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A B S T R A C T   

This paper seeks a vertex based approach to faceted anisotropy in phase field modelling of crystal growth. We 
examine Wulff shapes and the connection they have with phase field formulations. On inspecting current ap
proaches to modelling facets within phase field we observe that there are two distinct approaches: one imple
ments the faceting purely in the kinetic parameter thus avoiding the complications of taking gradients of 
discontinuous functions; while the second is based upon regularisation of the anisotropy function within the free 
energy function. Armed with our new insight into the operation of anisotropy within phase field we refine the 
second of these and advocate a vertex based approach to facet anisotropy modelling. Results include regular and 
irregular morphologies and hill-valley growth. We also present high undercooling effects on faceting, which can 
cause breaks in facets and, in the case of irregular shapes, distortion of the underlying Wulff shape.   

1. Introduction 

Since the establishment of a thermodynamic basis [1] and the pio
neering efforts of [2], the application of phase field to crystal growth has 
become almost mandatory over the last decades. This is largely because 
the phase field methodology allows a computationally continuous 
transition between different phases of matter, avoiding the need for 
interface tracking, which is problematic for complex crystal morphol
ogies, particularly where the topological connectivity changes, such as 
during melting or coalescence. The computational price to pay is the 
increased degrees of freedom needed at the transition, which in 3D is 
particularly computationally expensive. This led to models such as [3] 
which exhibit a high degree of phase field width independence. None
theless it is vital that the formulation used for the simulations is as 
efficient as possible and one of the aims of this paper is to improve ef
ficiency in the anisotropy implementation. 

The phase field simulation of complex crystal morphologies, uses the 
phase variable, ϕ, and necessarily involves the inclusion of an anisotropy 
function, A(∇ϕ), which reflects, at the mesoscopic scale, the underlying 
crystallography of the ordering at the atomic scale. It was soon realised 
that by varying the interface width as a function of the normal to the 
surface, that anisotropy can be introduced into the model [4], though 
this may now change with the introduction of models that keep the 
interface width constant [33]. With anisotropy the modelling of 
conceptually simple morphologies, such as dendrites, began in earnest, 
initially in 2D. However, the practical implementation of anisotropy in 

phase field involves reducing A to a somewhat less elegant non-linear 
function of gradients of the phase field, ϕ , which upon brute force 
variational computations can become an unrecognisable jumble of 
partial derivatives. This is particularly the case for complex morphol
ogies, such as crystals faceting on multiple non-orthogonal growth 
planes in 3D. Consequently, the simulation of faceted morphologies is 
much less common in phase field than is that of morphologies with a 
continuous interface, such as dendrites, and mixed growth where 
continuous and faceted phases co-exist has hardly been addressed at all. 

The interplay between co-existing faceted and continuous crystals is 
a key feature in explaining both the performance and potential failure of 
numerous advanced engineering alloys, particularly as many interme
tallic compounds form as faceted phases. Examples of the deliberate 
inclusion of faceted phases in continuous matrix materials range from 
the common place, such as most Al − Si casting alloys to the exotic such 
as Re-rich hexagonal δ-phase in Ru containing high temperature su
peralloys [5]and the non-faceted/faceted Mg-Mg2Ni eutectic proposed 
as a potential hydrogen storage material [6]. Similarly, the formation of 
unwanted faceted phases in continuous matrix alloys can have a severe 
deleterious impact on performance, with for instance iron contamina
tion causing widespread problems across a range of commercial Al and 
Al-Si alloys with the formation, among others, of needle Al13Fe4, Chi
nese script α-Al8Fe2Si and tetragonal plate β-Al4FeSi2 [7]. 

The over-arching principle behind phase field modelling is the 
minimising of free energy, subject to diffusion parameters such as solute 
diffusion and mobility. Much of the modelling is within the formation of 
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the free energy, which splits neatly into two parts: the surface energy; 
and the bulk energy. The latter, bulk modelling, is the more closely 
linked to thermodynamics, whereas surface modelling is completely 
divorced from bulk properties. 

This paper concerns surface modelling. Surface modelling and phase 
field appear simultaneously through the introduction of an interface 
width, being a measure of the size of the transition region. The most 
ubiquitous and extensively explored model is the two-dimensional 4- 
fold anisotropy: 

A = 1+ ∊cos4ν (1)  

where, A is the anisotropy and ν is the angle the normal to the solid
–liquid surface makes with some fixed direction. Typically the hori
zontal is used as a reference direction, but multiple reference directions 
may be used for different particles. e.g. [8]. A phase field parameter, ϕ ∈

[0,1], is utilised, where ϕ = 1
2 represents the heart of the transition region 

and thus, formally, the surface. The normal direction is given by ∇ϕ 
which when normalised is n = ∇ϕ/|∇ϕ| and the link with the angle, ν, is 
given by 

cosν =
ϕx

|∇ϕ|
, sinν =

ϕy

|∇ϕ|
, (2)  

where ϕx ≡
∂ϕ
∂x etc, for Cartesian coordinates, x,y. A major contribution to 

the understanding of anisotropy in phase field is presented in [9] which 
associates a vector field (termed the ξ-vector) with the anisotropy and 
the resulting equilibrium crystal shape - the Wulff shape: [9] also de
velops, to some extent, the method for implementing this in phase field. 
We have a further look at this term from the perspective of a differential 
form in this paper. 

We then inspect facet models. A feature of all facet models is to create 
anisotropy with forbidden angles. To understand this requires knowl
edge of Wulff shapes and their relation to anisotropy. For the dendritic 
models the anisotropy (of which A = 1+∊cos4ν is an example) is such 
that A′

(ν) is always a continuous function of ν. However, as the 
magnitude of the anisotropy, ∊, is increased, the Wulff shape takes on a 
retrograde motion with magnitude A′

(ν) and develops features known as 
“ears”, which are in effect discontinuities. The onset of these disconti
nuities is when A + Aνν = 0. Now, since the Wulff shape is defined as not 
including the ears, increasing ∊ without bound can give increasingly 
faceted crystals. The problem though is that the highly non-regularised 
(discontinuous) anisotropy function would be very unstable and prob
lematic if kept in the free energy, and its adoption in the kinetic term 
became common, e.g. [10–14]. 

Some modellers stayed loyal to free energy implementation [15–19], 
through the approach of regularisation. The first two papers, produce 
faceting by increasing the strength of the anisotropy to produce a Wulff 
shape with pronounced cusps (ears), whereas the latter three papers 
work with anisotropy with formally flat sides, no cusps and rounded 
‘vertices’. The example in [17] is a square and that of [18] is focussed 
around hexagonal growth, but in [19] is a more general methodology 
that includes arbitrary shapes in 2 and 3 dimensions. 

The approach of [19] is focussed on the facets of the shape in 3D. 
Once the normals to the facets are specified, then a surface energy can be 
formed that is a function of these normals and the direction of growth. 
This approach is to be compared with the approach advocated in this 
paper, where it is the vertices of the polyhedra or polygons that form the 
basis of the surface energy construction. 

Facet models in phase field tend to begin with an “ideal” anisotropy 
function that typically contain unappealing discontinuities which, in 
turn, will likely cause numerical instability – see [17]. The anisotropy 
function with 4-fold symmetry in 2D, given in [17], is 

A = 1+ ∊(|cosν| + |sinν|) (3)  

where, one notes the absolute value function. If we rescale this as 

A =
1 + ∊(|cosν| + |sinν|)

1 + ∊
(4)  

and increase ∊ from zero, the associated Wulff shape moves progres
sively: from a circle; to a square with rounded corners; to a perfect 
square. Thus, one is led to conjecture that the anisotropy of a perfect 
square is formally 

A = |cosν| + |sinν|. (5) 

Fig. 1. The anisotropy of a square with ∊ = 0 (isotropic) and as ∊ = 1,2, 3 the 
anisotropy approaches that of being related to a perfect square Wulff shape 
(not shown). 

