to

a selected set of benchmark constraints (e.g., age-sex, employment status,

ethnicity, health, education). Deville and Särndal (1992) provide a statis-

tical theory of these reweighting techniques and alternative approaches. For

each local area, the result is a tailored set of reweighted survey cases that fit

to the benchmark characteristics of that small area in terms both of total
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population and the profile of that population across the benchmark con-

straints. A key data set created during IPF is a weights matrix giving new

weights for each survey unit in each separate small area. For each small

area, those final IPF weights show how representative each survey unit is of

each area given their respective characteristics across the benchmarks.

Across all survey individuals, these reweighted units sum to the small area

population total and map onto its population profile across the benchmarks.

As such, these reweighted data provide a valuable synthetic micropopula-

tion for each small area that can be employed in further local analyses (e.g.,

“what if” policy simulations) as desired (Anderson 2013; Lovelace and

Dumont 2016).

Formally, IPF can be understood as follows. Let wi be the initial weight

(usually the survey design weight) for i 2 s. The calibration problem is area-

specific and therefore generates new weights denoted by w�i for i 2 sd for area

d that satisfy the calibration equation given by
P

i2sd
w�i xi ¼

P
i2Od

xi ¼ Xd ,

where xi is a vector of auxiliary variables. Here, w
�
i minimizes a given distance

function between w�i ; i 2 sd
� �

and wi; i 2 sdf g. IPF is the exponential case

within a wider family of synthetic reweighting algorithms (Deville and Särndal

1992). Its constrained optimization problem is given as follows, where ai
denotes the initial weights, usually the design weights (Chen and Shen

2015; Deville and Särndal 1992):

min :
X

i2sd

wiln
wi

ai

0
@

1
A� wi þ ai

2
4

3
5;

such that
X

i2sd

wixi ¼
X

i2Od

xi ¼ Xd :

ð1Þ

As noted above, (1) unfortunately does not have a closed-form solution

such that solution via analytical approximation is required. This is however

highly challenging. The IPF algorithm is therefore employed iteratively

across the benchmark constraints in order to estimate the final weights for

each survey unit in order to derive a solution empirically. To describe the IPF

method more fully, the terminology and notation used by Kolenikov (2014)

is followed:

1. Initialize the iteration counter t 0 and the weights as w
0; p
i  wi.

2. Increment the iteration counter t t þ 1, thus updating the weights

as w
t;0
i  w

t�1; p
i .

6 Sociological Methods & Research XX(X)



3. Update the weights through each of the benchmark constraint

variables in turn, v ¼ 1; . . . ; p:

w
t;v
i ¼

w
t;v�1
i

TðXvÞX
l2s
w
t;v�1
l xvl

; xvi 6¼ 0

w
t;v�1
i ; xvi ¼ 0

:

8
><
>:

4. If the discrepancies between
P

i2sw
t; p
i xv (i.e., the sample totals with

the new weights) and T Xvð Þ are within a priori defined tolerance for

all v ¼ 1; . . . ; p, then declare convergence and go to step 5, other-

wise return to step 2.

5. The weights w
t; p
i are the final calibrated weights and are denoted by

w
t; p
i ¼ w�i .

The benchmark constraints used for the survey reweighting are usually

categorical variables in real applications. Therefore,

x 0i ¼ d
1ð Þ
1i ; . . . ; d

1ð Þ
F1i
; d

2ð Þ
1i ; . . . d

pð Þ
1i ; . . . ; d

pð Þ
Fpi

� �
;

where l ¼ 1; . . . ; p denotes the lth benchmark constraint and d
lð Þ
ki ¼ 1 if I is

in the category k of lth control variable. Fl is the number of categories of the

lth benchmark constraint. Anderson (2007) suggests that R ¼ 20 is suffi-

cient as a conservative guide to the number of loops through the benchmark

constraints in order to optimize the calibration to the set of benchmarks. The

IPF algorithm is area-specific, and the IPF reweighting therefore needs to be

iterated for each small area d ¼; 1 . . . ;D.
The IPF estimator can therefore be defined as follows:

�̂Y
IPF

d ¼

Xn

i¼1
w�diyiXn

i¼1
w�di

; d ¼ 1; . . . ; D; i ¼; 1 . . . ; n; ð2Þ

where w�di denotes the IPF-calibrated survey weight for unit ith from area dth.

It can be noted that yi appears for i ¼ 1; . . . ; n, which means that �̂Y
IPF

d

belongs to the class of small area synthetic estimators (Rao and Molina

2015). Of course, in order for �̂Y
IPF

d to be more efficient than �̂Y
Direct

d in terms

of its combination of variance and bias as measured by the MSE, the aux-

iliary variables used in the calibration problem need to be related sufficiently

to the target variable Y, as with all such model-based or model-assisted small

area estimators (Fuller 2002).

Moretti and Whitworth 7



Measuring the Uncertainty: the MSE Estimator of �̂Y IPF

d

The quality of an estimate is assessed with reference both to its accuracy

(bias) and to its precision (variability). It is therefore important to capture

both aspects in any measure of uncertainty (Dodge and Commenges 2006;

Statistics Canada 2009). The bias of an estimate can be defined as its degree

to which it describes the measured phenomena correctly, in other words its

difference from the true (though often unobserved) population value. In

contrast, the variability of an estimate relates to how closely repeated obser-

vations confirm themselves (e.g., under random sampling). Figure 1 repro-

duces a visual summary of these two considerations from Ferrante and

Cameriere (2009).

The MSE is the second moment about the origin of the error and thus takes

into account both bias and variance. It is therefore an appropriate measure for

our proposed estimation of uncertainty around spatial microsimulation SAE

estimator. For the design unbiased direct survey estimates, the MSE is equal

to the variance, while for the indirect SAE estimator, the MSE is equal to the

Figure 1. Precision and accuracy in estimates.
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bias squared plus the variance. As such, the attractiveness of any indirect

SAE estimator compared to the unbiased direct estimator is dependent upon

the reductions in variance in any SAE approach exceeding its increases to

bias such that the MSE of the indirect SAE estimator is smaller than the MSE

of the direct estimator. This is possible in SAE contexts where small areas

have low or no survey sample sizes such that direct small area estimates are

either nonviable or come with large variance.

Capturing the MSE via resampling techniques such as the bootstrap is

common within regression-based SAE approaches (González-Manteiga et al.

2008b; Marchetti et al. 2018; Moretti, Shlomo, and Sakshaug 2018). Indeed,

González-Manteiga et al. (2008b) point out that even when analytical

approximations are available, bootstrap resampling might provide more

accurate estimates due to its second-order accuracy, a property discussed

further in Efron and Tibshirani (1993). However, no similar MSE measures

have yet been considered in the spatial microsimulation SAE context where

MSE expressions are not available in closed form and where empirical

approaches are therefore necessary to explore (Chen and Shen 2015;

D’Arrigo and Skinner 2010). This is particularly relevant since the estima-

tion of bias in particular has proven elusive in previous attempts (Chen and

Shen 2015; Nagle et al. 2014; Whitworth et al. 2017).

This article responds to this gap through its modification of bootstrap

ideas for regression-based small area estimators set out in González-

Manteiga et al. (2008b), so that they become suited to the differing technical

processes and requirements of spatial microsimulation approaches. The use

of models in the estimation of MSE of model-assisted estimators can be

found in the regression estimator context where a model unbiased condi-

tional MSE estimator is proposed (Kott 2009). This provides initial motiva-

tion for this article to develop and adapt such an approach in the context of

spatial microsimulation in order to estimate the MSE of �̂Y
IPF

d .

In order to provide an estimator of the MSE of �̂Y
IPF

d , denoted by

MSE �̂Y
IPF

d

� �
, we assume that the observations ydi for unit i in area d are

related to xdi ¼ xdi1; . . . ; xdip
� �T

denoting a vector of p auxiliary variables,

via the Battese, Harter, and Fuller (1988) linear nested-error (i.e., multilevel)

regression model:

ydi ¼ x
T
diβþ ud þ edi; i ¼ 1; . . . ;ND; d ¼ 1; . . . ;D

ud *
iid

N 0;s2
u

� �
; edi *

iid
N 0;s2

e

� �
; independent; ð3Þ

Moretti and Whitworth 9



where ud and edi are the area random effect and the residual error term,

respectively. As with all SAE methods, these are assumed to be independent

(Rao and Molina 2015). The model assumes that the population has a two-

level structure where units are nested in areas. This is reasonable in the SAE

context given the aim to estimate target parameters of small domains in the

population. By doing so, the approach recognizes explicitly that the MSE

will be based on a multilevel (two-level) structure and that the intraclass

correlation (ICC) will therefore have relevance. The ICC describes the extent

to which units (e.g., individuals) within the same higher level unit (e.g. areas)

are similar to one another (R. Koch 2008). To sensitivity test this issue, the

simulation study below explicitly tests the effect of differing ICCs on the

MSE estimator.