Fig. 2. The corresponding Wulff shape to Fig. 1 of a square with ∊ = 0 
(isotropic) and as ∊ = 1, 2,3 the anisotropy approaches that of being related to 
a perfect square Wulff shape (not shown). 
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A plot of Eq. 4 for four equally spaced values of ∊ is shown in Fig. 1 with 
its companion plot of Wulff shapes in Fig. 2. A closely related function 
that also gives 4-fold faceted symmetry is 

A =
1 + ∊|cos2ν|

1 + ∊
. (6)  

This has a similar Wulff shape, but what is noticed on closer inspection 
of this function is that there is a critical value, ∊ = 1/3, where the vertex 
becomes a true point, and the adjacent sides are not straight near the 
vertices. The anisotropy function Eq. 4 is thus preferential to Eq. 6. This 
raises the question: what properties of the anisotropic functions give 
clear faceted Wulff shapes with sharp (point) vertices, straight sides and 
nothing else? Developing phase-field models for sharp corners and facets 
is challenging because sharp corners are necessarily associated with 
negative stiffness and facets with a Wulff shape with missing orienta
tions (A′

(n) undefined). This leads to modifications of the model by 
rounding vertices, [17], and convexification, [20], and also by adding 
higher order terms, [21]. Higher order terms considerably increase the 
numerical difficulty and so we explore a convexification approach in this 
paper along with the rounding the vertices. We argue that if the equi
librium (Wulff) shape is identical for two candidate schemes, then the 
metastable results must also be identical, because the Wulff shape is the 
input to the dynamic phase field model. It follows therefore that a ca
nonical formulation is the most natural starting point of the different 
formulations, leading to the most straightforward geometric interpre
tation. Ultimately, it must be modified for direct implementation, the 
end result being a formally convex Wulff shape with approximately 
sharp corners and near flat edges (in 2D). 

An ideal phase field formulation would perhaps include only 
measurable parameters, and so, in principle, one would acquire surface 
energy values from, for example, experiment or molecular dynamics 
simulation. The approach taken here is to inspect equilibrium 
morphology from observation and infer the surface energy from the 
vertices of the faceted object using the approach we detail later in this 
paper. In principle, when the equilibrium shape is reproduced in the 
simulation, metastable shapes will be explored at higher driving forces, 
possibly with the aid of anisotropic kinetic parameters, in order to make 
predictions of the non-equilibrium shapes found in experiment. 

In this paper we address the above questions via a discussion of Wulff 
shapes in Section 2, facet modelling of simple shapes in Section 3 and 
more generally in Section 4. We give a short section on basic differential 
geometry notation, which we use in parts of the paper, in appendix A; 
details of the phase field model that we use for an inter-metallic alloy are 
provided in appendix B; and a discussion of the numerical method we 
adopt is in appendix C. 

2. Anisotropy in phase field 

Part of the material of this section is also discussed in different no
tation in [9] which applies the Cahn–Hoffmnan ξ vector [22] to phase 
field. The ξ vector is defined as the gradient of the radial coordinate 
times the anisotropy 

ξ = ∇(RA) (7)  

but we prefer to use the more flexible and primitive concept of a dif
ferential 1-form 

W = d(RA). (8)  

The relationship between the two is 

Wi = Gijξj (9)  

where Gij are the components of the metric of flat space. The most 
natural coordinates to use are Cartesian when the metric matrix Gij = δij 

is diagonal giving 

Wi = δijξj = ξi. (10)  

However, for polar coordinates the components of the differential 1- 
form, W and the ξ vector do not equate unless presented in an ortho
normal basis. 

We should point out that the more familiar differential operator, 
d (italisized) is treated and thought of as a scalar in normal vector cal
culus, and means 

d(RA) ≡ ∇(RA)⋅dr = ξ⋅dr (11)  

where r is the vector position,[x,y]. Hence, though all intimately related, 
the scalar differential, d(RA), is formally a different object to both the 
vector ∇(RA) and the one-form, W = d(RA). Please see the first of our 
appendices in Section A, which explains in more detail the geometric 
significance of a 1-form field and other related notation used throughout 
this paper. 

The following subsections illustrate and explicate the concept of a 
Wulff shape and its relation to the anisotropy - Section 2.1, and then how 
this mathematical object relates to a phase field formulation - Section 
2.2. 

2.1. Wulff shapes 

To understand the connection of Wulff shapes with the anisotropy, A, 
it turns out that we require the function 

f = A(ν)R, (12)  

where ν is the angle of the vector X = R[cosν, sinν] to the horizontal so 
that R = |X| is the length of the vector. The angle ν is not to be confused 
with the angle, θ, at the origin where the vector X is located - see Fig. 3 

Given, f, one can generate a Wulff shape by 

W = df (13)  

where the one-form (gradient) is interpreted as lying in the 2D domain 
centred at the origin for a particular R, say, R = 1. The simplest example 
is the isotropic case, f = R so that with, X = Rcosν,Y = Rcosν 

Fig. 3. Diagram showing a crystal boundary in 2D (dashed). At the point x =

(x, y) at angle θ to the horizontal, we locate the vector, X (wide pink arrow) of 
length R and angle ν to the horizontal. Also shown are two orthonormal basis 
vectors, eR, eν. 
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df = dR

=
∂R
∂X

dX +
∂R
∂Y

dY

=
X
R

dX +
Y
R

dY

= cosνdX + sinνdY  

So in this space, with Cartesian position given by (X,Y) we have df =

dR = cosνi + sinνj, where i, j are the unit X-Y direction vectors respec
tively. 

This generates the parametric curve 

ν ↦ [X = cosν,Y = sinν], (14)  

which is a circle. More general anisotropy such as 

f = AR = [1+∊cos(4ν)]R (15)  

generates the Wulff shape via 

df = AdR + A′Rdν
= AeR + A

′eν
= A[cos(ν)i + sin(ν)j] + A′

[− sin(ν)i + cos(ν)j]
= [Acos(ν) − A′ sin(ν)]i + [Asin(ν) + A′cos(ν)]j

(16)  

where eR = dR = cosνi+sinνj and eν = Rdν = − sinνi+cosνj are unit 
vectors in the radial and azimuthal direction respectively (see Fig. 3). 
We are also at liberty to use Cartesian coordinates, (X,Y) in our evalu
ation of the Wulff shape which gives 

df =
∂f
∂X

dX +
∂f
∂Y

dY

=
∂f
∂X

i + ∂f
∂Y

j
(17)  

This means we can equate 

∂f
∂X

= Acos(ν) − A′ sin(ν),

∂f
∂Y

= Asin(ν) + A
′ cos(ν)

(18)  

The Wulff shape is given by the parametric curve using the Cartesian 
components of df : 

ν ↦ [x = Acos(ν) − A′ sin(ν), y = Asin(ν) + A′ cos(ν)]. (19)  

This also makes clear that the coordinates of the Wulff shape, (x, y) are 
distinct from the components of the normal n = (X/R,Y/R). 

2.2. Anisotropy and Wulff shapes in phase field 

On implementation into phase field the anisotropy enters the energy 
functional via the relations X = Rcosν,Y = Rsinν and the function 

f : (X,Y) ↦ f (X,Y).

For example, 

f = 1 + ∊cos(4ν)
= 1 − 3∊ + 4∊(cos4ν + sin4ν) (20)  

gives f defined in terms of X,Y as 

f : (X,Y) ↦ R
[

1 − 3∊ + 4∊
X4 + Y4

R4

]

where R =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
X2 + Y2

√
. The surface energy functional in phase field is 

given as 

F =

∫

Ω

1
2

f (ϕx,ϕy)
2 dxdy ≡

∫

Ω

1
2

f (∇ϕ)2 dxdy. (21)  

Applying standard variational techniques on F gives 

δF
δϕ

= − ∇⋅
1
2

∂f (∇ϕ)2

∂∇ϕ

= − ∇⋅f (∇ϕ)
∂f

∂∇ϕ

(22)  

The question arises: What is the relation between the Wulff shape and 
the phase field formulation? To answer we compare the Cartesian 
components, in 2D, of Eq. 18, with the components of ∂f

∂∇ϕ, with the 
identification 

df |∇ϕ ≡ df |X=ϕx ,Y=ϕy
=

∂f (ϕx,ϕy)

∂∇ϕ
(23)  

From now on we shall use the concise notation 

Df ≡ df |∇ϕ ≡
∂f

∂∇ϕ
. (24)  

We finish this subsection with an evaluation of the expression: 

∇⋅Dg, (25)  

where we have in mind 

g ≡
1
2
f 2. (26)  

The most straight forward evaluation of this expression is to use Carte
sian components and the chain rule to write 

∇⋅Dg =
∂

∂xi

∂g
∂ϕi

=
∂ϕj

∂xi

∂2g
∂ϕi∂ϕj

= ϕij
∂2g

∂ϕi∂ϕj
(27)  

We can write this without components as 

∇⋅Dg = ∇∇ϕ : DDg. (28)  

where 

DDg ≡ ∇∇g(X, Y)|X=ϕx ,Y=ϕy
, (29)  

It is convenient from this point on to use the symbol f for both AR and f∇ϕ 

where the context is unambiguous. 
We can write Eq. 29 in the following way to make the geometric 

connection with Wulff shape clear by using the notation of [9], ξ ≡ Df , 
so that 

∇⋅Dg

= ∇∇ϕ : DD(
1
2
f 2)

= ∇∇ϕ : D(fDf ))

= ∇∇ϕ : D(f ξ))

= ∇∇ϕ : (ξ ⊗ ξ + fDξ)

(30)  

which duplicates a result found in [9] and where clearly these results 
apply in three dimensions (and higher). We make particular use of the 
well known expression (see [9] for example), Eq. 27, in the facet model 
we advocate in this paper. There is much discussion in [23], of the ge
ometry of Wulff shapes and a number of models, including many in this 
paper, that are realised using level set methods. [20] show that the Wulff 
shape can be defined by 

W = {x : x⋅n⩽A(n)} (31) 
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for all n and use this to prove results in phase field including the 
behaviour of a facet model at a vertex. It is one of the purposes of this 
paper to verify whether equilibrium results for facet models do indeed 
coincide with the faceted Wulff shapes. 

3. Facet modelling 

This section states and looks at the consequences of a definition of 
anisotropy relating to surface orientation, n and crystal vertices, pi, 
given in Eq. 33, which is the central equation of this paper. But in order 
to make a connection with a particular model in the literature due to 
[17] we work out in detail two equivalent applications of this model to 
this simpler square case in Section 3.1. Other approaches can be found, 
for example, see that advocated in [25,26] which use continuous poly
nomial functions of angle with powers typically in excess of 50: 

A(n) = a0 +
∑

i
ai(n⋅pi)

wHi(n⋅pi), w > 50, (32)  

where pi specifies the vertices and the dot product is associated with an 
angle, and Hi() is the Heaviside function. Eq. 32 has many advantages, 
the directions of minimum energies and their values can be controlled, 
as well as the metastability and instability of the missing orientations. 
We will now establish a connection between this model and the one we 
develop in this section, which we state here to be: 

A(n) = max(n⋅pi, i = 1..n) (33)  

for n vertices. 
Now the max function of a sequence of values, also known as the 

infinity norm, is well approximated by 

max(qi, i = 1..n) ≈

(
∑n

i
qw

i

)1/w

(34)  

for large w and qi > 0. So we see that the expression Eq. 33 would be 
similar to Eq. 32, where a0 = 0, ai = 1 if a power of 1/w would be 
included. Although expression Eq. 32 has the advantage over Eq. 33 of 
being continuous in all its derivatives, we find that Eq. 33 is ultimately 
more simple in application. 

Another modelling technique might be termed large ∊ modelling 
whereby the Wulff shape has large ears leaving the desired crystal shape 
inside the envelope. In all implementations the resulting Wulff shape 
with ears is regularised. Examples of this modelling technique are found 
in[27–30]. The application in [28] is to that of snow crystal and a variety 
of crystal structures are produced by varying 4 model parameters. 
However, the model suffers from the disadvantage of not being clearly 
derived from a variational of the free energy and contains, for example: 
an elongation parameter, Γ that appears equivalent to a post processing 
of the crystal by a transformation in the z direction; also present in the 
model is an anisotropy function multiplying the bulk driving force. 
Despite these caveats the range of snow crystal morphologies produced 
is potentially of great interest to metallic solidification (with theoretical 
modification if necessary). 

An important contribution to the literature is found in [31]. Here a 
level set method is used to produce 2D and 3D shapes including a do
decahedron. The method is to specify the geometry using angles using 
both large ∊ and absolute value functions. A discussion and classification 
of different approaches to faceted equilibrium crystal models is found in 
[20], but in doing so does not single out any one approach as advanta
geous or more mathematically or physically justified. 

3.1. Square crystal growth 

The purpose of this section is to examine probably the simplest case 
of faceting, the square crystal, from two different but equivalent per
spectives: the angle coordinate and the Cartesian coordinate 

approaches. Traditional anisotropy is formulated in angle coordinates 
and thus it would seem natural to use this approach for faceting too. 
However, we will see that working with Cartesian coordinates is much 
more natural and offers simpler formulation. Because the square Wulff 
shape is relatively simple it allows special treatment and leads to a 
relatively easy form for implementation in phase field. This also allows 
comparison with the work of [17] and also serves to illustrate why 
applying either coordinate approaches to arbitrary faceted crystals in 3D 
will likely lead to difficulties upon implementation. 

3.1.1. Using Cartesian coordinates 
We define the surface energy term g = 1

2f
2 using the anisotropy 

(strictly speaking f = RA, where A is the anisotropy, but there seems to 
be no name for the function, f) 

f = f (X, Y)|X=ϕx ,Y=ϕy
(35)  

and we define f for a square: 

f =

⎧
⎪⎪⎨

⎪⎪⎩

X + Y X,Y > 0
− X + Y − X,Y > 0
X − Y X, − Y > 0
− X − Y − X, − Y > 0

(36)  

where X,Y are Cartesian coordinates. We are interested in evaluating 
terms like 

gXY =
∂

∂Y
(ff X) (37)  

and 

gXX =
∂

∂X
(ff X) (38)  

where 

fX =

{
1 X > 0, Y > 0
− 1 X < 0, Y > 0 (39)  

so that 

Fig. 4. Heaviside function and its approximation. The infinite gradient at X = 0 
is modified to 1/∊. 
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ff X =

{
X + Y X > 0, Y > 0
X − Y X < 0, Y > 0 (40)  

which can be written 

ff X = X +

{
Y X > 0, Y > 0
− Y X < 0, Y > 0 (41)  

so that 

∂
∂Y

(ff X) =

{
1 X > 0, Y > 0
− 1 X < 0, Y > 0 . (42)  

For the repeated derivative in the same direction we obtain 

∂
∂X

(ff X) = 1 + Y
∂

∂X

{
1 X > 0, Y > 0

− 1 X < 0, Y > 0

= 1 + Ylim
∊→0

1
∊

(43)  

which is not defined at ∊ = 0. Hence, we choose an approximation to 
this by assuming ∊ small. See Fig. 4 for how the function 
{

1 X > 0, Y > 0
− 1 X < 0, Y > 0 (44)  

is approximated. 
We also exploit the symmetry of the shape to work in the upper right 

quadrant only to give the final result for ∇∇g as 

∇∇g =

[
gXXgXY
gXY gYY

]

=

⎡

⎢
⎢
⎣

1 +
Y
∊

1

1 1 +
X
∊

⎤

⎥
⎥
⎦ (45)  

Where Y/∊ is only evaluated if X < ∊, and X/∊ is only evaluated if Y < ∊. 
The final expression for the gradient term is 

∇⋅
∂g

∂∇ϕ
= ∇∇ϕ : ∇∇g|X=∇ϕ =

∂2ϕ
∂xi∂xj

∂2g
∂Xi∂Xj

⃒
⃒
⃒
⃒

X=ϕx ,Y=ϕy

. (46)  

As a footnote to the above it is interesting to create a model without the 
Dirac function for comparison. This also simulates a pseudo square but 
with less straight facet sides and more rounded corners. This pseudo 
square model, 

∇⋅
∂g

∂∇ϕ
= ϕxx + 2ϕxy +ϕyy, (pseudomodel) (47)  

does not appear to have a corresponding free energy function. That said, 
it is a useful first step to ignore the Dirac function on implementation for 
any desired crystal shape. 

Having considered the use of Cartesian coordinates we now look at 
the equivalent representation based upon an angle coordinate. We now 
look at an alternative way of incorporating this model that we can relate 
directly to the formulation found in [17]. We write 

f = |X| + |Y| = R(|X̂ | + |Ŷ |) = R(|cosν| + |sinν|), (48)  

and then introduce some regularization to write 

f = R
1 + λ(|cosν| + |sinν|)

1 + λ
, (49)  

where the effect of a chosen constant, λ, is to round off the corners of the 
square: λ = 0 is a circle; λ = ∞ is a square; intermediate values give a 
square with rounded corners. 