Under model (3), our proposed estimator of MSE �̂Y
IPF

d

� �
can be derived

via a parametric bootstrap by adapting the principles in González-Manteiga

et al. (2008b) for the different challenges of the spatial microsimulation

context. The algorithm steps for the bootstrap MSE for IPF are listed below

for b ¼ 1; . . . ;B bootstrap replications where the symbol * is used to denote

the bootstrap quantities and for d ¼ 1; . . . ;D small areas:

1. Fit model (3) to the observed sample data, denoted by s, and estimate

the model parameters. The estimates are denoted by β̂, ŝ2
u, ŝ

2
e ;

2. Generate the bootstrap area effects u
� bð Þ
d *

iid
N 0; ŝ2

u

� �
;

3. Generate the bootstrap residual error term e
� bð Þ
di *

iid
N 0; ŝ2

e

� �
, inde-

pendently of u
� bð Þ
d , for every unit i in the sample in area d, for the

sample units, i 2 sd ;

4. Calculate the true population means for each small area of the

bootstrap population as follows:

�Y
� bð Þ
d ¼ �xTd; popβ̂ þ u

� bð Þ
d ð4Þ

where �xd; pop denotes the means of the known population auxiliary variables

for each area d. These may be taken, for instance, from the census or admin-

istrative data.

5. Generate the bootstrap data as follows ; i 2 sd :

y
� bð Þ
di ¼ xTdiβ̂ þ u

� bð Þ
d þ e

� bð Þ
di ; ð5Þ

10 Sociological Methods & Research XX(X)



noting that (5) follows model (3).

6. Compute the IPF estimator defined in (2) on y
� bð Þ
di and obtain the IPF

estimates on the bootstrap data �̂Y
IPF� bð Þ
d ;

7. Repeat steps (2) through (6) for b ¼ 1; . . . ;B for each area

d ¼ 1; . . . ;D.

An estimator of MSE �̂Y
IPF

d

� �
is given by the following Monte Carlo

approximation:

dMSEboot
�̂Y
IPF

d

� �
¼ B�1

XB

b¼1

�̂Y
IPF� bð Þ

d � �Y
� bð Þ
d

� 	2

: ð6Þ

Simulation Study

This section presents the findings from a simulation study to examine the

performance of our proposed MSE bootstrap estimator for spatial microsi-

mulation SAE. For a classificatory work on simulation studies in SAE and

further theoretical details, we refer to Münnich (2014). In this model-based

simulation, S ¼ 1; 000 populations are generated from model (3), given that

estimators such as the MSE estimator depend on model assumptions and

hence that it is important to evaluate the statistical properties of our proposed

approach under the model. There are no significant computational barriers to

the approach, and this is an important practical consideration. Using a stan-

dard modern machine, the simulation study took around 10 hours to perform

and the application of municipality income in Tuscany in the fifth section

took around 20 minutes to perform.

The parameters for the simulation are selected from the LANDSAT data

that are widely used in SAE simulation settings. These are survey and

satellite data for corn and soybeans in 12 Iowa counties obtained from

the 1978 June survey of the U.S. Department of Agriculture and from

land observatory satellites (see Battese et al. 1988; Datta, Day, and

Basawa 1999; Moretti et al. 2018). The small area problem arises in

these data since small area sample sizes are small. The simulations are

computationally intensive in large population dimensions and are there-

fore controlled for the purposes of this simulation. All analyses are

conducted in R, and details on the code and functions used for the

bootstrap are provided in the Online Appendix (which can be found at

http://smr.sagepub.com/supplemental/).

Moretti and Whitworth 11



Generating the Population

The population is generated using the following parameters: N ¼ 20; 000,
D ¼ 80, and 130 � Nd � 420. Nd, d ¼ 1; . . . ;D is generated from

the discrete uniform distribution, Nd*dUnif 130; 420ð Þ, withPD
d¼1 Nd ¼ 20; 000. ydi observations are generated according to the fol-

lowing model:

ydi ¼ xTdiβþ ud þ edi; i ¼ 1; . . . ;ND; d ¼ 1; . . . ;D;

ud *
iid

N 0;s2
u

� �
; edi *

iid
F 0;s2

e

� �
; independent; ð7Þ

where F 2 Normal; Gumbel; Logisticf g. The rationale for sensitivity testing
the performance of our bootstrap estimator across these three distribution

types is that the MSE is based on a normality assumption. In line with good

practice in previous SAE literature (González-Manteiga et al. 2008b), dis-

tributions are chosen deliberately in order to sensitivity test how the estima-

tors perform when the error term edi is not normal but is instead skewed

(Gumbel) or symmetric with heavy tails (Logistic). All three distribution

types are common in real data applications.

The auxiliary variables are defined as follows:

xdi ¼ 1 xdi1 xdi2ð ÞT ; with xdi1*dUnif 145; 459ð Þ and xdi2*dUnif 55; 345:ð Þ

and the regression coefficients are given by the following vector:

β ¼ 17:97 0:36 � 0:03ð ÞT :

As noted above, since the data are assumed to take a multilevel

structure (units inside areas), the ICC will have relevance and requires

sensitivity testing. The ICC varies across applications dependent upon

the extent to which the variability in the data observes a hierarchal

structure with, for example, values ranging across 0.005, 0.05, and

0.2 with respect to mortality (Ambugo and Hegn, 2015), fear of crime

(Whitworth 2012), and well-being (Moretti et al. 2019), respectively.

Given that the ICC plays a role in the performance of the model-based

MSE estimator, it is important that sensitivity tests are performed

around its value within the simulation (Molina, Nandram, and Rao

2014; Moretti et al. 2018). We use the following relationships to

explore the role of the ICC in the case of the Normal distribution:

12 Sociological Methods & Research XX(X)



r ¼
s2
u

s2
u þ s2

e

; s2
u ¼ �

r

r� 1
s2
e with s2

e ¼ 297:71 and

r 2 0:01; 0:03; 0:05; 0:08; 0:10; 0:15; 0:20; 0:50f g:

Due to space constraints, in the cases of the Gumbel and Logistic dis-

tributions, the ICC is set at a realistic value of 0.05 only (see, e.g., Moretti

et al. 2019).

In order to produce the small area IPF estimates, we create the following

classes identifying the benchmark constraints related to the covariates x1 and x2:

145 � x1i � 224:20; 224:20 < x1i � 380:70; 380:70 < x1i � 459;

55 � x2i � 126:30; 126:30 < x2i � 272:10; 272:10 < x2i � 345:

Simulation Steps

The simulation consists of the following steps:

1. Population generation: Generate the responses ydis according to

model (7) for s ¼ 1; . . . ; S, (S ¼ 1; 000) with parameters presented

above;

2. Draw a stratified random sample with simple random sample without

replacement selection in each area d from each simulated population,

nd*dUnif 7; 21ð Þ, with n ¼
P

d nd ¼ 1; 129. The overall sampling

fraction is given by f ¼ n
N
¼ 5:6%. Across the areas, these takes

values between 1.91 percent and 15.33 percent;

3. Estimate �Y d via the IPF estimator given in (2) in each sample and

obtain �̂Y
IPF

ds ;

4. Estimate �Y d via the direct estimator given by �̂Y
Direct

d in each sample

and obtain �̂Y
Direct

ds ;

5. Estimate the MSE of �̂Y
IPF

ds via parametric bootstrap described in the

fourth section (with B ¼ 500), the estimate is denoted by

^MSEboot
�̂Y
IPF

ds

� �
.

In order to evaluate the performance of the proposed bootstrap MSE

estimator, the following quality measures are calculated:
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Empirical MSE of �̂Y
IPF

d (the true MSE):

EMSE �̂Y
IPF

d

� �
¼ S�1

X
s

�̂Y
IPF

ds �
�Y ds

� �2

: ð8Þ

Empirical MSE of �̂Y
Direct

d :

EMSE �̂Y
Direct

d

� �
¼ S�1

X

s

�̂Y
Direct

ds � �Y ds

� �2

: ð9Þ

Relative bias of dMSEboot
�̂Y
IPF

d

� �
:

RB dMSEboot
�̂Y
IPF

d

� �� �
¼ S�1

X
s

mseboot �̂Y
IPF

ds

� �
� EMSE �̂Y

IPF

d

� �

EMSE �̂Y
IPF

d

� � :

ð10Þ

Relative bias of �̂Y
IPF

d :

RB �̂Y
IPF

d

� �
¼S�1

X
s

�̂Y
IPF

ds �
�Y ds

�Y ds

: ð11Þ

Relative bias of �̂Y
Direct

d :

RB �̂Y
Direct

d

� �
¼S�1

X
s

�̂Y
Direct

ds � �Y ds

�Y ds

: ð12Þ

where �Y ds ¼
PNd

i¼1ydis=Nd . The true small area means are denoted by

�Y d ¼
PS

s¼1

PNd

i¼1 ydis=Nd

In the following section, ERMSE �̂Y
IPF

d

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EMSE �̂Y

IPF

d

� �r
is used to

denote the empirical root MSE (and ERMSE �̂Y
Direct

d

� �
for �̂Y

Direct

d ). These

quality measures are evaluated and compared across the areas using the

median as a robust central tendency measure (Chambers, Chandra, and Tza-

vidis 2011; Giusti et al. 2013).
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Results

Performanceof thebootstrapMSEestimator under different distributional assumptions of

edi (r ¼ 0:05). Figure 2 presents the empirical root MSE (ERMSE) of the IPF

estimator and the direct estimator. Since the performance is very similar across

all three distributions, Figure 2 presents the findings for the Normal case only,

ordered by increasing small area sample size.