Using Eq. 48 we require (A2)νν. Considering the positive (X > 0,Y >

0) quadrant and its neighbouring quadrants and boundaries: 

A = |cosν| + |sinν| =

⎧
⎨

⎩

− cosν + sinν, ν ∈ [π/2, π]
cosν + sinν, ν ∈ [0, π/2]
cosν − sinν, ν ∈ [− π/2, 0]

(50)  

we find that 

Aν =

⎧
⎨

⎩

sinν + cosν, ν ∈ [π/2, π]
− sinν + cosν, ν ∈ [0, π/2]
− sinν − cosν, ν ∈ [− π/2, 0]

(51)  

Now focus just on the discontinuity at ν = π/2 and write 

Aν = cosν+ sinν
{

1, ν ∈ [π/2, π]
− 1, ν ∈ [0, π/2] (52)  

and then approximate using a small angle δν≪1 

Fig. 5. (up) The effective anisotropy after approximating the discontinuity. 
(bottom) Corresponding plot of the function A + Aνν. 
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Aν = cosν +

⎧
⎪⎨

⎪⎩

− sinν, δν < ν < π/2 − δν

sinν ν − π/2
δν , π/2 − δν < ν < π/2 + δν

≈ cosν +

⎧
⎪⎨

⎪⎩

− sinν, δν < ν < π/2 − δν

ν − π/2
δν , π/2 − δν < ν < π/2 + δν

(53)  

so that for angles near π/2 

Aν ≈
ν − π/2

δν , (54)  

which is less than unity. This then gives 

Aνν ≈
1
δν, π

/

2 − δν < ν < π
/

2+ δν (55)  

Finally we require 

1
2
(A2)νν = A2

ν + AAνν

= − 4cosνsinν
(56)  

away from the boundary and for π/2 − δν < ν < π/2+δν we obtain 

1
2
(A2)νν = A2

ν + AAνν

=

(
ν − π/2

δν

)2

+ (1

/

δν)

≈ 1 + 1/δν ≈ 1/δν

(57)  

in π/2 − δν < ν < π/2 + δν. 
Using the expression Eq. 55 we can work backwards to give the 

effective, A that Eq. 55 implies: 

A(t) = A(0)+
∫ t

0

(

Aν(0) +
∫ s

0
Aνν dν

)

ds (58)  

This is illustrated in Fig. 5 which shows the original, A as a solid red line 
and the approximation using a dotted blue line. We also show the 
function A+Aνν for this same approximating function, and clearly as 
δν→0 we would develop infinite spikes. Clearly the smaller the chosen 
value of δν or ∊ the better the Dirac delta is approximated and an upper 
limit is the angle between the centre of the facet side and the nearest 
vertex; in this case, ϕ/4. We find δν ≈ 0.01 is stable, but have not 
explored this issue beyond choosing a reasonably small value that does 
not cause undue stability and performance compromise. 

Both A = |cosν| +|sinν| and Eq. 55 can be used as demonstrated by 
[17]. However, it is much easier using the Cartesian computation, Eq. 47 
plus a necessary provision for the discontinuity as we shall see in Section 
4. 

This section has discussed two alternative approaches for working 
with a square Wulff shape. The Cartesian approach seems slightly 
simpler, but both approaches are likely to be difficult to apply for gen
eral shapes in 3D. The difficulty being that the location of the discon
tinuities along faces and edges can be a substantial geometric 
undertaking for a general collection of vertices. 

3.2. The vertex based facet model 

In this section we look afresh at the anisotropy function for faceting, 
taking into account that the model of [17] is an example of the correct 
approach applied to a square geometry. The role of ∊ in the model Eq. 4 
is to control the curvature at the vertices and thereby provide more 
stability upon implementation. 

The Wulff shape associated with anisotropy, A, in 2D, given by 

W(ν) = AeR +A′ eν (59)  

where we use the notation, W rather than ξ because we are thinking of 
the whole curve with eR = [cosν, sinν], eν = [ − sinν, cosν]. For faceted 
morphologies the curve is not continuous. For example, the anisotropy 
A = |cosν| +|sinν| has a Wulff shape consisting of vertices of a square 
with no joining edges. Another function that might be used to generate a 
square is the function A = 1 + ∊|sin2ν|. For values of 0 < ∊ < 1/3 a 
faceted shape emerges but it does not have the property, for any ∊, that 
the Wulff shape only consists of vertices. So, in some sense, the formu
lation of [17] where A = |cosν| +|sinν| is more true to the Wulff shape 
than, for example, A = 1 + ∊|sin2ν|. More generally, for any desired 
Wulff shape: what is the property of the anisotropy that gives precisely 
the vertices of the desired Wulff shape? For this we require all angles 
from the centre of one facet to the centre of the next facet to map to the 
one vertex common to both under the mapping Eq. 59. The following 
geometric figure for producing a regular hexagon, Fig. 6, illustrates the 
property we require. 

The solid blue circle arc in Fig. 6 is given by 

A =
1
2
|[1+ cos2ν, sin2ν]| = cosν (60)  

giving 

Aν = − sinν. (61)  

Hence, for − π/6 < ν < π/6, we have 

eR = [cosν, sinν], eν = [ − sinν, cosν] (62)  

W = AeR +Aνeν = [1, 0]. (63)  

That is, all angles in this range map to one common point, [1,0]. Intui
tively, as the angle, ν swings round between 0 and π/6 the vector, Aνeν 
grows in such a way as to keep W at one point. We have the added bonus 
in this model that the angle formulation is readily and directly written in 
terms of Cartesian components of ∇ϕ (we shall see shortly why this is 

Fig. 6. Construction of the energy for producing a hexagonal Wulff shape. The 
anisotropy between the centre of two facets is shown in solid blue and is a circle 
of radius 1/2 centred at the point [1/2,0]. The construction is so that all angles, 
− π/6 < ν < π/6 map, via the Wulff shape, to the one point, [1, 0]. 
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always the case for any faceted shape). 
Let us review what we have done. We have sought a function, f = RA 

such that, Df maps to a single point, i.e. 

Df = p. (64)  

In 2D this implies that 

f = ax+ by, (65)  

and in 3D 

f = ax+ by+ cz. (66)  

That is to say, any linear function of the Cartesian coordinates. For 
example, to generate a vertex of a square at the point [1,1] we choose 

(and see Section 4 

f = X + Y ≡
∂ϕ
∂x

+
∂ϕ
∂y

. (67)  

∇⋅D
1
2
f 2 = ϕxx + 2ϕxy +ϕyy (68)  

The above result is not complete because of the discontinuities in the 
first derivatives at X = 0 and Y = 0. The final result has been given 
previously in Section 3.1, but we also cover the more general case in the 
next sections. 

What we have achieved in this section is a description of a direct and 
simple route from an arbitrary faceted shape defined by its vertices to 
the surface energy, which we now illustrate. Figs. 7–12 show some 
hexagonal Wulff shapes, beginning with a regular hexagon in Fig. 7, and 

Fig. 7. Regular hexagonal Wulff shape [cos(iπ/3), sin(iπ/3], i ∈ [0, 5] inside 
the anisotropy. 

Fig. 8. Irregular hexagonal Wulff shape with misplaced vertex [cos(4π/5)
, sin(4π/5)]. 

Fig. 10. Irregular Wulff shape with one vertex further from the origin, which 
causes the anisotropy to meet near one of the vertices. 

Fig. 9. Irregular hexagonal Wulff shape, but with rounded corners.  
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an irregular hexagon in Fig. 8. In both cases the vertices lie on a common 
circle (centred at the origin). This has the consequence that the anisot
ropy (shown in dashed blue) meets at the centre points of each facet. In 
the phase field simulation of faceted Wulff shapes it is often advanta
geous to regularise these shapes to include rounded vertices as in Fig. 9. 
Another irregularity that can occur is when the vertices are not equal 
distance from a common point such as in Fig. 10. Here the anisotropy 
still forms a series of circle arcs that meet on a facet, but in these cases 
they do not meet at the middle of the faceted side. The extreme event 
where the anisotropy fails to meet on the facet is not allowed (see 
Fig. 11), because the two surface energies no longer have a common 
value on the facet. On the other hand if we place one of the vertices too 
close to the origin it will simply be ignored as in Fig. 12. 

Despite the description of surface energy being simple, 3D phase 

Fig. 14. A dodecahedron (left) together with the anisotropy directly using 
Eq. (33). 

Fig. 12. When a vertex is placed so as to produce a concave shape, it is simply 
ignored. For example, a vertex ( − 0.2,0.2) has no effect on the anisotropy, and, 
by implication, on the surface energy. There is no concave Wulff shape. 

Fig. 11. Too extreme irregular hexagonal Wulff shape. The anisotropy does not 
meet on a facet side. 

Fig. 13. Anisotropy for a cube shown with half the anisotropy cut away. The 
cube vertices are at the points of maximum anisotropy and there is a cusp 
minimum at the centre of all faces. 
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field implementation for arbitrary shapes is potentially difficult. We now 
discuss a straightforward way of circumnavigating the potential 
difficulties. 

4. Arbitrary vertices and implementation 

The generalisation to arbitrary irregular convex polygons as in Fig. 8 
is readily achieved (although the physical basis for such irregularity may 
be questioned). But we ultimately seek a model construction relating to 
crystal growth in 3D, which in its generality will also relate to 2D 
crystals. 