It can be seen that the IPF synthetic estimator provides estimates with

lower MSE than the direct estimator due to the use of related auxiliary

variables in reducing variance. This is particularly true for small areas with

smaller survey sample sizes where the performance gains of IPF are large

relative to direct estimator. This occurs because the ERMSE of the direct

estimator naturally depends on the survey sample size: When the survey

sample size in the small area d is smaller, the ERMSE tends to increase due

to the larger variance around such estimates. As the small area survey sample

size increases, the performance gains of the synthetic IPF estimator decline

relative to the direct estimator until a point where its performance converges

with that of the direct estimator. For reference, Figure 2 looks identical when

ordered by sampling fraction rather than sample size.

For each distribution, Figure 3 shows the IPF point estimates across the

small areas plotted against the true values observed in the population.
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Figure 2. Empirical root mean squared error comparisons: Direct versus iterative
proportional fitting estimator for the Normal case.
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Table 1 shows the median estimate comparisons obtained using �̂Y
Direct

d

and �̂Y
IPF

d under the different distributional scenarios. The true value �Y d is

shown in the first row, while the direct and IPF central estimates are shown

in rows 2 and 3, respectively. The relative bias of those direct and IPF estimates

across all the small areas are then shown in the penultimate two rows. It can be

seen that the IPF small area estimator returns only negligible biases across the

small area even in cases of Gumbel and Logistic distributions of the error term.

Figure 4 moves on to focus on the performance of the bootstrap MSE

estimator to calculate the uncertainty around those central small area point

estimates in the three Normal, Gumbel, and Logistic distributions, respec-

tively. It can be seen that our proposed bootstrap approach provides nearly

unbiased estimates of the true MSE with relative bias centered on and close

to zero across the small areas. No association is found between estimate bias

and sampling fraction across Figure 4.

Figure 3. Comparisons of iterative proportional fitting estimates versus true means.

Table 1. Point Estimates Comparisons and Relative Biases Across the Small Area,
Median Values Where Intraclass Correlation ¼ 0.05.

Performance Measure

Scenario

Normal Gumbel Logistic

�Yd 120.696 120.595 120.714

�̂Y
Direct

d 120.720 120.756 120.964

�̂Y
IPF

d 120.662 120.677 120.687

RB �̂Y
Direct

d

� 	
0.000 0.000 0.000

RB �̂Y
IPF

d

� 	
0.006 0.004 0.004
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Table 2 provides further details of the performance of the bootstrap MSE

estimator across the three distributions. In particular, the true MSE (i.e.,

empirical MSE) in each distribution is compared to our bootstrap MSE

estimate and coverage rates (of 95 percent confidence intervals) are also

presented. It can be seen that the relative bias values are close to zero and

that the MSE bootstrap estimator is nearly unbiased across the small areas in

each of the three distributions.

On the role of the ICC in the case of the Normal distribution. On the basis of these

analyses, the performance of our proposed MSE estimator is encouraging in

terms both of the small relative bias of the MSE estimates and the quality of

-0.1

-0.05

0

0.05

0.1

0.15

7 8 9 9 10 11 12 12 13 13 14 15 16 16 17 18 19 19 20 20

Normal Gumbel Logistic

Figure 4. RB ^MSEboot
�̂Y IPF

d

� �� �
, Normal, Gumbel, and Logistic cases.

Table 2. Performance Measures of the Bootstrap MSE Estimates.

Performance Measure

Scenario

Normal Gumbel Logistic

EMSE �̂Y
IPF

d

� 	
16.114 17.159 15.990

dMSEboot
�̂Y
IPF

d

� 	
14.592 15.865 14.001

RB dMSEboot
�̂Y
IPF

d

� 	� 	
�0.076 �0.080 �0.079

Coverage rates 0.918 0.915 0.914

Note: MSE ¼ mean squared error; EMSE ¼ empirical mean squared error.
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the coverage. However, as noted above, it may be that the magnitude of the

ICC affects the performance of the MSE estimator.

Table 3 shows the findings of ICC sensitivity analyses with a focus on the

Normal distribution where the ICC is varied at several points from 0.01 to

0.50. The results for r ¼ 0:05 shown above are repeated to aid comparison. It

can be seen that the relative bias of �̂Y
IPF

d increases slightly when the ICC

increases beyond around 0.15, ranging from �0.001 when r ¼ 0.01–0.006

when r ¼ 0:2 and 0.021 when r ¼ 0:50. In terms of the bootstrap MSE

estimator, the penultimate row shows that this estimator delivers consistently

small relative bias in the MSE though with somewhat weaker performance in

coverage at very low levels of ICC as displayed in the final row. When the

ICC is small, the MSE is slightly underestimated as seen by looking the

relative bias and by comparing the empirical MSE (line two) with our boot-

strap MSE (line 3). However, these relative bias estimates remain acceptable.