Our starting point is Eq. 33, which gives: 

f (X) = RA(n)
= Rmax(n⋅pi, i ∈ 1, n), n = X

/
R

= max(X⋅pi, i ∈ 1, n)
(69)  

where the application of this expression for arbitrary (and acceptable) 
vertices is non-trivial because of the discontinuities in the derivatives for 
certain values of X, i.e. normal to a facet. See Fig. 13 for the anisotropy 
of a cube. The versatility of expression Eq. 33 is illustrated in Fig. 14 for 
a dodecahedron and in Fig. 15 for a skewed rectangular prism. Of 
particular note in Fig. 15, is that the anisotropy of a skewed cube is not 
the skewed anisotropy of a cube. The simplest way to see that this is true 
is to use the knowledge that all anisotropies of 3D faceted Wulff shapes 
consist of interlocking spheres – not ellipses, for example. 

We require ∇∇g, where g = 1
2f

2. In the neighbourhood of vertex pi 

our function 

f = f i = X⋅pi (70)  

and so (in this neighbourhood) 

∇f = ∇f i = pi (71)  

and 

∇∇(
1
2
f 2) = pi ⊗ pi (72)  

when X points in the direction of pi, or even in its vicinity, i.e. closer 
than neighbouring vertices. 

We now concentrate on two adjacent points, pi and pj, joined by a 
line and separated by a plane surface, S, such that the position X on the 
plane obeys: 

f i = f j⇒X⋅(pi − pj) = 0 (73)  

That is nij ≡ (pi − pj)/|pi − pj| is orthogonal to the plane. We state as a 
postulate that:  

1. The solution to Eq. 73 must include a vector X pointing between pi and pj.  
2. The solution to Eq. 73 must include a vector X normal to, and located on, 

a facet. 

These statements have the effect of restricting the choice of vertices 
to not only form a convex shape but also arranges the facets to be normal 
to some radial vector from the origin. 

Consider a function 

g =

{
gA X ∈ A
gB X ∈ B (74)  

where the whole domain is divided into two regions A and B separated 
by a surface, S and furthermore 

gA|S = gB|S (75)  

on the joining region. Consequently 

∇g =

⎧
⎨

⎩

∇gA X ∈ A
∇gB X ∈ B
undefined X ∈ S

(76)  

and 

∇∇g =

⎧
⎨

⎩

∇∇gA X ∈ A
∇∇gB X ∈ B
undefined X ∈ S

(77)  

This situation arises in the description of faceted anisotropy. For regular 
shapes, one can use lines and surfaces of symmetry to address the dis
continuities that exist on these surfaces. But the complications accu
mulate in 3D even for regular shapes leaving this approach only useful 
for simple shapes in 2D like squares and hexagons. In fact, even in the 
simplest case of a square the problem is not trivial due to the presence of 
discontinuous derivatives as [17] demonstrates. 

We seek an easy-to-implement method where the input are the 
vertices, pi, i ∈ [1,n], of the desired Wulff shape only. The essence of the 
approach is: once f is defined as a maximum of a series of n values (equal 
to the number of vertices) for any given point in the tangent space, X =

∇ϕ, one avoids seeking an analytical expression for its derivative and, 
instead, uses a finite difference approximation. Moreover, one can avoid 
finding the second derivative altogether by using a finite volume 
approach in a finite difference code, as we will describe. An alternative, 
which also avoids a second derivative, but is not explored here, is the 
Finite Element Method, 

The finite difference approximation is not directly associated with 
the underlying mesh because we are seeking a derivative on the tangent 
space, i.e. on the space of X. The use of a small number, h on this space, 
gives an exact result for df when X points towards or near a vertex, pi, 
because f is linear in X,Y. However, when X points midway between two 
vertices (or more), the finite value of h has the effect of smoothing the 
discontinuity. One is of course free to choose smaller and smaller values 
of h→0, but ultimately this will lead to numerical instability. The pen
alty for too large an h is that the facets will become curved. 

We first explore the simplest implementation, but then follow this 
with a more stable finite volume approach. 

Fig. 15. For a skewed rectangular prism (shown against Cartesian axes), we 
note that the anisotropy is not that of the skewed anisotropy of a cube. Instead 
we see larger anisotropy, which corresponds to a greater surface energy, around 
the two most acute vertices (one near [ − 1, − 1, − 1]). 
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4.1. Implementation in Phase field 

We give full details of our phase field model in Appendix B, where we 
adopt the Allen–Cahn equation for the phase field and Cahn–Hilliard for 
solute diffusion, following minimisation of the free energy. The free 
energy consists of bulk and surface energy, the latter of which controls 
the Wulff shape via the anisotropy, A(n). 

For faceted shapes the anisotropy, A(n), leads to ill-posed equations, 
[21], and regularisation, for example, by adding a curvature term to the 
energy is demonstrated in [21,32]. Building on these approaches [33] 
establish the connection between sharp interface theory and phase field, 
and demonstrate the coarsening dynamics of the faceting instability 
during growth. The main advantage of these approaches is that it allows 
the phase field model to incorporate metastable anisotropy, i.e. that 
leads to Wulff shapes with ‘ears’ (also referred to as ‘wings’ in [21]). 
Arguably, a simpler approach is given in [17], which retains the 
Allen–Cahn phase field equation for the simulation of a square Wulff 
shape, and is the approach we build on in this paper for general shapes in 
two and three dimensions. A feature of this latter approach is to avoid a 
Wulff shape with ears by recognising that the flat faceted faces (edges in 
2D) can be approximated by faces with near zero curvature and using 
(rounded) ’vertices’. The resulting Wulff shape being formally convex to 
allow stability in the computation. We can associate the model with a 
tensor as defined in [24] (using only the gradient contributions): 

T = δ2(A(n)∇ϕ ⊗ ξ −
1
2

A(n)2
∇ϕ⋅∇ϕI) (78)  

which, comparing with the expression (5.10) in [21], reveals it to be the 
simpler model. 

For ease of reference we rewrite our surface energy function 

g =
1
2
f 2, f = ∊|X| +max{X⋅pi, i = 1, n} (79)  

where, as in Eq. 4, ∊ controls the rounding of corners to aid numerical 
stability as noted by [17]. A finite difference approximation to a second 
derivative in the X direction is given by 

gXX ≈
g(X + h, Y,Z) − 2g(X, Y, Z) + g(X − h, Y, Z)

h2 (80)  

Now, in the continuous part of the domain, away from the forbidden 
directions, this result is exact for quadratic functions of X, as we have 
here. For X lying on a discontinuity, the Dirac function is essentially 
approximated using the chosen value of h, and clearly as h→0 the true 
value is approached. Similarly 

gXY ≈
g(X + h, Y + h, z) + g(X − h,Y − h, Z)

4h2

−
g(X − h, Y + h, Z) + g(X + h, Y − h, Z)

4h2

(81)  

and hence 

∇∇g =

⎛

⎝
gXX gXY gXZ
gXY gYY gYZ
gXZ gZY gZZ

⎞

⎠ (82)  

is readily computed for any point once g via f is defined in the code. This 
implementation method was used in the simulations illustrated in Fig.s 
26 and 27 to be discussed further in the next section. 

The next step is to write 

∇⋅
∂g

∂∇ϕ
= ∇∇ϕ : ∇∇g|X=∇ϕ (83)  

The above certainly has the virtue of simplicity and is easily imple

mented in both 2D and 3D. That said, despite ∇∇g being approximated, 
it is still an approximation to a singularity. So we detail an alternative 
approach. 

4.2. Regularization and implementation 

This section details a finite volume approach to finite difference 
using our knowledge of the Wulff shape and its relation to phase field. 
The approximation to the singularity is avoided but the problem of h→0 
is not avoided. This is our preferred numerical method which we detail 
for 2D only, but also a finite element method will have the same ad
vantages.  

1. We wish to implement, using finite differences, the gradient energy 

∇⋅D
1
2
f 2 ≡ ∇⋅

∂ 1
2 f (∇ϕ)2

∂∇ϕ
, (84)  

where for any X = ∇ϕ, f satisfies 

f (X) = ∊|X| +max(X⋅pi, i ∈ [1, n]) (85)  

for the n vertices, pi, i ∈ [1,n].  
2. We write with g = 1

2f
2 

∇⋅Dg = lim
V→0

1
V

∮

Dg⋅nd∂V (86)  

where n is the normal to the boundary of volume, V, denoted ∂V. In 
2D on a Cartesian mesh labelled i, j this becomes four integral con
tributions for each side of the square surrounding the point (see 
Fig. 16), one of which is 

CRight ≡

1
6

∂g
∂X

|i+1
2,j+

1
2
+

2
3

∂g
∂X

|i+1
2,j
+

1
6

∂g
∂X

|i+1
2,j−

1
2

(87)  

where 

∂g
∂X

|i+1
2,j+

1
2
=

(

f
∂f
∂X

)

|i+1
2,j+

1
2
. (88) 

Fig. 16. Illustration of the finite volume scheme for implementation in a finite 
difference code. The cell of shaded area is of size Δx2 and the broken line of 
length Δx is part of the boundary. 