Application to Small Area Income Estimation in Italian

Municipalities

This section provides a real-world application of an IPF small area estimator

and, more centrally for this article, of our proposed bootstrap estimator of its

MSE. The application used is the estimation of mean equivalized annual

household disposable income (in Euros) for the municipalities of Tuscany

region (D ¼ 287). The survey data used are provided from the 2009 Eur-

opean Union SILC (EU-SILC). These EU-SILC data contain a sample of

1,448 households for Tuscany. EU-SILC is designed to deliver estimates at

the national and also regional (NUTS-2) level (Giusti, Masserini, and Pratesi

2015). Therefore, this situation is typical of most survey situations in that

EU-SILC cannot be used to derive usable income estimates at smaller sub-

regional geographies such as municipalities due to low or zero survey sample

sizes. The household income variable of interest is given in the EU-SILC

data and equivalized using Eurostat’s official modified Organization for

Economic Cooperation and Development equivalence scale (Haagenars, de

Vos, and Zaidi 1994; Marchetti et al. 2018). The auxiliary variables for the

Tuscan municipalities come from the Population Census of Italy.

Model Fitting and Internal Validation

The explanatory variables used in this application are working status, years

of education, gender, and age of the survey identified head of household.

These have been informed by preliminary model investigations and findings
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Table 3. Performance Measures of Our Bootstrap MSE Estimator at Varying Levels of Intraclass Correlation in the Normal
Distribution.

Performance Measure

Scenario

r ¼ 0:01 r ¼ 0:03 r ¼ 0:05 r ¼ 0:08 r ¼ 0:10 r ¼ 0:15 r ¼ 0:20 r ¼ 0:50

RB �̂Y
IPF

d

� 	
�0.001 0.002 �0.001 0.002 0.001 0.002 0.006 0.021

EMSE �̂Y
IPF

d

� 	
5.300 11.001 16.114 16.115 16.116 53.426 64.551 293.397

dMSEboot �̂Y
IPF

d

� 	
4.734 10.197 14.592 14.650 14.600 52.247 63.220 293.835

RB dMSEboot
�̂Y
IPF

d

� 	� 	
�0.080 �0.079 �0.076 �0.075 �0.075 �0.019 �0.018 0.006

Coverage rates 0.917 0.917 0.918 0.924 0.939 0.942 0.950 0.950

Note: MSE ¼ mean squared error; EMSE ¼ empirical mean squared error.
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from previous studies (Giusti et al. 2013). Model diagnostics identified some

skewness and outliers in the distribution of the income outcome variable, as

is common with such distributions, and this variable was therefore log trans-

formed. No evidence of leverage was found. Table 4 presents the results from

the log-linear linear model in EU-SILC based on (3).

Validation is an important step in any SAE study. SAE models can be

validated internally in terms of the underlying model and externally

against some known other external data of the target outcome variable.

In terms of the internal validation, Figure 5 shows the fitted values

versus the residuals as well as the Q–Q plots of the residuals from the

log-linear model used to produce the MSE of the IPF estimates. These

show good behavior with respect to the normality assumption. External

validation is discussed below.

Estimating Municipality Income in Tuscany

This section discusses the results of the IPF SAE of the mean equivalized

annual household disposable income across Tuscan municipalities along

Figure 5. Fitted values versus residuals (left) and Q–Q plot of the residuals from the
model used to produce the mean squared error of the iterative proportional fitting
estimates.

Table 4. Model Results.

Coefficient Estimates exp bð Þ Standard Error p Value

Intercept 8.460 4,754.748 .105 .000
Gender 0.215 1.236 .031 .000
Working status 0.352 1.422 .041 .000
Age 0.010 1.012 .001 .000
Years of education 0.034 1.035 .003 .000
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with their uncertainty estimates. Figure 6 maps the mean IPF estimates

across the 287 Tuscan municipalities. The map displays municipalities in

four quartiles and shows a range in 2009 municipal income estimates from a

low of just over 16,000 Euros per annum to a high of just under 20,000 Euros

per annum. Municipalities located in the provinces of Massa Carrara (North

West), Grosseto (South), and Prato and Pistoia (North) show the lowest

estimated municipal income levels. On the contrary, municipalities around

Florence, Arezzo, Pisa, and Livorno show the highest estimated municipal

income levels.