P.C. Bollada et al.                                                                                                                                                                                                                              



Computational Materials Science 192 (2021) 110331

12

On the right-hand side of Eq. 88 is a function of X = ϕx and Y = ϕy 

which needs to be a evaluated at the point (i + 1
2, j +

1
2). On a regular 

Cartesian grid, with Δx = Δy, we use: 

(ϕx)|i+1
2,j+

1
2
≈

1
2

ϕi+1,j+1 − ϕi,j+1

Δx
+

1
2

ϕi+1,j − ϕi,j

Δx
,

(
ϕy
)
|i+1

2,j+
1
2
≈

1
2

ϕi+1,j+1 − ϕi+1,j

Δx
+

1
2

ϕi,j+1 − ϕi,j

Δx
.

(89)  

The point (i+1
2, j −

1
2) is dealt with in a similar way. At the point 

(i+1
2, j) we use 

(ϕx)|i+1
2,j
≈

ϕi+1,j − ϕi,j

Δx
,

(
ϕy
)
|i+1

2,j
≈

1
4

ϕi,j+1 − ϕi,j− 1

Δx
+

1
4

ϕi+1,j+1 − ϕi+1,j− 1

Δx
.

(90)   

3. Now a crucial key to the method is the evaluation of the partial de
rivatives ∂f

∂X,
∂f
∂Y, which are not evaluated analytically. We use the stencil 

∂f
∂X

=

f (X − 2h) − 8f (X − h, Y) + 8f (X + h, Y) − f (X + 2h, Y)
12h

(91)  

Please note the distinction between h and Δx. Δx is the grid distance 
between mesh points (assumed equal in x and y) but h, related to a 
typical maximum value of |∇ϕ|, can be chosen arbitrarily taking into 
account machine accuracy and how closely one wants the numerical 
scheme to follow the approximation to the max function. A smaller h 
gives lower curvature on the facets. For example, for a grid size of 
Δx = 0.78 and maximum |∇ϕ| ≈ 0.1/Δx, we explored values of h ∈

[0.001, 0.02], being roughly in the range of 1/5 to 1/100 the max 
|∇ϕ|. The larger h giving noticeably curved sides, and the former 
smaller value reducing the stability so that the simulation is an order 
of magnitude slower to run. It is beyond the scope of this paper to 
quantify numerical stability, but h does seem to result in curvature, 
κ̃h/max(|∇ϕ|).  

4. The final scheme is then 

∇⋅Dg|ij ≈
CRight + CLeft + CTop + CBottom

Δx
(92)  

assuming a square cell of size Δx2. Fig. 16 illustrates the scheme with 
the part boundary, CRight shown as a dashed line. 

4.3. Recommended scheme: approximating the max function 

We now explore, use for our results and recommend, the use of a 
power law approximation to the max function. That is, the approxima
tion of the max function using higher order polynomials 

f ≈ R

[
∑n

i

(
1
2
+

1
2

X̂⋅pi
)w
]1/w

(93)  

where we assume that |pi| = 1 for all the vertices. Use of this continuous 
function avoids the difficulty, present in the previous scheme, of having 
to have a large, h, on the tangent space. This is because, in the previous 
scheme, the parameter, h, served two purposes: one, a convenient way of 
implementing arbitrary vertices, and; two, a way of approximating the 
max function. In Eq. 93 the approximation to the max function is already 
made, and so the use of a finite difference, h, only serves for the con
venience of dealing with arbitrary vertices. Crucially, h > 0 can be made 

arbitrarily small (and is not restricted by the grid size). 
A note on implementing Eq. 93: for w = 512, for example, we find it 

far more efficient to use ((x8)
8
)
8 rather than x512 or exp(wlnx) in the 

Linux 17.0 Intel FORTRAN we employ. 
It may be argued that the final scheme we recommend is very similar 

to the power law schemes of [25,26]. The difference, though, is that our 
proposed scheme incorporates an approximation to the max function, 
and does not just resemble it. The main ingredient common to all facet 
modelling is to generate discontinuities in the first derivative in the 
direction of the tangent to each facet. 

We have given a method for generating surface anisotropy given the 
vertices of an equilibrium shape, but what of smooth shapes that cannot 
be specified by vertices? To some extent this question is beyond the 
scope of this paper, but since any surface can be approximated by a 
series of smaller and smaller facets, any convex shape can be approxi
mated with this method. For example, in Eq. 33, set all vertices, pi, i =

1..N, to lie equidistant on the unit circle. Then is follows that, as N→∞ 
the maximum value is attained when pi = n and so A = 1 and the 
isotropic model is reproduced. 

5. Phase field simulation results 

Motivated by curiosity to see the effect of the discontinuity in the 
anisotropy model, we first inspect the pseudo model given in Eq. 47, 
where all the complications of the discontinuity in the anisotropy are 
ignored. In Fig. 17, we show one of the effects of neglecting this term. 
Here, the curvature, κ, is output at a point in the middle of a facet of the 
desired square Wulff shape, with and without the correct treatment. 
Comparing the results, we see that the facet is more quickly achieved 
and remains flat with the discontinuity included via the approximation 
of the Dirac delta function. In short, the correct treatment of the dis
continuities aids in establishing the Wulff shape quickly and 

Fig. 17. Two plots of the evolution of curvature, κ, on a facet side, with and 
without the correct treatment of the discontinuity. R is a measure of a 
increasing size of the crystal. The first derivative of the anisotropy is discon
tinuous and so the second derivative, needed in phase field, formally produces a 
singular (Dirac) function. The plot that lies predominantly at κ = 0 (blue) 
contains the correct treatment of the discontinuity. Neglecting this term can 
lead to concave (κ < 0) sides and surfaces as can be seen as the (red) line crosses 
κ = 0. 
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maintaining its shape. 
Unlike rapid solidification of dendritic growth, near equilibrium 

growth of a regular faceted crystal tends towards the Wulff shape. In 
practice “near equilibrium”, in our context, is when the bulk driving 
force is sufficient for growth. Simply setting this term to zero results in 
melting and so, by trial and error we find a temperature just low enough 
to give growth. 

However, its evolution towards that end state is interesting in itself 
and can be compared with non-phase field models such as [34,35], being 
discrete models for growth and dissolution respectively. As is normal 
practice, the phase field simulation seeds the growth in a metastable 
energy state as a circle or sphere. 

We begin by considering grid-induced effects on a growth of a reg
ular hexagon in Figs. 18 and 19 which is coloured according to values of 
the solute field, c, with the internal region being at the solid concen
tration. We employ the approximation, Eq. 34 with w = 512 to Eq. 33 in 
Eq. 79 and the implementation methods of Section 4.1. We use ∊ = 0 for 
Fig. 18 and ∊ = 0.1 for Fig. 19. Part of the quarter domain grid used is 
shown to illustrate that the hexagonal crystal has been rotated by π/3 to 
aid the eye and demonstrate that the larger value of ∊ effectively elim
inates grid anisotropy effects. Not shown in the plots, and tangential to 
the main argument of this paper, is the observation that partitioning is 
that the maximum value of c is found in the centre of each facet and 

approaches the equilibrium value for cL as given by the common tangent 
construction to the free energy curves used. From this point on all 
simulation results concentrate on the morphology. 

Fig. 30 is a superposition of a series of snapshots of crystal growth 
starting from eight seeds of varying sizes. The results are similar to those 
reported in [33] and, more uniformly, in [32]. The most notable aspect 
of these simulations is the formation of stable concave sharp valleys 
from a convex Wulff shape. 

It is also instructive to consider shapes without regular Wulff shapes 
to see the evolution of the faceted morphology towards or away from the 
Wulff shape. An example of this is the Wulff shape in Fig. 8 using a near 
equilibrium phase field simulation at a series of times in Fig. 20. How
ever, when the undercooling is increased by 100 K or more departures 

Fig. 20. Growth of an irregular faceted shape. The solid lines are from a series 
of ϕ = 1

2 contours at roughly equal intervals (equal time steps). Superimposed is 
the Wulff shape as a dashed line, with dotted lines from the origin to aid the 
eye. To get the best fit the centre of the Wulff shape is located slightly above the 
centre of the phase field initial condition. 

Fig. 21. Growth of an irregular faceted shape under rapid solidification. The 
equilibrium Wulff shape is lost. 

Fig. 19. A repeat of the simulation shown in Fig. 18 but with some rounding of 
vertices by setting ∊ = 0.1. 