In terms of external validation of these IPF estimates, a frequent inherent

challenge, as here, is the typical lack of any such existing small area data

against which to validate (hence the motivation for the SAE). External vali-

dation of these IPF estimates is provided in two ways. Firstly, the spatial

Figure 6. Iterative proportional fitting income estimates for Tuscan municipalities.
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patterns in Figure 6 are in line with known geographical patterns of similar

indicators across Tuscany seen in previously published research (Giusti et al.

2015; Moretti et al. 2019). Secondly, no identical income indicators exist at

this municipality scale, and no direct survey estimates to municipality level

are viable from the EU-SILC survey data. However, it is viable to produce

direct survey estimates from the EU-SILC survey data to Tuscany’s 10 larger

provinces and to compare these with indirect IPF estimates also to province

level. The Spearman’s rank correlation between these two sets of estimates

is.93, and this is statistically significant at below the 1 percent level, although

acknowledging the limited sample size involved.

Table 5 presents summary statistics of the uncertainty of the direct survey

estimates compared with the IPF estimates. In particular, it shows the root

mean squared error (column 1) and, expressed as a percentage of the esti-

mates, the relative root mean squared error (RRMSE%; column three) of the

small area estimates. Given that the direct estimates are unbiased, the stan-

dard deviation (SD; column 2) and coefficient of variation (CV%; column 4)

of the direct estimates enable a comparison of uncertainty of the direct

estimates with the bootstrap MSE estimates of the IPF estimator. The coeffi-

cient of variation (CV) is a standardized measure of the dispersion of a

distribution and is calculated as a ratio of its SD to its mean. In the present

analyses, it is obtained as the ratio between the SD of the direct survey

estimate and the direct survey estimate for every area. Since direct estimates

are unbiased, their CVs represent measures of uncertainty (Rao and Molina

Table 5. Summary Statistics of the Performance Gains from the Synthetic IPF Esti-
mator Compared to the Direct Estimator for Small Area Income Estimates Across
Tuscan Municipalities.

Areas
with

Summary
Statistic

RMSE
IPF SDDirect

RRMSE IPF
%

CV Direct
%

Gains
%

nd > 0 Min. 2,197.50 2,444.02 10.63 11.21 26.46
Mean 3,289.50 6,663.51 17.50 32.10 32.71
Median 3,356.00 4,802.52 18.48 26.20 32.80
Max. 4,431.00 51,750.48 23.51 99.05 94.19

nd ¼ 0 Min. 2,196.80 — 13.11 — —
Mean 3,308.03 —- 19.27 — —
Median 3,346.46 —- 18.98 — —
Max. 4,756.51 —- 24.51 — —

Note: MSE ¼ mean squared error; CV ¼ coefficient of variation; RRMSE ¼ relative root mean
squared error; IPF ¼ iterative proportional fitting.

22 Sociological Methods & Research XX(X)



2015). RRMSE and CV are standard measures of uncertainty that are

required in many official statistics institutes (see Schirripa-Spagnolo,

D’Agostino, and Salvati 2018; Statistics Canada 2009).

Table 5 shows that the IPF estimates are more reliable than the direct

estimates across all points of the income distribution, as depicted by the

lower values of the RRMSE IPF (column 1) and RRMSE IPF (column 3)

compared to SD direct (column 2) and CV direct (column 4), respectively.

The IPF small area estimates can also be considered reliable in absolute

terms. Values of RRMSE below a threshold of 20 percent are often taken

by statistical agencies as acceptable (Commonwealth Department of Social

Services 2015), and almost all of this municipality distribution of small area

estimates is below this level. The final column of Table 5 summarizes the

gains in efficiency of the IPF estimates over the direct survey estimates by

comparing the MSE for the IPF estimator with the variance of the unbiased

direct estimator. Technically, these are calculated by

Gain �̂Y
IPF

d

� �
¼

MSE �̂Y
IPF

d

� �
� Var �̂Y

Direct

d

� �

Var �̂Y
Direct

d

� � � 100; d ¼ 1; . . . ;D;

ð13Þ

where Var �̂Y
Direct

d

� �
denotes the variance of �̂Y

Direct

d . Equation (13) denotes a

measure of gain in efficiency of using an estimator with higher precision

compared to the direct estimator. We refer to Särndal et al (1992) for mea-

sures of efficiency in survey statistics and to Moretti et al. (2018) and

González-Manteiga et al. (2008a) for some examples of their use. Results

for nd ¼ 0 (municipalities with zero sample size) and nd > 0 (municipalities

with some households in the survey) have been separated because it is not

possible to compute direct estimates (and as consequently the gains) for areas

with zero sample size. Table 5 shows that the small area estimates from the

indirect IPF estimator provide significant performance gains compared to the

direct estimator at all points of the municipality income distribution.

Figure 7 drills down to focus on the extent to which these performance

gains vary according to the size of the municipality sample size in the EU-

SILC survey, a key driver of the variance of the direct estimator and key

limiter of the viability of using the direct estimator to produce reliable survey

estimates for small areas. To aid comparison, Figure 7 is ordered from left to

right by municipality survey sample size in the EU-SILC. RRMSE is shown

for the IPF estimates, while CV is shown for the direct estimates. Figure 7
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illustrates that the RRMSE of the indirect IPF estimates does not depend on

the sample size in contrast to the direct estimator. As such, Figure 7 high-

lights that while performance gains from the IPF estimator are seen across

the whole distribution, they increase as the municipality sample size in the

survey decreases. Among those municipalities with the smallest survey sam-

ple sizes, there is a marked increase in the performance gains available from

the IPF estimator compared to the direct survey estimator. Figure 7 is natu-

rally only able to display comparative results for municipalities with nonzero

sample sizes, given that direct estimates cannot be produced for small areas

with zero sample size. Estimates for these municipalities do of course

become viable with synthetic IPF estimator. For reference, Figure 7 looks

identical when ordered by sampling fraction rather than sample size.

Discussion

The combination of high costs of survey data collection and increasing

demands for ever more spatially detailed data from policy makers and scho-

lars alike mean growing demands for SAE techniques. Spatial microsimula-

tion approaches to SAE continue to be widely used across diverse domains

including transport, health, physical activity, and income. However, their

continuing inability to produce reliable estimates of uncertainty alongside

their central point estimates remains a pressing limitation to their utility for
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practitioners and scholars alike. This is understandable in part given that the

estimation of MSE is difficult in a spatial microsimulation context since it

cannot be estimated in a closed form and analytical approximations are

highly challenging.

Widely discussed in the SAE literature is the importance of providing

measures of uncertainty such as MSE or confidence intervals alongside the

central point estimates in order to assess the reliability of the small area

estimates (Pratesi 2016). This is particularly important where policy deci-

sions are taken on the basis of the small area estimates since the conse-

quences of real-world decision making without a clear sense of the

uncertainty around the point estimates can be misleading and potentially

harmful (Goedemé et al. 2013). Klevmarken (2002:264) argues that “[T]he

credibility of [microsimulation models] with the research community as well

as with users will in the long run depend on the application of sound prin-

ciples of inference in the estimation, testing and validation of these models.”

This article provides a significant development in this context by present-

ing a novel parametric bootstrap approach for the estimation of uncertainty in

spatial microsimulation SAE techniques. Importantly, the measure of uncer-

tainty estimated is the MSE that contains both the variance and bias of the

estimate. Simulation results demonstrate that under model assumptions, our

proposed MSE estimator is relatively unbiased and displays good coverage

properties against known true population values. The approach delivers sub-

stantial performance gains compared to the direct estimator across all por-

tions of the distribution. In doing so, our approach enables researchers and

policy makers alike to quantify both the performance gains potentially avail-

able through the use of spatial microsimulation approaches to SAE compared

to direct survey estimates and to quantify the extent of uncertainty around

those small area estimates. The simulation results show that those perfor-

mance gains exist irrespective of the target small area sample size but are

especially large at low sample sizes (below 10 in this simulation) and, natu-

rally, when small areas have zero sample size such that direct estimates are

nonviable but synthetic small area estimates are possible. Sensitivity tests

confirm that these performance gains are maintained both across nonnormal

Gumbel and Logistic distributions as well as across differing values of ICC,

though coverage performance falls slightly at very low levels of the ICC in

our simulation. A practical data application using EU-SILC data to munici-

pality income across Tuscany is presented and validated in order to demon-

strate the applicability and similar performance of the MSE bootstrap

estimator in a real-world setting.
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While the performance and sensitivity analyses confirm that our proposed

approach evaluates well and marks a significant contribution to the field, it

serves also to open up opportunities for further more advanced enquiry as a

result. First, we focus here only on a linear model. Future work will need to

explore the performance of other nonlinear models in this context. However,

the bootstrap approach in these scenarios will follow the same steps as those

proposed in our approach. Second, a clear next step is to extend the frame-

work to different types of outcome variables beyond the scalar target variable

assessed here. Third, in this study, the common case of nonnormal error

terms is assessed, and our simulation study shows good performance of the

MSE estimator in distributions with mild skew and heavy tails as well as in

the normal case. However, future work could take into account more fully the

implications of and potential responses to failures in model assumptions and

of model failure. Our hope therefore is that this article’s contributions will

not only make a significant advance to research and policy practice in spatial

microsimulation SAE, but that it will also stimulate further scholarly atten-

tion to these and other areas.
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