Fig. 18. Simulation of the solute field, c, of a regular hexagon on a quarter 
domain using model Eq. (79) with no rounding of corners, i.e. ∊ = 0. This 
illustrates the problem of .grid anisotropy. 
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from the Wulff shape are evident- see Fig. 21. We also notice in Fig. 21 
that there is a delay before the final shape is formed. 

By adopting the WBM model, [2], with inter-metallic Al13Fe4 we 
found, even with a high undercooling ΔT/TM ≈ 1/6, the resulting 
morphology returned a scaled version of the equilibrium shape, e.g. the 
inner regular hexagon shown in Fig. 22. Changing the model to that of 
KKS (see [36] and appendix B) we found that we were able to generate 
greater growth rate and consequently were able to achieve the facet 
breaking reported in [17,18]. Extending the run time results in Fig. 23, 
which has established a dendritic structure with the facet orientations no 
longer in the allowed (equilibrium) direction of a regular hexagon. 

In summary to get a true Wulff shape in a phase field simulation we 
require near equilibrium and a high order polynomial approximation to 
the max function, Eq. 33. 

In 3D, when changing the anisotropy to a rectangular prism facet 

model with ratio 1:1:2 the initial spherical seed evolves towards the 
1:1:2 state quite slowly, arriving at Fig. 24 ̃1 : 1 : 1.8 at t = 41 in our 
dimensionless model detailed in App. B. 

The simulation of a regular hexagonal prism with vertices at the 
points, pi = [cosiπ/3, siniπ/3,±1], i = 0,5 is shown in Figs. 25 and 26, 
and to illustrate the ease in which our general method can be applied to 
more complicated shapes, we simulate a dodecahedron in Fig. 27. Once 
the docahedron is formed at an early stage the subsequent growth is a 
simple scaling as shown in Fig. 28 which attempts to illustrate the crystal 
growth at three time points, with a complete dodecahedron at the first 
time point; a half dodecahedron at a mid time point and a semi trans
parent dodecahedron at the final time point. The colouring of the mid 
time point is orientation of the normal compared to a fixed direction to 

Fig. 25. End view of a phase field simulation of a hexagonal prism. Despite the 
Cartesian mesh this view of the simulation shows that the model is resistant to 
grid anisotropy. 

Fig. 22. Simulation of (equilibrium) hexagonal shape using two different 
models: WBM and KKS. Both model results are shown at the same time step 
indicating a higher growth velocity for the outer shape. Using WBM method the 
growth velocity is low and the equilibrium shape, the hexagon is reproduced. 
For the KKS method a greater growth velocity results in facet breaking. Fig. 24. Phase field simulation of a rectangular prism.  

Fig. 23. Simulation of Al13Fe4 with undercooling ΔT = 200 using the KKS 
model. The outer flake like structure is formed at a time step 30 times the value 
of the inner shape, being the shape also shown in Fig. 22. 
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the facets and is intended as a visual aid. 
Our final, 3D simulation, which illustrates the flexibility of our 

proposed method is of the Archimedean truncated octahedron shown in 
Fig. 29. Here again, as an aid to the eye we have coloured the faces 
according to their orientation. The faces in the figure contain both 
regular hexagons and squares, and although it is indeed the equilibrium 
Wulff shape desired, it is not a forgone conclusion that such a result 
should emerge intact without distortion by the phase field method. 
Fig. 29 thus confirms the method works, despite the attendant regular
isation, smoothing of the interface and rounding of the vertices and 
edges. 

The main aim of this section has been to illustrate and confirm the 
generic nature of our proposed method to accommodate any Wulff 
shape, in 2D or 3D, within phase field. We have also illustrated the 

importance of the regularisation introduced in [17] to combat grid 
anisotropy by ‘rounding’ the vertices. We have also illustrated the 
applicability of the method to irregular shapes with less symmetry and 
to, to a limited extent, the effects of non-equilibrium dynamics on the 
resulting departures from the underlying equilibrium shape. 

6. Summary 

We have presented a very general method for the phase-field simu
lation of arbitrary faceted crystals in both 2- and 3D, illustrated for a 
range of both regular and irregular morphologies. The method lends 
itself both to a relatively straightforward geometrical interpretation of 
the simulated morphology, via the Wulff shape, and is of comparable 
ease to implement for arbitrary vertices as, for example, [25,26], but 
offers a more canonical approach. 

The paper is concerned with a new approach to facet modelling and, 
as a result, claim a phase field method which is both flexible for arbitrary 

Fig. 26. Mature hexagonal prism viewed in semi transparent perspective with 
an earlier growing crystal superimposed. The initial seed is a sphere of radius 
10 and so the crystal growth forms the faceted faced before the edges 
and vertices. 

Fig. 28. The growth of a dodecahedron crystal from spherical nucleus. The 
Wulff shape is formed early on and there is no change in morphology at these 
driving rates. 

Fig. 27. Crystal growth towards a dodecahedron using surface energy as 
illustrated in Fig. 14, using an approximation to Eq. 33 in a phase 
field simulation. 

Fig. 29. A near equilibrium phase field simulation of an Archimedean trun
cated octahedron with colouring according to orientation in the x-direction. 
The input to the model, like all the other simulations, are the vertices only. 
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faceted shapes and simple to implement. As such, we believe this 
approach offers a radically new way of simulating realistic morphologies 
for complex, faceted crystals in phase-field. Moreover, due to the simple 
way in which the crystal morphology is specified in the model, i.e. by the 
specification in real-space of the co-ordinates of the vertices, experi
mentally determined crystal shapes may be easily parameterised for 
simulation. 

The essence of the approach is contained in Eq. 33, which has the 
flexibility that the input to the model are the vertices of the Wulff shape 
only. The main results of the paper are: the facet anisotropy Eq. 33 and 
its approximation, Eq. 34; and the implementation methods given in 
Section 4. Also, to mitigate against grid anisotropy and help with nu
merical stability, we advocate the application of a term originating in 
[17] to give rounded corners in Eq. 4, and generalised in Eq. 79 as 
illustrated in Fig. 19. 
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Appendix A. Differential geometry notation 

In this section we explain the notation used extensively in this paper. An alternative route for the reader is to consult the book [37], which explains 
these and other geometrical tools in much more detail. The reason why we feel the need to adopt these methods is because of the non standard 
coordinates used by working with a vector basis associated with a surface defined by ∇ϕ.  

1. Assume a space R2, with coordinates (not necessarily Cartesian), xi, i = 1,2. The results extend naturally to any dimension.  
2. A function, f, is defined 

f : R2→ R
(x1, x2) ↦ f (x1, x2).

(A1)    

3. Let the coordinate vector basis for the space be given by 

∂
∂x1,

∂
∂x2 (A2)  

so that any vector, v ∈ R2, thought of as a differential operator, can be decomposed 

v = vi ∂
∂xi (A3)    

4. The use of a differential operator basis for the space is justified by inspection of the action of v on a function, f, namely 

v(f ) = vi ∂f
∂xi = vi ∂

∂xi(f ). (A4)    

5. In a Cartesian basis this is readily recognised as the directional derivative 

v(f ) ≡ v⋅(∇f ) (A5)  

but Eq. A4 is well defined in any coordinate basis, even when no dot product is defined. Formally, for any coordinate system, the second notation of 
Eq. A5 can be evaluated 

v⋅(∇f ) = (vi)(gij)

(

gjk ∂f
∂xk

)

(A6)  

where the first bracket are the components of v in a coordinate basis, gij is the metric associated with the dot product, and the third bracket is the jth 
component of ∇f , which includes the inverse metric, gjk. All of which illustrates that v⋅(∇f) is an unnecessarily complicated notation for a more 
primitive, metric independent, operation, Eq. A4. 
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6. Now consider the differential, df 

df : R2→ R

v ↦ df (v) = v(f ) = ∂f
∂xiv

i
(A7)  

By this definition, when f is a coordinate, say, f = xi, we have 

dxi(v) = vi. (A8)  

Consequently, multiplying both sides by ∂f
∂xi and summing produces 

∂f
∂xi dxi(v) = ∂f

∂xiv
i, (A9)  

which implies, formally, that 

df =
∂f
∂xi dxi. (A10)  

Thus definition Eq. A7 is consistent with the standard definition of a differential.  
7. When v is a basis vector, v = ∂

∂xj we have the result that 

dxi
(

∂
∂xj

)

= δi
j (A11)  

where δi
j takes the value 1 when i = j, otherwise zero.  

8. Now it also follows from the definition in Eq. A7 that the operation of df on vectors is linear: 

df (λv) = λdf (v), (A12)  

for any function λ, which means that df is a first rank tensor with basis in R2 

dx1, dx2 (A13)    

9. We can define any dual vector, α, in this basis by 

α = αi dxi (A14)  

and its operation on vectors by 

α : R2→ R
v ↦ α(v) = αivi.

(A15)  

Fig. 30. Here we superimpose crystal growth at eight time steps with square anisotropy with vertices at [0,1], [1,0], [0, − 1], [ − 1,0]. The results bear a similarity with 
Herring instability as reported by [33]. 
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10. Comment. A geometric picture of df(v) at a point p is as a vector, v, superimposed on a series of contours of f at a particular point p. The number 
of contours crossed by the vector v is approximated locally by df(v). If ̃f is a linear approximation to f at point p then df(v) = df̃(v) at p and df̃(v)
is exactly the number of contours of ̃f crossed by v. This number increases (linearly) with the size of v and with the rapidity of the change of f 
(closeness of contours). A simple and important example being dx having vertical contours located at x = 0,1,2,3…and ∂

∂x being a unit vector 

pointing in the x direction, thus illustrating dx
(

∂
∂x

)

= 1. It is important to note that the coordinates do not need to be Cartesian for this result to 

hold. This is illustrated in Fig. 31 where, assuming the contour are for heights in unit steps then df(v) ≈ − 1.7 

Appendix B. Phase field model 

Throughout this paper we employ the following non-dimensional model for the phase field: 

ϕ̇ = −
δF
δϕ

(B1)  

where on a domain, Ω, 

F =

∫

Ω
f dxdydz, (B2)  

with 

f =
1
2
δ2A(n)2

∇ϕ⋅∇ϕ+ϕ2(1 − ϕ)2
+ λ

fB(c,ϕ)
Δf

. (B3)  

Here, δ is an input parameter controlling the interface width, λ is the dimensionless undercooling, 

λ =
TM

TM − T
, (B4)  

where TM is the melting temperature, and Δf is to be explained in Section B.2, and effectively relates latent heat of fusion, L, by L = Δf/λ. fB is the bulk 
free energy associated with an intermetallic model for Al13Fe4 in this case as this alloy exhibits faceted crystalline structures. 

B.1. Bulk thermodynamics 

We begin with free energy of the liquid and solid 

fL =

GA
L(T)(1 − c) + GB

L(T)c

+RT[clnc + (1 − c)ln(1 − c)]

+
∑3

i=1
[ai + biT]Yi(c)

(B5)  

where 

Y1 = c(1 − c),
Yi+1 = (1 − 2c)Yi

(B6) 

Fig. 31. Illustration of the action of a vector, v = [ − 0.2, 0.2] (shown as an arrow) on a function, f, which we write as v(f) ≡ df(v) ≈ − 1.7 in this example (red being 
the higher values of f). The plot on the left is of f and the plot on the right is a linearisation of f about the point [0.7, 0.3]. 
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and the Gibbs functions 

GA
L(T) = αA

1 + αA
2 T + αA

3 TlnT + αA
4 T2

+αA
5 T3 + αA

6 T − 1 + αA
7 T7 + αA

8 T − 9,

GB
L(T) = αB

1 + αB
2 T + αB

3 TlnT + αB
4 T2

+αB
5 T3 + αB

6 T − 1 + αB
7 T7 + αB

8 T − 9.

(B7)  

The coefficients vary depending on the temperature, T, and we use T = 1100K and the arrays of coefficients: 

a = [− 91976.5, − 5672.58, 121.9],
b = [22.1314, 4.8728, 0],

αA = [− 795.996, 177.430178, − 31.748192, 0, 0, 0, 0, 0],
αB = [13265.87, 117.57557, − 23.5143, − 0.00439752,

− 5.8927 × 10− 8, 77359, − 3.67516 × 10− 21, 0]

(B8)  

The inter-metallic solid construction is more complex: 

fS =
GA

S (T)y(c) + GB
S (T)(1 − y(c)) + c1RTS(y)

1 − c1 + c1y(c)
(B9)  

y = h(max(min(c2, c), c3)) (B10)  

h =
c3/c − 1 + c1

c1
(B11)  

with 

c = [0.1375, 0.27246, 0.235] (B12)  

and Gibbs functions 

GA
S (T) = βA

1 + βA
2 T + βA

3 TlnT + βA
4 T2

+βA
5 T3 + βA

6 T − 1 + βA
7 T7 + βA

8 T − 9,

GB
S (T) = βB

1 + βB
2 T + βB

3 TlnT + βB
4 T2

+βB
5 T3 + βB

6 T − 1 + βB
7 T7 + βB

8 T − 9.

(B13)  

with the coefficients defined 

βA = [− 39054.31967, 180.954867045, − 29.81322738,
− 0.0010334172, − 1.3847845 × 10− 8, 18179.365,
0, − 9.4135086 × 1027],

βB = [− 45307.500705, 222.121826295, − 35.09736688,
0, 0, 0, 0, 5.386256991 × 1030]

(B14)  

The above coefficients come from CALPHAD data base, [38]. 

B.2. Quadratic common tangent approximation 

The bulk free energy is formally contructed 

fB = g(ϕ)fL(c)+ (1 − g(ϕ))fS(c) (B15)  

but we recognise the difficulty of working in phase field with a function that is only defined in the range c ∈ [0.2350,0.27246]. Moreover, the above 
definitions add significantly to computation. So we adopt an approximation to the above by constructing two quadratic functions, ̃fL, f̃ S that agree at 
the common tangent points in the following manner: 
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f̃ L = fL,

f̃
′

L(cL) = f
′

L(cL),

f̃
′′

L(cL) = f ′′L(cL),

f̃ S = fS,

f̃
′

S(cS) = f
′

S(cS),

f̃
′′

S(cS) = f ′′S(cS),

(B16) 

We define Δf from the common tangent construction, being the difference in values of fB at the two common tangent points, cL, cS, i.e. 
Δf ≡ |fL(cL) − fS(cS)| = |̃fL(cL) − f̃ S(cS)|. 

Use of a quadratic approximation eases the application of the KKS model of [36], which we employ in producing the results depicted in Figs. 22 and 
23. In essence the bulk free energy is formed in a similar way to Eq. B15 but with the following difference 

fB(ϕ, c) = g(ϕ)fL(cL(c,ϕ)) + (1 − g(ϕ))fS(cS(c,ϕ)) (B17)  

supplemented by the condition 

f
′

L(cL) = f
′

S(cS). (B18)  

For quadratic bulk free energy curves Eq. B18 is linear and so, after substitution, Eq. B17 forms a non-linear equation for, say, cS(c) (or cL(c)) given any 
value of ϕ and c, where it should be noted that, in the KKS model, cS and cL are fields. Further discussion of this model is beyond the scope of this paper. 

Appendix C. Numerical method 

The numerical method is described in detail in [39], but with one significant change, which increases the flexibility of the code. The non-linear, 
adaptive mesh, implicit, multigrid solver describe in [39] uses a pointwise Jacobian to solve the system. The construction of the Jacobian in [39] 
approximates the gradient term by ignoring the anisotropy. This treatment is modified in the present code as follows. Consider the system of non-linear 
algebraic equations 

F(u) = 0 (C1)  

where u contains all the unknowns across the whole domain. Then by a first order expansion about a trial solution u0 

F(u) = F(u0)+ J⋅(u − u0) = 0 (C2)  

where J ≡ ∂F
∂u

⃒
⃒
⃒
⃒
u0

. This gives our first update, u, from u0 as 

u←u0 − J− 1F(u0). (C3)  

Now a pointwise approximation to this only requires the values of the variables at each point, ui, labelled by i. Giving 

u*
i ←ui − J− 1(ui)F(ui). (C4)  

giving the updated values at the same point, u*
i . A further approximation made in [39] is to assume there are no cross terms, e.g. 

∂Fϕ(ϕi, ci)

∂ci
≈ 0 (C5)  

where, for example, for two variables, ϕ, c we have 

F =

(
Fϕ
Fc

)

. (C6)  

In the present code we expand the Jacobian to cover, in 2D, 4 cells, and in 3D, 8 cells. For two field variables, ϕ and c, this results in the 16 × 16 
Jacobian matrix, J in 3D. Now because of the complexity of an arbitrary anisotropy function and complicated data base functions, we find it too 
cumbersome to construct a new Jacobian with every change of model. We therefore adopted an approximation to the Jacobian using finite differences. 
The reader should note that this construction is not related to the mesh size. The approximate Jacobian may be denoted 

J ≈
F(u + δu) − F(u)

h
. (C7)  

Here, F is a vector of length, 16, and δu is a variation of each of the two variables in all 8 cells. So, the resulting Jacobian is 16 × 16 as stated. 
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In summary, we adopt this numerical method in order to give flexibility, essentially equal to that of an explicit code, where ultimately one simply 
implements the discrete model. 
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